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ABSTRACT

Local visual features extracted from multiple camera views
are employed nowadays in several application scenarios, such
as object recognition, disparity matching, image stitching and
many others. In several cases, local features need to be trans-
mitted or stored on resource-limited devices, thus calling for
efficient coding techniques. While recent works have ad-
dressed the problem of efficiently compressing local features
extracted from still images or video sequences, in this paper
we propose and evaluate an architecture for coding features
extracted from multiple, overlapping views. The proposed
Multi-View Feature Coding architecture can be applied to ei-
ther real-valued or binary features, and allows to obtain bitrate
reductions in the order of 10-20% with respect to simulcast
coding.

Index Terms— local visual features, multi-view coding

1. INTRODUCTION

In the last few years, local visual features have become a pop-
ular tool in the image processing and computer vision com-
munities. Being able to efficiently summarize the salient parts
of an image content, local visual features are nowadays used
to perform an extremely wide set of tasks in several appli-
cation scenarios, ranging from object recognition and image
retrieval, to forgery detection for forensic applications. There
exist several different algorithms for extracting local features
from an image, all following a two-steps approach: first, a
detector is applied for identifying salient keypoints in an im-
age. Then, for each keypoint, the photometric properties of
the pixel area around that keypoint are encoded in a descrip-
tor. The most known and used descriptor is SIFT [1], which
produces real-valued descriptors by relying on local gradi-
ent information. Recently, a new class of descriptors has
been proposed, based on pixel intensity comparisons, rather
then on gradient information. Such binary descriptors rep-
resent a much cheaper alternative to their real-valued coun-
terparts, thus they are especially suited for low-power appli-
cations such as mobile visual search and Visual Sensor Net-
works (VSNs).

Especially for the latter application, local binary features
constitute a very promising tool for enabling visual analysis in
resource-limited scenarios. Instead of relying on a traditional
paradigm where compressed images or videos are transmitted
to a server for further analysis, camera sensors may extract,
compress and transmit local features from the acquired con-
tent. Since such a feature-based representation is generally
more compact than the traditional pixel-based representation,
this paradigm shift constitutes an efficient, yet powerful way
to implement visual analysis in energy-scarce, bandwidth-
limited scenarios. The benefits of transmitting features in-
stead of images are even clearer when considering recent ad-
vanced feature coding algorithms which exploit the redun-
dancy between elements of the same descriptor, or the tem-
poral correlation between descriptors belonging to adjacent
video frames [2].

Often, multiple camera sensors are deployed in the same
area. This is typically done to increase the accuracy of mon-
itoring or automatic visual analysis, e.g., by avoiding occlu-
sions. In such a scenario, it is likely that the fields of view
of the cameras overlap and exploiting the inter-view redun-
dancy between similar views may be beneficial for encod-
ing local features. In this paper, we propose an architecture
for compressing local visual features extracted from multiple,
overlapping views. The Multi-View Feature Coding (MVFC)
scheme is inspired by the practices used in the field of multi-
view video coding, and may be applied to either real-valued
or binary features. The performance of the proposed coding
scheme is evaluated in details, considering several factors that
might affect a real-case scenario, such as the amount of inter-
camera displacement or the effect of non ideal inter-camera
temporal sampling.

2. RELATED WORK

Efficient coding of local visual features is of paramount im-
portance. Since many applications leveraging such kind of
data are run on battery-operated devices in bandwidth con-
strained scenarios (e.g., smartphones, Visual Sensor Net-
works), compression is needed to minimize: (i) the amount
of data transmitted from the camera sensors and (ii) the en-
ergy spent in the transmission process.
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The problem of efficiently coding local visual features has
been recently addressed by many works in the literature. For
what concerns the compression of features extracted from still
images, coding schemes that exploit the correlation between
the elements of each feature (intra-descriptor coding) [3],
or the redundancy between similar features (inter-descriptor
coding) [4] are available. The work in [5] compares differ-
ent lossy coding schemes for real-valued SURF features, re-
porting that bitrates as low as 200 bits per features may be
achieved without notable performance decrease. Moreover,
the experiments show that intra-descriptor coding generally
provides better performance than inter-descriptor coding. As
for binary features, both intra- [6] and inter-descriptor [7]
coding schemes have been proposed very recently, as well.
A completely different approach to local features encoding is
the one pursued by the so-called Bag-of-Words (BoW) repre-
sentation [8]. In this approach, local features are vector quan-
tized into visual words. The occurrences of each visual word
are then counted so as to form a histogram, which plays the
role of an unique image signature. As a consequence, the final
BoW histogram can be represented with very few bits com-
pared to the full local visual feature representation, at the cost
of decreased application accuracy.

Several applications (e.g., augmented reality, tracking)
rely on features extracted from video sequences rather than
still images. Recently, architectures for coding local feature
extracted from video have been proposed for the case of real-
valued [2] and binary descriptors [9]. The key tenet is to ex-
ploit both spatial and temporal redundancy by means of intra-
frame and inter-frame coding, respectively. Mimicking the
techniques routinely used for blocks of pixels in traditional
video coding, a mode decision algorithm decides whether
each descriptor should be encoded on its own (intra-frame
coding) or predicted using a descriptor in the previous video
frame (inter-frame coding). Experimental results show that
temporal redundancy allows to reach up to 85% of bit rate
reduction with respect to intra-coding only [2].

Besides temporal redundancy, inter-view redundancy is
of particular interest when multiple views of the same con-
tent are available. In the field of video coding, the exploita-
tion of inter-view redundancy has been studied for more than
20 years and recently standardized as an amendment of the
H.264/AVC standard [10]. Motivated mainly by the need
of supporting 3D video applications, multiview video coding
(MVC) provides a compact representation of multiple syn-
chronized views of a video scene. The coding tools used in
MVC are actually the same as those traditionally used for ex-
ploiting temporal redundancy, with a reference view, called
the base view, used to predict another correlated view. It has
been shown that coding multiview video with interview pre-
diction may significantly outperform independent coding of
the single views (i.e., simulcast coding): an average bit-rate
reduction of 20-30% is reported in several studies [10]. The
results obtained in the area of MVC are of particular inter-

est for the field of Visual Sensor Networks, where multiple
battery-operated cameras, possibly with overlapping fields of
view, are deployed for monitoring tasks. Since such appli-
cations are generally bandwidth constrained, MVC is recog-
nized as a promising tool for overcoming such limitation, and
has been applied to VSNs in several occasions [11]. More-
over, when such camera networks acquire images with a very
low frame rate, temporal redundancy may be insufficient to
provide considerable bitrate reduction, and inter-view redun-
dancy may be the only viable option.

However, to the knowledge of the authors, very limited at-
tention has been given to the problem of encoding local visual
features extracted from multiple views, whereas some works
analyzing the problem of multi-view encoding of BoWs are
present. In [12], an unsupervised feature selection algorithm
is proposed to avoid the transmission of redundant informa-
tion. The algorithm uses an offline training phase to learn a
statistical model of the dependency between BoWs of differ-
ent views. Inspired to distributed source coding [13], the sta-
tistical model is used to drive a joint decoding of the multiple
views. Experiments on a two-views scenario report compres-
sion ratios as high as 100:1 in the second view, with respect to
independent coding. In [14], a joint sparsity model is used to
encode BoWs extracted from multiple views. Since such his-
tograms are (i) sparse, (ii) non-negative and (iii) correlated,
a distributed encoding scheme based on compressed sensing
can be applied to efficiently encode the multiple views, by
projecting the original histograms on a random subspace of
much lower dimensionality.

In contrast to such approaches based on BoWs, in this
paper we focus explicitly on the problem of coding local
visual features extracted from multiple views. Using local
features instead of BoWs may be required to achieve excel-
lent performance (e.g., in the case of object recognition), or
may be an application-driven requisite (e.g., as in the case of
stereo matching, depth estimation or disparity map compu-
tation [15]). We propose an architecture tailored to the en-
coding of both non-binary and binary local features extracted
from multiple views and we thoroughly evaluate the perfor-
mance of such an architecture on different, publicly avail-
able multi-view datasets, focusing in particular on the im-
pact of the inter-camera geometry and on the case of non-
synchronized cameras.

3. MULTI-VIEW FEATURE CODING

We consider a scenario where multiple camera nodes with
overlapping fields of view extract local visual features from
an input image. Let Fb be the set of features extracted from
the base view, and Fs the set of features extracted from a sec-
ond view, partially overlapping with the base view. Each el-
ement f belonging to Fb or Fs is a visual feature, consisting
of a keypoint k and a descriptor d, i.e., f = {k,d}. Let
k = [x, y, σ, θ] contains the position (x, y), scale σ and ori-



entation θ of the keypoint, respectively. As for the descrip-
tor, let d ∈ RP for the case of real valued descriptors and
d ∈ {0, 1}P for the case of binary descriptors, where P is
the length of each descriptor. The proposed multi-view cod-
ing architecture aims at efficiently encoding the second view
set of descriptors Fs given the knowledge of the base view set
Fb.

We denote the number of bits needed to encode the visual
features set Fs as:

Rs =

M∑
i=1

Rk
i +Rd

i , (1)

where M is the number of features extracted from the sec-
ond view, and Rk

i and Rd
i are the number of bits necessary

to represent the keypoint and descriptor of each feature, re-
spectively. Similarly, we may define Rb as the number of bits
needed to encode the features contained in Fb.

Figure 1 illustrates the general encoding scheme proposed
in this work. The key idea is to use the set of features in Fb
to predict the second view set of features Fs. A matching
step selects potential candidates for prediction. In the case of
inter-view coding, the residual between the input descriptor
and its best match in the base view is encoded. Mimicking the
practices used in recent video encoders, a mode decision algo-
rithm decides whether each feature in Fs should be encoded
with respect to a local feature in Fb (i.e., in an inter-view cod-
ing fashion, exploiting the spatial redundancy), or intra-view
coded (i.e., solely exploiting the correlation between the el-
ements of its descriptor). In the following we give details
on each building block of the coding architecture, highlight-
ing the implementation differences that have to be adopted to
deal with either real-valued or binary descriptors.

3.1. Intra-view coding

In case of intra-view coding, the approach is specific to the
type of features to be encoded.

3.1.1. Real-valued descriptors

In the case of real-valued descriptors (e.g., SIFT, SURF),
the proposed implementation performs lossy coding follow-
ing the transform-coding scheme based on the KLT transform,
as proposed in [2]. First, the descriptors are projected in the
transform domain to decorrelate their elements. Then, scalar
quantization is applied to each individual descriptor element
with the same quantization step. The output symbols of the
quantizer are entropy coded using arithmetic coding, produc-
ing a rate of Rd

i bits. As usually done in related works [2], the
coordinates of the i-th keypoint are encoded at quarter-pixel
precision, using Rk

i = (log2 4Nx + log2 4Ny + S), where
Nx ×Ny is the input image size, and S is the number of bits
to encode the scale parameters.

3.1.2. Binary descriptors

In the case of binary descriptors, lossy coding is not appli-
cable as descriptor elements are already represented with one
bit. Instead, we rely on a lossless coding scheme which aims
at reordering the descriptor elements to maximize the effi-
ciency of arithmetic coding, eploiting the correlation between
adjacent symbols [6]. The optimal order of the descriptor el-
ements is learned offline during a training phase, and shared
between both the encoder and the decoder. As for coding of
keypoints, the same logic used in the case of real-valued de-
scriptors is adopted.

3.2. Inter-view coding

The inter-view coding process consists in the following steps:

3.2.1. Candidate matching and residuals computation

For each descriptor in the second view, a set of candidate de-
scriptors C in the base view is computed. The candidate set C
can be either the full set of descriptors Fb, or a subset of it.
As an example, when the geometric relationship between the
two views is available, C can be computed through epipolar
geometry by projecting the location of the second view on the
base view and searching in the neighbourhood. Then, the best
matching descriptor in the candidate set is computed, i.e.:

db,l∗ = arg min
db,l∈C

D(ds,db,l) + λRk,INTER(l), (2)

where Rk,INTER(l) is the rate needed to encode the keypoint
motion vector and l∗ is the index of the selected reference
feature. The function D(ds,db,l) is the distance between the
input descriptor and a descriptor in the candidate set. For real-
valued descriptors, the Euclidean distance is used, whereas
the Hamming distance is used for binary descriptors. Hav-
ing identified the best matching descriptor in the base view,
the prediction residuals c are computed: for real-valued de-
scriptors, the difference between the two descriptors is used
(i.e. c = ds − db,l∗ ). For binary descriptors, residuals are
computed using the bitwise XOR (i.e. c = ds ⊕ db,l∗ ).

3.2.2. Coding mode decision

The mode decision algorithm computes and compares the cost
of intra-view coding J INTRA with that of inter-view coding
J INTER, defined as:

J INTRA(di) = D(di, d̃i) + λ(Rk,INTRA
i +Rd,INTRA

i )
(3)

J INTER(di,dl∗) = D(di, d̃i) + λ(Rk,INTER
i (l∗) +Rd,INTER

i (l∗))
(4)

In the previous equations, dl∗ is the selected reference de-
scriptor in the base view which is used to predict the descrip-
tor di in the second view, and D(di, d̃i) is the distance be-
tween the original and reconstructed descriptor. Note that
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Fig. 1. The proposed multi-view features coding architecture. Solid lines represent the work flow for real-valued features, while
dotted lines represent the flow for binary features.

D(di, d̃i) = 0 in case of binary descriptors (lossless cod-
ing). Depending on the coding mode, Rd

i represents the bi-
trate needed to encode the descriptor components (in case
of intra-view coding), or the prediction residuals (in case of
inter-view coding). If J INTER(di,dl∗) < J INTRA(di), the fea-
ture is inter-view coded. Otherwise it is intra-view coded (see
Section 3.1).

3.2.3. Descriptors coding

Similarly to intra-view coding, the steps for encoding the pre-
diction residuals are different for real-valued or binary fea-
tures. In the first case, the prediction residuals are trans-
formed into the KLT domain (using a different transform ma-
trix than the one used for intra-view coding) and quantized
with a fixed step size. In the case of binary descriptors, an
optimal reordering strategy can be learned also in the case of
binary residuals. In both cases, entropy coding is applied at
the end of the process. Differently from the intra-view coding
case, here it is necessary to encode: (i) the residuals output
symbols; (ii) the identifier of the matching descriptor in the
base view, needed to reconstruct the descriptor at the decoder,
and which requires Rk,INTER

i (l∗) bits. For both intra-view and
inter-view coding, the KLT transform matrices and the prob-
abilities of the quantized symbols (respectively, descriptor el-
ements or prediction residuals) used for entropy coding are
learned from a training set of images.

4. EXPERIMENTS

The experimental evaluation is based on the two publicly
available multi-view sequences Kendo and Balloons1. For
each sequence, seven views are available, obtained with a
linear array of cameras with 5cm spacing. In all tests, the
sequences have been resampled to CIF resolution and the re-
sults are averaged over 100 frames. For real-valued descrip-
tors, SIFT features have been extracted using the VLFEAT2

software implementation, whereas BRISK features have been

1Available at http://www.fujii.nuee.nagoya-u.ac.jp/multiview-data/
2Available at http://www.vlfeat.org/

extracted using the original implementation from the authors,
for the case of binary descriptors.

As a measure of performance, we consider the bitrate
reduction that can be obtained using the proposed encod-
ing scheme, with respect to independently encoding the two
views (i.e., simulcast coding). That is:

Bit rate reduction =
RINTRA

s −RINTER
s

RINTRA
s +RINTRA

b
(5)

For those tests regarding non-binary features, we measure
the distortion introduced by quantization using the signal-to-
noise ratio (SNR), which is defined as:

SNR = 10 log 10

∑M
i=1 ||di||22∑M

i=1 ||di − d̃i||22
, (6)

where d̃i is the decoded i-th descriptor.
In all experiments, λ in (2),(3) and (4) is set equal to 1. We

expect improved performance when adjusting the value of λ
depending on the target bitrate, but we leave such analysis
to future investigations. Similarly, we leave to future works
evaluating the impact of using features from multiple views
on the accuracy of automatic analysis tasks such as object
recognition.

4.1. Impact of camera displacement

As a first test, we evaluate the bitrate reduction achievable at
different values of the displacement between the two views.
Figures 2(a) and 2(b) report the results obtained for the Bal-
loons and Kendo sequence respectively. As expected, the
achievable bitrate reduction increases as (i) the inter-camera
spacing decreases and (ii) the distortion increases (i.e., the
quantization step gets larger). It is particularly interesting to
focus on the gain achievable at 15dB of SNR, a distortion
level beyond which the performance of analysis tasks such as
object recognition typically saturates [6]. In this case, the bi-
trate reduction is as high as 25% when the cameras are 5cm
apart, and drops to about 10-15% for a displacement of 30cm.



The same test was repeated for binary descriptors, this
time considering different descriptor sizes instead of different
distortion levels. As a rule of thumb, the bigger the descriptor
size, the better its performance in a visual analysis task. Fig-
ure 3(a) and 3(b) report the results obtained for the Balloons
and Kendo sequence, respectively. As one can see, the overall
trend is the same as for the non-binary scenario, but a smaller
bitrate reduction, limited to about 5-10% is achievable in this
case.

4.2. Impact of non-ideal synchronization

One basic assumption in the field of multi-view video cod-
ing is that the cameras are perfectly synchronized. This is not
a problem when the two views are acquired simultaneously,
as it happens in 3D acquisition systems. However, in some
cases the cameras are driven by independent clocks and such
an assumption fails. Visual Sensor Networks are an example
of a distributed system where cameras are not perfectly syn-
chronized by a central clock. Synchronization may be still
achieved with ad-hoc protocols, at the cost of increasing en-
ergy consumption [16]. As a consequence, complex synchro-
nization protocols are typically avoided in VSNs. Thus, it is
interesting to evaluate the performance of the proposed en-
coding scheme when the views are non-synchronized. In Fig-
ure 4(a) and 4(b) we report the achievable bitrate reductions
obtained by varying the delay in the acquisition of two frames
by two cameras with a spacing of 5cm, for the Balloons and
Kendo sequence, respectively. Clearly, the performance de-
creases as the delay increases. For BRISK, the performance
decrease is limited to 5 percentage points in the worst case
(512 bits descriptor - 1 second of delay), whereas for SIFT
the performance decrease can be as high as 15%.

5. CONCLUSIONS

We have proposed an architecture for coding local visual fea-
tures extracted from multiple views. The proposed method
can be applied to either real-valued or binary local features.
Experiments on publicly available datasets show that bitrate
savings in the order of 20% can be achieved for real-valued
features. For binary features, the gain is limited to 10%.
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