
Deep Autoencoder Neural Networks
for Gene Ontology Annotation Predictions

Davide Chicco
∗

Politecnico di Milano
Dipartimento di Elettronica
Informazione Bioingegneria

Milan, Italy
davide.chicco@gmail.com

Peter Sadowski
University of California, Irvine
Dept. of Computer Science
Institute for Genomics and

Bioinformatics
Irvine, CA, USA

peter.j.sadowski@uci.edu

Pierre Baldi
†

University of California, Irvine
Dept. of Computer Science
Institute for Genomics and

Bioinformatics
Irvine, CA, USA

pfbaldi@ics.uci.edu

ABSTRACT
The annotation of genomic information is a major challenge
in biology and bioinformatics. Existing databases of known
gene functions are incomplete and prone to errors, and the
bimolecular experiments needed to improve these databases
are slow and costly. While computational methods are not
a substitute for experimental verification, they can help in
two ways: algorithms can aid in the curation of gene anno-
tations by automatically suggesting inaccuracies, and they
can predict previously-unidentified gene functions, acceler-
ating the rate of gene function discovery. In this work, we
develop an algorithm that achieves both goals using deep
autoencoder neural networks. With experiments on gene
annotation data from the Gene Ontology project, we show
that deep autoencoder networks achieve better performance
than other standard machine learning methods, including
the popular truncated singular value decomposition.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning; J.3 [Life and
Medical Sciences]: Biology and Genetics; H.2.8 [Database
Applications]: Data mining

Keywords
biomolecular annotations, matrix-completion, autoencoders,
neural networks, Gene Ontology, truncated singular value
decomposition, principal component analysis

1. INTRODUCTION
In bioinformatics, a controlled gene function annotation

is a binary matrix associating genes or gene products with

∗corresponding author
†corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
BCB’14, September 20–23, 2014, Newport Beach, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2894-4/14/09 ...$15.00.
http://dx.doi.org/10.1145/2649387.2649442.

functional features from a controlled vocabulary. These an-
notations are important for effective communication in biomed-
ical research, and lay the groundwork for bioinformatics soft-
ware tools and data mining investigations. The in vitro
biomolecular experiments used to validate gene functions are
expensive, so the development of computational methods to
identify errors and prioritize new biomolecular experiments
is a worthwhile area of research [1].

The Gene Ontology project (GO) is a bioinformatics ini-
tiative to characterize all the important features of genes and
gene products within a cell [2] [3]. GO is composed of three
controlled vocabularies structured as mostly-separate sub-
ontologies: biological processes, cellular components, and
molecular functions. Each GO sub-ontology is structured as
a directed acyclic graph of features (nodes) and ontological
relationships (edges). In January 2014, GO contained 39,000
terms with more than 25,450 biological processes, 2,250 cel-
lular components, and 9,650 molecular functions. However,
GO annotations are constantly being revised and added as
new experimental evidence is produced.

One approach to improving gene function annotation data
bases like GO is to use patterns in the known annotations
to predict new annotations. This can be viewed as a matrix-
completion problem, in which one attempts to recover a ma-
trix with some underlying structure from noisy observations.
Machine learning algorithms have proved very successful in
similar applications, such as the famous million-dollar Net-
flix prize awarded in 2009. Many machine learning algo-
rithms have already been applied to gene function annota-
tion ([4] [5] [6] [7] [8] [9]), but to the best of our knowledge
deep autoencoder neural networks have not. Deep networks
of multiple hidden layers have an advantage over shallow
machine learning methods in that they are able to model
complex data with greater efficiency. They have proven their
usefulness in fields such as vision and speech recognition, and
promise to yield similar performance gains in other machine
learning applications that have complex underlying struc-
ture in the data.

A popular algorithm for matrix-completion is the trun-
cated singular value decomposition method (tSVD). Kha-
tri et al. first used this method for GO annotation predic-
tion [10], and one of the authors of this work has extended
their method with gene clustering and term-term similarity
weights [11] [12]. However, the tSVD method can be viewed
as a special linear case of a more general approach using
autoencoders [13] [14] [15]. Deep, non-linear, autoencoder

ACM-BCB 2014 533

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55252866?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

neural networks have more expressive power, and may be
better suited for discovering the underlying patterns in gene
function annotation data.

In this paper, we summarize the tSVD and autoencoder
methods, show how they can be used to predict annotations,
and compare the performance on six separate GO datasets.

2. SYSTEM AND METHODS
In this section we describe the two annotation-prediction

algorithms used in this paper: Truncated Singular Value De-
composition and Autoencoder Neural Network.

2.1 Truncated Singular Value Decomposition
Truncated Singular Value Decomposition (tSVD) [16] is a

matrix factorization method that produces a low-rank ap-
proximation to a matrix. Define Ad ∈ {0, 1}m×n to be a
matrix of annotations. The m rows of Ad correspond to
genes, while the n columns correspond to GO features, such
that

Ad(i, j) =

{
1 if gene i is annotated with feature j,

0 otherwise.

(1)
When features are organized into ontologies, sometimes

only the most specific feature is specified, and the more gen-
eral features (ancestors) are implicit. Thus, in this work we
consider a modified matrix A defined as

A(i, j) =

 1
if gene i is annotated with feature j
or with any descendant of j,

0 otherwise.

(2)
The ith row of the A matrix (aT

i) contains all the direct and
indirect annotations of gene i. The jth column encodes the
list of genes that have been annotated (directly or indirectly)
to feature j. This process is sometimes defined as annotation
unfolding [17].

Predictions are produced by computing the SVD of the
matrix A and truncating the less-significant singular values.
The SVD of the matrix A is given by

A = U ΣV T (3)

where U is a m ×m unitary matrix (i.e. UT U = I), Σ is
a non-negative diagonal matrix of size m × n, and V T is
a n × n unitary matrix (i.e. V T V = I). Conventionally,
the entries along the diagonal of Σ (the singular values)
are sorted in non-increasing order. The number r ≤ p of
non-zero singular values is equal to the rank of the matrix
A, where p = min(m,n). For a positive integer k < r, the

tSVD matrix Ã is given by

Ã = Uk Σk V
T
k (4)

where Uk (V T
k) is a m × k (n × k) matrix achieved by

retaining the first k columns of U (V) and Σ is a k × k di-
agonal matrix with the k largest singular values along the
diagonal. The decomposition of the matrices and the differ-
ence between SVD and tSVD are represented in Fig. 1. The

matrix Ã is the optimal rank-k approximation of A, i.e. the
one that minimizes the norm (either the spectral norm or

the Frobenius norm) ‖A−Ã‖ subject to the rank constraint.

Figure 1: An illustration of the Singular Value
Decomposition (upper green image) and the Trun-
cated SVD reconstruction (lower blue image) of the
A matrix. In the classical SVD decompostion, A
∈ {0, 1}m×n, U∈ Rm×m, Σ ∈ Rm×n V T∈ Rn×n. In the
Truncated decomposition, where k ∈ N is the trun-
cation level, Uk∈ Rm×k, Σk∈ Rk×k, V T

k ∈ Rk×n, and the

output matrix Ã∈ Rm×n

The matrix Ã is real valued and can be interpreted as a
model of the noisy, incomplete observations. It can be used
to predict both inaccuracies and missing gene functions — a
large value of ãij suggests that gene i should be annotated
with term j, whereas a value close to zero suggests the oppo-
site. The choice of the k truncation parameter controls the
complexity of the model, and affects the predictions. Khatri
et al. use a fixed value of k = 500 in [10] [18] [19], while one
of the authors of this paper has developed a new discrete op-
timization algorithm to select the best truncation level on
the basis of the ROC AUCs, described in [20].

In order to better comprehend why Ã can be used to
predict gene-to-term annotations, we highlight that an al-
ternative expression of Equation (4) can be obtained using
basic linear algebra manipulations:

Ã = A Vk V
T
k (5)

Additionally, the SVD of the matrix A is related to the
eigen-decomposition of the symmetric matrices T = ATA
and G = AAT . The columns of Vk (Uk) are a set of k
eigenvectors corresponding to the k largest eigenvalues of
the matrix T (G). The matrix T has a simple interpretation
in our context. In fact,

T (j1, j2) =

m∑
i=1

A(i,j1) ·A(i,j2) (6)

i.e. T (j1, j2) is the number of genes annotated with both
terms, j1 and j2. Consequently, T (j1, j2) indicates the (un-
normalized) correlation between term pairs and it can be
interpreted as a similarity score of the terms j1 and j2, the
computation of which is exclusively based on the use of these
terms in available annotations. The eigenvectors of T (i.e.
the columns of Vk) are a reduced set of eigen-terms. Intu-
itively, if two terms co-occur frequently, they are likely to
be mapped to the same eigen-term. Based on Equation (5),

the ith row of Ã can be written as

ãTi = aTi Vk V T
k (7)

ACM-BCB 2014 534

Figure 2: An autoencoder neural network with d
hidden layers. The number of input units is equal to
the number of output units, while there are usually
fewer units in each hidden layer.

Thus, the original annotation profile is first transformed in
the eigen-term domain, while retaining only the first k eigen-
terms by the multiplication with Vk, and then mapped back
to the original domain by means of V T

k . This corresponds
to projecting the original vector aT

i onto the k-dimensional
subspace spanned by the columns of Vk.

2.2 Autoencoder Neural Network
An autoencoder is a feed-forward artificial neural network

with the same input and target output. A small hidden
layer in an autencoder network creates an information bot-
tleneck, forcing the network to compress the data into a
low-dimensional representation. As with the tSVD method,
this modelling of the data can be used to make predictions.

For a simple autoencoder with a single hidden layer, the
vector of the hidden unit activities, h, is given by

h = f(We · a+ biase) (8)

where f is the activation function (we use the logistic sig-
moid function in this work), We is a parameter matrix, and
biase is a vector of bias parameters. The hidden represen-
tation of the data is then mapped back into the space of a
using the decoding function:

â = f(Wd · h,+biasd) (9)

where Wd is the decoding matrix and biasd a vector of bias
parameters. We learn the parameters of the autoencoder
by performing stochastic gradient descent to minimize the
reconstruction error, the MSE between a and â.

MSE(a, â) = ||a− â||22 = ||a− (Wd · h+ biasd)||22 (10)

When the hidden layer has fewer dimensions than a, the au-
toencoder learns a compressed representation of the training
data. In fact, an autoencoder with k linear hidden units will
learn to project the data onto its first k principal compo-
nents, and the decoded data matrix is exactly the tSVD ma-
trix with the top k singular values [14]. Non-linear hidden

units allow an autoencoder to learn more complex encoding
functions, as do additional hidden layers.

As in the tSVD approach, the matrix A is an array of m
gene profiles with n possible features defined in Equation 2,
such that gene profile ai is the ith row of A. An autoen-
coder is trained to learn these gene profiles and produces a

prediction matrix Ã as described in Fig. 3.

Given the input matrix A ∈ {0, 1}m×n, where rows and
columns correspond to genes and features, respectively:

1. Fix a number h of hidden units (h ∈ N, h < m), and
a number d of hidden layers (d ∈ {1, ...,maxhl})

2. Training: for each gene profile ai of A, where i ∈
[1,m]:

(a) for each training iteration:

i. for each d hidden layer:

a) compute hidden activation hi from in-
put ai (Equation 8)

ii. compute reconstructed output âi from
hidden activation hi (Equation 9)

iii. compute error gradient (Equation 10)

iv. back-propagate error gradient to update
weight parameters

3. Testing: for each gene profile ai of A, where i ∈
[1,m]:

(a) autoencode ai and produce âi

(b) set âi as ith row of the output matrix Ã

Figure 3: Overview of the autoencoder neural net-
work algorithm.

2.3 Predictions
The tSVD and autoencoder both provide a prediction ma-

trix Ã of real values, with larger values indicating a higher
predicted likelihood. For an ROC curve analysis, only the
relative ordering of these predictions is relevant. To make

binary predictions, we set a threshold τ such that Ã(i, j) > τ
is interpreted as a prediction that gene i should be annotated
with feature j.

2.4 Autoencoder Training Details
Autoencoder neural networks were trained using the free

GPU-accelerated software package Torch7 [21] using stochas-
tic gradient descent with a learning rate of 0.01 for 25 it-
erations. L2 regularization was used on all weights, which
were initialized randomly from the uniform distribution over
[0, 1]. The hidden unit function is a Sigmoid.

2.5 Datasets
The GO database contains annotation datasets for a vari-

ety of species, and for each of the three GO sub-ontologies:
Biological Processes (BP), Molecular Functions (MF), and
Cellular Components (CC). We focused on the Bos taurus
(cattle) and Gallus gallus (red junglefowl) gene sets, which
are available from the Genomic and Proteomic Data Ware-
house (GPDW) [22] [23]. We use the July 2009 version of the
datasets for analyzing and selecting hyper-parameters, and

ACM-BCB 2014 535

the March 2013 version for comparing prediction algorithms.
Table 1 describes the size and number of annotations in each
version. We exclude all annotations that are flagged as IEA
(inferred from electronic annotation) or ND (no biological
data available), and all feature terms and genes that do not
appear in both dataset versions.

root term, which has the sub-ontology name (BP, CC,
MF). In January 2014, GO contained about 39,000 terms
describing gene and gene product features, with more than
25,450 BP, 9,650 MF and 3,350 CC terms. However, these
are far from complete and new annotations are added regu-
larly; over a third of the biological process annotations have
been added within the last four years.

3. RESULTS AND DISCUSSION
We perform two separate experiments. First, we analyze

the effects of hyper-parameters for both tSVD and the au-
toencoder algorithms on a validation set created by holding-
out (removing) 10% of the annotations from the July 2009
database, then we test the prediction algorithms on new an-
notations that were added in the 2013 version. In both cases,
the goal is to identify missing annotations within the large
set of negative training examples. Fig. 4 visually describes
the analysis procedure.

Figure 4: A flowchart of our analysis, with the
hyper-parameter selection and validation procedure
on the left, and the test procedure on the right. A
rounded rectangle represents an operation, repeated
in a cycle if attached to a sharp rectangle. A paral-
lelogram represent an output production step, and a
cylinder represents an interaction with the database.

3.1 Hyper-Parameter Analysis
For tSVD, the number of singular values is a hyper-parameter

that determines the rank of the final prediction matrix, and

is usually chosen through cross-validation. In an autoen-
coder network, the analogous hyper-parameter is the num-
ber of hidden units. These hyper-parameters control the
complexity of the model; keeping a large number of singu-
lar values or using a large number of hidden units results
in a very accurate reconstruction of the input data matrix,
but will overfit to noise, such as missing annotations and
inaccuracies. Figure 5 and Fig. 6 show how there is often
an optimal hyper-parameter of this type. The best hyper-
parameters for each data set are shown in Table 2.

The curves for each type of sub-ontology have similar be-
havior. For the Cellular Component annotation datasets,
the autoencoder algorithm always outperform tSVD, regard-
less of the number of singular values. For the Molecular
Function datasets, the autoencoder and tSVD have similar
AUCs with singular values in the range [20, 50], while au-
toencoder networks outperform tSVD in the other intervals.
For Biological Process datasets, the autoencoders outper-
form tSVD only when it uses the maximum possible number
of hidden units.

3.2 Predictive Accuracy
We test the tSVD and autoencoder algorithms on a set of

annotations added to the database between July 2009 and
March 2013. Training and testing was performed on the un-
folded matrices described in Equation 2 to eliminate the pos-
sibility of trivial predictions. The performance metric is the
percentage of the top 100 predictions from each method that
were added to the database during this period. The results
are displayed in Table 3, along with results from four other
state-of-the-art algorithms from the computational gene an-
notation literature:

1. tSVD with gene clustering (SIM1) [24] [25]

2. tSVD with gene clustering and term-term similarity
weights (SIM2) [24] [25]

3. Probabilistic Latent Semantic Analysis (pLSA) [26]

4. Latent Dirichlet Allocation (LDA) [27]

Overall, the tSVD-based techniques (tSVD, SIM1, SIM2)
achieve similar performance, and LDA appears comparable
to these methods. The pLSA algorithm performs slightly
better than these methods on most of the datasets, and the
autoencoder networks are consistently the best. The au-
toencoder networks improve performance by +6% to +36%
with respect to the second best method.

3.3 Novel Predictions
We examine the predicted annotations with highest likeli-

hood score that are not already annotated in the GO database.
Many of the predicted annotations are rather obvious high-
level descriptive features such as cellular process, so we list
the three interesting predictions with the highest likelihood
in Table 4, where we define interesting as an annotation with
distance greater than two from the root node in the ontology
tree.

4. CONCLUSIONS
Gene function annotation databases are an essential tool

in biomedical research, yet existing databases are incom-
plete and contain inaccuracies. In this work, we have shown

ACM-BCB 2014 536

Table 1: Quantitative characteristics of the considered annotation datasets in the July 2009 database version
versus the March 2013 database version used for testing. Numbers do not include annotations inferred from
electronic annotations (IEA), those for which no biological data is available (ND), obsolete terms, or obsolete
genes. #gs is the number of genes; #fs is the number of biological function features; #as is the number of
annotations; ∆ is the difference of annotation amounts of the #gs genes and the #fs features between the
two database versions, and ∆% is the percentage difference.

July 2009 March 2013 #as comparison
Dataset #gs #fs #as #as ∆ ∆%

Bos taurus CC 497 493 8,003 9,683 1,680 20.99%
Bos taurus MF 543 856 4,295 6,394 2,099 48,87%
Bos taurus BP 512 2,719 17,145 27,075 9,930 57.92%

Gallus gallus CC 260 344 3,717 3,798 81 2.18%
Gallus gallus MF 309 501 2,358 2,654 256 10.86%
Gallus gallus BP 275 1,824 8,350 11,984 3,634 43.52%

(a) (b) (c)

Figure 5: AUC values for the tSVD and autoencoder predictions with different hyper-parameter choices
(number of singular values and number of hidden units, respectively) for Bos taurus Cellular Components
(5a), Molecular Functions (5b), and Biological Process (5c). For comparison purposes, we use an autoencoder
with a single hidden layer.

(a) (b) (c)

Figure 6: AUC values for the tSVD and autoencoder predictions with different hyper-parameter choices
(number of singular values and number of hidden units, respectively) for Gallus gallus Cellular Components
(6a), Molecular Functions (6b), and Biological Process (6c). For comparison purposes, we use an autoencoder
with a single hidden layer.

Table 2: Hyper-parameters were optimized separately for each algorithm and dataset. We select the number
of k singular values for tSVD, the number of clusters c for the SIM1 and SIM2 methods as described in [24];
the number of topics t in pLSA as described in [26]; the number of topics t in LDA as described in [27]; and
the number of hidden units h in each of d hidden layers for the autoencoder (AE) algorithm.

tSVD SIM pLSA LDA AE
Dataset k c t t h d

Bos taurus CC 90 3 12 465 2
Bos taurus MF 71 3 13 302 3
Bos taurus BP 241 5 112 500 2

Gallus gallus CC 51 3 25 258 3
Gallus gallus MF 41 2 74 271 3
Gallus gallus BP 111 3 126 253 2

ACM-BCB 2014 537

Table 3: Results related to the topK = 100 annotations predicted by several available methods applied to the
considered datasets. We applied the methods to the July 2009 GPDW dataset versions, produced the top
100 most likely annotation list, and search for these annotations in the updated March 2013 GPDW database
version. SIM1 is tSVD with clustering from [24]; SIM2 is tSVD with clustering and term-term similarity
weights from [24]; pLSA is Probabilistic Latent Semantic Analysis from [26], and LDA is Latent Dirichlet
Allocation from [27]. AE is the autoencoder. Bos taurus: cattle. Gallus gallus: red junglefowl. CC: cellular
component. MF: molecular function. BP: biological process. Variable λ represents the likelihood predicting
correctly 100 annotations by selecting them randomly among the non-annotations (0’s) in the input matrix.

upDB%
Dataset λ tSVD SIM1 SIM2 pLSA LDA AE

Bos taurus CC 0.69 26 23 32 33 30 40
Bos taurus MF 0.45 23 17 13 20 16 34
Bos taurus BP 0.67 14 7 14 30 19 45

Gallus gallus CC 0.09 10 15 14 23 20 30
Gallus gallus MF 0.19 6 2 2 16 8 52
Gallus gallus BP 0.72 13 14 13 31 10 37

Table 4: For each dataset, the three strongest, novel, interesting predictions from the autoencode algorithm
are listed. These predictions are novel in that they are not included in the March 2013 version of the GO
used to train the algorithm.

gene name gene symbol feature ID feature name
Gallus gallus - Cellular Component

RPS15 ribosomal protein S15. RPS15 GO:0043231 intracellular membrane-bounded organelle
BIRC5 baculoviral IAP repeat containing 5. BIRC5 GO:0043231 intracellular membrane-bounded organelle

CHRNA7 cholinergic receptor, nicotinic,
CHRNA7 GO:0043231 intracellular membrane-bounded organelle

alpha 7 (neuronal) .
Gallus gallus - Molecular Function

TPD52 tumor protein D52 TPD52 GO:0003676 nucleic acid binding
ATP2A1 ATPase, Ca++ transporting, ATP2A1 GO:0003676 nucleic acid binding

cardiac muscle, fast twitch 1.
DYRK2 dual-specificity tyrosine-(Y)-phosphorylation DYRK2 GO:0003676 nucleic acid binding

regulated kinase 2.
Gallus gallus - Biological Process

NAIF1 nuclear apoptosis inducing factor 1. C9ORF90 GO:0043170 macromolecule metabolic process
C1H2ORF49 chromosome 1 open C2ORF49 GO:0043170 macromolecule metabolic processreading frame, human C2orf49.

ALB albumin. ALB GO:0043170 macromolecule metabolic process
Bos taurus - Cellular Component

ACTA2 actin, alpha 2, smooth muscle, aorta. ACTA2 GO:0043231 intracellular membrane-bounded organelle
KDM5D lysine (K)-specific demethylase 5D. KDM5D GO:0043231 intracellular membrane-bounded organelle

GDI1 GDP dissociation inhibitor 1. GDI1 GO:0043231 intracellular membrane-bounded organelle
Bos taurus - Molecular Function

CACNA1B calcium channel, voltage-dependent,
CACNA1B GO:0003824 catalytic activity

N type, alpha 1B subunit.
CHRNA7 cholinergic receptor, nicotinic, alpha 7. CHRNA7 GO:0003824 catalytic activity
SGSM3 small G protein signaling modulator 3 . SGSM3 GO:0003824 catalytic activity

Bos taurus - Biological Process
GJD2 gap junction protein, delta 2, 36kDa. GJD2 GO:0044237 cellular metabolic process
OPA3 optic atrophy 3 (autosomal recessive, OPA3 GO:0044237 cellular metabolic process

with chorea and spastic paraplegia).
RPGR retinitis pigmentosa GTPase regulator. RPGR GO:0044237 cellular metabolic process

ACM-BCB 2014 538

how deep autoencoder networks can be used to help curate
these annotation databases and predict novel gene functions.
We have highlighted the similarities between our algorithm
and tSVD, and shown that it performs better than tSVD,
pLSA, and LDA on six separate datasets from the Gene On-
tology consortium. The autoencoder method we have pro-
posed is not limited to gene function annotation, and could
be used for other problems such as collaborative-filtering for
product-recommendation systems. The approach has nu-
merous advantages: (1) autoencoders can be trained online
with very large datasets, (2) they can be trained quickly
using graphics processors, and (3) the number and size of
the hidden layers provides an easy way of controlling the
complexity of the model. In our results, autoencoders with
two or three hidden layers worked better than shallow au-
toencoders with a single hidden layer, suggesting that deep
learning methods could be useful for this application.

Future work will address advantages and issues related to the
application of the same methods and rule to the prediction
of multi-terminologies, not only annotations. Finally, our
goal is to furnish a Web service to our implemented meth-
ods and integrate such Web application with other available
services within the Search Computing framework [28], in or-
der to provide support for answering complex life science
questions [29].

5. REFERENCES
[1] G. Pandey, V. Kumar, and M. Steinbach,

”Computational approaches for protein function
prediction: A survey”. Twin Cities: Department of
Computer Science and Engineering, University of
Minnesota, 2006.

[2] The Gene Ontology Consortium, ”Creating the Gene
Ontology Resource: Design and Implementation”.
Genome Research, vol. 11, pp. 1425-1433, 2001.

[3] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H.
Butler, J. M. Cherry, A. P. Davis, K. Dolinski, S. S.
Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L.
Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J.
E. Richardson, M. Ringwald, G. M. Rubin, and G.
Sherlock, ”Gene Ontology: tool for the unification of
biology”. Nature Genetics, vol. 25.1: pp. 25-29, 2000.

[4] O. D. King, R. E. Foulger, S. S. Dwight, J. V. White,
and F. P. Roth, ”Predicting gene function from
patterns of annotation”. Genome Research 13.5: pp.
896-904, 2003.

[5] Y. Tao, L. Sam, J. Li, C. Friedman, and Y. A. Lussier,
”Information theory applied to the sparse gene
ontology annotation network to predict novel gene
function”. Bioinformatics, vol. 23.13: pp. 529-538,
2007.

[6] Z. Barutcuoglu, R. E. Schapire, and O. G.
Troyanskaya, ”Hierarchical multi-label prediction of
gene function”. Bioinformatics, vol. 22.7: pp. 830-836,
2006.

[7] S. Raychaudhuri, et al. ”Associating genes with gene
ontology codes using a maximum entropy analysis of
biomedical literature”. Genome Research, vol. 12.1:
pp. 203-214, 2002.

[8] A. Perez, C. Perez-Iratxeta, P. Bork, G. Thode, and
M. A. Andrade, ”Gene annotation from scientific

literature using mappings between keyword systems”.
Bioinformatics, vol. 20.13: pp. 2084-2091, 2004.

[9] G. Yu, H. Rangwala, C. Domeniconi, G. Zhang, and
Z. Yu, ”Protein Function Prediction with Incomplete
Annotations”. IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 11.3:
pp. 579 - 591, 2013 .

[10] P. Khatri, B. Done, A. Rao, A. Done, and S. Draghici,
”A semantic analysis of the annotations of the human
genome”. Bioinformatics, vol. 21.16: pp. 3416-3421,
2005.

[11] M. Masseroli, M. Tagliasacchi, and D. Chicco,
”Semantically improved genome-wide prediction of
Gene Ontology annotations”. Proceedings of IEEE
ISDA 2011, the 11th International Conference on
Intelligent Systems Design and Applications, pp. 1080
- 1085 , 2011.

[12] P. Pinoli, D. Chicco, and M. Masseroli. ”Improved
biomolecular annotation prediction through Weighting
Scheme methods”. Proceedings of CIBB 2013, the
Tenth International Meeting on Computational
Intelligence Methods for Bioinformatics and
Biostatistics, Nice, France, pp. 1-12, 2013.

[13] H. Bourlard, and Y. Kamp, ”Auto-association by
multilayer perceptrons and singular value
decomposition.” Biological cybernetics, vol. 59.4-5, pp.
291-294, 1988.

[14] P. Baldi and K. Hornik, ”Neural networks and
principal component analysis: Learning from examples
without local minima.” Neural networks, vol. 2.1, pp.
53-58, 1989.

[15] P. Baldi, ”Autoencoders, Unsupervised Learning, and
Deep Architectures”. Journal of Machine Learning
Research-Proceedings Track, vol. 27, pp. 37-50, 2012.

[16] G. H. Golub, and C. Reinsch, ”Singular value
decomposition and least squares solutions”.
Numerische Mathematik vol. 14.5: pp. 403-420, 1970.

[17] M. Masseroli, M. Tagliasacchi, ”Web resources for
gene list analysis in biomedicine”, In: Lazakidou, A.,
editor. Web-based Applications in Health Care and
Biomedicine. Heidelberg, D: Springer, Annals of
Information Systems Series, vol. 7, pp. 117-141, 2010

[18] B. Done, P. Khatri, A. Done, and S. Draghici,
”Semantic analysis of genome annotations using
weighting schemes”. Proceedings of CIBCB 2007 , the
IEEE Symposium Computational Intelligence and
Bioinformatics and Computational Biology, pp. 212 -
218, 2007.

[19] B. Done, P. Khatri, A. Done, and S. Draghici,
”Predicting novel human gene ontology annotations
using semantic analysis.” IEEE/ACM Transactions on
Computational Biology and Bioinformatics, vol. 7.1:
pp. 91-99, 2010.

[20] D. Chicco, and M. Masseroli, ”A Discrete
Optimization Approach for SVD Best Truncation
Choice based on ROC Curves”. Proceedings of IEEE
BIBE 2013, the 13rd International Conference on
Bioinformatics and Bioengineering, pp. 1-4, 2013.

[21] R. Collobert, K. Kavukcuoglu and C. Farabet,
”Torch7: A Matlab-like Environment for Machine
Learning”. BigLearn, NIPS Workshop, 2011.

[22] A. Canakoglu, G. Ghisalberti, and M. Masseroli,

ACM-BCB 2014 539

”Integration of Biomolecular Interaction Data in a
Genomic and Proteomic Data Warehouse to Support
Biomedical Knowledge Discovery”. Computational
Intelligence Methods for Bioinformatics and
Biostatistics, Springer Berlin Heidelberg, pp. 112-126,
2012.

[23] F. Pessina, M. Masseroli, and A. Canakoglu, ”Visual
composition of complex queries on an integrative
Genomic and Proteomic Data Warehouse”.
Engineering, vol. 5:10B, pp. 1-8, 2013.

[24] D. Chicco, M. Tagliasacchi, and M. Masseroli,
”Genomic annotation prediction based on integrated
information”. Computational Intelligence Methods for
Bioinformatics and Biostatistics, Springer Berlin
Heidelberg, pp. 238-252, 2012.

[25] D. Chicco, M. Tagliasacchi, and M. Masseroli,
”Biomolecular annotation prediction through
information integration”. Proceedings of CIBB 2011,
the 8th Computational Intelligence Methods for
Bioinformatics and Biostatistics, pp. 1-8, 2011.

[26] M. Masseroli, D. Chicco, and P. Pinoli, ”Probabilistic
Latent Semantic Analysis for prediction of Gene
Ontology annotations”. Proceedings of IEEE IJCNN
2012, the International Joint Conference on Neural
Networks, pp- 1-8 2012.

[27] P. Pinoli, D. Chicco, and M. Masseroli, ”Latent
Dirichlet Allocation based on Gibbs Sampling for
Gene Function Prediction”. Proceedings of IEEE
CIBCB 2014, the Conference on Computational
Intelligence in Bioinformatics and Computational
Biology, pp. 1-4, 2014.

[28] S. Ceri, D. Braga, F. Corcoglioniti, M. Grossniklaus,
and S. Vadacca, ”Search computing challenges and
directions”. Springer, Berlin Heidelberg, 2010.

[29] D. Chicco, ”Integration of bioinformatics web services
through the Search Computing technology”. Technical
Report, TR 2012/02. Dipartimento di Elettronica e
Informazione, Politecnico di Milano, Milan, Italy.

ACM-BCB 2014 540

