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Abstract: Purpose
Precise knee kinematics assessment helps to diagnose knee pathologies and to
improve the design of customized prosthetic components. The first step in identifying
knee kinematics is to assess the femoral motion in the anatomical frame. However, no
work has been done on pathological femurs, whose shape can be highly different from
healthy ones.
Method
We propose a new femoral tracking technique based on Statistical Shape Models
(SSMs) and two calibrated fluoroscopic images, taken at different flexion-extension
angles. The cost function optimization is based on genetic algorithms, to avoid local
minima. The proposed approach was evaluated on 3 sets of digitally reconstructed
radiographic images of osteoarthritic patients.
Results
It is found that using the estimated shape, rather than that calculated from CT,
significantly reduces the pose accuracy, but still has reasonably good results (angle
errors around 2 degrees, translation around 1.5mm).
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The authors thank the reviewers and the editor for their interest in this topic and for giving them the possibility 

to improve the paper with their comments. Hereunder we answer the questions arisen, with indications on the 

changes made to the manuscript 

 

Reviewer #1: 

Authors have addressed a very hot topic like the tracking of femoral kinematics from 2D fluoroscopy 

information. The manuscript is well organized and written.  

However, a clear justification of the clinical application of the developments should be done. Since the 

acquisition of dynamics fluoroscopy can be translated into a high radiation dose, the use of a dynamic X-Ray 

acquisition to monitor articular function should be clearly indicated. A deep discussion on the added value of 

this technique over existing approaches to monitor femoral kinematics is missing. 

According to the reviewer comment, we modified the text in the “State of the Art” section as follows: 

“Knee kinematics assessment has great importance both to understand the problems associated with a large 
number of knee pathologies and to improve the design of prosthetic components. In case of severe 
osteoarthritis, that are eligible for joint implant surgery, in vivo pre-operatory knee kinematics is fundamental 
to understand the relative motion between the three joint bones. The relative movement can give an insight 
of how the ligaments are stretched and their stability, and how could be the feeling for the patient. In this 
way, pre operatory knee kinematics could help the surgeon to decide which prosthesis should be used and 
how to correct the misalignment of the bones [3]. 
Currently, the reconstruction of the pose of the knee can be done using 3D scans such as real-time Magnetic 
Resonance Imaging (MRI) or through a 2D/3D registration method that superimposes the shape extracted 
from MRI or Computed Tomography (CT) onto an image, usually X-ray or fluoroscopy. Real-time MRI is 
suitable to study joint kinematics, as it evidences the muscle structure during movements. However, it can 
only be used with relatively slow movements, and the accuracy obtained increases from 1mm to more than 
3mm depending on the velocity of the movement. In addition, MRI scans are highly expensive [4]. 
Traditional CT and MRI provide an accurate evaluation of the morphology of the knee, but are limited to 
static positioning of the patient.  
 
[…] 
 
The use of dynamic fluoroscopy to detect knee kinematics is described in [12]. The authors use a fluoroscopic 
system flashing at 30Hz, obtaining continuous images of the knee flexion from 0° to 120°. A static CT is 
projected to reconstruct knee kinematics. A similar protocol is used in [13], where the authors describe a 
method to align CAD projections of knee implants to fluoroscopic images. They perform dynamic acquisitions 
at 8Hz moving a Sawbone model with an implant between 0° and 90°. In [14], the authors introduced Statistical 
Shape Models (SSMs) to reconstruct the shape of the femur. They performed analysis on the optimal number 
of X-ray scans that allow an accurate reconstruction of the shape of the knee. Their method was based on 
manual segmentation of the bone contour from X-ray images.” 
 
 
In the Discussion section, we emphasized the added value of our work over existing approaches 
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“Our approach shows the applicability of a semi-automatic algorithm for 2D/3D registration using SSM. With 
respect to dynamic MRI, our method is less expensive and more accurate [4]. Compared to actual clinical 
procedures, that are based on a previous static CT or MRI scan and a manual fitting of the shape, this method 
is less expensive (as CT and MRI can be avoided) and more accurate due to the automatic fitting. The ionizing 
radiation given to the patient in our procedure is just a few hundredths of a mSv (considering a total of 22 
images and an average dose of 0.001mSv for each image, we have a total dose of 0.02mSv, much lower than 
a 2.2mSv average dose absorbed with a CT) [29, 30].  
Compared to skin mounted markers, our system does not suffer from relative movements between the skin 
and the bone, and is thus suitable for accurate joint kinematics studies [6, 7, 8]. 
Our method proved to be stable without relying on implanted markers or joint implants, that will return more 
accurate results at the price of high invasiveness [5, 9, 11].” 
 
3. Mohsen Akbari Shandiz. Component Placement in Hip and Knee Replacement Surgery: Device 
Development, Imaging and Biomechanics. PhD thesis, Biomedical Engineering, 2015. 
 
4. CE Draper, JM Santos, LC Kourtis, TF Besier, M Fredericson, GS Beaupre, GE Gold, and SL Delp. 
Feasibility of using real‐time MRI to measure joint kinematics in 1.5 T and open‐bore 0.5 T systems. Journal 
of magnetic resonance imaging 28.1 (2008): 158-166. 
 
13. S Acker, R Li, H Murray, P St John, S Banks, S Mu, U Wyss, and K Deluzio. Accuracy of single-plane 
fluoroscopy in determining relative position and orientation of total knee replacement components. Journal of 
biomechanics, 44(4):784-787, 2011. 
 
29. Radiologyinfo.org. http://www.radiologyinfo.org. Accessed: 2015-06-05. 
  
30. J Henckel, R Richards, K Lozhkin, S Harris, FM Rodriguez y Baena, ARW Barrett, and JP Cobb. Very 
low-dose computed tomography for planning and outcome measurement in knee replacement the imperial 
knee protocol. Journal of Bone & Joint Surgery, British Volume, 88(11):1513-1518, 2006. 
 
 
Reviewer #2: 
 
The paper describes a method of tracking the 3D position of bones in the knee from two flouroscopy views. 
The approach is to first fit the 3D shape model to the two 2D images at the first time point, using an optimisation. 
This estimates both the shape and 3D pose of the bone at that time. In subsequent frames the shape is fixed 
and the 3D pose optimised to best fit the 3D model to the two 2D flouroscope images. The system is validated 
on synthetic radiographs generated from real CT images of patients. The reconstructed shape and pose at 
each time was compared to the shape measured from the CT and the known pose. In addition, tracking was 
tested using the measured shape (to explore the effect of using estimated shape on the pose).It is found that 
using the estimated shape, rather than that calculated from CT, significantly reduces the pose accuracy, but 
still has reasonably good results (angle errors around 2 degrees, translation around 1.5mm). 
 
Issues: - The method requires manual initialisation (p4) of the landmarks on the first frame. Given that fully 
automatic methods exist to locate points, why not use them (or at least mention them). For instance, Active 
Shape Models, Active Appearance Models, or more recent methods such as:  
T.F.Cootes, M.Ionita, C.Lindner and P.Sauer, "Robust and Accurate Shape Model Fitting using Random 
Forest Regression Voting", ECCV 2012 
 
We thank the reviewer for the comment and for the suggestion. In our paper, we must differentiate between 

two types of landmarks: the first type are 3D landmarks on the shapes as are usually called in literature [18,19]. 

These landmarks are corresponding point on different shapes, that are found to construct the mean shape. 

The second type of landmark, used for the initialization, are points on the mean shape that are easily 

recognizable in the fluoroscopic images. As suggested by the reviewer, these landmarks could be 

automatically extracted using a proper algorithm. However, we chose to do it manually to ensure a low 

computational time and no requirement of organizing enough training data when the 2D images that are used 

are not acquired from standard orientation such as antero-posterior (AP) or lateral-medial (LM) direction. 

We modified the Methods section, paragraph 2.1 as following: 

Every instance of this SSM is then expressed as: 



𝑀𝑆𝑆𝑀 = 𝑀̅ + ∑𝛼𝑜𝑀𝑜
⃗⃗ ⃗⃗  ⃗

𝑂′

𝑜=1

 

Where 𝛼𝑜 is the weight corresponding to the 𝑜𝑡ℎ eigenvector and 𝑂′ is the number of significant eigenvalues 
(𝑂′ < 𝑂). In our dataset, 𝑂 = 24, 𝑂′ = 23. 
For this study, we used 24 MRI datasets of healthy knees, from which we semi-automatically segmented the 
femur contours using Amira R (VSG|FEI, Mèrignac Cedex, France). From each volume, we extracted the 
femur's triangulated surface with 2562 points and 5120 facets using the marching cubes technique [19]. To 
create the SSM, corresponding points on different shapes have to be determined [20] [21]. In our case, 
corresponding points between the 𝑂 shapes were selected using the automatic algorithm described in [18]. 
Within the corresponding models, we computed the mean model and the covariance matrix. 
All the patients signed an informed consent and the institutional review board approved the study. 
 
 
In paragraph 2.2 we modified the text as follows 
 
The femur tracking dataset is composed of two fluoroscopic images (frames) acquired during knee flexion-
extension at each time step 𝑡 with 𝑡 =  0, … , 𝑇. 
The contour of the distal femur is extracted on each fluoroscopic image. 
We defined a set of 𝐼 (𝐼 = 7) landmarks on the mean model ( ℒ𝑖(𝑀̂)) that were used to initialize the pose of the 

SSM in the world Reference Frame (RF)  𝑅𝐹𝑤 . The landmarks were identified as the most identifiable 
anatomical landmarks in the images.  
Recent studies have addressed the topic of automatically segment contours from X-Ray images using random 
forests [22, 23]. However, this methods needs to be trained over a consistent number of images to be used 
with non-standard projections. In order to save time and to give the possibility to use any angle of projection 
the operator is asked to manually identify the I corresponding landmarks on the two fluoroscopic images 
 
 
20. Timothy F Cootes, Christopher J Taylor, David H Cooper, and Jim Graham. Active shape models-their 
training and application. Computer vision and image understanding, 61(1):38-59, 1995. 
 
21. Timothy F Cootes, Gareth J Edwards, and Christopher J Taylor. Active appearance models. IEEE 
Transactions on pattern analysis and machine intelligence, 23(6):681-685, 2001. 
 
22. Tim F Cootes, Mircea C Ionita, Claudia Lindner, and Patrick Sauer. Robust and accurate shape model 
fitting using random forest regression voting. In Computer Vision{ECCV 2012, pages 278-291. Springer, 
2012. 
 
23. Claudia Lindner, S Thiagarajah, J Wilkinson, The Consortium, G Wallis, and Timothy F Cootes. Fully 
automatic segmentation of the proximal femur using random forest regression voting. Medical Imaging, IEEE 
Transactions on, 32(8):1462-1472, 2013. 
 
- Eq.3 measures the error in the 3D world frame. Is it not better to measure the error in the image frame? 
Although it is a harder optimisation problem it is a better metric. 
 
Eq. 3 represents the minimization of the distance between the 7 landmark points used for the initialization on 

the shape and the 14 points identified by the user on the images. The fastest method to get a rough initialization 

of the shape’s pose was to identify the corresponding points and implement a non-linear least squares 

algorithm in the world reference frame to get the transformation.  

To use the error in the image frame would have meant to project the landmark of the 3D model on both image 

planes at each iteration, and would have enlarged the computational times. Since the initialization is not the 

definitive pose for the shape, the authors thought that it was simpler to keep the 3D minimization, even if not 

as accurate as the 2D one. 

- Data. It is not clearly stated how many patient images were used in the evaluation, or what their disease 

status is. 

According to the reviewer comment, we modified the text in paragraph 2.4.1 section as follows: 

“In order to validate our tracking algorithm we used the CT scans of three different patients, which have 

respectively severe, mild and moderate osteoarthritis of the knee.” 



One of the main claims of novelty over other work such as [1] is that this paper demonstrates work on knees 

of people with disease ([1] did not). However, there is no description of how many knees were tested, or how 

diseased they were, or whether there is actually a difference in performance between normal and diseased 

knees.  

According to the reviewer comment, we modified the text in paragraph 2.4.1 section as follows: 

“In order to validate our tracking algorithm we used the datasets of three different patients, which have 

respectively severe, mild and moderate osteoarthritis of the knee. For each patient, we have the CT scan 

and we generate the DRRs. 

The CT dataset was composed of DICOM images acquired with a SIEMENS Sensation 64 CT machine. 
Each slice is 512x512 pixel (0.3516 mm/pixel) with a slice thickness of 0:6 mm and a spacing between slices 
of 0.4 mm. In order to assess the model reconstruction performances we segmented the bone shape using 
Amira (VSG|FEI, France).. 
 
For each patient, a virtual environment around the CT was created, in order to simulate fluoroscopic scans 

from three different point of views. 11 angles of flexion were simulated for a total of 11 x 3 patients x 3 views 

= 99 images. The center of the CT dataset was taken as the 𝐹𝑤 .” 

Overall the paper describes a method which seems to work (on the synthetic radiographs it was tested on), 

but does not seem to be a particularly significant advance over existing published methods (such as [1]). 

Significant information about the test set appears to be missing. 

According to the reviewer comment, we modified the text in the Discussion section as follows: 

The advances of the proposed new methodology with respect to the current state of the art resides in the fact 

that our method has been applied to pathological patients resulting in accuracy comparable to the current state 

of the art. Moreover, we managed to achieve limited decrease in performance with a lower angle (up to 10°) 

between the fluoroscopic projections. In this way, the range of movement for the flexion-extension of the knee 

is enlarged, extending the possibilities for the tracking with different movements. 

Minor points: 

Abstract: patological -> pathological 

p5 The "affine transform" is actually a similarity transformation (scale, rotation, translation) 

p6 "pixel on each" -> "pixels on each" 

p6 The variable c_k_n(n) is undefined. What is it? 

We modified the description of 𝐶𝑘𝑛(𝑛) in order to make it clearer: 

𝐶𝑘𝑛(𝑛), the closest point on the line between the line and the corresponding silhouette point 

 
Table 1: What are the uncertainties - are the standard deviations? 
 
We modified the caption of the table, in order to make it clearer: 

Table 1 Mesh comparison statistical parameters: distances from point to surface represented as mean and 
standard deviation 
 

Fig.8 : "exted" -> "extend" 
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Abstract Purpose Precise knee kinematics assessment helps to diagnose knee
pathologies and to improve the design of customized prosthetic components.
The first step in identifying knee kinematics is to assess the femoral motion
in the anatomical frame. However, no work has been done on pathological
femurs, whose shape can be highly different from healthy ones.

Method We propose a new femoral tracking technique based on Statistical
Shape Models (SSMs) and two calibrated fluoroscopic images, taken at differ-
ent flexion-extension angles. The cost function optimization is based on genetic
algorithms, to avoid local minima. The proposed approach was evaluated on 3
sets of digitally reconstructed radiographic images of osteoarthritic patients.
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the design of prosthetic components [1, 2]. In case of severe osteoarthritis, that
are eligible for joint implant surgery, in vivo pre-operatory knee kinematics is
fundamental to understand the relative motion between the three joint bones.
The relative movement can give an insight of how the ligaments are stretched
and their stability, and how could be the feeling for the patient. In this way, pre-
operatory knee kinematics could help the surgeon to decide which prosthesis
should be used and how to correct the misalignment of the bones [3].

Currently, the reconstruction of the pose of the knee can be done using
3D scan such as real time Magnetic Resonance Imaging (MRI) or through a
2D/3D registration method that superimposes the shape extracted from MRI
or Computed Tomography (CT) onto an image, usually X-ray or fluoroscopy.
Real-time MRI is suitable to study joint kinematics, as it evidences the mus-
cle structure during movements. However, it can only be used with relatively
slow movements, and the accuracy obtained increases from 1mm to more than
3mm depending from the velocity of the movement. In addition, MRI scans
are highly expensive [4]. Traditional CT and MRI provide an accurate evalu-
ation of the morphology of the knee, but are limited to static positioning of
the patient. A great number of pathologies, such as patellofemoral pain and
osteoarthritis require a dynamic evaluation of the knee motion [5, 1, 3].

Three main methods are used in research centers to in vivo assess knee
kinematics: using skin-mounted markers, implanted markers and 2D image
based methods.

Skin-mounted retro-reflective markers are used in gait analysis [6, 7, 8]
using optical localization techniques. Since this type of measurement suffers
from relative motion between the skin and the bone, results are not reliable
to properly investigate joint kinematics.

The second method is based on tantalum markers implanted in the bone;
even if this method is much more precise than the previous one, it is not
commonly used in clinics due to the high invasiveness of the intervention [9,
5, 10]. In [11], the authors used mono and biplane fluoroscopic images to
accurately reconstruct the pose of the patella, implanting markers in cadaver
specimens and artificially flexing the knee joint.

The use of dynamic fluoroscopy to detect knee kinematics is described in
[12].The authors use a fluoroscopic system flashing at 30Hz, obtaining con-
tinuous images of the knee flexion from 0◦ to 120◦. A static CT is projected
to reconstruct knee kinematics. A similar protocol is used in [13]; the authors
describe a method to align CAD projections of knee implants to fluoroscopic
images. They perform dynamic acquisitions at 8Hz moving a Sawbone model
with an implant between 0◦ and 90◦. In [14], the authors introduced Sta-
tistical Shape Models (SSMs) to reconstruct the shape of the femur. They
performed a deep analysis on the optimal number of X-ray scans that allow
an accurate reconstruction of the shape of the knee. Their method was based
on manual segmentation of the bone contour from X-ray images. In [1], the
authors introduced a fully automatic technique to extract the contour from
the fluoroscopic images, based on a Canny edge detector [15]. They used two
fluoroscopic sequences of drop-landing motion with intra-fluoroscopic distance
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between 58◦ − 82◦. They used a cadaveric knee as gold standard, implanting
tantalum markers and simulating motion of the knee while doing fluoroscopic
imaging of the joint. Their mean errors are less than 1 millimiter, spanning to
4 mm both with the CT-extracted shape and the SSM. However, the method
proposed by Baka was only evaluated on healthy subjects, without evidence
that the same accuracy could be obtained with osteoarthritic patients.

The aim of this work is to propose a method able to reconstruct the 3D pose
of the femur using biplane fluoroscopies and a SSM. We used osteoarthritic
femurs in order to expand the validity of the method not only to healthy
subjects. The method was evaluated generating Digitally Reconstructed Ra-
diographs (DRRs) from static CT acquisitions of osteoarthritic patients and
simulating femur flexion-extensions. We evaluate the accuracy of the pose re-
construction of the distal femur both with the CT segmented shape and SSM.

2 Methods

Our femoral kinematics tracking method is based on SSM whose pose is ob-
tained using a biplane fluoroscopy. We applied a Genetic Algorithms (GA)
optimization technique, in order to improve the accuracy.

The tracking algorithm is divided into three main phases:

– Statistical Shape Model creation (2.1)
– Shape pose initialization (2.2)
– Femur tracking (2.3)

2.1 Statistical Shape Model (SSM) creation

SSM give an effective parameterization of the shape variations found in a
collection of sample models of a given population [16, 17]. For our study
we used the distal part of the femur only. Each bone model (Mo with o =
1, . . . , O) is represented as an ordered set of p = 1, . . . , P vertices Mo =
[x1, y1, z1, . . . , xp, yp, zp, . . . , xP , yP , zP ] and a list of triangular facets connect-
ing the vertices. Applying the algorithm described in [18], we found the cor-
respondence between corresponding vertices on different shapes. The SSM is
defined as the mean model M̄ and a set of eigenvectors obtained applying
Principal Component Analisys (PCA) to the model vectors Mo.

D =
1

O − 1

O∑
o=1

(Mo − M̄)(Mo − M̄)T

D ·
−→
Mo = σ2

o ·
−→
Mo

σ2
1 ≥ σ2

2 ≥ · · · ≥ σ2
O−1

(1)

where σ2
o are the descending-order eigenvalues of the covariance matrix D and

−→
Mo are the corresponding eigenvectors. Every instance of this SSM is then
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expressed as:

MSSM = M̄ +

O′∑
o=1

αo
−→
Mo (2)

where αo is the weight corresponding to the oth eigenvector
−→
Mo and O′ is

the number of significant eigenvalues (O′ < O). In our dataset, O = 24, O′ =
23. For this study, we used 24 MRI datasets of healthy knees, from which
we semi-automatically segmented the femur contours using Amira R© (VSG |
FEI, Mérignac Cedex, France). From each volume, we extracted the femur’s
triangulated surface with 2562 points and 5120 facets using the marching cubes
technique [19]. To create the SSM, corresponding points on different shapes
have to be determined [20] [21]. In our case, corresponding points between the
O shapes were selected using the automatic algorithm described in [18]. Within
the corresponding models, we computed the mean model and the covariance
matrix.

All the patients signed an informed consent and the institutional review
board approved the study.

2.2 Shape pose initialization

The femur tracking dataset is composed of two fluoroscopic images (frames)
acquired during knee flexion-extension at each time step t with t = 0, . . . , T .
The contour of the distal femur is extracted on each fluoroscopic image.

We defined a set of I(I = 7) landmarks on the mean model (Li(M̄), with i =
1, . . . , I) that were used to initialize the pose of the SSM in the world Reference
Frame (RF) RFw 2. The landmarks were identified as the most identifiable
anatomical landmarks in the images. Recent studies have addressed the topic
of automatically segment contours from X-Ray images using random forests
[22, 23]. However, these methods need to be trained over a consistent number
of images to be used with non-standard projections. In order to save time and
to give the possibility to use any angle of projection the operator is asked
to manually identify the I corresponding landmarks on the two fluoroscopic
images at t = 0 (`i(n) with i = 1, . . . , I and n = 1, 2, where i indicates the
number of the landmark and n indicates the view).

Each fluoroscopic image has its own calibration parameters, so that we
know the position of the source and the position of the image plane in the

RFw , as well as its normal vector. The initialization is used to estimate the
initial position of the SSM with respect to the 2 fluoroscopic images, i.e. Tw 0

m.
We can back-project each landmark pixel (`i(n)) to the corresponding source
Sn. In this way, for each landmark we find 2 skew lines (one for each projection)
that should (ideally) intersect in one point (the 3D position of the landmark)
but, due to errors and noise, they actually do not intersect. Thus to define
the position of the landmark we take the middle point of the shortest line
connecting the rays (see Fig. 1).
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Fig. 1 Definition of the landmark pose in the 3D space. In the right part of the figure the
position of the real landmark is shown (Li(3D)

Fig. 2 Schematic of the reference frames involved in this algorithm. Points on the image
plane, expressed in pixel index (i, j), are in the RFp n, where n indicates the number of the
image plane. RFm is the reference frame of the SSM, and RFw is the world reference frame.
Points in red on the model are the landmarks Li(M̄), points in blue on the image are the
selected landmarks on the first image `i(n), points in purple are the landmarks in the RFw

extracted from source-image rays ( Li(n) ) and points in green are the model landmarks in
the RFw after the initialization (Li(SSM) ).
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As the landmarks are defined both in the 3D space and on the model, we
can use a simple registration algorithm for corresponding points to find the
initial pose of the model in the 3D space [24]. Li(M̄) is the landmark on the

model surface, the similarity transformation T̂w 0
m (rotation R, translation t

and scaling factor s) transforms the model landmarks into Li(SSM) (Fig. 2).

To obtain the transformation T̂w 0
m we define a cost function F based on the

Euclidean distance between the transformed landmarks and the position of the
points defined by the backprojection of the landmarks on the images Li(3D).

F =

7∑
i=1

||Li(3D) − Li(SSM)||

Li(SSM) = s ·R · Li(M̄) + t

(3)

We thus apply the same transformation matrix T̂w 0
m to all the points of

the mean model (M̄).

M(SSM) = T̂w 0
m · M̄ (4)

2.3 Femur tracking

After the manual initialization of the pose in the first frames, the algorithm
returns the pose of the shape as homogeneous matrix Tw t

m. To track the pose
of the femur in the RFw during time, we repeat the steps described in 2.3.1
for each sample time t = 0, . . . , T . In each frame the initialization is given by
the homogeneous matrix of the previous frame ( Tw t−1

m ).
The shape of the femur is optimized at t = 0, as described in 2.3.2, and

then kept constant for all the tracking times.

2.3.1 Pose optimization

Using the initialization of the SSM’s pose in the RFw , for each given image
plane RFi n we can extract the silhouette of the model, identifying the points
that share a “contour” edge. This edge is in common between two facets that
have the normals pointing in opposite directions from the corresponding source
S(n)(see Fig. 3). We define the silhouette of the model as Sjn(n), with jn =
1, . . . , Jn;n = 1, 2, where each point is shared between two “contour” edges.
We then project the silhouette extracted on the corresponding image plane,
defining the corresponding set of pixels on each image plane as sjn(n).

For each contour pixel in ckn(n) we find the nearest pixel of sjn(n), and
associate it to the corresponding silhouette point in Sjn(n). We call Skn(n) the
associated silhouette point.

For each point on the image plane we define the projection line from the
source (S(n)) and find Ckn(n), the closest point on the line between the line
and the corresponding silhouette point Skn(n), as shown in Fig. 4.
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Fig. 3 Definition of the contour edge describing the silhouette of the model. The red points
are the projection of the silhouette points. The green points are the extracted contour.

Fig. 4 Definition of the objective function: minimization of the distance D

The cost function Fposeto minimize can thus be defined as:

Fpose = min
Tw t

m

(
Kn∑
kn=1

Dkn

)
Dkn = ‖Ckn(n) − Skn(n)‖

Tw m =

[
wRm

wtm
0 1

s

] (5)

where Tw t
m (s,wRm,

wtm) indicates the transformation matrix from the
RFm in the RFw , composed of rotation, translation and scaling factor, || . . . ||

is the Euclidean distance, Ckn(n) and Skn(n) are respectively the 3D point on
the contour line and the 3D point of the silhouette of the model.

A GA optimization process is performed independently on each frame, to
avoid local minima [25]. The population is composed of the parameters that
define the pose of the femur in the world reference frame, i.e. Euler angles,
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translation vector and scaling. The initial population (40 samples) of each
minimization is extracted from uniform parameter distributions defined as
small deviations (±10◦,±10mm,±0.1scalefactor) from an initial pose, i.e. the
initialization pose for the first frame or the result of the previous minimization
otherwise. The maximum number of iterations was equal to 100.

2.3.2 Shape optimization

After the first optimization of the pose, we performed a shape optimization,
based on the algorithm described in [16]. The shape optimization process im-
plemented a closed form solution for the best approximation of the original
shape with a deformable model. The optimization is inserted in a minimization
procedure Fshape, based only on the O − 1 = 23 weights of the SSM (αo).

Fshape = min
αo

(
Kn∑
kn=1

Dkn

)
Dkn = ‖Ckn(n) − Skn(n)‖

(6)

2.4 Validation

2.4.1 Datasets

In order to validate our tracking algorithm we used the datasets of three differ-
ent patients, which have respectively severe, mild and moderate osteoarthritis
of the knee. For each patient, we have the CT scan and we generate the DRRs.

The CT dataset was composed of DICOM images acquired with a SIEMENS
Sensation 64 CT machine. Each slice is 512x512 pixel (0.3516 mm/pixel) with
a slice thickness of 0.6 mm and a spacing between slices of 0.4 mm. In order to
assess the model reconstruction performances we segmented the bone shape
using Amira R© (VSG—FEI, France).

For each patient, a virtual environment around the CT was created, in
order to simulate fluoroscopic scans from three different point of views. 11
angles of flexion were simulated for a total of 11 x 3 patients x 3 views =
99 images. The center of the CT dataset was taken as the RFw . The setup
of the acquisition was virtually created in order to have the ground truth for
the pose of the femur. The center of the CT dataset was taken as the RFw .
The DRR is built integrating the density of each voxel of the CT along the
direction of each ray as in [26]. Three different sources and image planes were
simulated for each patient, resulting in three sets for each patient: the first
image shows a lateral view of the femur (L0), the second and third images
show a view rotated on the sagittal plane of 10 (L10) and 90 degrees (F ) (see
Fig. 5). To represent the knee flexion-extension, we rotated the images T
times (t = 0, ..., T, with T = 10). The pose of the CT shape is fixed and the
source and the image plane rotate in order to simulate a rotation of the femur.
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To build the images on the lateral plane, we rotated the image plane of 8◦

clockwise. The same rotation is made on the frontal plane, rotating both the
image and the source, to get a consistent motion of the femur in the 3D space
(see Fig. 6).

Fig. 5 Description of the virtual environment setup for the DRR creation. The CT model
reference frame was used as world reference frame (orange reference frame). The source of
L0 was established on the y-axis, as well as the center of L0. L10 is obtained rotating the
source-plane axis of 10 degrees on the x-y plane. F is obtained rotating the source-plane
axis of 90 degrees, having it correspondent to the x-axis [27]

2.4.2 Experimental protocol

To reduce the computational effort of the minimization function, we used
3D models with a reduced number of points (1:8). In order to evaluate the
performances of the shape reconstruction and the tracking separately, we used
the CT-based shape and the SSM shape. An open source software called Cloud
Compare (www.danielgm.net/cc) was used to assess the differences between
the SSM and the CT shape. The software returns both the point to shape
distances for the meshes (calculated as the distance between points and facets)
and a graphical view of them. Referring to Fig. 5, we call L0 the lateral view
(Image 1 in the figure), L10 the projection at 10 degrees (Image 2 in the figure)
and F the frontal view (Image 3 in the figure). The tracking algorithm was
then computed on the following images sets:

– CT (L0 − L10): Tracking is done using the CT shape and images L0 and
L10.

– CT (L0 − F ): Tracking is done using the CT shape and images L0 and F .
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Fig. 6 Description of the virtual environment setup for the DRR creation. To represent
the knee flexion-extension, we rotated the images T times of 8 degrees each ( T = 10 ). S0

3
indicates the position of the source of image 3 at time 0, S5

3 indicates the position of the
source of image 3 at time 5 and S10

3 indicates the position of the source at time 10, i.e. after
80 degrees of rotation from time 0

– SSM(L0−L10): Tracking is done using the SSM shape and images L0 and
L10.

– SSM(L0 − F ): Tracking is done using the SSM shape and images L0 and
F .

These four setups are tracked for each one of the three models from which
the DRR were generated. Kruskal-Wallis test p < 0.05 was performed to verify
the significative difference between the median of each test.

3 Results

We tested the capability of the algorithm to deform the SSM in order to better
approximate the CT shape and the ability to reconstruct the pose of the femur
with two images per sample time.

In most cases, the distance between the SSM and CT was less than 3mm
(Fig. 7 and Table 1)

For each CT shape we identified the anatomical axes (as defined in [28])
and used these axes to report the errors.

As in [29], we defined the precision as the standard deviation of the re-
meaning error after removing the mean error of all frames for that specific
sequence. Difference in coordinate system definition is thus minimized, as it is
mainly formed by mean error. The three sequences (one for each patient) are
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Fig. 7 Similarity between the original CT mesh and the reconstructed SSM mesh

Table 1 Mesh comparison statistical parameters: distances from point to surface repre-
sented as mean and standard deviation

DRR 1 DRR 2 DRR 3

SSM(L0 − L10) 0.516± 2.438mm −0.607± 5.104mm 2.188± 2.933mm
SSM(L0 − F ) 0.545± 2.391mm −0.418± 4.955mm 2.066± 2.835mm

than considered as a single population. In Fig. 8 the boxplots of the angular
precision for each anatomical axes are shown, while in Fig. 9 the translation
precision on each axis are shown. Kruskal-Wallis test was performed to verify
the significant difference between the median of each test.

Fig. 8 Rotation precision with respect to the ground truth (known as artificially generated).
The height of the box indicates the median value and whiskers extend from the 25th to the
75th percentile. Square parenthesis above two boxes indicates that the two populations are
statistically different.
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Fig. 9 Translation precision with respect to the ground truth (known as artificially gener-
ated).

4 Discussion

In this paper, we present a femoral kinematics reconstruction technique based
on biplane fluoroscopic images taken during knee flexion-extension movements
using SSMs.

The tracking capabilities of the proposed method were separately evaluated
using the exact model, semi-automatically reconstructed from the CT dataset,
and the implemented SSM [18].

Our approach shows the applicability of a semi-automatic algorithm for
2D/3D registration using SSM. With respect to dynamic MRI, our method is
less expensive and more accurate [4]. Compared to actual clinical procedures,
that are based on a previous static CT or MRI scan and a manual fitting of
the shape, this method is less expensive (as CT and MRI can be avoided) and
more accurate due to the automatic fitting. The ionizing radiation given to
the patient in our procedure is just a few hundredths of a mSv (considering a
total of 22 images and an average dose of 0.001mSv for each image, we have a
total dose of 0.02mSv, much lower than a 2.2mSv average dose absorbed with
a CT) [30, 31]. Compared to skin mounted markers, our system does not suffer
from relative movements between the skin and the bone, and is thus suitable
for accurate joint kinematics studies [6, 7, 8]. Our method proved to be stable
without relying on implanted markers or joint implants, that will return more
accurate results at the price of high invasiveness [5, 9, 11].

In order to have the ground truth pose of the model, we artificially simu-
lated the fluoroscopic projections using DRR technique. Our SSM was derived
using 24 MRI datasets of healthy patients. Such a number of samples is quite
limited compared to other dataset in the literature e.g. [2] used 43 CT images
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of the knee and [16] used 30 CT-based models of the hip. When we evaluated
the exact model reconstruction ability of our SSM and the implemented defor-
mation technique we found residual errors on the order of 2.2 mm as median
Euclidean distance in the worst case. Such error is due to the different levels
of cut of the femoral diaphysis and to the limited number of femurs used as
SSM. Also, the subject used to obtain the DRRs were osteoarthritic, thus with
evident deformity of the femur’s shape. The result obtained is in line with the
ones by [2], where they state a point to surface distance of 2 mm and maximum
errors of 3 mm. Having a larger dataset, including greater variations, would
allow increasing the morphing possibilities, reducing reconstruction errors.

In the case of the CT shape, all the median translation errors are lower than
1 mm, in line with the results presented by [2]. We used two differents angles
for the DRR definition, and the results showed that the higher translation
error in medio-lateral precision at 10◦ is due to a lower capability to resolve
the depth information. The residual error at 90◦ can be associated to rounding
error and to a limited number of generations for each GA running.

Using the SSM shape the results are statistically different from the one
obtained with the CT shape. The translation median errors are lower than 1.5
mm, probably due to the low deformation possibilities given by the reduced
number of shapes of the training set, whereas the rotation error spans up to
4◦ in almost all directions. In [29] the authors state errors up to 3◦ but they
used a SSM including a longer femoral diaphysis, thus the informative content
of the statistical model is bigger.

The advances of the proposed new methodology with respect to the current
state of the art resides in the fact that our method has been applied to patho-
logical patients resulting in accuracy comparable to the current state of the
art. Moreover, we managed to achieve limited decrease in performance with a
lower angle (up to 10◦) between the fluoroscopic projections. In this way, the
range of movement for the flexion-extension of the knee is enlarged, extending
the possibilities for the tracking with different movements.

One of the limits of our study is the reduced testing dataset for tracking,
nevertheless since we used 11 image projections, progressively extending the
knee joint, the dataset is enough to assess the statistical power of the analysis.
Fluoroscopic images could be much noisier than the virtually reconstructed
projections, due to fast acquisition of the images that causes blurring, cali-
bration plates and white noise due to instrumentation. Further analysis will
be directed towards adding realistic noise to the images and testing the track-
ing algorithm performances. Acquired images as performed in [27] will also be
used to test the algorithm.

In conclusion, we showed the clinical applicability of our method for femoral
tracking using a biplane fluoroscopy and based on SSM, thus reducing costs
and lowering the patient’s radiation dose.
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