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Abstract

Most dynamic systems with a basis in nature can be de-

scribed using Differential-Algebraic Equations (DAE),

and hence be modelled using the modelling language

Modelica. However, the concept of DAEs can still be

generalised, when differential operators of non-integer

order are considered. These so called fractional or-

der systems have counterparts in naturally occuring sys-

tems, for instance in electrochemistry and viscoelastic-

ity. This paper presents an implementation of approxi-

mate fractional-order differential operators in Modelica,

increasing the scope of systems that can be described in

a meaningful way. Properties of fractional-order systems

are discussed and some approximation methods are pre-

sented. An implementation in Modelica is proposed for

the first time. Several testing procedures and their re-

sults are displayed. The work is then illustrated by the

application of the model to several physically motivated

examples. A possible usability-enhancement using the

concept of "Calling Blocks as functions" is suggested.

Keywords: Fractional Order Systems, fractional calcu-

lus, Integer-Order Approximations

1 Introduction

In Modelica, models are represented as Differential-

Algebraic Equations, i.e., equations of the form

F(ẋ(t),x(t), t) = 0. This formulation is adequate for

most physical systems that can be described (or at least

approximated) with a finite number of states. There are,

however, some systems, where a more general but ulti-

mately similar framework is needed: If fractional deriva-

tives occur, the traditional DAE formulation is inade-

quate.

Fractional calculus, a misnomer1, is a branch of math-

ematics that deals with non-integer powers of differenti-

ation operators. The introduction to this concept is much

simpler in the Laplace-domain. Normally, the Laplace

1this generalisation of differentiation operators is not restricted to

fractions

variable is restricted to integer values. In fractional cal-

culus, this restriction is lifted. Let us imagine the bode

diagrams of the derivative operator (s = s1), the unity

operator (1 = s0) and the half-derivator (s0.5). The am-

plitude plot of the half-derivator has a slope of 10dB per

decade, while the phase angle is constant at 45 degrees.

This is illustrated in Figure 1. A detailed discussion of

fractional calculus is given by Sabatier et al. (2007).
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Figure 1. Illustration of fractional derivatives

Going back to time-domain, fractional differential op-

erators can be defined in various ways, with the Ca-

puto definition (Caputo, 1967) being applied in this pa-

per. Contrary to the often preferred Riemann-Liouville

definition, the Caputo definition allows for a physically

meaningful initialisation of the operator. The Caputo

Fractional Derivative of order α is defined as

L
−1(sα) = Dα f (t) :=

1

Γ(m−α)
·

∫ t

0

f mτ

(t − τ)α+1−m
dτ

with f : R→ R being a continuous, differentiable func-

tion, the gamma function Γ, α ∈ R,0 < α and m ∈

Z
+,m = ceil[α].
Fractional-order systems occur naturally in various

fields, like electrochemistry (Debnath, 2003), viscoelas-

ticity (Koeller, 1984), heat diffusion (Povstenko, 2004)

and biology (Magin, 2004). For example, exact solutions
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for local temperature and heat flux at the boundary of a

semi-infinite body, using fractional calculus, are given

by Kulish and Lage (2000) (for a Modelica Standard Li-

brary (MSL)-friendly implementation of this findings see

Subsection 3.1). Another application is shaping noise

frequency content according to given spectra (Klöckner

et al., 2015). The usefulness is not limited to the mod-

elling of PDE’s though, fractional order modelling can

be used to describe the dynamics of scale-free networks,

for instance(Goodwine and Leyden, 2015).

The goal of this paper is to show how fractional-order

systems can be modelled using Modelica. The deriva-

tion, implementation and testing of suitable approxima-

tions in Modelica is illustrated in Section 2. Applica-

tions of this implementations are shown in Section 3. At

last, the contents of the paper are discussed and possible

ramifications to the Modelica languages are adressed in

Section 4.

2 Fractional Order Modelling

2.1 Implementation

In Modelica, only the der()-operator has to be general-

ized to model arbitrary fractional order systems. Unfor-

tunately, defining a new operator fracder(state, order) is

not possible based on the Modelica Language Specifica-

tion 3.3. Therefore, the proposed implementation uses a

Single-Input Single-Output block instead.

Fractional order systems have infinite dimensional

transfer functions, and therefore have infinite memory

(Vinagre et al., 2000). It is, however, possible to find

reasonable approximations if the frequency range of in-

terest is bounded (for a detailed error analysis refer to

Pan and Das (2012)). Accordingly, as long as the mod-

eller is not interested in extremely stiff systems, these

approximations are adequate.

For implementations based on equation-based mod-

elling languages, integer-order continuous approxima-

tions are the most useful. For examples, see Carlson

and Halijak (1964), Xue et al. (2006) or Oustaloup et al.

(2000). Some other methods are described in Vinagre

et al. (2000), but not mentioned here, as their implemen-

tation in Modelica proved difficult due to a lack of user-

level symbolic manipulation capabilities.

For Carlson’s method, Oustaloup’s method and Xue’s

method, we found general symbolic expressions for

the approximating transfer-functions, and implemented

them in Modelica. Preliminary analysis showed that

Oustaloup’s method was superior regarding flexibility

and accuracy. For this reason, in the following only

Oustaloup’s method and its implementation details are

presented.

The integer-order approximation of a fractional oper-

ator by Oustaloup’s method is given in the Laplace do-

main by

sλ
≈ G(s) = ωλ

h ·

N

∏
k=−N

s+ω ′
k

s+ωk

(1)

ωk = ωb

(

ωh

ωb

)

k+N+0.5(1+γ)
2N+1

,ω ′
k = ωb

(

ωh

ωb

)

k+N+0.5(1−γ)
2N+1

(2)

with the fitting range (ωb,ωh), the fraction of differen-

tiation λ and the order of approximation N.

An important thing to notice is that λ is not bounded,

so it is possible to simulate the second integral using

λ = −2, for example. However, more accurate results

can be obtained if abs(λ ) is kept low and surplus dif-

ferential operations are simulated directly using the stan-

dard Modelica-notation.

We recreated the construction rule for the Oustaloup-

Approximator in Modelica using linked first-order ele-

ments. The corresponding code can be seen in Listings

1, 2 and 3.

2.2 Testing

To test the validity and accuracy of the derived models,

we applied three different testing scenarios: bode dia-

gram, step response, and harmonic displacement. These

tests are described in the following.

2.2.1 Bode Diagram

A Bode diagram of the unity operator (1 in the Laplace

domain) is a straight line with amplitude 1 and phase an-

gle zero degrees over the complete frequency range. The

differentiator (s in the Laplace domain) has an positive

slope of 20dB per decade and +90 degrees phase angle.

Other operators like s2 or s−1 behave analogous. From

this, we require the half-differentiator s0.5 to feature an

ascending amplitude of 10dB per decade and +45 de-

grees phase angle.

In Figure 2 and Figure 3, bode plots of the imple-

mented model with approximation orders 2 and 4 and

fitting range (0.001Hz,1000Hz) are presented.

It can be seen that slope of the amplitude shows a close

fit to the required 10dB per decade. The phase angle

shows pronounced ripple effects in the case of the 2nd

order approximation, but no visible ripples in the case of

the 4th order approximation.

The required amplitude values are matched in the

complete fitting range. For the phase angle the accept-

able range is somewhat smaller.

If the fitting interval is increased to cover a broader

range of frequencies (not shown here), noticable ripples

in the phase plot appear even for the 4th order approxi-

mation.
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Listing 1. Excerpt of Modelica code for a fractional derivative operator

block O u s t a l o u p O p e r a t o r

import M o d e l i c a . B l o c k s . T y p e s . I n i t ;

parameter I n t e g e r o r d e r ( min= 1 , max=4 ) = 4 " o r d e r o f a p p r o x i m a t i o n ( 1 , 2 , 3 , 4 ) " ;

parameter Real lambda = 0 . 5 " e x p o n e n t o f o p e r a t o r (−1= i n t e g r a t o r , 1= d e r i v a t i v e ) " ;

parameter Real w_lower ( max=1 ) = 0 . 0 0 1 " lower f i t t i n g f r e q u e n c y [ 1 / s ] " ;

parameter Real w_upper ( min=1 ) = 1000 " h i g h e r f i t t i n g f r e q u e n c y [ 1 / s ] " ;

parameter M o d e l i c a . B l o c k s . T y p e s . I n i t i n i t T y p e = I n i t . I n i t i a l S t a t e

" Type o f i n i t i a l i z a t i o n ( 1 : no i n i t , 2 : s t e a d y s t a t e , 3 : i n i t i a l s t a t e ,

4 : i n i t i a l o u t p u t ) " a n n o t a t i o n ( E v a l u a t e =true , D i a l o g ( group = " I n i t i a l i z a t i o n " ) ) ;

parameter Real x _ s t a r t [ number ] = z e r o s ( number ) " I n i t i a l o r g u e s s v a l u e s o f s t a t e s "

a n n o t a t i o n ( Di a l o g ( group =" I n i t i a l i z a t i o n " ) ) ;

parameter Real y _ s t a r t =0 " I n i t i a l v a l u e o f o u t p u t "

a n n o t a t i o n ( Di a l o g ( e n a b l e = i n i t T y p e == I n i t . I n i t i a l O u t p u t , g roup = " I n i t i a l i z a t i o n " ) ) ;

f i n a l parameter Real wb = w_lower∗ M o d e l i c a . C o n s t a n t s . p i ;

f i n a l parameter Real wh = w_upper∗ M o d e l i c a . C o n s t a n t s . p i ;

f i n a l parameter I n t e g e r number = 1 + o r d e r ∗ 2 ;

f i n a l parameter Real K = wh^ ( lambda ) ;

f i n a l parameter Real wk [ number ] =

{ F r a c t i o n a l O r d e r . A p p r o x i m a t i o n s . I n t e r n a l . w k ( i , wb , wh , o r d e r , lambda )

f o r i in −o r d e r : o r d e r } ;

f i n a l parameter Real wks [ number ] =

{ F r a c t i o n a l O r d e r . A p p r o x i m a t i o n s . I n t e r n a l . w k s ( i , wb , wh , o r d e r , lambda )

f o r i in −o r d e r : o r d e r } ;

Real y _ i n t e r n a l [ number ] ;

Real x _ i n t e r n a l [ number ] ;

M o d e l i c a . B l o c k s . I n t e r f a c e s . R e a l I n p u t u

a n n o t a t i o n ( Placemen t ( t r a n s f o r m a t i o n ( e x t e n t ={ {−120 ,−10 } , {−100 ,10 } } ) ) ) ;

M o d e l i c a . B l o c k s . I n t e r f a c e s . R e a l O u t p u t y

a n n o t a t i o n ( Placemen t ( t r a n s f o r m a t i o n ( e x t e n t ={ { 100 ,−10 } , { 120 ,10 } } ) ) ) ;

equat ion

der ( x _ i n t e r n a l [ 1 ] ) = −wk [ 1 ] ∗ x _ i n t e r n a l [ 1 ] + ( wks [ 1 ]−wk [ 1 ] ) ∗ u∗K;

y _ i n t e r n a l [ 1 ] = x _ i n t e r n a l [ 1 ] + u∗K;

f o r i in 2 : number loop

der ( x _ i n t e r n a l [ i ] ) = −wk [ i ] ∗ x _ i n t e r n a l [ i ] + ( wks [ i ]−wk [ i ] ) ∗ y _ i n t e r n a l [ i−1 ] ;

y _ i n t e r n a l [ i ] = x _ i n t e r n a l [ i ] + y _ i n t e r n a l [ i−1 ] ;

end f o r ;

y = y _ i n t e r n a l [ number ] ;

i n i t i a l equat ion

i f i n i t T y p e == I n i t . S t e a d y S t a t e then

der ( x _ i n t e r n a l ) = z e r o s ( number ) ;

e l s e i f i n i t T y p e == I n i t . I n i t i a l S t a t e then

x _ i n t e r n a l = x _ s t a r t ;

e l s e i f i n i t T y p e == I n i t . I n i t i a l O u t p u t then

y = y _ s t a r t ;

end i f ;

end O u s t a l o u p O p e r a t o r ;
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Listing 2. First internal function for the generation of coefficients

f u n c t i o n wks

ex tends M o d e l i c a . I c o n s . F u n c t i o n ;

input I n t e g e r k ;

input Real wb ;

input Real wh ;

input Real N;

input Real lambda ;

output Real wks ;

a lgor i thm

wks : =wb∗ ( wh / wb ) ^ ( ( k+N+ ( 1−lambda ) / 2 ) / ( 2∗N+1 ) ) ;

end wks ;

Listing 3. Second internal function for the generation of coefficients

f u n c t i o n wk

ex tends M o d e l i c a . I c o n s . F u n c t i o n ;

input I n t e g e r k ;

input Real wb ;

input Real wh ;

input Real N;

input Real lambda ;

output Real wk ;

a lgor i thm

wk : =wb∗ ( wh / wb ) ^ ( ( k+N+ ( 1+ lambda ) / 2 ) / ( 2∗N+1 ) ) ;

end wk ;

Figure 2. Bode diagram of 2nd order approximation of the

half-derivative s0.5 with fitting interval (0.001Hz,1000Hz)

2.2.2 Step Response

The step responses of the unity operator y(t) = u(t) and

the integrator ẏ(t) = u(t) are known to be y(t) = 1 and

y(t) = t respectively, neglecting the initial conditions. Si-

multaneously, the unity operator and the integrator are

identified in the Laplace Domain by s0 and s−1. The step

responses of the fractional derivatives defined by sλ with

−1 ≤ λ ≤ 0 have to constitute the continuous transition

Figure 3. Bode diagram of the 4th order approximation of the

half-derivative s0.5 with fitting interval (0.001Hz,1000Hz)

between those known step responses (Oldham, 1974).

The implemented model was instantiated 6 times and

assigned λ -values in 0.2 intervals between -1 and 0. All

models were subjected to a unit step (implemented by

setting the input to 1 and the initial states of the models

to 0). The results of this test can be seen in Figure 4.

It can be seen that the 6 step-responses form a smooth

transition, and the outer ones correspond to the known
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Figure 4. Step responses of s0.0, s-0.2, s-0.4, s-0.6, s-0.8 and s-1.0,

approximated with the 3rd order Oustaloup’s Method

step-responses mentioned earlier. All curves also match

the curves given in Oldham (1974).

2.2.3 Harmonic Displacement

If a harmonic function is derived or integrated, the re-

sulting function is a new harmonic function with a phase

offset. For the second test, it is required that the result

of fractionally integrated or derived harmonic functions

behaves analogous.

The implemented model was instantiated 8 times and

assigned λ -values in intervals of size 0.5 between -1 and

2.5. All models were subjected to a cosine input. Initial-

isation was done in such a way as to avoid unnecessary

large initial transients: The models with derivative char-

acter would see the onset of the cosine input as a step and

correspondingly respond with an impulse. For this rea-

son, their initial states were set to a steady state solution.

Models with integrative character were set to zero initial

conditions, to set their integration constants to zero as

well. The results of this test can be seen in Figure 5.

Figure 5. Cosine response of s-1.0, s-0.5, s0.0, s0.5 (zero state

initialisation) and s1.0, s1.5, s2.0, s2.5 (steady state initialisation)

approximated with the 3rd order Oustaloup’s Method

It can be seen that all model outputs form harmonic

functions. Also, the offsets between the functions are

uniform. The initialisations of s0.5 and s2.5 are obviously

not optimal, but after a few seconds those deviations van-

ish.

3 Examples

3.1 Heat Conduction

In Kulish and Lage (2000), relationships between tem-

perature and heat flow rate at arbitrary locations in semi-

infinite domains are developed. The temperature at a

given time at the boundary is in this way given by

T (t) =
α1/2

2 ·A · k
·

δ−1/2Q(t)

δ t−1/2
+T0 (3)

with the thermal conductivity k, the thermal diffusiv-

ity α , the Area A, the heat flow rate Q, and the starting

temperature T0.

As can be seen in Listing 4, the corresponding imple-

mentation in Modelica is straightforward and compact.

Listing 4. Modelica implementation of a semi-infinite thermal

domain

A p p r o x i m a t i o n s . O u s t a l o u p O p e r a t o r

h a l f I n t ( o r d e r = 3 , lambda=−0 . 5 ) ;

equat ion

h a l f I n t . u = h e a t P o r t . Q _ f l o w ;

h e a t P o r t . T =

( a l p h a ^ ( 1 / 2 ) / ( k∗A∗2 ) ∗ h a l f I n t . y ) + T_0 ;

In Figure 6, the result of a simulation can be seen,

where a semi-infinite block was subjected to a periodic

rectangular heat flow rate at the boundary. The temper-

ature at the boundary exhibits strong memory-effects, as

would be expected from such a system.

Figure 6. Temperature response of a semi-infinite domain sub-

jected to periodic rectangular heat flow

3.2 Viscoelasticity

The dynamic behaviour of viscous fluids is commonly

described with the Navier-Stokes equations. For the dy-

namic behavior of linear elastic materials, the Lame-

Navier equations are used. Both equations have some

similarities. As an example, let us take a look at

the respective relationships between stress/velocity and
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stress/strain for incompressible fluids and linear-elastic

solids:

τττ = µ
(

∇v+∇vT
)

σσσ =
1

2
C
(

∇u+∇uT
)

(4)

with the stress tensors τττ and σσσ , the viscosity µ , the

tensor of elasticity C, and the velocity and displacement

tensors v and u. The structure of both equations essen-

tially differs only by one differential operation, as the

velocity is the derivative of the displacement w.r.t. time.

Likewise, a relationship between the stress and strain

in one-dimensional viscoelastic materials was found in

Stiassnie (1979).

σ = k ·
δ α ε

δ tα
(0 ≤ α ≤ 1) (5)

with the stress τ , the material properties k and α , and

the strain ε . For α-values of 0 and 1, the behaviour of

pure solids and fluids is obtained.

As with the other example, the implementation of this

model in Modelica only takes two lines of code (not

shown here).

The response of a viscoelastic block (α = 0.45) un-

der constant tension can be seen in Figure 7. The result

is similar to the results presented by Stiassnie (1979),

where the model is validated against real-world measure-

ments.

Figure 7. tension-response of a viscoelastic block with a

length of 1m under constant tension

4 Discussion

The last sections showed that DAE systems containing

time-derivatives of fractional order can be successfully

implemented by the given means of the Modelica lan-

guage. The provided solution offers an approximation

that is good enough for at least a large set of technical

applications. However, the given examples indicate that

the typical application of fractional order derivatives is

on the textual modelling level and that the applied formu-

lation is, although practically feasible, still more clumsy

than actually necessary. The reason for this is the im-

plementation in block-form. This leads to a declaration

that has a dummy character since it is only being used to

textually connect its input and output. Because any im-

plementation of a fractional-order operator requires an

internal state, an implementation as function is not pos-

sible. Yet, it would be very helpful for the modeller if

he could call the block like it would be a function. In

concrete terms, this means that an anonymous declara-

tion of a block in the equation section is enabled whose

inputs and outputs are connected within the declaration

statement. To illustrate this mechanism, let us revisit the

example of Listing 4:

Listing 5. Modelica implementation of a semi-infinite thermal

domain using the "calling blocks as function"-approach

block h a l f I n t =

A p p r o x i m a t i o n s . O u s t a l o u p O p e r a t o r

( o r d e r = 3 , lambda=0 . 5 ) ;

equat ion

h e a t P o r t . T = ( a l p h a ^ ( 1 / 2 ) / k )

∗ h a l f I n t ( u= h e a t P o r t . Q _ f l o w ) . y /A + T_0 ;

Listing 5 presents a reformulation of Listing 3 based

on the concept "Calling blocks as function". First, a local

declaration of a half-integrater is created from the gen-

eral Operator-block. Then the expression

halfInt(u=heatPort.Q_flow).y is represented

as an anonymous declaration of the halfInt block. Within

the parantheses, the input is connected and the .y states

that the expression as a whole represents the output sig-

nal of the block. The presented concept "Calling Blocks

as Function" is not a new idea. Different syntactical vari-

ants are currently in discussion within the Modelica As-

sociation based on contributions by Martin Otter, Hans

Olsson, Peter Fritzson, Michael Sasena, Martin Sjölund

and others. An implementation variant in an experimen-

tal equation-based language can be found for instance in

Sol (Zimmer, 2010). Should this feature become part of

a future Modelica language version, modelling with frac-

tional order time-derivatives will be almost as convenient

as with standard time derivatives.

5 Conclusion

By design, the Modelica language is limited to the use

of integer-order differential operators. This excludes the

modelling of certain physical systems. We present an

implementation of Oustaloup’s approximation method in

Modelica. The resulting model approximates fractional-

order differential operators. Parameters for approxima-

tion order and frequency fitting range can be used to

tailor the model to a specific application. In this way,

the mentioned limitation of the Modelica language can

be conveniently bypassed, thus increasing the scope of

physical systems that can be described in a meaningful

manner.
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Reproducible research

The results of this paper can be reproduced using the

code which is made available on:

github.com/DLR-SR/FractionalOrder
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