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COMBINING WEAK LEARNING HEURISTICS IN GENERAL PROBLEM SOLVERS 

T.L. McCluskey 

The City University, Northampton Square, 
London, England. 

ABSTRACT 

This paper is concerned with state space problem 
solvers that achieve generality by learning strong 
heuristics through experience in a particular domain. 
We specif ically consider two ways of learning by 
analysing past solutions that can improve future 
problem solving: creating macros and the chunks. A 
method of learning search heuristics is specified which 
is related to 'chunking' but which complements the use 
of macros within a goal directed system. An example of 
the creation and combined use of macros and chunks, 
taken from an implemented system, is described. 

I INTRODUCTION 

Integrating ideas and techniques devoloped in 
Machine Learning, with those of Problem Solving, has 
attracted substantial recent research effort (e.g. Laird et 
al 86, Korf 85, Langley 85, Mitchell et al 83). An 
important aspect is the revival of the 'general' problem 
solver. Its demise was due in part to the failure of its 
weak heuristics to tackle problems of complexity in 
some given application domain; now it returns equipped 
with not just weak problem solving heuristics but with 
weak heur is t ics for learning strong, i.e.domain 
dependent, heuristics. The latter may take the form of 
useful shifts in the problem space representation (a 
simple example is the learning of macro operators) or 
improving search through a particular space by the 
acquisition of search control heuristics. Thus, while its 
generality is maintained, learning may improve the 
problem solver's efficiency during the application to a 
particular domain. This is the approach we have taken 
in the construstion of a 'heuristic learning problem 
solver shell' called FM; it can acquire strong heuristics 
from problem solving experience when it is applied to 
specific domains. A complementary approach is to 
acquire or discover them during a preprocessing stage 
as in [Iba 85], [Korf 85]) and [Dawson & Siklossy 77]. 

FM's application domains can have variable initial 
and goal states. Applications are interchangeable by 
specifying domain environments, states and goals as 
expressions in first order logic, and operators in terms 
of structured add, delete and precondition predicates. 
Control stategies may be Interchanged (e.g. forward 
best-first or goal reduction) as can weak learning 
methods such as macro and chunk creation. 

This constitutes a more general approach to recent 
work on heuristic learning in problem solvers (e.g. 
[Mitchell et al 83], [Korf 85]), where systems typically 
improve in domains with a fixed goal, employ a more 
specialised representation scheme, and a forward state 
space search strategy. This paper will outline FM's goal 
directed search and describe how macros and chunks 
are created and used as complementary heuristics 
during that search. 

II GOAL NODE SEARCH IN FM 

The backward search of FM proceeds in a goal 
reduction manner, starting with the initial goal, through 
a space of goal nodes (similar to those in [Dawson & 
Siklossy 77]). Each goal node can be modelled as a 
6-tuple: 
(identifier, goal, initial state, ancestors, purpose, trace) 
The trace records attempts to solve the goal, whereas 
the purpose records why the goal node was created 
(typically to solve the unsatisfied preconditions of an 
operator) . Goals, expressed as conjunct ions of 
ptedicates, are initially assumed to be decomposable: 
when a goal node is activated, operator instantiations 
which add goal predicates have their unsatisf ied 
preconditions form another goal node, unless they are 
already satisfied in which case those operators are 
applied to the initial state and the result recorded in the 
trace. 

When the trace of a goal node eventually contains a 
state satisfying its goal (via an operator sequence Os), 
we say that the goal node is solved, and all nodes which 
are ancestors of it are removed from the search. If it 
was activated to solve an operator O's preconditions, 
then the sequence Os + 0 is applied to the goal node's 
parent's initial state and the result recorded in the 
parent's trace. 

A goal node's initial state may be the state inherited 
from a parent node, or may be an advanced state 
partially satisfying the parent's goal. The latter is the 
case when goals cannot be so lved by s imple 
decompositon; FM examines the trace and forms new 
goal nodes whose goal predicates are inherited but 
whose initial states are selected from intermediate 
states taken from the parent's trace. 
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The kind of representation of goal nodes outined 
above aids both the formation and use of strong 
heuristics. The trace is available for analysis and 
criticism after the solution of each goal node, allowing 
'within-trial transfer of learning' (see [Laird et al 84]) to 
take place. In our implementation of FM we have 
experimented with the formation of closed macros, 
'b-chunks' and also subgoal ordering heuristics at this 
stage, but we shall limit our discussion to the first two. 

Ill CLOSED MACRO CREATION 

We consider a closed macro operator to be an 
operator sequence that has been compi led and 
generalised into a form similar to that of a primitive 
operator (in contrast to the 'open' macrops of [Fikes et 
al 72]). This sequence forms part of a past solution, in 
the case of learning by experience, which includes fully 
instantiated operators and intermediate states. Here the 
compilation involves finding the sequence's weakest 
precondition through the intermediate states and using 
it as the macro's precondition. Within this certain 
constants can then be selectively generalised using a 
technique similar to the Explanation-Based Learning of 
[Mitchell et al 86]. 

Systems that learn closed macros ([Minton 85], [Iba 
85]) seem to demonstrate significant improvement in 
problem solving within robot and puzzle worlds but 
there are pitfalls in using this technique as the sole 
learning component: 

-search trees do shorten but unfortunately grow 
bushy since distinct instantiations of macros proliferate. 
(This is reminisent of the effect of paramodulation, a 
'macro inference rule' in Theorem Proving, which 
combines resolution with the axioms of equality, but 
when used in search changes long thin trees to short 
bushy ones!). 

-solutions which comprise of closed macros are 
prone to produce non-optimal paths even after checks 
for redundant primitive operator sequences have been 
made. 

We claim that such problems may be overcome by 
the learning of strong heuristics such as chunks to 
complement the use of macros. 

Macros are created and stored in FM when goal 
nodes are solved, and then are immediately available 
for use in problem solving. Each are compiled from a 
successful operator sequence into a primitive operator 
format. The major part of this compilation process is in 
building up the precondition M.p (a conjunction of 
predicates) of a macro M. This is accomplished by a 
procedure modelled on goal regression equations: 

M.p = Pn where PO = G and 
Pi m (Pi-1 - 0[n+1-i].a) U 0[n+1-i].p , i = 1 to n 

where 'U' and '--' mean set union and difference, 0[i].p, 
0[i].a stand for the precondition and add predicates of 

operator i respectively, and G the goal predicates for 
the solution sequence. 

Constants that appeared as arbitrary members of 
some part icular type in the so lut ion 's operator 
sequence are carefully generalised to a variable with 
that type res t r ic t ion ( fo l lowing [Kodratof f 84]) . 
Generalisation is justif ied since no operator in the 
solution sequence referred to the constant specifically 
but only to its type. Identical constants are generalised 
to the same variable throughout the macro, but equality 
binding restrictions are added where variables of the 
same type are generalised from distinct constants, so 
that they may not be instantiated to the same constant 
when in use. Macros are then incorporated into future 
problem solving as primitive operators, although some 
may later be deleted if rarely used. 

IV B-CHUNK CREATION 

The chunks created by FM improve the system's 
subsequent problem solving behaviour by providing 
search control knowledge. They are formed during the 
goal directed search and advise on the search through 
partial solutions. The absence of such a learning 
component in STRIPS with Macrops is pointed out in 
[Porter and Kibler 84] and Minton's Morris system 
[Minton 85] apparently combines only weak search 
heuristics with the use of macros. 

Consider 0 [ i ] (1<i<n) taken from an operator 
sequence 0[1] ,0[2] 0[n] which achieves a goal 
node (with goal predicate(s) G) from a initial state I 
within a domain environment E (E is a set of facts and 
rules const i tu t ing background knowledge for a 
particular application). A b-chunk (0[i ] ' ; G'; P') is built 
for each 0[i] to the following specification: consider a 
function 'sim': 

sim : CP x CP x CP x NatO --> CP 
where CP is the space of conjunctions (or sets) of 
Predicates and 
sim(X,Y,E,O) = {P in Y: P logically follows from X&E} 
sim(X,Y,E,N) = sim(X,Y,E,N-1) union 
{y el. of Y, e subset of E : y is related to an x in X 
by an association chain e of length N} 

Then 
P= sim(M(i) ,M(1),E,K) where M(j)= the macro 

precondition (see section III) of sequence 0[j],0[j+1], 
. . . ,O[n];K>=0, 

and finally 
(0[i] ' ; G'; P') = the careful generalisation of (0[i]; G; P). 

When K = 0 then 0[i]'s chunk's third component may 
be roughly described as those predicates which were 
present in the goal node's initial state and that were 
also involved in the achievement of G after 0[i-1]. This 
includes environment information (which is assumed to 
be a part of every state) that has been used in the 
satisfaction of the operator's preconditions. FM initially 
forms P with K=0 and then checks to see if the 
resulting chunk would be discriminatory if used to solve 
the same goal node again. If it is not the case then K is 
incremented and P is augmented with predicates using 
an 'associat ion cha in ' technique similar to that 
described in fVere 771. 
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B-chunks are then used during subsequent search 
when FM f inds mult ip le operators (or operator 
instantiations) are available to achieve a goal predicate 
Gp, but none of their preconditions are completely 
satisfied. A b-chunk (01; G1; P) will favour an operator 
instantiation O applied to a goal node if P logically 
follows from l&E under the variable bindings obtained 
by the successful matching of 01 to O, and G1 to either 
Gp or one of Gp's ancestors. The instantiation(s) 
favoured by the most chunks is then chosen to form a 
new goal node. 

V COMBINED USE OF LEARNT HEURISTICS 

To clarify the combined use of closed macros and 
b-chunks we use a simple example. We applied FM to 
a robot world using a similar operator set to [Fikes et al 
72]. After box moving tasks it forms macros such as: 
( name: macro21(Rm1, Dr1,Rm2,Box,Dr2,Rm3), 

preconditions: in_room(Box,Rm1)&nexMo(robot,Box) 
&connect(Rm1,Rm2,Dr1)&connect(Rm2,Rm3,Dr2) .... 
add: in room(Box,Rm3), 
side_effects: in_room(robot,Rm3), ... ). 

Macro21 is equivalent to the primitive sequence: 
{pushto(Box,Dr1,Rm1), pushthru(Box,Dr1,Rm2), 
pushto(Box,Dr2,Rm2), pushthru(Box,Dr2,Rm3)}. 

In solving the goal 'in_room(boxA, room4)' from the 
situation in figure 1, macro21 constitutes the part of the 
solution shown by an arrow. One b-chunk (where K=1 
in section IV) created to advise on its use is (note: we 
leave out some details; capital letters denote variables): 
( macro21(Rm1, Dr1,Rm2,Box,Dr2,Rm3) ; 

in_room(Box,Rm3) ; 
in_room(Box,Rm4)&connect(Rm4,Rm1,Dr3)& 
connect(Rm1,Rm2,Dr1)&connect(Rm2,Rm3,Dr2)& ...) 

In a future problem, this chunk will support the 
inclusion of instantiations of macro21 in partial solutions 
which conform to its constraints. For instance, consider 
task in_room(boxB,room6). It can be seen by the 
description of chunk use in section IV that instance 
macro21(room4,door47,room7,boxB,door67,room6) is 
favoured by the chunk shown above to form the first 
part of a solution, resulting in a filtering out of any other 
undersirable instantiations. Note that this chunk 
suggests the initial position of the robot is irrelevant. 

VI CONCLUSIONS 

We have described a goal directed search which 
allows the use of weak methods for learning. Given a 
particular domain, these weak methods create strong 
heuristics, in the form of macros and b-chunks, through 
the experience of successful problem solving. The 
chunks record for each operator and generalised goal 
pair, the adviseable instant iat ions for operator 
variables. They do this by storing important similarities 
among the environment, initial state and goal in a form 
usable for future goal directed search. The number of 
possible instantiations of macros in the backward 
search tends to be much higher than primitives, and so 
the need for this heuristic pruning is greater. 

We have used FM in several applications in which it 
builds up strong domain dependent heuristics by 
experience. Of particular note is the b-chunks' high 
degree of accross-task transfer of learning. This is 
because they record quite general similarities between 
the components of a problem space such that when 
these similarities are encountered again the choice of 
(macro) operator instantiation can be determined. 
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