View metadata, citation and similar papers at core.ac.uk

<
brought to you by .{ CORE

provided by Archivio istituzionale della ricerca - Politecnico di Milano

Database Challenges for Exploratory Computing

Marcello Buoncristiano®, Giansalvatore Mecca', Elisa Quintarelli
Manuel Roveri?, Donatello Santoro!, Letizia Tanca?

1Universita della Basilicata — Potenza — Italy
2Politecnico di Milano — Milano — Italy

1. INTRODUCTION

Helping users to make sense of very big datasets
is nowadays considered an important research topic.
However, the tools that are available for data analy-
sis purposes typically address professional data sci-
entists, who, besides a deep knowledge of the do-
main of interest, master one or more of the follow-
ing disciplines: mathematics, statistics, computer
science, computer engineering, and programming.

On the contrary, in our vision it is vital to support
also different kinds of users who, for various rea-
sons, may want to analyze the data and obtain new
insight from them. Examples of these data enthu-
siasts [4, 9] are journalists, investors, or politicians:
non-technical users who can draw great advantage
from exploring the data, achieving new and essen-
tial knowledge, instead of reading query results with
tons of records.

The term data exploration generally refers to a
data user being able to find her way through large
amounts of data in order to gather the necessary in-
formation. A more technical definition comes from
the field of statistics, introduced by Tukey [12]: with
exploratory data analysis the researcher explores the
data in many possible ways, including the use of
graphical tools like boxplots or histograms, gaining
knowledge from the way data are displayed.

Despite the emphasis on visualization, explora-
tory data analysis still assumes that the user under-
stands at least the basics of statistics, while in this
paper we propose a paradigm for database explo-
ration which is in turn inspired by the exploratory
computing vision [2]. We may describe exploratory
computing as the step-by-step “conversation” of a
user and a system that “help each other” to re-
fine the data exploration process, ultimately gath-
ering new knowledge that concretely fullfils the user
needs. The process is seen as a conversation since
the system provides active support: it not only an-
swers user’s requests, but also suggests one or more
possible actions that may help the user to focus the

exploratory session. This activity may entail the
use of a wide range of different techniques, includ-
ing the use of statistics and data analysis, query
suggestion, advanced visualization tools, etc.

The closest analogy [2] is that of a human-to-
human dialogue, in which two people talk, and con-
tinuously make reference to their lives, priorities,
knowledge and beliefs, leveraging them in order to
provide the best possible contribution to the dia-
logue. In essence, through the conversation they
are exploring themselves as well as the informa-
tion that is conveyed through their words. This
exploration process therefore means investigation,
exploration-seeking, comparison-making, and learn-
ing altogether. It is most appropriate for big collec-
tions of semantically rich data, which typically hide
precious knowledge behind their complexity.

In this broad and innovative context, this paper
intends to make a significant step further: it pro-
poses a model to concretely perform this kind of
exploration over a database. The model is general
enough to encompass most data models and query
languages that have been proposed for data man-
agement in the last few years. At the same time,
it is precise enough to provide a first formalization
of the problem and reason about the research chal-
lenges posed to database researchers by this new
paradigm of interaction.

2. A MOTIVATING EXAMPLE

We illustrate the process of exploring a large and
semantically rich dataset using as example the data-
base of recordings of the fitness tracker AcmeBand,
a wrist-worn smartband that continuously records
user steps, and can be used to track sleep at night.

Our user is allowed access to the measurements of
a large fragment of AcmeBand users; in this exam-
ple, for the sake of simplicity we shall assume that
the database is a relational one, and focus on con-
junctive queries as the query language of reference.
However, we want to emphasize that the techniques


https://core.ac.uk/display/55252872?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

discussed in this paragraph can be applied to any
data model that is based on the primitives of object
collection, attribute and attribute value, and object
reference: as a consequence our approach may in-
corporate the majority of data models that have
been proposed in the last few years to model rich
data. In our simplified case, the database has the
following structure:

(7) a AcmeUser(id, name, sex, age, cityld) table with
user data;

(i7) a Location(id, cityName, state, region) table to
record location data about users (here region may
be east, west, north or south);

(it3) an Activity(id, type, date, start, length, userld)
table to record step counts for user activities of the
various kinds (like walks, runs, cycling etc.);

(iv) a Sleep(id, date, start, length, quality, userld)
table to record user sleep and its quality (like deep
sleep, restless etc.).

We notice that the database may be quite large,
even if the number of users is limited and the time-
frame for activities and sleep restricted. Our casual
exploratory user intends to acquire some knowledge
about fitness levels and sleep habits of this fragment
of AcmeBand users.

We do not assume any a-priori knowledge of a
database query language, nor the availability of pre-
computed summaries as the ones that are typically
used in OLAP applications. On the contrary, the
system we have in mind should be able to guide and
support our users throughout their (casual) infor-
mation-seeking tasks.

2.1 Starting the Conversation

We envision this process as a conversation be-
tween the exploratory user and the system, where
s/he provides some initial hints about her/his in-
terests, and the system suggests “potentially inter-
esting perspectives” over the data that may help to
refine the search.

From the technical viewpoint, the conversation
is modeled as a lattice of nodes. Fach node is a
view over the database described intensionally as a
conjunctive query, and therefore represents a subset
of database objects (tuples, in our relational case).
To formalize this notion, we assume we are given a
relational database schema R = {Ry,..., R}, and
an instance I of R, defined as usual. We introduce
the notion of a tuple-set T as the result of any
conjunctive query Q over I, i.e., T = Q(I).

In our example, we assume that the user does not
have clear goals, and therefore expects the system
to suggest some promising starting points for the
exploration. However, we will see that our model

can also handle the alternative scenario in which
the user starts the conversation by formulating some
explicit, albeit vague queries.

Given our sample database, to start the conver-
sation the system suggests some initial relevant fea-
tures. We need to make this notion more precise,
but for the time being consider that, in the rela-
tional context, we may assume that a feature is the
set of values taken by one or more attributes in
the tuple-sets of the view lattice, while relevance
is defined starting from the statistical properties of
these values. As concrete examples, consider that
to trigger the exploration the system might suggest
something along the following lines:

(S1) “It might be interesting to explore the types
of activities. In fact: running is the most frequent
activity (over 50%), cycling the least frequent one
(less than 20%)”;

(S2) “It might be interesting to explore the sex of
users with running activities. In fact: more than
65% of the runners are male”;

(S3) “It might be interesting to explore differences
in the distribution of the length of the running activ-
ities between male and female. In fact: male users
generally have longer running activities”.

2.2 A Model of Relevance

Before going on with our example, we want to
discuss how relevant features are extracted. The
notion of relevance is based on the frequency distri-
bution of attributes in the view lattice. To start the
conversation, the system populates the lattice with
a set of initial views. These will typically corre-
spond to the database tables themselves, and joins
thereof according to foreign keys. Broadly speak-
ing, each view node can be seen also as a concept of
the conversation, described by a sentence in natu-
ral language. For example, the node corresponding
to the Activity table represents an “activity” con-
cept (a root concept, from where the system may
proactively start the conversation), while the join
of AcmeUser and Location represents the concept of
“user location”, and so on.

The system builds histograms for the attributes
of these views, and looks for those that might have
some interest for the user. We adopt a compara-
tive notion of relevance which has an information-
theoretic root, and look for attributes that show
some significant deviation w.r.t. an expected dis-
tribution. From the practical viewpoint, for each
attribute we identify a number of reference distri-
butions that correspond to expected — or uninter-
esting — ones, and deem the attribute relevant when
its distribution shows some clear difference wrt the



reference ones. To do this, we assume the avail-
ability of a statistical similarity test, denoted by
test(d,d’), for value distributions d,d’. Examples
of this test are statistical hypothesis tests (as the
ones mentioned in Section 4).

For a root concept, the reference distribution may
be the uniform one, although different choices are
possible according to the semantics of the attribute.
In our example, the type attribute of Activity is con-
sidered as potentially relevant (suggestion S; above),
since its distribution shows significant statistical dif-
ference, according to test, w.r.t. to the uniform
distribution. Note that S; provides, along with a
description of the relevant feature, some values as
an explanation of these differences.

For views that are lower in the node lattice the
notion of relevance is slightly more sophisticated.
To introduce this, we need to formalize the lattice
structure of views and tuple-sets. In our simple re-
lational example we do so by reasoning about the
relationship among conjunctive queries: we say that
the tuple-set 7 returned by a query Q over R de-
rives from the tuple-set 79 returned by a query Q'
if Q is obtained from @’ by adding one or more se-
lections, one or more projections, one or more joins.
We denote this by Q < Q’, and, in turn, 7@ <7<

In our example, the view AcmeUser » Location
derives from views AcmeUser and Location. Sim-
ilarly, view otype='running (AcmeUser x Activity) de-
rives from AcmeUser and Activity, but also from view
Ttype='running’ (Activity).

If we add, as a convention, a top view Q4op such
that @ < Qp for any query @, it is possible to see
that the relationship “derives from” among views
over a schema R induces a join-semilattice.

Notice that the lattice also encodes a taxonomy:
whenever the user imposes a restriction over the
current view (concept), this amounts to somehow
identifying one of its “sub-concepts”. The lattice
does not need to be pre-computed, and will be typ-
ically constructed in a dynamic fashion.

Given a tuple-set T, and an attribute A in 7T, we
compute the distribution of values for A in T, i.e.,
its T-histogram. To formalize this notion of rele-
vance we notice that, whenever a query @ derives
from @', it is possible to keep track of the rela-
tionship among the attributes of Q(I) and those
of Q'(I).* To uniquely identify attributes within
views, we denote attribute A in table R by the name
R.A. We say that attribute R.A in Q(I) matches
attribute R.A of any Q'(I) that is an ancestor or

!For the sake of simplicity, here we do not consider self-
joins, i.e., joins of a table with itself. With a bit more
work the definition can be extended to handle self-joins

descendant of Q(I) in the query lattice.

We can now formalize the notion of relevance. We
say that attribute R.A of node Q(I) is relevant if its
distribution d is statistically different from the dis-
tribution of any matching attribute from any ances-
tor node. Note that the case of the root is a special
one: we propose to assume the distribution of an
attribute in the root node as the “default one” for
that attribute; however the system administrator
can modify this setting based on his/her knowledge
of the domain of interest.

2.3 How the Conversation Goes On

We have now all the tools in place to present an
example of a complex conversation. Assume as a
first step the user is presented with items S1-S3
above, and selects item Si:

(S1) “It might be interesting to explore the types
of activities. In fact: running is the most frequent
activity (over 50%), cycling the least frequent one
(less than 20%)”.

This choice is interpreted by the system as an in-
teraction with the lattice of views. The user has se-
lected view Activity, and relevant feature type. The
system shows a subset of values for the type at-
tribute, the ones that justify its relevance. The user
may pick one or more of these values: assume s/he
selects value running. This is interpreted by the
system as some interest in the set of tuples that
correspond to running activities. As a consequence,
a new view is generated and added to the lattice:

Utypezrunnmg(ACtiVity)

The addition of a new node to the lattice triggers
a new interaction, with the system trying to sug-
gest new and relevant hints. To do this, it may add
further nodes. Here, it finds that a relevant feature
is related to the region of runners (users that per-
form running activities). Notice that this requires
to compute a view:

Otype=running(Location x AcmeUser x Activity)

The system realizes that the distribution of the
region attribute within this view is significantly dif-
ferent both from the uniform distribution, and from
the ones of the matching attributes in ancestors.
Assume, in fact, that users are evenly distributed
across regions. On the contrary, runners are espe-
cially active in the west. Among the potentially
relevant features, the system will suggest that:

(S1.1) “It might be interesting to explore the region
of users with running activities. In fact: while users
are evenly distributed across regions, 65% of users
with running activities are in the west and only 15%
in the south”.



The user will select the suggestion (Sy.1), and
then pick up value south. The process is triggered
again, and the system realizes that:

(S1.1.1) “It might be interesting to explore the sex of
users with running activities in the south region. In
fact: while sex values are usually evenly distributed
among users, only 10% of users with running activ-
ities in the south are women”.

It can be seen that the discovery of this new rele-
vant feature requires to compute the following view
and add the corresponding node to the lattice:

Otype=running,region=south,
sex=female(LOCation » AcmeUser x Activity)

After s/he has selected the suggestion (S1.1.1),
the user is effectively exploring the set of tuples
corresponding to female runners in the south. S/he
may decide to ask the system for further advices,
or browse the actual database records, or use an
externally computed distribution of values to look
for relevant features. Assume, for example, s/he
is interested in studying the quality of sleep. S/he
downloads from a Web site an Excel sheet stating
that over 60% of the users complain about the qual-
ity of their sleep. When these data are imported
into the system, the system suggests that, unex-
pectedly, 85% of sleep periods of southern women
that run are of good quality. Having learned new
insight about the data, the user is satisfied.

From the technical viewpoint, the system has con-
structed a complex lattice of views, and the conver-
sation consists of a walk of this lattice.

3. RESEARCH CHALLENGES

The exploration model we have presented poses
quite a number of technical challenges to database
researchers. In this section, we overview some of
these and highlight the literature that tackles some
aspects.

The most related research topic is faceted search,
also called faceted navigation, which (often visually)
supports the access to information items based on
a taxonomy of facets [13] (roughly our features).
In faceted search, items are initially classified ac-
cording to a given taxonomy. The user can browse
the set making use of the facets and of their values
(e.g. the feature Activity, or the value running) and
will inspect the set of items that satisfy the selec-
tion criteria. Faceted search has similar aims w.r.t.
database exploration and would greatly benefit of
the foundational model we propose, which can sup-
port all its complexity and scalability challenges.

Responsiveness To guarantee a satisfactory user
experience we need a “reasonably fluent” conversa-

tion: users will not tolerate long computing times.
This imposes strong constraints over the computa-
tion of the view lattice and related feature statis-
tics. Let us first distinguish the case in which the
database is static from the one in which it may re-
ceive updates. In the first case a portion of the
view lattice and the related features may be pre-
computed. In the second case, this might not be
acceptable, at least in case of high update frequen-
cies.

Responsiveness is related to a research area that
is traditional for databases: the DBMSs build and
maintain histograms representing the distribution
of attribute values to estimate the (possibly joint)
selectivity of attribute values for use in query op-
timization [3]|. Fast, incremental histogram compu-
tation is a good example of a technique that can be
effectively employed for speeding up the assessment
of relevance in a conversation step.

Summarization In both the above cases, fully
pre-computing the lattice seems unreasonable, es-
pecially for truly big data. This imposes to study
two different optimization directions.

On the one side, it suggests to work with data
summaries, the size of which must be large enough
to estimate statistical parameters and distributions,
but manageable from the computation viewpoint.
To solve this problem many summarization tech-
niques can be explored. Some works, for instance [1],
have proposed to extract knowledge by means of
data mining techniques, and to use it to intension-
ally describe sets in an approximate way. To sum-
marize the contents of large relations and permit
efficient retrieval of approximate query results, au-
thors in [11] have used histograms, presenting a his-
togram algebra for efficiently executing queries on
the histograms instead of on the data, and estimat-
ing the quality of the approximate answers. The
latter research approaches can be used to support
query response during the conversation.

On the other side, we need effective pruning tech-
niques for the view lattice: not all node-paths are
interesting from the user viewpoint, and the ones
that fail to satisfy this requirement should be dis-
carded as soon as possible. This introduces inter-
esting problems related to detecting the different
relevance that a feature might have depending on
the users: a feature may be relevant if it is different
from, or maybe close to, the user’s expectations;
in their turn, the users’ expectations may derive
from their previous background, common knowl-
edge, previous exploration of other portions of the
database, etc. In Section 4 we discuss how to define
notions of relevance that are more general than the



one proposed by the motivating example.

CPUs vs GPUs Another open problem is if tradi-
tional CPU-RAM-disk architectures are fast enough
for this purpose, or we need to resort to differ-
ent ones. GPUs seem promising, provided that the
memory limitations are handled, and avoid bottle-
necks related to data transfers. Fast implementa-
tions of statistical computations over the GPU are
a promising research direction [8, 10].

Fast Statistical Operators The previous points
bring us to another fundamental requirement: the
availability of fast operators to compute statistical
properties of the data.

Surprisingly, despite years of data-mining research,
there are very few research proposals towards the
goal of fast computing statistical parameters, and
comparing them. Subgroup discovery [6, 5], en-
deavors to discover the maximal subgroups of a set
of objects that are statistically “most interesting”
with respect to a property of interest. Subgroup
discovery has been proposed in many flavors, differ-
ing as for the type of encompassed target variable,
the description language, the adopted quality mea-
sure and the search strategy. Again, we believe that
some of its techniques might be profitably adopted
to assess the relevance of features in each of our
exploration steps.

User Involvement A fundamental aspect to bear
in mind when designing a database exploration tool
is the relevance of an answer for a specific user:
Section 4 discusses some of the technical challenges
posed by the need to compute relevance in a fast
and effective way.

Given that, having to deal with the interpretation
of the user expectations, relevance remains largely a
subjective factor, the immediately-related research
challenge is to predict users’ interests and anticipa-
tions in order to issue the most relevant (possibly
serendipitous) answer. Therefore, user studies are
crucial to classify different notions of relevance and
devise strategies to customize the system response
to the user behavior. This requires to identify real
scenarios, and involve user groups to the end of un-
derstanding how they access data and what they
perceive as the data-exploration needs addressed by
current systems.

This quest for an effective user interaction im-
mediately raises the important issue of developing
intuitive visualization techniques. An exploratory
interface should support appealing, synthetic visu-
alization of the query answers. It should also be
able to highlight the relevant properties of current
and past query answers, in order for the users to
get the gist of the data and decide the next step.

4. A STEP FORWARD

To make the vision outlined in this paper more
concrete, we now describe a number of techniques
that may contribute to solve the technical problem
of implementing a database-exploration system.

The preliminary, critical step is the development
of a statistical algorithm to measure the difference
between two tuple-sets 79 and 7% with a com-
mon target feature, in order to compute the rela-
tive relevance. We discuss the very general setting
in which the two tuple-sets may have arbitrary ori-
gins, and not necessarily are the result of queries
that are one the refinement of the other. This gen-
erality is needed to accommodate the various needs
discussed in the previous sections, capturing a flex-
ible notion of relevance that accounts for different
kinds of user expectations.

The method relies on an ensemble of hypothe-
sis tests operating on randomly-extracted subsets of
the original tuple-sets. The main intuition is that
hypothesis tests should be conducted incrementally,
in order to increase scalability, while at the same
time keeping the emergence of false positives under
control by means of the standard Bonferroni correc-
tion [7].

The process relies on four steps that are con-
ducted iteratively. We first briefly discuss the steps,
and then give an example.

Step 1 — Sampling: We sample tuple sets 7%
and 792 to extract subsets ¢, and ¢ of cardinality
much lower than the one of 7@, T2 ie. |¢| <
|79¢. This can be done using different sampling
strategies: sequential, random or hybrid.

Step 2 — Comparison: Let X; and X5 be the
projections of ¢; and gy over a specific attribute
(feature). The data in X; and X5 can be either nu-
merical or categorical. The comparison step aims
at assessing the discrepancy between X; and Xs
through theoretically-grounded statistical hypothe-
sis tests, of the form test;( X, X5). Examples of
these tests are [7]: (i) the two-sided t-test, assessing
variations in the mean value of two Gaussian-distri-
buted subsets; (ii) the two-sided Wilcoxon rank sum
test, assessing variations in the median value of two
distribution-free subsets; (iii) the one/two-sample
Chi-square test, assessing the distribution of a sub-
set with discrete values w.r.t. a reference distri-
bution or assessing variations in proportions be-
tween two subsets with discrete values; and (iv) the
one/two-sample Kolmogorov-Smirnov test, to assess
whether a subset comes from a reference contin-
uous probability density function or whether two
subsets have been generated by two continuous dif-




ferent probability density functions.

Step 3 — Iteration: We repeat the extraction
and comparison steps M times. At the j-th itera-
tion, a new pair of subsets X; and X5 are extracted
and test;(X1,X2) is computed. If the test rejects
the null hypothesis, we stop the incremental pro-
cedure since we have enough statistical confidence
that there is a difference in the data distributions of
T and T92. Otherwise, the procedure proceeds
to the next iteration.

Step 4 — Query ranking: The procedure de-
scribed above can be applied to different pairs of
tuple sets. The difference between their empirical
distributions is computed using the Hellinger dis-
tance. Based on this, we can rank the tuple sets to
find out those exhibiting the largest differences.

This technique could be applied to the examples
(81)-(S3) in Section 2.1, by considering the follow-
ing hypothesis tests:

(i) the one-sample Chi-square test can be used to
assess whether the types of activities follow a uni-
form discrete distribution. This would allow to re-
ject the null hypothesis that all the types of activ-
ities are equally frequent (i.e., running is the most
frequent activity).

(47) the two-sample Chi-square test can be used to
assess whether the sex of users with running activ-
ities is equally distributed. This would allow to re-
ject the null hypothesis of equal probability between
male and female (i.e., male is the most prominent
sex among the runners).

(i%i) the two-sample Kolmogorov-Smirnov test can
assess whether a statistical difference in the distri-
bution of the length of the running activities between
male and female runners exists. This would allow
to asses that the distribution of activity lengths for
male runners is statistically different from that of
female ones (i.e., male runners are generally char-
acterized by longer running activities).

Notably, the above method might be viewed as
a subgroup discovery technique with the following
distinctive features: (i) it manages both categori-
cal and numerical attributes; (i%) it represents sub-
groups as SQL queries; (i7i) the classification of at-
tributes into unusualness or interest comprises the
use of statistical hypothesis tests and the Hellinger
distance; (iv) the search of relevant attributes re-
lies on the joint use of sampling and incremental
mechanisms for statistical hypothesis tests.

Actually, this is only one of the many possibilities
to assess relevance during the conversation. We be-
lieve that the exploratory paradigm we are propos-
ing lends itself to a plethora of variants and brand-

new ideas, providing as many interesting challenges
to database researchers.

5. REFERENCES

[1] E. Baralis, P. Garza, E. Quintarelli, and
L. Tanca. Answering XML queries by means
of data summaries. TODS, 25(3), 2007.

[2] N. D. Blas, M. Mazuran, P. Paolini,

E. Quintarelli, and L. Tanca. Exploratory
computing: a challenge for visual interaction.
In AVI, pages 361-362, 2014.

[3] P. B. Gibbons, Y. Matias, and V. Poosala.
Fast incremental maintenance of approximate
histograms. In PVLDB, pages 466475, 1997.

[4] P. Hanrahan. Analytic database technologies
for a new kind of user: the data enthusiast. In
SIGMOD, pages 577-578, 2012.

[5] F. Herrera, C. J. Carmona, P. Gonzalez, and
M. J. del Jestus. An overview on subgroup
discovery: foundations and applications.
Knowl. Inf. Syst., 29(3):495-525, 2011.

[6] W. Klosgen. Explora: A multipattern and
multistrategy discovery assistant. In Advances
in Knowledge Discovery and Data Mining,
pages 249-271. 1996.

[7] E. L. Lehmann and J. P. Romano. Testing
statistical hypotheses. Springer Science &
Business Media, 2006.

[8] U. Milic, I. Gelado, N. Puzovic, A. Ramirez,
and M. Tomasevic. Parallelizing general
histogram application for cuda architectures.
In Embedded Computer Systems:
Architectures, Modeling, and Simulation
(SAMOS XIII), pages 11-18, 2013.

[9] K. Morton, M. Balazinska, D. Grossman, and
J. D. Mackinlay. Support the data enthusiast:
Challenges for next-generation data-analysis
systems. PVLDB, 7(6):453-456, 2014.

[10] C. Nugteren, G. van den Braak, H. Corporaal,
and B. Mesman. High performance
predictable histogramming on gpus:
Exploring and evaluating algorithm trade-offs.
In Proc. of the Fourth Workshop on GPGPU,
pages 1:1-1:8. ACM, 2011.

[11] V. Poosala, V. Ganti, and Y. E. Ioannidis.
Approximate query answering using
histograms. IEFE Data Eng. Bull.,
22(4):5-14, 1999.

[12] J. W. Tukey. Ezploratory data analysis.
Addison-Wesley, Reading,MA, 1977.

[13] D. Tunkelang. Faceted Search. Synthesis
Lectures on Information Concepts, Retrieval,
and Services. Morgan & Claypool Publishers,
2009.



