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The B− → DþK−π− decay is observed in a data sample corresponding to 3.0 fb−1 of pp collision
data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be
BðB− → DþK−π−Þ ¼ ð7.31� 0.19� 0.22� 0.39Þ × 10−5 where the uncertainties are statistical, system-
atic and from the branching fraction of the normalization channel B− → Dþπ−π−, respectively. An
amplitude analysis of the resonant structure of the B− → DþK−π− decay is used to measure the
contributions from quasi-two-body B− → D�

0ð2400Þ0K−, B− → D�
2ð2460Þ0K−, and B− → D�

Jð2760Þ0K−

decays, as well as from nonresonant sources. The D�
Jð2760Þ0 resonance is determined to have spin 1.
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I. INTRODUCTION

Excited charmed mesons are of great theoretical and
experimental interest as they allow detailed studies of QCD
in an interesting energy regime. Good progress has been
achieved in identifying and measuring the parameters of
the orbitally excited states, notably from Dalitz plot (DP)
analyses of three-body B decays. Relevant examples
include the studies of B− → Dþπ−π− [1,2] and B̄0 →
D0πþπ− [3] decays, which provide information on excited
neutral and charged charmed mesons (collectively referred
to as D�� states), respectively. First results on excited
charm-strange mesons have also recently been obtained
with the DP analysis technique [4–6]. Studies of prompt
charm resonance production in eþe− and pp collisions
[7,8] have revealed a number of additional high-mass
states. Most of these higher-mass states are not yet
confirmed by independent analyses, and their spectroscopic
identification is unclear. Analyses of resonances produced
directly from eþe− and pp collisions do not allow
determination of the quantum numbers of the produced
states, but can distinguish whether or not they have natural
spin parity (i.e. JP in the series 0þ; 1−; 2þ; � � �). The current
experimental knowledge of the neutral D�� states is
summarized in Table I (here and throughout the paper,
natural units with ℏ ¼ c ¼ 1 are used). The D�

0ð2400Þ0,
D1ð2420Þ0, D0

1ð2430Þ0 and D�
2ð2460Þ0 mesons are gen-

erally understood to be the four orbitally excited (1P) states.
The experimental situation as well as the spectroscopic
identification of the heavier states is less clear.
The B− → DþK−π− decay can be used to study neutral

D�� states. The DþK−π− final state is expected to exhibit

resonant structure only in theDþπ− channel, and unlike the
Cabibbo-favored Dþπ−π− final state does not contain any
pair of identical particles. This simplifies the analysis of
the contributing excited charm states, since partial-wave
analysis can be used to help determine the resonances that
contribute.
One further motivation to study B− → DþK−π− decays is

related to the measurement of the angle γ of the unitarity
triangle defined as γ ≡ arg ½−VudV�

ub=ðVcdV�
cbÞ�, where Vxy

are elements of the Cabibbo-Kobayashi-Maskawa (CKM)
quark mixing matrix [10,11]. One of the most powerful
methods to determine γ uses B− → DK− decays, with the
neutral D meson decaying to CP eigenstates [12,13]. The
sensitivity to γ arises due to the interference of amplitudes
proportional to the CKM matrix elements Vub and Vcb,
associated with D̄0 and D0 production respectively.
However, a challenge for such methods is to determine
the ratio of magnitudes of the two amplitudes, rB, that must
be known to extract γ. This is usually handled by including
D-meson decays to additional final states in the analysis. By
contrast, in B− → D��K− decays the efficiency-corrected
ratio of yields of B− → D��K− → D−πþK− and B− →
D��K− → Dþπ−K− decays gives r2B directly [14]. The
decay B− → D��K− → Dπ0K− where the D meson is
reconstructed in CP eigenstates can be used to search for
CP violation driven by γ. Measurement of the first two of
these processes would therefore provide knowledge of rB in
B− → D��K− decays, indicating whether or not a competi-
tive measurement of γ can be made with this approach.
In this paper, the B− → DþK−π− decay is studied for the

first time, with the Dþ meson reconstructed through the
K−πþπþ decay mode. The inclusion of charge-conjugate
processes is implied. The topologically similar B− →
Dþπ−π− decay is used as a control channel and for
normalization of the branching fraction measurement. A
large B− → DþK−π− signal yield is found, corresponding
to a clear first observation of the decay, and allowing
investigation of the DP structure of the decay. The
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amplitude analysis allows studies of known resonances,
searches for higher-mass states and measurement of
the properties, including the quantum numbers, of any
resonances that are observed. The analysis is based on a
data sample corresponding to an integrated luminosity
of 3.0 fb−1 of pp collision data collected with the
LHCb detector, approximately one third of which was
collected during 2011 when the collision center-of-mass
energy was

ffiffiffi
s

p ¼ 7 TeV and the rest during 2012 withffiffiffi
s

p ¼ 8 TeV.
The paper is organized as follows. A brief description of

the LHCb detector as well as reconstruction and simulation
software is given in Sec. II. The selection of signal
candidates is described in Sec. III, and the branching
fraction measurement is presented in Sec. IV. Studies of
the backgrounds and the fit to the B candidate invariant
mass distribution are in Sec. IVA, with studies of the signal
efficiency and a definition of the square Dalitz plot (SDP)
in Sec. IV B. Systematic uncertainties on, and the results
for, the branching fraction are discussed in Secs. IV C
and IV D respectively. A study of the angular moments of
B− → DþK−π− decays is given in Sec. V, with results used
to guide the Dalitz plot analysis that follows. An overview
of the Dalitz plot analysis formalism is given in Sec. VI,
and details of the implementation of the amplitude analysis
are presented in Sec. VII. The evaluation of systematic
uncertainties is described in Sec. VIII. The results and a
summary are given in Sec. IX.

II. LHCb DETECTOR

The LHCb detector [15,16] is a single-arm forward
spectrometer covering the pseudorapidity range 2 < η < 5,
designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system
consisting of a silicon-strip vertex detector [17] surround-
ing the pp interaction region, a large-area silicon-strip
detector located upstream of a dipole magnet with a
bending power of about 4 Tm, and three stations of
silicon-strip detectors and straw drift tubes [18] placed

downstream of the magnet. The polarity of the dipole
magnet is reversed periodically throughout data taking. The
tracking system provides a measurement of the momentum,
p, of charged particles with a relative uncertainty that varies
from 0.5% at low momentum to 1.0% at 200 GeV. The
minimum distance of a track to a primary vertex, the impact
parameter (IP), is measured with a resolution of
ð15þ 29=pTÞ μm, where pT is the component of the
momentum transverse to the beam, in GeV. Different types
of charged hadrons are distinguished using information
from two ring-imaging Cherenkov detectors [19]. Photon,
electron and hadron candidates are identified by a calo-
rimeter system consisting of scintillating-pad and pre-
shower detectors, an electromagnetic calorimeter and a
hadronic calorimeter. Muons are identified by a system
composed of alternating layers of iron and multiwire
proportional chambers [20].
The trigger [21] consists of a hardware stage, based on

information from the calorimeter and muon systems,
followed by a software stage, in which all tracks with
pT > 500ð300Þ MeV are reconstructed for data collected
in 2011 (2012). The software trigger line used in the
analysis reported in this paper requires a two-, three- or
four-track secondary vertex with significant displacement
from the primary pp interaction vertices (PVs). At least
one charged particle must have pT > 1.7 GeV and be
inconsistent with originating from the PV. A multivariate
algorithm [22] is used for the identification of secondary
vertices consistent with the decay of a b hadron.
In the offline selection, the objects that fired the trigger

are associated with reconstructed particles. Selection
requirements can therefore be made not only on the trigger
line that fired, but also on whether the decision was due to
the signal candidate, other particles produced in the pp
collision, or a combination of both. Signal candidates are
accepted offline if one of the final-state particles created a
cluster in the hadronic calorimeter with sufficient trans-
verse energy to fire the hardware trigger. These candidates
are referred to as “triggered on signal” or TOS. Events that
are triggered at the hardware level by another particle in the
event, referred to as “triggered independent of signal” or
TIS, are also retained. After all selection requirements are
imposed, 57% of events in the sample were triggered by
the decay products of the signal candidate (TOS), while the
remainder were triggered only by another particle in the
event (TIS-only).
Simulated events are used to characterize the detector

response to signal and certain types of background events.
In the simulation, pp collisions are generated using PYTHIA

[23] with a specific LHCb configuration [24]. Decays of
hadronic particles are described by EVTGEN [25], in which
final-state radiation is generated using PHOTOS [26]. The
interaction of the generated particles with the detector and
its response are implemented using the GEANT4 toolkit [27]
as described in Ref. [28].

TABLE I. Measured properties of neutral D�� states. Where
more than one uncertainty is given, the first is statistical and the
others systematic.

Resonance Mass (MeV) Width (MeV) JP Ref.

D�
0ð2400Þ0 2318� 29 267� 40 0þ [9]

D1ð2420Þ0 2421.4� 0.6 27.4� 2.5 1þ [9]
D0

1ð2430Þ0 2427�26�20�15 384þ107
−75 �24�70 1þ [1]

D�
2ð2460Þ0 2462.6� 0.6 49.0� 1.3 2þ [9]

D�ð2600Þ 2608.7� 2.4� 2.5 93� 6� 13 natural [7]
D�ð2650Þ 2649.2� 3.5� 3.5 140� 17� 19 natural [8]
D�ð2760Þ 2763.3� 2.3� 2.3 60.9� 5.1� 3.6 natural [7]
D�ð2760Þ 2760.1� 1.1� 3.7 74.4� 3.4� 19.1 natural [8]
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III. SELECTION REQUIREMENTS

Most selection requirements are optimized using the
B− → Dþπ−π− control channel. Loose initial selection
requirements on the quality of the tracks combined to
form the B candidate, as well as on their p, pT and χ2IP, are
applied to obtain a visible peak in the invariant mass
distribution. The χ2IP is the difference between the χ2 of the
PV reconstruction with and without the considered particle.
Only candidates with an invariant mass in the range 1770 <
mðK−πþπþÞ < 1968 MeV are retained. Further require-
ments are imposed on the vertex quality (χ2vtx) and flight
distance from the associated PVof the B and D candidates.
The B candidate must also satisfy requirements on its
invariant mass and on the cosine of the angle between the
momentum vector and the line joining the PV under
consideration to the B vertex (cos θdir). The initial selection
requirements are found to be about 90% efficient on
simulated signal decays.
Two neural networks [29] are used to further separate

signal from background. The first is designed to separate
candidates that contain real Dþ → K−πþπþ decays from
those that do not; the second separates B− → Dþπ−π−
signal decays from background combinations. Both net-
works are trained using theDþπ−π− control channel, where
the SPLOT technique [30] is used to statistically separate
B− → Dþπ−π− signal decays from background combina-
tions using the D (B) candidate mass as the discriminating
variable for the first (second) network. The first network
takes as input properties of theD candidate and its daughter
tracks, including information about kinematics, track and
vertex quality. The second uses a total of 27 input variables.
They include the χ2IP of the two “bachelor” pions (i.e. pions
that originate directly from the B decay) and properties
of the D candidate including its χ2IP, χ2vtx, and cos θdir,
the output of the D neural network and the square of the
flight distance divided by its uncertainty squared (χ2flight).
Variables associated with the B candidate are also used,
including pT, χ2IP, χ

2
vtx, χ2flight and cos θdir. The pT asym-

metry and track multiplicity in a cone with a half angle
of 1.5 units of the plane of pseudorapidity and azimuthal
angle (measured in radians) around the B candidate flight
direction [31], which contain information about the iso-
lation of the B candidate from the rest of the event, are also
used in the network. The neural network input quantities
depend only weakly on the kinematics of the B decay. A
requirement is imposed on the second neural network
output that reduces the combinatorial background by an
order of magnitude while retaining about 75% of the signal.
The selection criteria for the B− → DþK−π− and B− →

Dþπ−π− candidates are identical except for the particle
identification (PID) requirement on the bachelor track that
differs between the two modes. All five final-state particles
for each decay mode have PID criteria applied to prefer-
entially select either pions or kaons. Tight requirements are

placed on the higher-momentum pion from the Dþ decay
and on the bachelor kaon in B− → DþK−π− to suppress
backgrounds from Dþ

s → K−Kþπþ and B− → Dþπ−π−
decays, respectively. The combined efficiency of the PID
requirements on the five final-state tracks is around 70%
for B− → Dþπ−π− decays and around 40% for B− →
DþK−π− decays. The PID efficiency depends on the
kinematics of the tracks, as described in detail in
Sec. IV B, and is determined using samples of D0 →
K−πþ decays selected in data by exploiting the kinematics
of the D�þ → D0πþ decay chain to obtain clean samples
without using the PID information.
To improve the B candidate invariant mass resolution,

track momenta are scaled [32,33] with calibration param-
eters determined by matching the measured peak of the
J=ψ → μþμ− decay to the known J=ψ mass [9].
Furthermore, a fit to the kinematics and topology of the
decay chain [34] is used to adjust the four-momenta of
the tracks from the D candidate so that their combined
invariant mass matches the world average value for the Dþ
meson [9]. An additional Bmass constraint is applied in the
calculation of the variables that are used in the Dalitz
plot fit.
To remove potential background from misreconstructed

Λþ
c decays, candidates are rejected if the invariant mass of

theD candidate lies in the range 2280–2300 MeV when the
proton mass hypothesis is applied to the low-momentum
pion track. Possible backgrounds from B−-meson decays
without an intermediate charm meson are suppressed by
the requirement on the output value from the first neural
network, and any surviving background of this type is
removed by requiring that the D candidate vertex is
displaced by at least 1 mm from the B-decay vertex.
The efficiency of this requirement is about 85%.
Signal candidates are retained for further analysis if they

have an invariant mass in the range 5100–5800 MeV. After
all selection requirements are applied, fewer than 1% of
events with one candidate also contain a second candidate.
Such multiple candidates are retained and treated in the
same manner as other candidates; the associated systematic
uncertainty is negligible.

IV. BRANCHING FRACTION DETERMINATION

The ratio of branching fractions is calculated from the
signal yields with event-by-event efficiency corrections
applied as a function of square Dalitz plot position. The
calculation is

BðB− → DþK−π−Þ
BðB− → Dþπ−π−Þ ¼ NcorrðB− → DþK−π−Þ

NcorrðB− → Dþπ−π−Þ ; ð1Þ

where Ncorr ¼ P
iWi=ϵi is the efficiency-corrected yield.

The index i sums over all candidates in the data sample
and Wi is the signal weight for each candidate, which is
determined from the fits described in Sec. IVA and shown
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in Figs. 1 and 2, using the SPLOT technique [30]. Each fit
is performed simultaneously to decays in the TOS and
TIS-only categories. The efficiency of candidate i, ϵi, is
obtained separately for each trigger subsample as described
in Sec. IV B.

A. Determination of signal and background yields

The candidates that survive the selection requirements
are comprised of signal decays and various categories of
background. Combinatorial background arises from ran-
dom combinations of tracks (possibly including a real
Dþ → K−πþπþ decay). Partially reconstructed back-
grounds originate from b-hadron decays with additional
particles that are not part of the reconstructed decay
chain. Misidentified decays also originate from b-hadron
decays, but where one of the final-state particles has been
incorrectly identified (e.g. a pion as a kaon). The signal
(normalization channel) and background yields are
obtained from unbinned maximum likelihood fits to the
DþK−π− (Dþπ−π−) invariant mass distributions.
Both the B− → DþK−π− and B− → Dþπ−π− signal

shapes are modeled by the sum of two Crystal Ball

(CB) functions [35] with a common mean and tails on
opposite sides, where the high-mass tail accounts for non-
Gaussian reconstruction effects. The ratio of widths of the
CB shapes and the relative normalization of the narrower
CB shape are constrained within their uncertainties to the
values found in fits to simulated signal samples. The tail
parameters of the CB shapes are also fixed to those found in
simulation.
The combinatorial backgrounds in both DþK−π− and

Dþπ−π− samples are modeled with linear functions; the
slope of this function is allowed to differ between the two
trigger subsamples. The decay B− → D�þK−π− is a par-
tially reconstructed background for DþK−π− candidates,
where the D�þ decays to either Dþγ or Dþπ0 and the
neutral particle is not reconstructed. Similarly the decay
B− → D�þπ−π− forms a partially reconstructed back-
ground to the Dþπ−π− final state. These are modeled with
nonparametric shapes determined from simulated samples.
The shapes are characterized by a sharp edge around
100 MeV below the B peak, where the exact position of
the edge depends on properties of the decay including the
D�þ polarization. The fit quality improves when the shape
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FIG. 1 (color online). Results of the fit to the B− → Dþπ−π− candidate invariant mass distribution for the (left) TOS and (right) TIS-
only subsamples. Data points are shown in black, the full fitted model as solid blue lines and the components as shown in the legend.
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FIG. 2 (color online). Results of the fit to the B− → DþK−π− candidate invariant mass distribution for the (left) TOS and (right) TIS-
only subsamples. Data points are shown in black, the full fitted model as solid blue lines and the components as shown in the legend.
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is allowed to be offset by a small shift that is determined
from the data.
Most potential sources of misidentified backgrounds

have broad B candidate invariant mass distributions, and
hence are absorbed in the combinatorial background
component in the fit. The decays B− → Dð�Þþπ−π− and
B− → Dþ

s K−π−, however, give distinctive shapes in the
mass distribution of DþK−π− candidates. For Dþπ−π−
candidates the only significant misidentified background
contribution is from B− → Dð�ÞþK−π− decays. The mis-
identified background shapes are also modeled with non-
parametric shapes determined from simulated samples.
The simulated samples used to obtain signal and back-

ground shapes are generated with flat distributions in the
phase space of their SDPs. For B− → Dþπ−π− and B− →
D�þπ−π− decays, accurate models of the distributions
across the SDP are known [1,2], so the simulated samples
are reweighted using the B− → Dþπ−π− data sample; this
affects the shape of the misidentified background compo-
nent in the fit to theDþK−πþ sample. Additionally, theDþ
and D�þ portions of this background are combined accord-
ing to their known branching fractions. All of the shapes,
except for that of the combinatorial background, are
common between the two trigger subsamples in each fit,
but the signal and background yields in the subsamples are
independent. In total there are 15 free parameters in the fit
to theDþπ−π− sample: yields in each subsample for signal,
combinatorial, B−→Dð�ÞþK−π− and B−→D�þπ−π− back-
grounds; the combinatorial slope in each subsample; the
double CB peak position, the width of the narrower CB,
the ratio of CB widths and the fraction of entries in the
narrower CB shape; and the shift parameter of the partially
reconstructed background. The result of the Dþπ−π− fit is
shown in Fig. 1 for both trigger subsamples and gives a
combined signal yield of approximately 49 000 decays.
Component yields are given in Table II.
There are a total of 17 free parameters in the fit to the

DþK−π− sample: yields in each subsample for signal,
combinatorial, B− → D�þK−π−, B− → Dþ

s K−π− and
B− → Dð�Þþπ−π− backgrounds; the combinatorial slope
in each subsample; the same signal shape parameters as
for the Dþπ−π− fit; and the shift parameter of the partially
reconstructed background. Figure 2 shows the result of the
DþK−π− fit for the two trigger subsamples that yield a total
of approximately 2000 B− → DþK−π− decays. The yields

of all fit components are shown in Table III. The statistical
signal significance, estimated in the conventional way from
the change in negative log-likelihood from the fit when the
signal component is removed, is in excess of 60 standard
deviations (σ).

B. Signal efficiency

Since both B− → DþK−π− and B− → Dþπ−π− decays
have nontrivial DP distributions, it is necessary to under-
stand the variation of the efficiency across the phase space.
Since, moreover, the efficiency variation tends to be
strongest close to the kinematic boundaries of the conven-
tional Dalitz plot, it is convenient to model these effects
in terms of the SDP defined by variables m0 and θ0 which
are valid in the range 0 to 1 and are given for the DþK−π−

case by

m0 ≡ 1

π
arccos

�
2
mðDþπ−Þ −mmin

Dþπ−

mmax
Dþπ− −mmin

Dþπ−
− 1

�
and

θ0 ≡ 1

π
θðDþπ−Þ; ð2Þ

where mmax
Dþπ− ¼ mB− −mK− and mmin

Dþπ− ¼ mDþ þmπ− are
the kinematic boundaries ofmðDþπ−Þ allowed in the B− →
DþK−π− decay and θðDþπ−Þ is the helicity angle of the
Dþπ− system (the angle between the K−- and the Dþ-
meson momenta in the Dþπ− rest frame). For the Dþπ−π−
case, m0 and θ0 are defined in terms of the π−π− mass and
helicity angle, respectively, since with this choice only the
region of the SDP with θ0ðπ−π−Þ < 0.5 is populated due to
the symmetry of the two pions in the final state.
Efficiency variation across the SDP is caused by the

detector acceptance and by trigger, selection and PID
requirements. The efficiency variation is evaluated for both
DþK−π− and Dþπ−π− final states with simulated samples
generated uniformly over the SDP. Data-driven corrections
are applied to correct for known differences between data
and simulation in the tracking, trigger and PID efficiencies,
using identical methods to those described in Ref. [5]. The
efficiency functions are fitted with two-dimensional cubic
splines to smooth out statistical fluctuations due to limited
sample size.

TABLE II. Yields of the various components in the fit to the
B− → Dþπ−π− candidate invariant mass distribution.

Component TOS TIS-only

NðB− → Dþπ−π−Þ 29 190� 204 19 416� 159

NðB− → Dð�ÞþK−π−Þ 807� 123 401� 84

NðB− → D�þπ−π−Þ 12 120� 115 8551� 96
Nðcomb bkgdÞ 784� 54 746� 47

TABLE III. Yields of the various components in the fit to the
B− → DþK−π− candidate invariant mass distribution.

Component TOS TIS-only

NðB− → DþK−π−Þ 1112� 37 891� 32

NðB− → Dð�Þþπ−π−Þ 114� 34 23� 27

NðB− → Dþ
s K−π−Þ 69� 17 40� 15

NðB− → D�þK−π−Þ 518� 26 361� 21
Nðcomb bkgdÞ 238� 38 253� 36
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The efficiency is studied separately for the TOS and
TIS-only categories. The efficiency maps for each trigger
subsample are shown for B− → DþK−π− decays in Fig. 3.
Regions of relatively high efficiency are seen where all
decay products have comparable momentum in the B rest
frame; the efficiency drops sharply in regions with a low-
momentum bachelor track due to geometrical effects. The
efficiency maps are used to calculate the ratio of branching
fractions and also as inputs to the DþK−π− Dalitz plot fit.

C. Systematic uncertainties

Table IV summarizes the systematic uncertainties on the
measurement of the ratio of branching fractions. Selection
effects cancel in the ratio of branching fractions, except for
inefficiency due to the Λþ

c veto. The invariant mass fits are
repeated both with a wider veto (2270–2310 MeV) and
with no veto, and changes in the yields are used to assign a
relative systematic uncertainty of 0.2%.
To estimate the uncertainty arising from the choice of

invariant mass fit model, the DþK−π− mass fit is varied by
replacing the signal shape with the sum of two bifurcated
Gaussian functions, removing the smoothing of the non-
parametric functions, using exponential and second-order
polynomial functions to describe the combinatorial back-
ground, varying fixed parameters within their uncertainties
and varying the binning of histograms used to reweight the
simulated background samples. For the Dþπ−π− fit the
same variations are made. The relative changes in the yields

are summed in quadrature to give a relative systematic
uncertainty on the ratio of branching fractions of 2.0%.
The systematic uncertainty due to PID is estimated by

accounting for three sources: the intrinsic uncertainty of
the calibration (1.0%); possible differences in the kinemat-
ics of tracks in simulated samples, used to reweight the
calibration data samples, to those in the data (1.7%); the
granularity of the binning in the reweighting procedure
(0.7%). Combining these in quadrature, the total relative
systematic uncertainty from PID is 2.1%.
The bins of the efficiency maps are varied within

uncertainties to make 100 new efficiency maps, for both
DþK−π− and Dþπ−π− modes. The efficiency-corrected
yields are evaluated for each new map and their distribu-
tions are fitted with Gaussian functions. The widths of these
are used to assign a relative systematic uncertainty on the
ratio of branching fractions of 0.8%.
A number of additional cross-checks are performed to

test the branching fraction result. The neural network and
PID requirements are both tightened and loosened. The
data sample is divided by dipole magnet polarity and year
of data taking. The branching fraction is also calculated
separately for TOS and TIS-only events. All cross-checks
give consistent results.

D. Results

The ratio of branching fractions is found to be

BðB− → DþK−π−Þ
BðB− → Dþπ−π−Þ ¼ 0.0720� 0.0019� 0.0021;

where the first uncertainty is statistical and the second
systematic. The statistical uncertainty includes contribu-
tions from the event weighting used in Eq. (1) and from
the shape parameters that are allowed to vary in the fit [36].
The world average value of BðB− → Dþπ−π−Þ ¼ ð1.07�
0.05Þ × 10−3 [9] assumes that BþB− and B0B̄0 are pro-
duced equally in the decay of the ϒð4SÞ resonance. Using
Γðϒð4SÞ → BþB−Þ=Γðϒð4SÞ → B0B̄0Þ ¼ 1.055 � 0.025
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FIG. 3 (color online). Signal efficiency across the SDP for (left) TOS and (right) TIS-only B− → DþK−π− decays. The relative
uncertainty at each point is typically 5%.

TABLE IV. Relative systematic uncertainties on the measure-
ment of the ratio of branching fractions for B− → DþK−π− and
B− → Dþπ−π− decays.

Source Uncertainty (%)

Λþ
c veto 0.2

Fit model 2.0
Particle identification 2.1
Efficiency modeling 0.8
Total 3.0
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[9] gives a corrected value of BðB− → Dþπ−π−Þ ¼
ð1.01� 0.05Þ × 10−3. This allows the branching fraction
of B− → DþK−π− decays to be determined as

BðB− →DþK−π−Þ ¼ ð7.31� 0.19� 0.22� 0.39Þ× 10−5;

where the third uncertainty is from BðB− → Dþπ−π−Þ.
This measurement represents the first observation of the
B− → DþK−π− decay.

V. STUDY OF ANGULAR MOMENTS

To investigate which amplitudes should be included in
the DP analysis of B− → DþK−π− decays, a study of its
angular moments is performed. Such an analysis is par-
ticularly useful for B− → DþK−π− decays because reso-
nant contributions are only expected to appear in the Dþπ−
combination, and therefore the distributions should be free
of effects from reflections that make them more difficult to
interpret.
The analysis is performed by calculating moments from

the Legendre polynomials PL of order up to 2Jmax, where
Jmax is the maximum spin of the resonances considered.
Each candidate is weighted according to its value of
PLðcos θðDþπ−ÞÞ with an efficiency correction applied,
and background contributions subtracted. The results for
Jmax ¼ 3 are shown in Fig. 4 for the Dþπ− invariant mass
range 2.0–3.0 GeV. The distributions of hP5i and hP6i are
compatible with being flat, which implies that there are no
significant spin-3 contributions. Considering only contri-
butions up to spin 2, the following expressions are used to
interpret Fig. 4:

hP0i ∝ jh0j2 þ jh1j2 þ jh2j2; ð3Þ

hP1i∝
2ffiffiffi
3

p jh0jjh1jcosðδ0−δ1Þþ
4ffiffiffiffiffi
15

p jh1jjh2jcosðδ1−δ2Þ;
ð4Þ

hP2i ∝
2ffiffiffi
5

p jh0jjh2j cos ðδ0 − δ2Þ þ
2

5
jh1j2 þ

2

7
jh2j2; ð5Þ

hP3i ∝
6

7

ffiffiffi
3

5

r
jh1jjh2j cos ðδ1 − δ2Þ; ð6Þ

hP4i ∝
2

7
jh2j2; ð7Þ

where S-, P- and D-wave contributions are denoted by
amplitudes hjeiδj (j ¼ 0; 1; 2 respectively). The D�

2ð2460Þ0
resonance is clearly seen in the hP4i distribution of
Fig. 4(e). The distribution of hP3i shows interference
between spin-1 and -2 contributions, indicating the pres-
ence of a broad, possibly nonresonant, spin-1 contribution
at lowmðDþπ−Þ. The difference in shape between hP1i and

hP3i shows interference between spin 1 and 0 indicating
that a broad spin-0 component is similarly needed.

VI. DALITZ PLOT ANALYSIS FORMALISM

A Dalitz plot [37] is a representation of the phase space
for a three-body decay in terms of two of the three possible
two-body invariant mass squared combinations. In B− →
DþK−π− decays, resonances are expected in the
m2ðDþπ−Þ combination; therefore this and m2ðDþK−Þ
are chosen to define the DP axes. For a fixed B− mass,
all other relevant kinematic quantities can be calculated
from these two invariant mass squared combinations.
The complex decay amplitude is described using the

isobar approach [38–40], where the total amplitude is
calculated as a coherent sum of amplitudes from resonant
and nonresonant intermediate processes. The total ampli-
tude is then given by

Aðm2ðDþπ−Þ; m2ðDþK−ÞÞ

¼
XN
j¼1

cjFjðm2ðDþπ−Þ; m2ðDþK−ÞÞ; ð8Þ

where cj are complex coefficients giving the relative
contribution of each intermediate process. The
Fjðm2ðDþπ−Þ; m2ðDþK−ÞÞ terms contain the resonance
dynamics, which are composed of several terms and are
normalized such that the integral of the squared magnitude
over the DP is unity for each term. For a Dþπ− resonance

Fðm2ðDþπ−Þ; m2ðDþK−ÞÞ ¼ RðmðDþπ−ÞÞ × Xðj~pjrBWÞ
× Xðj~qjrBWÞ × Tð~p; ~qÞ;

ð9Þ

where the functions R, X and T are described below, and
~p and ~q are the bachelor particle momentum and the
momentum of one of the resonance daughters, respectively,
both evaluated in the Dþπ− rest frame.
The XðzÞ terms, where z ¼ j~qjrBW or j~pjrBW, are Blatt-

Weisskopf barrier factors [41] with barrier radius rBW, and
are given by

L ¼ 0∶ XðzÞ ¼ 1;

L ¼ 1∶ XðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z20
1þ z2

s
;

L ¼ 2∶ XðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z40 þ 3z20 þ 9

z4 þ 3z2 þ 9

s
;

L ¼ 3∶ XðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z60 þ 6z40 þ 45z20 þ 225

z6 þ 6z4 þ 45z2 þ 225

s
; ð10Þ
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where z0 is the value of z when the invariant mass is equal
to the pole mass of the resonance and L is the spin of
the resonance. For aDþπ− resonance, since the B− meson
has zero spin, L is also the orbital angular momentum
between the resonance and the kaon. The barrier radius,

rBW, is taken to be 4.0 GeV−1 ≈ 0.8 fm [5,42] for all
resonances.
The terms Tð~p; ~qÞ describe the angular probability

distribution and are given in the Zemach tensor formalism
[43,44] by
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FIG. 4 (color online). The first seven Legendre-polynomial-weighted moments for background-subtracted and efficiency-corrected
B− → DþK−π− data (black points) as a function of mðDþπ−Þ in the range 2.0–3.0 GeV. Candidates from both TOS and TIS-only
subsamples are included. The blue line shows the result of the DP fit described in Sec. VII.
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L ¼ 0∶ Tð~p; ~qÞ ¼ 1;

L ¼ 1∶ Tð~p; ~qÞ ¼ −2~p · ~q;

L ¼ 2∶ Tð~p; ~qÞ ¼ 4

3
½3ð~p · ~qÞ2 − ðj~pjj~qjÞ2�;

L ¼ 3∶ Tð~p; ~qÞ ¼ −
24

15
½5ð~p · ~qÞ3 − 3ð~p · ~qÞðj~pjj~qjÞ2�;

ð11Þ
which are proportional to the Legendre polynomials,
PLðxÞ, where x is the cosine of the angle between ~p and
~q (referred to as the helicity angle).
The function RðmðDþπ−ÞÞ of Eq. (9) is the mass line

shape. The resonant contributions considered in the DP
model are described by the relativistic Breit-Wigner (RBW)
function

RðmÞ ¼ 1

ðm2
0 −m2Þ − im0ΓðmÞ ; ð12Þ

where the mass-dependent decay width is

ΓðmÞ ¼ Γ0

�
q
q0

�
2Lþ1

�
m0

m

�
X2ðqrBWÞ; ð13Þ

where q0 is the value of q ¼ j~qj for m ¼ m0. Virtual
contributions, from resonances with pole masses outside
the kinematically accessible region of the phase space, can
also be modeled by this shape with one modification:
the pole mass m0 is replaced with meff

0 , a mass in the
kinematically allowed region, in the calculation of the
parameter q0. This effective mass is defined by the ad hoc
formula [5]

meff
0 ðm0Þ ¼ mmin þ ðmmax −mminÞ

×

�
1þ tanh

�
m0 − mminþmmax

2

mmax −mmin

��
; ð14Þ

where mmax and mmin are the upper and lower limits of the
kinematically allowed range, respectively. For virtual con-
tributions, only the tail of the RBW function enters the
Dalitz plot.
Given the large available phase space in the B decay, it is

possible to have nonresonant amplitudes (i.e. contributions
that are not from any known resonance, including virtual
states) that vary across the Dalitz plot. A model that has
been found to describe well nonresonant contributions in
several B-decay DP analyses is an exponential form factor
(EFF) [45],

RðmÞ ¼ e−αm
2

; ð15Þ

where m is a two-body (in this case Dπ) invariant mass
and α is a shape parameter that must be determined from
the data.
Neglecting reconstruction effects, the DP probability

density function would be

Pphysðm2ðDþπ−Þ; m2ðDþK−ÞÞ

¼ jAðm2ðDþπ−Þ; m2ðDþK−ÞÞj2RR
DP jAj2dm2ðDþπ−Þdm2ðDþK−Þ ; ð16Þ

where the dependence of A on the DP position has been
suppressed in the denominator for brevity. The complex
coefficients, given by cj in Eq. (8), are the primary results
of most Dalitz plot analyses. However, these depend on the
choice of normalization, phase convention and amplitude
formalism in each analysis. Fit fractions and interference fit
fractions are also reported as these provide a convention-
independent method to allow meaningful comparisons of
results. The fit fraction is defined as the integral of the
amplitude for a single component squared divided by that
of the coherent matrix element squared for the complete
Dalitz plot,

FFj ¼
RR

DP jcjFjðm2ðDþπ−Þ; m2ðDþK−ÞÞj2dm2ðDþπ−Þdm2ðDþK−ÞRR
DP jAj2dm2ðDþπ−Þdm2ðDþK−Þ : ð17Þ

The fit fractions do not necessarily sum to unity due to the
potential presence of net constructive or destructive inter-
ference, described by interference fit fractions defined for
i < j only by

FFij ¼
RR

DP 2Re½cic�jFiF�
j �dm2ðDþπ−Þdm2ðDþK−ÞRR

DP jAj2dm2ðDþπ−Þdm2ðDþK−Þ ;

ð18Þ

where the dependence of Fð�Þ
i andA on the DP position has

been omitted.

VII. DALITZ PLOT FIT

The LAURA++ [46] package is used to perform the Dalitz
plot fit, with the two trigger subsamples fitted simulta-
neously using the JFIT method [47]. The two subsamples
have separate signal and background yields, efficiency
maps and background SDP distributions, but all parameters
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of the signal model are common. The likelihood function
that is used is

L ¼
YNc

i

�X
k

NkPkðm2
i ðDþπ−Þ; m2

i ðDþK−ÞÞ
�
; ð19Þ

where the index i runs over Nc candidates, while k
distinguishes the signal and background components where
Nk is the yield in each component. The probability density
function for signal events, Psig, is given by Eq. (16) where
the jAðm2ðDþπ−Þ; m2ðDþK−ÞÞj2 terms are multiplied by
the efficiency function described in Sec. IV B. The mass
resolution is approximately 2.4 MeV, which is much lower
than the width of the narrowest contribution to the Dalitz
plot (∼50 MeV); therefore, this has negligible effect on the
likelihood and is not considered further.
The signal and background yields that enter the Dalitz

plot fit are taken from the mass fit described in Sec. IVA.
Only candidates in the signal region, defined as �2.5σ
around the B signal peak, where σ is the width of the peak,
are used in the Dalitz plot fit. Within this region, in the TOS
subsample the result of the B candidate invariant mass fit
corresponds to yields of 1060� 35, 37� 6, 26� 8 and
16� 4 in the signal, combinatorial background,Dð�Þþπ−π−
and Dþ

s K−π− components, respectively. The equivalent
yields in the TIS-only subsample are 849� 30, 39� 6,
5� 5 and 9� 3 candidates. The contribution from
D�þK−π− decays is negligible in the signal window.
The distributions of the candidates in the signal region
over the DP and SDP are shown in Fig. 5.
The SDP distributions of the Dð�Þþπ−π− and Dþ

s K−π−

background sources are obtained from simulated samples
using the same procedures as described for their invariant
mass distributions in Sec. IVA. The distribution of com-
binatorial background events is modeled by considering
DþK−π− candidates in the sideband high-mass range
5500–5800 MeV, with contributions from Dð�Þþπ−π− in

this region subtracted. The dependence of the SDP dis-
tribution on B candidate mass was investigated and found
to be negligible. The SDP distributions of these back-
grounds are shown in Fig. 6. These histograms are used to
model the background contributions in the Dalitz plot fit.
Using the results of the moments analysis of Sec. V as a

guide, the nominal Dalitz plot fit model for B− → DþK−π−

decays is determined by considering several resonant,
nonresonant and virtual amplitudes. Those that do not
contribute significantly and that do not aid the stability of
the fit are removed. Only natural spin-parity intermediate
states are considered, as unnatural spin-parity states do not
decay to two pseudoscalars. The resulting signal model,
referred to below as the nominal DP model, consists of the
seven amplitudes shown in Table V: three resonances, two
virtual resonances and two nonresonant terms. Parts of
the model are known to be approximations. In particular
both S- and P-waves in the Dπ system are modeled with
overlapping broad structures. The nominal model gives a
better description of the data than any of the alternative
models considered; alternative models are used to assign
systematic uncertainties as discussed in Sec. VIII.
The free parameters in the fit are the cj terms introduced

in Eq. (8), with the real and imaginary parts of these
complex coefficients determined for each amplitude in the
fit model. The D�

2ð2460Þ0 component, as the reference
amplitude, is the exception with real and imaginary parts
fixed to 1 and 0, respectively. Fit fractions and interference
fit fractions are derived from these free parameters, as are
the magnitudes and phases of the complex coefficients.
Statistical uncertainties for the derived parameters are
calculated using large samples of simulated pseudoexperi-
ments to ensure that nontrivial correlations are accounted
for. Several other parameters are also determined from the
fit as described below.
In Dalitz plot fits it is common for the minimization

procedure to find local minima of the likelihood function.
To find the global minimum, the fit is performed many
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FIG. 5. Distribution of B− → DþK−π− candidates in the signal region over (left) the DP and (right) the SDP. Candidates from both
TOS and TIS-only subsamples are included.
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times using randomized starting values for the complex
coefficients. In addition to the global minimum of the
likelihood, corresponding to the results reported below,
several additional minima are found. Two of these have

negative log-likelihood (NLL) values close to that of the
global minimum. The main differences between secondary
minima and the global minimum are the interference patterns
in the Dπ S- and P-waves, as shown in Appendix A.
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FIG. 6 (color online). Square Dalitz plot distributions used in the Dalitz plot fit for (top) combinatorial background, (middle)
B− → Dð�Þþπ−π− decays and (bottom) B− → Dþ

s K−π− decays. Candidates from the TOS (TIS-only) subsamples are shown in the left
(right) column.

TABLE V. Signal contributions to the fit model, where parameters and uncertainties are taken from Ref. [9]. States
labeled with subscript v are virtual contributions.

Resonance Spin DP axis Model Parameters

D�
0ð2400Þ0 0 m2ðDπÞ RBW m ¼ 2318� 29 MeV, Γ ¼ 267� 40 MeV

D�
2ð2460Þ0 2 m2ðDπÞ RBW

Determined from data (see Table VI)
D�

Jð2760Þ0 1 m2ðDπÞ RBW
Nonresonant 0 m2ðDπÞ EFF

Determined from data (see text)
Nonresonant 1 m2ðDπÞ EFF
D�

vð2007Þ0 1 m2ðDπÞ RBW m ¼ 2006.98� 0.15 MeV, Γ ¼ 2.1 MeV
B�0
v 1 m2ðDKÞ RBW m ¼ 5325.2� 0.4 MeV, Γ ¼ 0.0 MeV
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The shape parameters, defined in Eq. (15), for the
nonresonant components are determined from the fit to
data to be 0.36� 0.03 GeV−2 and 0.36� 0.04 GeV−2 for
the S-wave and P-wave, respectively, where the uncertain-
ties are statistical only. The mass and width of the
D�

2ð2460Þ0 resonance are determined from the fit to
improve the fit quality. Since the mass and width of the
D�

Jð2760Þ0 state have not been precisely determined by
previous experiments, these parameters are also allowed to
vary in the fit. The masses and widths of theD�

2ð2460Þ0 and
D�

Jð2760Þ0 are reported in Table VI.
The spin of theD�

Jð2760Þ0 state has not been determined
previously. Fits are performed with all values up to 3, and
spin 1 is found to be preferred with changes relative to
the spin-0, -2 and -3 hypotheses of 2ΔNLL ¼ 37.3; 49.5
and 48.2 units, respectively. For comparison, the value of
2ΔNLL obtained from a fit with the D�

1ð2760Þ0 state
excluded is 75.0 units. The alternative models discussed
in Sec. VIII give very similar values and therefore do not
affect the conclusion that the D�

Jð2760Þ0 state has spin 1.
The values of the complex coefficients and fit fractions

returned by the fit are shown in Table VII. Results for the
interference fit fractions are given in Appendix B. The total
fit fraction exceeds unity mostly due to interference between
the D�

0ð2400Þ0 and S-wave nonresonant contributions.
The consistency of the fit model and the data is evaluated

in several ways. Numerous one-dimensional projections
(including several shown below and those shown in Sec. V)
show good agreement. A two-dimensional χ2 value is
determined by comparing the data and the fit model in
100 equally populated bins across the SDP. The pull, i.e.
the difference between the data and fit model divided
by the uncertainty, is shown with this SDP binning in

Fig. 7. The χ2 value obtained is found to be within the bulk
of the distribution expected from simulated pseudoexperi-
ments. Other unbinned fit quality tests [48] also show
acceptable agreement between the data and the fit model.
Figure 8 shows projections of the nominal fit model and

the data onto mðDπÞ, mðDKÞ and mðKπÞ. Zooms are
provided around the resonant structures on mðDπÞ in
Fig. 9. Projections of the cosine of the helicity angle of
the Dπ system are shown in Fig. 10. Good agreement is
seen between the data and the fit model.

VIII. SYSTEMATIC UNCERTAINTIES

Sources of systematic uncertainty are divided into two
categories: experimental and model uncertainties. The
sources of experimental systematic uncertainty are the signal
and background yields in the signal region, the SDP
distributions of the background components; the efficiency
variation across the SDP, and possible fit bias. The consid-
ered model uncertainties are, the fixed parameters in the
amplitude model, the addition or removal of marginal
amplitudes, and the choice of models for the nonresonant
contributions. The systematic uncertainties from each source
are combined in quadrature.

TABLE VI. Masses and widths determined in the fit to data,
with statistical uncertainties only.

Resonance Mass (MeV) Width (MeV)

D�
2ð2460Þ0 2464.0� 1.4 43.8� 2.9

D�
Jð2760Þ0 2781� 18 177� 32

TABLE VII. Complex coefficients and fit fractions determined from the Dalitz plot fit. Uncertainties are statistical
only.

Isobar model coefficients

Resonance Fit fraction (%) Real part Imaginary part Magnitude Phase

D�
0ð2400Þ0 8.3� 2.6 −0.04� 0.07 −0.51� 0.07 0.51� 0.09 −1.65� 0.16

D�
2ð2460Þ0 31.8� 1.5 1.00 0.00 1.00 0.00

D�
1ð2760Þ0 4.9� 1.2 −0.32� 0.06 −0.23� 0.07 0.39� 0.05 −2.53� 0.24

S-wave nonresonant 38.0� 7.4 0.93� 0.09 −0.58� 0.08 1.09� 0.09 −0.56� 0.09
P-wave nonresonant 23.8� 5.6 −0.43� 0.09 0.75� 0.09 0.87� 0.09 2.09� 0.15
D�

vð2007Þ0 7.6� 2.3 0.16� 0.08 0.46� 0.09 0.49� 0.07 1.24� 0.17
B�
v 3.6� 1.9 −0.07� 0.08 0.33� 0.07 0.34� 0.06 1.78� 0.23

Total fit fraction 118.1
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FIG. 7 (color online). Differences between the data SDP
distribution and the fit model across the SDP, in terms of the
per-bin pull.
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The signal and background yields in the signal region are
determined from the fit to the B candidate invariant mass
distribution, as described in Sec. IVA. The uncertainty on
each yield (including systematic uncertainty evaluated as in
Sec. IV C) is calculated, and the yields varied accordingly
in the DP fit. The deviations from the nominal DP fit result
are assigned as systematic uncertainties.

The effect of imperfect knowledge of the background
distributions over the SDP is tested by varying the histo-
grams used to model the shapes within their statistical
uncertainties. For Dð�Þþπ−π− decays the ratio of the D�þ

and Dþ contributions is varied. Where applicable, the
reweighting of the SDP distribution of the simulated
samples is removed.
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The uncertainty related to the knowledge of the variation
of efficiency across the SDP is determined by varying the
efficiency histograms before the spline fit is performed. The
central bin in each cell of 3 × 3 bins is varied by its
statistical uncertainty and the surrounding bins in the cell
are varied by interpolation. This procedure accounts for
possible correlations between the bins, since a systematic
effect on a given bin is also likely to affect neighboring
bins. The effects on the DP fit results are assigned as
systematic uncertainties. An additional systematic uncer-
tainty is assigned by varying the binning scheme of the
control sample used to determine the PID efficiencies.
Systematic uncertainties related to possible intrinsic fit

bias are investigated using an ensemble of pseudoexperi-
ments. Differences between the input and fitted values from
the ensemble for the fit parameters are found to be small.
Systematic uncertainties are assigned as the sum in quad-
rature of the difference between the input and output values
and the uncertainty on the mean of the output value
determined from a fit to the ensemble.
Systematic uncertainties due to fixed parameters in the fit

model are determined by varying the parameters within
their uncertainties and repeating the fit. The fixed param-
eters considered are the mass and width of the D�

0ð2400Þ0
resonance and the Blatt-Weisskopf barrier radius, rBW. The
mass and width are varied by the uncertainties shown in
Table V and the barrier radius is varied between 3 and
5 GeV−1 [5]. For each fit parameter, the difference com-
pared to the nominal fit model is assigned as a systematic
uncertainty for each source.
The marginal B�0

v component is removed from the model
and the changes in the other parameters are assigned as
the systematic uncertainties. Dalitz plot analysis of B̄0

s →
D0Kþπ− revealed that a structure atmðD0KþÞ ∼ 2.86 GeV
has both spin-1 and spin-3 components [4,5]. Although
there is no evidence for a spin-3 resonance in this analysis,
the excess at mðDþπ−Þ ∼ 2.76 GeV could have a similar
composition. A putative D�

3ð2760Þ resonance is added to
the fit model, and the effect on the other parameters is used
to assign systematic uncertainties.
The EFF line shapes used to model the nonresonant

S- and P-wave contributions are replaced by a power-law
model and the change in the fit parameters used as a
systematic uncertainty. The dependence of the results on
the effective pole mass description of Eq. (14) that is used
for the virtual resonance contributions is found by using a
fixed width in Eq. (12), removing the dependency on meff

0 .
The total experimental and model systematic uncertain-

ties for fit fractions and complex coefficients are summa-
rized in Tables VIII and IX, respectively. The contributions
for the fit fractions, masses and widths are broken down in
Tables X and XI. Similar tables summarizing the systematic
uncertainties on the interference fit fractions are given in
Appendix B. The largest source of experimental systematic
uncertainty on the fit fractions is due to the efficiency

variation. For the model uncertainty on the fit fractions, the
addition and removal of marginal components and variation
of fixed parameters dominate. In general, the model
uncertainties are larger than the experimental systematic
uncertainties for the fit fractions and the masses and widths.
Several cross-checks are performed to confirm the

stability of the results. The data sample is divided into
two parts depending on the charge of the B candidate, the
polarity of the magnet and the year of data taking. Selection
effects are also checked by varying the requirement on the
neural network output variable and the PID criteria applied
to the bachelor kaon. A fit is performed for each of the
subsamples individually and each is seen to be consistent
with the default fit results, although in some cases one
of the secondary minima described in Appendix A becomes
the preferred solution. To cross-check the amplitude model,
the fit is repeated many times with an extra resonance with
fixed mass, width and spin included in the model. All
possible mass and width values, and spin up to 3, were
considered. None of the additional resonances are found to
contribute significantly.

TABLE VIII. Experimental systematic uncertainties on the fit
fractions and complex amplitudes.

Isobar model coefficients

Resonance

Fit
fraction
(%)

Real
part

Imaginary
part Magnitude Phase

D�
0ð2400Þ0 0.6 0.03 0.02 0.02 0.06

D�
2ð2460Þ0 0.9 � � � � � � � � � � � �

D�
1ð2760Þ0 0.4 0.03 0.03 0.01 0.08

S-wave
nonresonant

1.5 0.03 0.03 0.02 0.04

P-wave
nonresonant

2.1 0.03 0.05 0.03 0.05

D�
vð2007Þ0 1.3 0.03 0.04 0.04 0.07

B�
v 0.9 0.22 0.02 0.03 0.11

TABLE IX. Model uncertainties on the fit fractions and com-
plex amplitudes.

Isobar model coefficients

Resonance

Fit
fraction
(%)

Real
part

Imaginary
part Magnitude Phase

D�
0ð2400Þ0 1.9 0.28 0.13 0.15 0.51

D�
2ð2460Þ0 1.4 � � � � � � � � � � � �

D�
1ð2760Þ0 0.9 0.03 0.03 0.03 0.08

S-wave
nonresonant

10.8 0.17 0.15 0.20 0.11

P-wave
nonresonant

3.7 0.34 0.68 0.12 0.95

D�
vð2007Þ0 1.5 0.56 0.77 0.05 0.60

B�
v 1.6 0.09 0.08 0.07 0.27
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IX. RESULTS AND SUMMARY

The results for the complex coefficients are reported in
Tables XII and XIII in terms of real and imaginary parts and
of magnitudes and phases, respectively. The results for the

fit fractions are given in Table XIV and the results for the
interference fit fractions are given in Appendix B. The fit
fractions for resonant contributions are converted into
quasi-two-body product branching fractions by multiplying
by BðB−→DþK−π−Þ¼ð7.31�0.19�0.22�0.39Þ×10−5,
as determined in Sec. IV D. These product branching
fractions are shown in Table XV; they cannot be converted
into absolute branching fractions because the branching
fractions for the resonance decays to Dþπ− are unknown.
The masses and widths of theD�

2ð2460Þ0 andD�
1ð2760Þ0

are determined to be

mðD�
2ð2460Þ0Þ ¼ ð2464.0� 1.4� 0.5� 0.2Þ MeV;

ΓðD�
2ð2460Þ0Þ ¼ ð43.8� 2.9� 1.7� 0.6Þ MeV;

mðD�
1ð2760Þ0Þ ¼ ð2781� 18� 11� 6Þ MeV;

ΓðD�
1ð2760Þ0Þ ¼ ð177� 32� 20� 7Þ MeV;

where the three quoted errors are statistical, experimental
systematic and model uncertainties, respectively. The
results for the D�

2ð2460Þ0 are within 2σ of the world
average values [9]. The mass of the D�

1ð2760Þ0 resonance
is similarly consistent with previous measurements. The
measured width of this state is larger than previous
measurements by 2 to 3 times the uncertainties. Future
studies based on much larger data samples will be required
to better understand these states.
The measurement of BðB− → DþK−π−Þ corresponds to

the first observation of this decay mode. Therefore, the
resonant contributions to the decay are also first observa-
tions. The significance of the B− → D�

1ð2760Þ0K− obser-
vation is investigated by removing the corresponding
resonance from the DP model. A fit without the
D�

1ð2760Þ0 component increases the value of 2ΔNLL by
75.0 units, corresponding to a high statistical significance.
Only the systematic effects due to uncertainties in the DP
model could in principle significantly change the conclu-
sion regarding the need for this resonance. However, in
alternative DP models where a Dπ resonance with spin 3 is
added and where the B�

v contribution is removed, the shift

TABLE XI. Breakdown of model uncertainties on the fit
fractions (%) and masses (MeV) and widths (MeV).

Nominal
Add/
rem

Alt.
models

Fixed
params Total

D�
0ð2400Þ0 8.3� 2.6 2.0 0.1 0.2 1.9

D�
2ð2460Þ0 31.8� 1.5 1.3 0.2 0.4 1.4

D�
1ð2760Þ0 4.9� 1.2 0.8 0.1 0.3 0.9

S-wave
nonresonant

38.0� 7.4 4.8 4.5 5.4 10.8

P-wave
nonresonant

23.8� 5.6 2.6 2.1 3.0 3.7

D�
vð2007Þ0 7.6� 2.3 0.6 0.1 1.4 1.5

B�
v 3.6� 1.9 0.7 1.0 1.1 1.6

mðD�
2ð2460Þ0Þ 2464.0� 1.4 0.5 0.1 0.1 0.5

ΓðD�
2ð2460Þ0Þ 43.8� 2.9 0.8 1.4 0.6 1.7

mðD�
1ð2760Þ0Þ 2781� 18 6 6 1 11

ΓðD�
1ð2760Þ0Þ 177� 32 16 9 1 20

TABLE X. Breakdown of experimental systematic uncertain-
ties on the fit fractions (%) and masses (MeV) and widths (MeV).

Nominal
S/B
frac. Eff. Bkg.

Fit
bias Total

D�
0ð2400Þ0 8.3� 2.6 0.2 0.5 0.1 0.3 0.6

D�
2ð2460Þ0 31.8� 1.5 0.2 0.8 0.0 0.2 0.9

D�
1ð2760Þ0 4.9� 1.2 0.2 0.2 0.1 0.2 0.3

S-wave nonresonant 38.0� 7.4 0.7 0.5 0.4 1.2 1.5
P-wave nonresonant 23.8� 5.6 1.0 1.6 0.7 0.5 2.1
D�

vð2007Þ0 7.6� 2.3 0.7 1.0 0.3 0.3 1.3
B�
v 3.6� 1.9 0.3 0.3 0.2 0.8 0.9

mðD�
2ð2460Þ0Þ 2464.0� 1.4 0.1 0.1 0.0 0.2 0.2

ΓðD�
2ð2460Þ0Þ 43.8� 2.9 0.3 0.3 0.0 0.4 0.6

mðD�
1ð2760Þ0Þ 2781� 18 1 4 0 2 6

ΓðD�
1ð2760Þ0Þ 177� 32 3 1 2 5 7

TABLE XII. Results for the complex amplitudes and their uncertainties. The three quoted errors are statistical,
experimental systematic and model uncertainties, respectively.

Isobar model coefficients

Resonance Real part Imaginary part

D�
0ð2400Þ0 −0.04� 0.07� 0.03� 0.28 −0.51� 0.07� 0.02� 0.13

D�
2ð2460Þ0 1.00 0.00

D�
1ð2760Þ0 −0.32� 0.06� 0.03� 0.03 −0.23� 0.07� 0.03� 0.03

S-wave nonresonant 0.93� 0.09� 0.03� 0.17 −0.58� 0.08� 0.03� 0.15
P-wave nonresonant −0.43� 0.09� 0.03� 0.34 0.75� 0.09� 0.05� 0.68
D�

vð2007Þ0 0.16� 0.08� 0.03� 0.56 0.46� 0.09� 0.04� 0.77
B�
v −0.07� 0.08� 0.22� 0.09 0.33� 0.07� 0.02� 0.08
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in 2ΔNLL remains above 50 units. The alternative models
also do not significantly impact the level at which the
D�

1ð2760Þ0 state is preferred to be spin 1. Therefore, these
results represent the first observation of the B− →
D�

1ð2760Þ0K− and the measurement of the spin of the
D�

1ð2760Þ0 resonance.
In summary, the B− → DþK−π− decay has been

observed in a data sample corresponding to 3.0 fb−1 of
pp collision data recorded by the LHCb experiment. An
amplitude analysis of its Dalitz plot distribution has been
performed, in which a model containing resonant contri-
butions from the D�

0ð2400Þ0, D�
2ð2460Þ0 and D�

1ð2760Þ0

states in addition to both S-wave and P-wave nonresonant
amplitudes and components due to virtual D�

vð2007Þ0 and
B�0
v resonances was found to give a good description of the

data. The B− → D�
2ð2460Þ0K− decay may in the future be

used to determine the angle γ of the CKM unitarity triangle.
The results provide insight into the spectroscopy of charm
mesons, and demonstrate that further progress may be
obtained with Dalitz plot analyses of larger data samples.
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APPENDIX A: SECONDARY MINIMA

The results, in terms of fit fractions and complex
coefficients, corresponding to the two secondary minima

TABLE XIII. Results for the complex amplitudes and their uncertainties. The three quoted errors are statistical,
experimental systematic and model uncertainties, respectively.

Isobar model coefficients

Resonance Magnitude Phase

D�
0ð2400Þ0 0.51� 0.09� 0.02� 0.15 −1.65� 0.16� 0.06� 0.50

D�
2ð2460Þ0 1.00 0.00

D�
1ð2760Þ0 0.39� 0.05� 0.01� 0.03 −2.53� 0.24� 0.08� 0.08

S-wave nonresonant 1.09� 0.09� 0.02� 0.20 −0.56� 0.09� 0.04� 0.11
P-wave nonresonant 0.87� 0.09� 0.03� 0.11 2.09� 0.15� 0.05� 0.95
D�

vð2007Þ0 0.49� 0.07� 0.04� 0.05 1.24� 0.17� 0.07� 0.60
B�
v 0.34� 0.06� 0.03� 0.07 1.78� 0.23� 0.11� 0.27

TABLE XIV. Results for the fit fractions and their uncertainties
(%). The three quoted errors are statistical, experimental sys-
tematic and model uncertainties, respectively.

Resonance Fit fraction

D�
0ð2400Þ0 8.3� 2.6� 0.6� 1.9

D�
2ð2460Þ0 31.8� 1.5� 0.9� 1.4

D�
1ð2760Þ0 4.9� 1.2� 0.3� 0.9

S-wave nonresonant 38.0� 7.4� 1.5� 10.8
P-wave nonresonant 23.8� 5.6� 2.1� 3.7
D�

vð2007Þ0 7.6� 2.3� 1.3� 1.5
B�
v 3.6� 1.9� 0.9� 1.6

TABLE XV. Results for the product branching fractions
BðB− → RK−Þ × BðR → Dþπ−Þ (10−4). The four quoted errors
are statistical, experimental systematic, model and inclusive
branching fraction uncertainties, respectively.

Resonance Branching fraction

D�
0ð2400Þ0 6.1� 1.9� 0.5� 1.4� 0.4

D�
2ð2460Þ0 23.2� 1.1� 0.6� 1.0� 1.6

D�
1ð2760Þ0 3.6� 0.9� 0.3� 0.7� 0.2

S-wave nonresonant 27.8� 5.4� 1.1� 7.9� 1.9
P-wave nonresonant 17.4� 4.1� 1.5� 2.7� 1.2
D�

vð2007Þ0 5.6� 1.7� 1.0� 1.1� 0.4
B�
v 2.6� 1.4� 0.6� 1.2� 0.2
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discussed in Sec. VII are compared to those of the global minimum in Table XVI. The main difference between the global
and secondary minima is in the interference pattern in the Dπ P-waves, while the third minimum exhibits a different
interference pattern in the Dπ S-wave than the global minimum and has a very large total fit fraction due to strong
destructive interference.

APPENDIX B: RESULTS FOR INTERFERENCE FIT FRACTIONS

The central values and statistical errors for the interference fit fractions are shown in Table XVII. The experimental
systematic and model uncertainties are given in Tables XVIII and XIX. The interference fit fractions are common to both
trigger subsamples.

TABLE XVI. Results for the fit fractions and complex coefficients for the secondary minima with 2NLL values 2.8 and 3.3 units
greater than that of the global minimum of the NLL function.

Resonance Fit fraction (%) Real part Imaginary part Magnitude Phase

2ΔNLL 0 2.8 3.3 0 2.8 3.3 0 2.8 3.3 0 2.8 3.3 0 2.8 3.3

D�
0ð2400Þ0 8.3 9.6 84.4 −0.04 −0.03 −1.38 −0.51 −0.55 −0.72 0.51 0.55 1.56 −1.65 −1.62 −2.66

D�
2ð2460Þ0 31.8 31.5 34.9 1.00 0.00 1.00 0.00

D�
1ð2760Þ0 4.9 4.6 5.5 −0.32 −0.30 −0.30 −0.23 −0.24 −0.26 0.39 0.38 0.40 −2.53 −2.46 −2.42

S-wave nonresonant 38.0 36.2 4.6 0.93 0.89 −0.33 −0.58 −0.60 0.15 1.09 1.07 −0.36 −0.56 −0.59 2.71
P-wave nonresonant 23.8 22.6 −31.9 −0.43 0.83 −0.84 0.75 0.15 0.45 0.87 0.85 0.96 2.09 2.96 2.65
D�

vð2007Þ0 7.6 7.1 11.9 0.16 −0.38 −0.28 0.46 −0.29 −0.51 0.49 0.48 0.58 1.24 −2.49 −2.07
B�
v 3.6 1.0 25.0 −0.07 −0.16 −0.31 0.33 0.09 0.79 0.34 0.18 0.85 1.78 2.61 1.94

Total fit fraction 118.1 112.6 198.3

TABLE XVIII. Experimental systematic uncertainties on the interference fit fractions (%). The amplitudes are (A0) D�
vð2007Þ0, (A1)

D�
0ð2400Þ0, (A2) D�

2ð2460Þ0, (A3) D�
1ð2760Þ0, (A4) B�

v, (A5) nonresonant S-wave, and (A6) nonresonant P-wave. The diagonal elements
are the same as the conventional fit fractions.

A0 A1 A2 A3 A4 A5 A6

A0 1.3 0.0 0.0 0.4 0.6 0.0 2.6
A1 0.6 0.0 0.0 0.4 0.6 0.0
A2 0.9 0.0 0.3 0.0 0.0
A3 0.4 0.2 0.0 0.7
A4 0.9 1.1 1.2
A5 1.5 0.0
A6 2.1

TABLE XVII. Interference fit fractions (%) and statistical uncertainties. The amplitudes are (A0) D�
vð2007Þ0, (A1) D�

0ð2400Þ0, (A2)
D�

2ð2460Þ0, (A3) D�
1ð2760Þ0, (A4) B�

v, (A5) nonresonant S-wave, and (A6) nonresonant P-wave. The diagonal elements are the same as
the conventional fit fractions.

A0 A1 A2 A3 A4 A5 A6

A0 7.6� 2.3 0.0� 0.0 0.0� 0.0 2.4� 0.9 4.8� 1.3 0.0� 0.0 −14.2� 5.3
A1 8.3� 2.6 0.0� 0.0 0.0� 0.0 −1.6� 0.7 18.1� 2.6 0.0� 0.0
A2 31.8� 1.5 0.0� 0.0 −2.3� 0.6 0.0� 0.0 0.0� 0.0
A3 4.9� 1.2 2.0� 0.8 0.0� 0.0 −9.6� 2.9
A4 3.6� 1.9 −6.7� 2.3 −11.1� 3.6
A5 38.0� 7.4 0.0� 0.0
A6 23.8� 5.6
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