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Abstract

Concepts such as smart grids, distributed genera-
tion and micro–generation of energy, market–driven
as well as demand–side energy management, are
becoming increasingly important and relevant as
emerging trends in the design, management and con-
trol of energy systems. Appropriate modeling and
design, efficient management and control strategies
of such systems are currently being studied. In this
line of research a very important enabling compo-
nent is efficient and reliable simulation. However
those energy models are typically large, stiff and ex-
hibiting heavy discontinuities, and at the same time
consist of interconnected multi–domain subsystems
encompassing electrical, thermal, and thermo-fluid
models. Object-Oriented (O–O) languages such as
Modelica are obviously well-suited for the model-
ing of such systems; however, traditional state-of-
the-art hybrid differential algebraic equation solvers
cannot efficiently simulate these systems especially
when their size grows to the order of hundreds, thou-
sands, or even more interconnected units.

The goal of this paper is to show, through a
couple of exemplary case studies, that Quantized
State System (QSS) integration methods are ideally
suited to solve models of such systems, as they scale
up better than traditional methods with the system
size, and provide time savings of several orders of
magnitude, while achieving comparable numerical
precision.

Keywords: Quantization–Based Integration
Methods, QSS, DASSL, Smart–Grids, EnergyMarket,
Modelica
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1 Introduction

The growing interest in new paradigms for energy
systems such as Smart Grids (SG) is posing new chal-
lenges in the control of procurement, conversion, dis-
tribution and use of energy to meet environmental and
economic objectives.

Computer simulation of SG systems is a funda-
mental tool for production planning and control, price
regulation, logistics, etc. To carry out the simula-
tion one must deal with two problems. First, model-
ing complex SG systems involves taking into account
components from various domains such as thermal,
electrical, ventilation, etc. Each component could
be developed by different specialists, possibly using
different languages or formalisms that must then be
coupled to produce the complete model. SG mod-
els are commonly composed of energy production
facilities, energy transmission networks and usually
hundreds or thousands of energy consumption units.
Thus the modeling of these types of systems is a dif-
ficult task. Second, once the problem is modeled, the
actual simulation of a large hybrid model (with con-
tinuous and discrete subcomponents) can turn out to
be prohibitively expensive in terms of CPU time, as
the scale of the system grows.

Modelica [13] is an Object–Oriented (O–O) lan-
guage for modeling and simulation of complex
multi-domain physical systems, described by hybrid
differential-algebraic equations. In the literature sev-
eral research efforts show the use of Modelica as
a language for modeling SG problems [6, 7, 8, 19,
20, 21]. State-of-the-art Modelica simulation tools
generate simulation code that solves the differential
equations using classical numerical integration meth-
ods, such as Euler, Runge-Kutta, or DASSL, which
are based on time discretization.
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Another approach is the use of Quantized State
System (QSS) methods [4, 14, 15] which replace time
discretization by state quantization. The QSS meth-
ods have certain features (sparsity exploitation, effi-
cient discontinuity handling, explicit stiffness treat-
ment) that make them particularly effective for large,
sparse, hybrid, dynamical systems like the SG mod-
els.

In this work we investigate the suitability of the
QSS methods for simulating SG models described
in Modelica and compare their efficiency, as well as
simulation quality, against classical integration meth-
ods.

We shall focus on two models, first a District Cool-
ing System taken from [5] and then an Energy Mar-
ket with houses as energy consumption units adapted
from [6].

The paper is organized as follows: Section 2 intro-
duces the main concepts used along the article, then
Section 3 describes the two smart–grid applications,
and in Section 4 we compare different numerical in-
tegration methods. Finally, Section 5 concludes the
article and outlines future work.

2 Background

This Section introduces the main concepts used along
the remainder of the article.

2.1 Classical Numerical Integration Meth-
ods

The mathematical models describing Energy Man-
agement problems such as the SG are usually time de-
pendent dynamical systems. These can be expressed
in the form of a set of Differential Algebraic Equation
(DAEs) or directly in a set of Ordinary Differential
Equations (ODEs) as:

ẋ(t) = f(x(t), t) (1)

where x(t) is the state vector.
Classical numerical integration methods discretize

the time variable computing the states variables for
certain time points.

We shall focus on two well–known numerical inte-
gration methods [4]:

Runge-Kutta An explicit variable step algorithm of
fourth order.

DASSL An implicit variable step algorithm based
on a series of Backward Difference Formulae

(BDF) of different orders of approximation ac-
curacy.

As both methods are based on time discretization,
discontinuity detection is an expensive mechanism.
Also, only implicit algorithms are able to efficiently
simulate stiff systems, i.e. systems that exhibit simul-
taneous fast and slow dynamics, without resorting to
unnecessarily short time steps.

2.2 QSS Integration Methods

Quantized State System (QSS) methods replace the
time discretization of classic numerical integration
algorithms by the quantization of the state variables.

Given the ODE of Eq.(1), the first order Quantized
State System method (QSS1) [16] approximates it by

ẋ(t) = f(q(t), t) (2)

Here, q is the quantized state vector. Its entries are
component-wise related with those of the state vector
x by the following quantization function:

q j(t) =

{
x j(t) if |x j(t)−q j(t−)| ≥ ∆Q j

q j(t−) otherwise
(3)

where ∆Q j is called quantum and q j(t−) denotes the
left-sided limit of q j at time t. The quantization func-
tion q(t) in QSS methods also contains a hysteretic
term (not shown here for simplicity) that is necessary
in order to avoid illegitimate models [16].

It can be easily seen that q j(t) follows a piecewise
constant trajectory that only changes when the differ-
ence between q j(t) and x j(t) becomes equal to the
quantum. After each change in the quantized vari-
able, it results that q j(t) = x j(t).

The QSS1 method has the following features:

• In the solution, the quantized states q j(t) follow
piecewise constant trajectories.

• The state variables x j(t) follow piecewise linear
trajectories.

• The state and quantized variables never differ
by more than the quantum ∆Q j. This fact en-
sures stability and global error bound properties
[4, 16].

• The fact that the state variables follow piecewise
linear trajectories makes the detection of discon-
tinuities a trivial task. Moreover, after a dis-
continuity is detected, its effects are no different
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from those of a normal step (because changes in
q j are discontinuous). Thus, QSS1 is very effi-
cient in simulating discontinuous systems [14].

• Each step is local to a state variable x j (the one
that reaches the quantum change), and it only
provokes evaluations of the state derivatives that
explicitly depend on it. This fact implies that
QSS1 performs intrinsic sparsity exploitation.

• If some state variables do not change signifi-
cantly, they will not provoke any step or eval-
uation at all. This feature reinforces the efficient
sparsity exploitation.

The last two points show that QSS methods inte-
grate each state variable at its own pace i.e. a fast
changing variable would provoke more local integra-
tion steps than a slow one.

As QSS1 only performs a first order approxima-
tion, good accuracy cannot be obtained without a sig-
nificant increment in the number of steps. Also as
QSS1 is an explicit solver, the algorithm is not suit-
able for simulating stiff systems. The former limita-
tion was solved with the introduction of higher order
QSS methods like QSS2 and QSS3 [15]

For the simulation of stiff systems, a family of lin-
early implicit QSS methods (LIQSS) of orders 1 to 3
was also proposed in [17]. LIQSS methods are semi–
implicit methods that can handle certain types of stiff
systems.

In the context of this work, the efficient sparsity
exploitation, the the semi-implicit treatment of stiff
systems and the native handling of frequent discon-
tinuities compose the main advantages of the QSS
methods.

2.3 Stand–Alone QSS Solver

It was shown that the behavior of the QSS approxi-
mation of Eq.(2) can be described as a Discrete EVent
System (DEVS)[22]. Thus, a straightforward imple-
mentation of these algorithms is through their equiv-
alents in a DEVS simulation engine.

DEVS–based implementations of QSS methods
are simple but they are not efficient. The prob-
lem is that the DEVS simulation engines waste a
large amount of the computational load attending the
DEVS simulation mechanism. This fact motivated
the development of a stand-alone QSS solver.

Recently, the complete family of QSS methods was
implemented in a stand–alone QSS solver coded in
plain C language [9]. This solver simulates models

described in a subset of the Modelica language, called
µ-Modelica [3].

In this work all simulations are performed using
the stand–alone QSS solver.

2.4 OpenModelica

OpenModelica [12] is an open-source Modelica-
based modeling and simulation environment. Open-
Modelica offers different numerical integration meth-
ods for simulation, amongst them, the before men-
tioned DASSL and Runge-Kutta. In this article we
shall use this tool as a reference to compare the per-
formance of different integration methods.

2.5 Related Work

The goal of this article is to study the application
of QSS methods to Smart Grid problems described
in the Modelica language. To the best of the au-
thors’ knowledge, this problem has not previously
been studied.

The application of QSS methods to Modelica mod-
els was studied in [3, 10, 11], showing the benefits
of QSS methods for problems with frequent discon-
tinuities. Also the use of QSS methods (not using
Modelica) for a large hybrid sparse load management
problem was studied in [18].

The use of the Modelica language for Energy Man-
agement problems was studied in [6, 7, 8, 19, 20, 21]
showing the powerful advantages that the language
offers to this set of models.

An advanced control system for the optimal energy
management of a building cooling system is studied
in [5]. In this system, a centralized facility produces
chilled water that is then distributed among a cer-
tain number of thermal zones (e.g. small houses or
apartments). The optimal control algorithm requires
multiple simulations of the whole system model for
different parameter settings. A simplified, equation-
based version of that model is presented in this pa-
per. Although the original system was designed for
a reasonably low number of users (5 to 20, i.e., a
micro-grid), this simplified model is representative
of a larger class of systems with a centralized heat
or cooling source, and many end users with their in-
dependent control systems. Such systems can eas-
ily scale up to contain hundreds, thousands, or even
more individual units. The controllers have also been
simplified in this work, as the achieved speed-up fac-
tor is not depending on the specific control laws, but
rather on the efficient way the QSS algorithm exploits
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the sparsity and weak coupling of the system model,
combined with the efficient event handling.

3 Case Studies

In this section we present two case studies. First a
District Cooling System and second an Energy Mar-
ket model. As stated before, the Modelica language
is suitable for describing multi-physics and multi-
energy problems like SG models. In fact there are
Modelica libraries for modeling energy problems that
help the development process.

The QSS stand–alone solver accepts models de-
scribed in a subset of the Modelica language, there-
fore all models used in the article are coded in this
simplified language called µ-Modelica. Being a sub-
set of the complete language, µ-Modelica is accepted
by all Modelica simulation tools enabling us to sim-
ulate the same model both in OpenModelica and
in the QSS stand–alone solver. For more informa-
tion regarding the transformation of Modelica to µ-
Modelica models, we refer the reader to [3].

3.1 Case Study I: A District Cooling System

As mentioned above, the District Cooling System is
adapted from [5] and consists of the following ele-
ments:

• The Cooling Plant that generates cooling power
used to control the temperature of a cooling
load.

• The Chilled Water Circuit that connects the
cooling plant to the cooling load allowing heat
transfer between the two.

• The Cooling Load that transfers heat to the
chilled water circuit. The load is composed by
a group of zones affected by heat exchange with
the outside ambient and by internal heat gains
such as occupants and office equipment. The
chilled water circuit exchanges heat with the
zones by means of fan coils.

• The Chilled Water Temperature Controller that
keeps circuit temperature at a specified set-
point. The control variable is the cooling plant
cooling power set-point.

• The Zone Temperature Controller that keeps
each zone at the desired temperature. The con-
trol variable is the fan coil valve opening.

In the following paragraphs, the model adopted for
each element is described.

Cooling Plant The cooling plant is simplified in
this article to deliver exactly the energy needed for
the Chilled Water Circuit set-point QC SP.

Chilled Water circuit Chilled water circuit dy-
namics are described using a lumped RC model. The
following power balance equation can be written:

CCW
dTCW

dt
=

N

∑
i

(QZAi(t)−QC(t))

where TCW is the circuit temperature and CCW its ther-
mal capacity. QZAi is the heat exchanged with the i-th
zone and QC(t) is the cooling power contribution pro-
vided by the Cooling Plant. Heat losses in the circuit
are neglected.

Cooling Load Zones are modeled as lumped RCs
as well. Their power balance equation is:

CZA
dTZAi

dt
=−QZAi +kout(TOA(t)−TZAi(t))+QINT i(t)

where TZAi is the zone temperature and CZA its ther-
mal capacity, QZAi is the heat exchanged with the
chilled water circuit, XC,Z i is the heat exchanger valve
opening, and QINT i is the heat produced by zone oc-
cupants. QZAi evolves according to the following ex-
pression:

τex ·Q̇ZAi(t)+QZAi(t) = XC,Z i(t)kcw(TZAi(t)−TCW (t))

where τex is the heat exchanger time constant. It is
worth noticing that the introduction of the exchanger
dynamics has the twofold purpose of a more accurate
modeling and of obtaining a stiff model in order to
test the QSS solver’s performance in such conditions.
QINT i is modeled according to the following polyno-
mial function of the zone temperature:

QINT i(t) = (p1T 2
ZAi(t)+ p2TZAi(t)+ p3)npeople i(t),

where npeople i is the number of zone occupants. Such
a model is proposed in [2] where suitable coefficient
values p1, p2 and p3 can be found.

The number of occupants is generated by a simple
stochastic model: the next arrival/departure time of a
person is given by a fixed time (1000 seconds) plus a
uniform random variate between 0 and 1000 seconds.
At each event, a person either comes in or leaves with
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Figure 1: District Cooling System model graphical representation (a) and, in more detail, the submodel used
for each zone (b). In (c) the simulated trajectory of the temperature state variable in zone 10 is plotted against
the ambient temperature, while in (d) the number of the people being present in zone 10 is depicted over time.

a 50% probability. Although this model does not rep-
resent any specific realistic pattern for the coming and
going of occupants, it serves the purpose of gener-
ating a number of uncorrelated time events, whose
density in time grows with the number of zones. Any
realistic system will exhibit this kind of behavior, as
events happening in different buildings will usually
be uncorrelated, no matter what their actual probabil-
ity distribution is.

Chilled Water Temperature Controller A PI con-
troller is adopted to control chilled water circuit tem-
perature. The control variable is the power set-point
for the cooling plant QC SP. Since no dynamics are
considered for the chillers, the power set-point coin-
cides with the actual power generated. The controller

is modeled as follows:

żC,CW (t) =− kI,CW

kP,CW
· zC,CW (t)+

kI,CW

kP,CW
·QC SP(t)

QC SP(t) = Φ[0,QC,max] (kP,CW · eC,CW (t)+ zC,CW (t))

eC,CW (t) = TCW (t)−TCW SP(t)

where zC,CW (t) is the integral state, kP,CW and kI,CW

are the PI gains, and Φ[a,b](·) is the saturation func-
tion:

Φ[a,b](x) =





a, x< a
x, x ∈ [a,b]

b, x > b.

Zone Temperature Controller Each zone temper-
ature is controlled by a PI controller as well. The
control variable is the heat exchanger valve opening
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XC,Z , spanning the range [0,1].

żC,Z(t) =− kI,Z

kP,Z
· zC,Z(t)+

kI,Z

kP,Z
·XC,Z(t)

XC,Z(t) = Φ[0,1] (kP,Z · eC,Z(t)+ zC,Z(t))

eC,Z(t) = TZA(t)−TZASP(t),

Model scaling The presented model is designed to
scale with the number of zones N, while providing a
reasonable behavior for all controlled variables. For
this purpose, certain model parameters are propor-
tional to the number of zones N. In particular, the
cooling plant maximum power QC,max and the cool-
ing plant controller (chilled water temperature con-
troller) gains kI,CW and kP,CW are proportional to N.
The chilled water circuit thermal capacity CCW is also
linearly scaled with the number of zones N.

3.2 Case Study II: An Energy Market

The Energy Market model was introduced in [6] as a
typical toy model written in Modelica and capturing
many of the aspects typically found in realistic smart
grid applications. The interactions between the dif-
ferent components in the Energy Market model are
graphically sketched in Fig. 2. The model consists of
the following components:

Environment We assume that the temperature of
the environment is given by a sinusoidal function:

Tamb = Tamb + ∆T sin(ωt + φ)

where the mean temperature Tamb is set to 10oC,
while the frequency and offset are selected such that
the minimum temperature is reached every midnight.

Heaters Each house has a heater that is controlled
by an agent that switches it on and off, according to:

Q̇heater
i =

{
0 if Ti > T max

i
Pheat if Ti < Tmin

(4)

Walls Each house has one wall that acts as a ther-
mal resistor with the heat flow given by:

Q̇wall
i =

1
Rth

(Ti−Tamb), (5)

where Rth is the thermal resistance of the wall.

Windows We assume that each house has one win-
dow that exhibits a stochastic behavior. More specif-
ically, we assume that the opening time of each win-
dow is drawn randomly from a uniform distribution.
It is closed again a random amount of time later.

openNextT [i]∼U (pre(openNextT [i])+ 1000,50)

closeNextT [i]∼U (openNextT [i])+ 100,200),

Each time a window is open, heat is exchanged be-
tween the environment and the house according to:

Q̇window
i = G(Ti−Tamb), (6)

where G is a large heat conductance constant.

Agents Each house has a simple controller that
controls the heater settings optimizing the power con-
sumption. The agent turns the heater on at a lower
goal temperature Tmin and turns it off at an upper tem-
perature Tmax. If the energy price calculated in the en-
ergy market exceeds a threshold pmax, the agent de-
creased the upper level Tmax to T alt

max.

T max
i =

{
Tmax if p< pmax

T alt
max if p≥ pmax

(7)
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Figure 3: Simulated trajectories of the average tem-
perature in the houses against the ambient tempera-
ture.

Houses Houses act as energy consumption units.
The temperature inside each house is related to the
heat flows described in the previous paragraphs with
the following formula:

Ṫi =
1

ρVCth
(Q̇heater

i − Q̇window
i − Q̇wall

i ) (8)
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Figure 2: Energy Market model graphical representation (a) and, in more detail, the submodel used for each
house(b)

The energy consumed per unit of time for a specific
house is the power of its heater integrated over a time
unit, as given by:

Ei = Q̇heater
i · tunit (9)

Energy Market The energy market component
simulates the behavior of an energy price regulator
for the whole network. According to the estimated
energy price the house agents decide if they should
reduce the energy consumption or not. Various en-
ergy price models could be employed, but for sim-
plicity we choose to linearly relate the energy price
to the mean energy consumed in the houses:

p = p + p1×
1
N

N

∑
i=1

Ei

4 Results

In this Section we show the simulation results for the
two models presented before. Both µ-Modelica mod-
els can be downloaded from [1]. We compare the run-
time efficiency and quality of the solutions obtained
by different integration methods for different system
sizes and tolerance values.

Simulation Benchmark

The simulation benchmark is as follows:

• Runge-Kutta and DASSL results were computed
using OpenModelica 1.9.1 (r18381) (RML ver-
sion).

• LIQSS2,3 and QSS3 results were computed us-
ing the QSS Stand Alone Solver from [9] r645.

• The simulation platform is a Dell 32bit desktop
with a quad core processor @ 2.66 GHz and 4
GB of RAM.

• The Jacobian matrices of the presented models
are quite sparse and banded. This information
could be exploited by all algorithms to make the
simulation more efficient, however this has not
been investigated for DASSL and Runge-Kutta
methods. The QSS methods exploit this fact na-
tively without having to get any information on
the structure of the Jacobian matrix.

Calculating the accuracy of the simulations can only
be performed approximately, since the state trajecto-
ries of the models cannot be computed analytically.
To estimate the accuracy of the simulation algorithms
for a given setting, reference trajectories (tref,yref)
were obtained using LIQSS3 with a tight tolerance
of 1 · 10−9 on an equidistant grid consisting of 5000
points. To calculate the simulation error, all methods
were forced to output points on the same equidistant
grid, without changing the integration step, thus ob-
taining simulated trajectories (tref,ysim). Then, the
mean absolute error is calculated as:

error = mean(|ysim−yref|). (10)

Regarding the error calculation we have to note
that special care had to be taken in order to achieve
comparable solutions from two independent runs of
each model, since both models are based on the gen-
eration of random event sequences. To this end, we
implemented a special random generator that, at ev-
ery call, outputs the seed for its next call. Therefore,
starting from the same seed, two independent model
simulations generate the exact same sequence of ran-
dom events.
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The measured CPU time (simulation time) should
not be considered as an absolute ground-truth since it
will vary from one computer system to another, but
the scaling of the algorithms as well as their relative
ordering is expected to remain the same. Another im-
portant aspect is that, in order to objectively compare
the simulation time needed by different algorithms
we did not compare the time measurements of the al-
gorithms for the same requested tolerance, but for the
same achieved error.

4.1 Case Study I
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Figure 4: Simulation time for varying size of the Dis-
trict Cooling System model. All algorithms achieve
a mean error on the order of 10−4.

The District Cooling System model is a compar-
atively stiff model and this becomes apparent when
comparing the measured CPU time of the QSS3 and
LIQSS methods in Fig. 4. This is confirmed by es-
timating the different time constants. The time con-
stants of the temperature controlled zone (∼ 3,8×
103 sec) and of the temperature controlled chilled wa-
ter circuit (∼ 7,5× 103 sec) proved to be greater by
three orders of magnitude than the time constant of
the heat exchanger (∼ 1 sec).

Regarding the scaling of the algorithms, Fig. 4
suggests that DASSL scales quadratically (∼ 6N2),
while QSS methods scale linearly with the number of
variables (∼ 3N). Due to the time constraints for the
present study we had to stop the DASSL experiments
at N=300, but the linear scaling of the QSS methods
allowed us to test their performance up to N=3000,
thus for a 10 times larger model.

Besides time, another factor that prohibited us
from performing further experiments with DASSL
on larger models, was that the OpenModelica com-
piler failed to compile larger models. For the largest
model, that all methods could simulate (N=300), the
LIQSS methods are more than two orders faster than
DASSL (102 sec compared to 600×102 sec).

Finally, a very interesting and useful aspect of the
QSS methods is that they exhibit a strong correlation
between the requested tolerance and the achieved er-
ror. This correspondence is depicted in Fig. 5a for
the LIQSS2 method (the other QSS methods exhibit
similar behavior). In contrast, the performance of
DASSL was only slightly affected by changing the
requested tolerance. This is a very important feature
of the QSS methods as it allows the user to exploit the
trade-off between computational speed and achieved
error. Indeed in Fig. 5b, we see that a user who
is willing to sacrifice one order of simulation accu-
racy will be rewarded by a simulation that executes
roughly ten times faster when using LIQSS2.

4.2 Case Study II

As the Energy Market model is not stiff we sim-
ulated it in OpenModelica using both DASSL and
the fourth-order explicit Runge-Kutta algorithm. The
measured simulation timings are shown in Fig. 6
where all methods achieve a mean error of order
10−5. The scaling of the algorithms, as well as their
relative performance, agrees with the one obtained
for the District Cooling System model. However, all
methods perform better on this benchmark, because
it is a simpler model in general.

More precisely, DASSL scales quadratically with
the number N of variables (∼ 2N2) while Runge-
Kutta scales linearly (∼ 5N) since it is an explicit
algorithm and does not have to perform any matrix
inversion calculations. All three QSS methods ex-
hibit a linear scaling (∼ N) with the explicit QSS3
being marginally faster than the LIQSS3 algorithm
(QSS3 needed 250 sec for N=10000, while LIQSS3
270 sec). For N=300, the LIQSS methods are over
three orders more efficient than DASSL and over two
orders more efficient than Runge-Kutta (10 sec com-
pared to 5000×10 sec and 180×10 sec respectively).

Besides the linear scaling of the QSS methods be-
comes prominent their advantage over classical meth-
ods when simulating large sparse hybrid models with
discontinuities. Each variable is being updated lo-
cally at its own speed, with no need of making global
computations on the whole system matrix. Further-
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Figure 5: District Cooling System model - Mean Simulation Error (a) and Simulation Efficiency (b) for LIQSS2
and varying requested tolerances.

more, discontinuities are being handled as native sim-
ulation steps without the need of backtracking to de-
tect the zero–crossings. Therefore, we observe that
even though Runge-Kutta methods scale linearly with
the system order just like the QSS methods, the lat-
ter are much more efficient than the former. QSS
methods can simulate a system with N=10000 states
within the same execution time as a Runge-Kutta al-
gorithm needs to simulate a much smaller system
with N=300 states.
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Figure 6: Simulation time for varying size of the En-
ergy Market model. All algorithms achieve a mean
error on the order of 10−5.

5 Conclusion and Future Work

In this article we study the use of Quantized State
System (QSS) integration methods for Smart–Grid
(SG) simulation problems. The QSS methods have
certain features (intrinsic sparsity exploitation, semi-
implicit stiffness treatment and efficient discontinuity
handling) that make them suitable for simulating SG
models.

After analyzing two large hybrid SG models and
comparing the efficiency and the quality of the solu-
tion obtained by the QSS methods against standard
numerical integration methods we can conclude that:

• In both cases QSS methods outperform DASSL
(and Runge-Kutta) by more than two orders of
magnitude in terms of simulation speed, while
at the same time, achieving a comparable simu-
lation error.

• The QSS methods scale linearly with system
size, while DASSL scales quadratically. The
Runge-Kutta solvers also scale linearly, but they
are far less efficient than their QSS competitors
nevertheless.

• In both examples the QSS stand–alone simulator
is able to handle larger model without running
out of memory.

• We were able to simulate with the QSS meth-
ods up to 1000 times larger models than with
DASSL, while still needing much less time to
perform the simulations.
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However, there still remain open problems to be ad-
dressed in the future. First of all, we need to perform
experiments with a larger set of models typically used
in the SG community, while at the same time test-
ing more numerical integration methods against the
QSS family. We note here that other implicit meth-
ods included in the OpenModelica environment, such
as Radau and Lobatto, have been tested but failed to
simulate the models. A necessary step that has to
be performed in the future is including the family of
QSS methods as integration methods in OpenModel-
ica.

Finally, an interesting line of research could be the
utilization of QSS methods in energy optimization al-
gorithms, such as the one proposed in [5].
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