
Technical Disclosure Commons Technical Disclosure Commons

Defensive Publications Series

December 2022

Dynamic Real-time Verification of Program Call Flows Dynamic Real-time Verification of Program Call Flows

Nic Watson

Chris Schneider

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation Recommended Citation
Watson, Nic and Schneider, Chris, "Dynamic Real-time Verification of Program Call Flows", Technical
Disclosure Commons, (December 26, 2022)
https://www.tdcommons.org/dpubs_series/5600

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F5600&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/5600?utm_source=www.tdcommons.org%2Fdpubs_series%2F5600&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Dynamic Real-time Verification of Program Call Flows

ABSTRACT

This disclosure describes a dynamic overlay that delineates control flows of an

application to identify unexpected code execution pathways that may be indicative of a security

breach. Identifying such unexpected (or unauthorized) execution pathways can enable their

prevention. The overlay is generated by observing the control flow through the application to

produce a histogram of probabilities from a first function call to subsequent function calls. Using

the overlay enables the detection of attacks with higher fidelity and at a lower cost than existing

approaches.

KEYWORDS

● Security breach

● Control flow graph

● Call stack

● Control flow integrity

● Stack inspection

● Execution pathway

● Return-oriented programming (ROP)

● Blind return-oriented programming (BROP)

BACKGROUND

Execution of unexpected pathways within a given piece of computer code is a tell-tale

sign of a security breach. For example, return-oriented programming (ROP and its variant, blind

ROP) is an exploit where an attacker gains control of the call stack to alter the control flow of a

2

Watson and Schneider: Dynamic Real-time Verification of Program Call Flows

Published by Technical Disclosure Commons, 2022

program and execute instruction sequences already present in the memory, allowing the attacker

to perform arbitrary operations on the compromised machine.

DESCRIPTION

This disclosure describes a dynamic overlay that delineates control flows of an

application to identify unexpected code execution pathways. Identifying such unexpected (or

unauthorized) execution pathways can ultimately result in their prevention.

The overlay is generated by observing the control flow through the application to produce

a histogram of probabilities from a function call A1 to any subsequent call Az. Using the overlay

enables detection of attacks with higher fidelity and at a lower cost than existing approaches.

Fig. 1: Preparing a target application for control flow integrity

 As illustrated in Fig. 1, a target application (100) is prepared for real-time verification of

API call flows, e.g., for control flow integrity, as follows. A control flow graph (102) is extracted

from the target application. Such extraction is required once per version of the application, e.g.,

not at every run of the application. The target application is instrumented (104) such that its

function calls during runtime can be sent to an observer process running in parallel to the target

application.

3

Defensive Publications Series, Art. 5600 [2022]

https://www.tdcommons.org/dpubs_series/5600

Fig. 2: Dynamic, real-time verification of API call flows

 Fig. 2 illustrates dynamic, real-time verification of API call flows of a target application

(202), instrumented as described above and observed by a tracker process (204). As the target

application runs, it generates a number of function calls, some valid and some suspect, e.g.,

indicative of an attack or security breach. The instrumentation on the target application enables

the observer/tracker process to track or observe the function calls (210a-b) which may occur in

any order.

A valid function call (206), e.g., a call specified in the code by the developer, is observed

without reaction, but a suspect function call (208) causes the observer/tracker process to generate

an alert or a controlled app exit (212). Some examples of suspect (or otherwise interesting)

function calls include:

4

Watson and Schneider: Dynamic Real-time Verification of Program Call Flows

Published by Technical Disclosure Commons, 2022

● Function calls whose input and output destinations have a low likelihood. The generation

of function call likelihoods is described below.

● Function calls that access sensitive application programming interfaces (APIs), user data,

or other artifacts.

● Function calls not specified in the code by the developer. If, for example, in the code,

function-A is called exclusively by function-B, a runtime call to function-A that does not

originate from function-B (or its encapsulating class or module) is suspect or at least of

interest.

● Function calls that occur from unexpected locations in memory (call frames), based on

the first call to the function upon program instantiation.

● Return values of any stack frame that differ from prior function calls originating from the

same call site.

● Any other static (or discrete) rule as specified by the code developer or tester.

Observing and tracking of suspect or interesting function calls occurs in a process (the

observer/tracker) distinct from and parallel to the target application, e.g., read and write duties

are separated between the observer and the target. Such separation ensures that an attack is

actually prevented; integration of the observer functionality into the target application might

slow down the application but not prevent an attack. The observer/tracker uses the extracted

control flow graph (as illustrated in Fig. 1) to determine if runtime function calls executed by the

target application conform to the graph. Violations of the graph generate alerts or controlled

application exits.

5

Defensive Publications Series, Art. 5600 [2022]

https://www.tdcommons.org/dpubs_series/5600

Fig. 3: Development of call likelihood probabilities and testing for blocking conditions

 Fig. 3 illustrates the development of call likelihood probabilities and testing for blocking

conditions. A histogram of calls between functions is maintained. The event of a call from a

function A to a function B results in an update within the histogram of the relative frequency

(likelihood) of the A→B call. Similarly, a call from A to Z results in the addition or update of the

relative frequency of the A→Z call. Before the histogram is updated, the function call is tested

for blocking conditions, e.g., a function call with a signature of an exploit, as described above. If

a blocking condition is met, then the call is blocked, an alert is issued, or a controlled exit is

executed.

In this manner, the described techniques can rapidly detect control flow violations that

originate from memory corruption, buffer overflow, or other types of exploits by:

1. extracting a control flow graph for a given program

2. labeling its edges with transition probabilities

3. identifying calls that deviate from the labeled control flow graph, and

6

Watson and Schneider: Dynamic Real-time Verification of Program Call Flows

Published by Technical Disclosure Commons, 2022

4. upon detection of deviated calls, blocking the calls or by issuing an alert.

In an implementation with controlled exits, e.g., shadow stacks, the techniques detect and

guard against ROP or BROP activity. The techniques provide an effective mechanism for deep

inspection of the call stack and for maintaining the integrity of the control flow.

CONCLUSION

This disclosure describes a dynamic overlay that delineates control flows of an

application to identify unexpected code execution pathways that may be indicative of a security

breach. Identifying such unexpected (or unauthorized) execution pathways can enable their

prevention. The overlay is generated by observing the control flow through the application to

produce a histogram of probabilities from a first function call to subsequent function calls. Using

the overlay enables the detection of attacks with higher fidelity and at a lower cost than existing

approaches.

REFERENCES

[1] Ben Niu and Gang Tan, “Per-input control-flow integrity,” available online at

https://www.cse.psu.edu/~gxt29/papers/picfi.pdf accessed Nov. 30, 2022.

[2] “Blind return-oriented programming,” available online at

https://en.wikipedia.org/wiki/Blind_return_oriented_programming accessed Nov. 30, 2022.

7

Defensive Publications Series, Art. 5600 [2022]

https://www.tdcommons.org/dpubs_series/5600

https://www.cse.psu.edu/~gxt29/papers/picfi.pdf
https://en.wikipedia.org/wiki/Blind_return_oriented_programming

	Dynamic Real-time Verification of Program Call Flows
	Recommended Citation

	tmp.1671772944.pdf.Dba7A

