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Abstract 

 
The application of the Digital Image Correlation technique to the determination of the 

𝐽𝐽-integral at fracture initiation for carbon-black filled natural rubber compounds is discussed. 
Three different compounds with varying carbon black content were tested, using two different 
tests: pure shear and biaxial tensile test. Digital image correlation was used to measure the 
displacement field around the crack tip in the tested specimens. From the displacement field, 
which is interpolated using a finite element scheme, the stresses were evaluated by using Ogden’s 
hyperelastic model, and the J -integral could be calculated. The results compare well with both 
theoretical and finite element results. 
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1. Introduction 
 

The application of digital image correlation (DIC) techniques [1] to the measurement of 
mechanical parameters dates back to the early ’80s [2–4] and it’s getting more and more 
widespread (see [5, 6] for reviews). 

DIC has been used to measure the displacement field in strained specimens and its results 
were applied to the identification of constitutive laws parameters both for elastic (see e.g. 
[6]) and hyperelastic materials (e.g. in [7]). 

It was also used to study fracture phenomena, mainly in the framework of linear elastic 
fracture mechanics (LEFM). It was employed to evaluate the stress intensity factors in 
isotropic [8, 9] and anisotropic [10] materials. LEFM holding, in some neighbourhood of 
the crack tip the displacements are directly proportional to the stress intensity factors, so 
there is no need to evaluate the stress or the strain field in order to measure them. On the 
other hand, to measure the 𝐽𝐽-integral by employing its definition, it is required to calculate 
the stress field; in turn this implies making some assumption on the material constitutive 
model. A DIC measure of the 𝐽𝐽-integral by domain integration (see e.g. Li et al. [11]) was 
proposed in [12] for the evaluation of mixed mode stress intensity factors in linear elastic 
materials. The stresses and the strains had to be evaluated before the 𝐽𝐽-integral could be 
calculated. Methods for elasto-plastic materials were recently proposed by Yoneyama et 
al. [13] both by the evaluation of the stress field and subsequent contour integration and by 
fitting the displacement field alone to the Hutchinson-Rice-Rosengren solution. 

For hyperelastic materials, to the best of the authors’ knowledge, the only attempt at 
studying fracture via DIC is the work by Mzabi et al. [14], where an ad-hoc criterion for 
fatigue fracture was proposed, outside of the standard elastic fracture mechanics criteria. 
For such a class of materials the evaluation of fracture mechanics quantities such as the J -
integral may be more complicated than for linear elastic ones. For instance there is no 
universal solution as the LEFM one, but the solution form and the asymptotic behaviour of 
the stress or displacement field depend on the constitutive law used. An asymptotic analysis 
of the elastostatic field near the tip of a crack in a neo-hookean material were given first by 
Wong and Shield [15]; the case of the so called generalised neo-hookean material was 
thoroughly dealt with by Geubelle and Knaus [16] and results for a class of Ogden-like 
materials were obtained by Le and Stumpf [17]. However, as the body of literature on the 
subject is much more limited than on LEFM, it is not definitely clear how many singular 
terms there are in the solution and which is the extent of the region they dominate, 
especially for the more complex models, for which the intricate field equations limit the 
analysis mostly to the dominant singular term. It is therefore hard to devise strategies 
relying on the fitting of the displacement field alone to some functional form. It is safer to 
resort to the 𝐽𝐽- integral definition and calculate both the stress and the deformation gradient 
fields. There are many error sources that can interfere in this procedure. Particular concern 
is caused by those linked to the identification of the material parameters, which must 
provide a reliable description of the material under all of the stress states, not only under 
those used to identify the material model parameters. It is known in fact that for material 
models which are non-linear in the parameters, thus leading to fitting problems which are 
not necessary convex, a good fit does not automatically grant the ability to reproduce the 
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actual material behaviour under different conditions (see e.g. [18] for a thorough discussion 
of these issues). 

In this work, the fracture toughness (J -integral) of filled and unfilled natural rubber (NR) 
compounds was investigated via DIC. A commercial DIC software package (VIC2D by 
Correlated Solutions, Inc.) was used to measure the displacement field in notched pure shear (PS) 
specimens and in square specimens under biaxial load. The results were then post-processed 
using the application programming interfaces provided by the commercial finite element 
code ABAQUSTM [19], i.e. transforming the results of the DIC analysis into an ABAQUS 
finite element model, whose nodes correspond to the discrete set of DIC measure points. A 
similar approach was used by Hild and co-workers [6, 12] with a in-house code. 

Ogden’s model [20] for incompressible materials was chosen to describe the material 
behaviour. To identify the material parameters pure shear, uniaxial and equibiaxial tensile 
tests were run on unnotched specimens. Because of the issues described above, particular 
care was placed in the validation of the material model by checking its predictive 
capabilities against experimental data obtained from tests which are independent of the ones 
used for identification. 

The 𝐽𝐽-integral values obtained by DIC were compared with those from conventional 
finite element analysis. 

After some background information is provided in Section 2, Section 3 gives the details 
on the experimental part. It will also give details on the finite element simulations of the 
tests that were run for comparison purposes and on the strategy followed in converting the 
DIC results into a finite element model (subsection 3.5). Results are eventually presented in 
section 4. 

 
 

2. Background 
 

2.1. J-integral evaluation 
The J-integral [21] has been widely adopted as a parameter to study the fracture 

resistance of rubbers (e.g. [22–26]), usually in a purely (non-linear) elastic framework, i.e. 
in a setting where the only source of dissipation is the creation of new crack surfaces at the 
crack tip. The fracture criterion in such a framework is a Griffith like one, i.e. fracture is 
assumed to occur when 

 
𝐽𝐽 = 𝐽𝐽𝑐𝑐  (1) 

 
where Jc is the so called toughness or fracture resistance. The fracture process driving force, the J -
integral, can be written as contour integral around the crack tip. Assuming a crack propagating in 
a self similar way, the J -integral is given by 

  

 𝐽𝐽 =  ∫ 𝒒𝒒.𝒃𝒃.𝒏𝒏 d𝛾𝛾𝛾𝛾   (2) 
 

where q is the crack propagation direction unit vector, γ is a contour starting from the lower 
crack face and ending on the upper one and enclosing the crack tip, n is the vector normal to γ 
(see Fig.6). γ was defined in the reference configuration, which was used for all the other 
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calculations as well. In Eq.2 b is the Eshelby’s tensor [27, 28], that can be written as 
 

𝒃𝒃 = 𝚿𝚿𝑰𝑰− (𝑭𝑭− 𝑰𝑰)𝑻𝑻.𝑷𝑷 (3) 
 

where Ψ is the strain energy density, F is the deformation gradient and P the first Piola-
Kirchhoff stress tensor. Note that 𝑭𝑭 − 𝑰𝑰 is the displacement field gradient, 𝑰𝑰 being the unit 
tensor. 

In a finite element framework it is rather common to convert the representation in Eq.2 into 
an area integral by the introduction of a smoothing function [11], so as to use a gaussian integration 
scheme consistent with the finite element framework, thus relying on the more precise values for 
the stresses and the strains evaluated at the Gauss’ points. Numerical experimentation showed 
however that in the present case a line integral representation is more than adequate if a sufficient 
number of points is included in the integration path. 

In order for the J -integral to be calculated the strain energy density and the stresses are 
needed. Thus a constitutive model to describe the stress-strain behaviour of the material 
must be chosen. 

 

2.2. Ogden’s model fitting 
It was assumed that the natural rubber compounds used in this study could be described 

by Ogden’s hyperelastic law for incompressibile materials [20], for, among the different 
models tested (polynomial, Arruda-Boyce, Yeoh), it was the one which gives the best fits to 
the experimental data and the most stable behaviour (in Drucker’s sense). 

The corresponding strain energy density is given by 
 

Ψ = ∑ 𝜇𝜇𝑖𝑖
𝛾𝛾𝑖𝑖

𝑛𝑛
𝑖𝑖=1 �𝜆𝜆1

𝛾𝛾𝑖𝑖 + 𝜆𝜆2
𝛾𝛾𝑖𝑖 + 𝜆𝜆3

𝛾𝛾𝑖𝑖 − 3� (4) 
 

where 𝜆𝜆𝑗𝑗 (𝑗𝑗 = 1,2,3)are the principal stretch ratios and 𝜇𝜇𝑖𝑖 and 𝛾𝛾𝑖𝑖, with 𝑖𝑖 =  1, . . . , n, are 
material parameters. The number of terms in the sum, n, may be regarded as a material 
parameter as well, however, it is common practice to fix it a priori. Hence there are 2n 
parameters. In this work n was arbitrarily fixed to 3. The shear modulus in the undeformed 
configuration, µ, satisfies the following relationship [20] 

 
2𝜇𝜇 = ∑ 𝛾𝛾𝑖𝑖𝜇𝜇𝑖𝑖𝑛𝑛

𝑖𝑖=1  (5) 
 

According to Reese and Wriggers [29], sufficient conditions for the stability of the 
material and poly- convexity of the strain energy are (no summation on 𝑖𝑖): 

 
 

𝜇𝜇𝑖𝑖𝛾𝛾𝑖𝑖 > 0 (6a) 
|𝛾𝛾𝑖𝑖|  >  1 (6b) 

 

The principal first Piola-Kirchhoff stresses are found from direct differentiation of Eq.4 
as [30]: 

𝑃𝑃𝑖𝑖 = − 𝑝𝑝
𝜆𝜆𝑖𝑖

+ 𝜕𝜕Ψ
𝜕𝜕𝜆𝜆𝑖𝑖

 (7) 
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In the last equation, 𝑝𝑝 is the hydrostatic pressure that can be determined by the stress 

boundary conditions pertaining to a specific load case [30]. 
To identify the material parameters the results from the characterisation tests, described 

in Sec. 3, where fitted simultaneously: following a Least Squares approach the objective 
function used was defined as 

 
𝑓𝑓 = ∑ ∑ 𝑊𝑊𝑖𝑖,𝑗𝑗�𝑃𝑃�𝑖𝑖,𝑗𝑗 − 𝑃𝑃𝑖𝑖.𝑗𝑗�𝑙𝑙

𝑗𝑗=1
𝑚𝑚
𝑖𝑖=1  (8) 

 
where 𝑚𝑚 is an index representing the test type (pure shear, uniaxial or equibiaxial tensile), 𝑗𝑗 is 
an index running over all the 𝑙𝑙 experimental data points of the 𝑚𝑚-th experiment,  𝑃𝑃�𝑖𝑖,𝑗𝑗 is the 𝑗𝑗-
th value of the stress measured in the 𝑖𝑖-th experiment, 𝑃𝑃𝑖𝑖.𝑗𝑗is the corresponding prediction for a 
given set of material parameters and 𝑊𝑊𝑖𝑖,𝑗𝑗are weights corresponding to 1/𝑠𝑠2, 𝑠𝑠 being the standard 
deviation of the average stress for a given stretch. 

The problem is also subject to the constraints given in Eq.6. In some cases however these 
constraints were relaxed to check if a better fit could be obtained, and the stability of the 
identified model verified a posteriori. 

The Least Squares problem was solved by a custom Python code, basically a wrapper 
around the non- sorting genetic algorithm NSGAII [31] made available by the Python 
package pyOpt [32]. 

It is important to note that since the stresses depend non linearly on the material 
parameters, there is no guarantee that there is a unique solution to the fitting problem. The 
identified model may thus be unable to correctly predict the material response when the 
stress state varies significantly from of the one stress states used during fitting, i.e. the 
minimum found may not correspond to the actual material behaviour. To check the 
parameter reliability, an extensive validation is required. 

 
 

3. Materials and methods 
 

3.1. Materials 
Natural rubber (NR0) and two carbon black filled natural rubber compounds (NR25 and 

NR50) were used in this study. The filled compounds contained 25 and 50 phr of N330 
carbon black. The content of sulphur in the rubber was 1.3 phr, and in addition stearic acid 
(2 phr), tertButyl2benzothiazole (0.8 phr) and Zinc oxide (3 phr) were added to the rubbers 
for the vulcanisation process. Rubber sheets were compression molded at 160 ◦C and 8 MPa 
for 15 min so as to assure complete sulfur vulcanization. Uniaxial tensile test pieces were 
cut using a die from flat sheets, while biaxial and pure shear specimens (see section 3.2) 
were compression moulded in specially devised moulds. The thickness of the rubber sheets 
was 𝐵𝐵=1 mm. 

 
3.2. Characterisation  Tests 
In order to identify the constants needed for the constitutive modelling, three types of 

tests were employed. 
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Uniaxial tensile tests were run using a dumbbell test specimen as prescribed by ASTM 
D638 (type B-IV). These tests are described in [33], to which the reader is referred for the 
results. 

Pure shear tests were run on unnotched specimens (𝑎𝑎0 = 0) with the shape shown in 
figure 1, using a gauge length ℎ of 10mm. As it can be seen, at the edge of the long sides 
the cross section thickness was increased with respect to the rest of the specimen. The 
thicker regions were fitted into a specially devised clamp which avoided slippage, and 
greatly reduced the flow of material from the gripped zone into the free zone. These tests 
were run on an Instron 5800 dynamometer at a prescribed crosshead speed of 30 mm min−1 
(which provides a strain rate similar to that of the tensile tests). The nominal stress-stretch 
traces are shown in Fig.8(a) (symbols). 

Equibiaxial tensile tests were performed on unnotched (2𝑎𝑎0 =  0) square specimens 2(a). The 
specimen edges are thicker than the rest, in order to connect the specimen to a biaxial 
dynamometer using the same gripping technique adopted for PS tests. Five separate 
mounting positions were prepared for each side of the specimen, corresponding to the five 
clamps on each side of the clamping system, by cutting the thick edge. At the end of each 
cut a circular hole was cut in the specimen to reduce the stress concentration. Similar 
solutions have been adopted in the past for biaxial tensile tests [34, 35]. Nevertheless it is to 
be noted these cuts acts as stress raiser, reducing the range of strains for which the biaxial 
material behaviour can be measured, as they cause premature failure at the edges. 

The tests were run on a custom-built dynamometer; the experimental setup can be seen in 
Fig. 2(b). The dynamometer axes are all independent thus allowing studying every possible 
biaxial stress state. In this work however only equibiaxial data will be shown and used.   
The crosshead displacement rate was 60 mm min−1. 

Further details on the biaxial dynamometer can be found in [36]; in the same reference 
the results of some preliminary tests run on the dynamometer are reported. They show that 
the stress state is fairly uniform (with the exception of a small region near the border) and 
that the equibiaxial stress-stretch relationship of the material can be measured just by taking 
the crosshead displacement to calculate the stretch ratios and the ratio of the load over the 
nominal cross section (whose length is 131 mm, Fig.2(a)). In fact, using such definitions the 
results obtained on the biaxial dynamometer for uniaxial tensile and pure shear stress states 
agreed with those obtained on the standard specimens [36]. Typical stress-stretch response 
under equi-biaxial conditions is shown in Fig.8(b) (symbols). 

 
3.3. Fracture  Tests 
Two mode I configurations were used. 
The first is a pure shear one, Fig.1, with an edge notch on the mid-plane. For fracture 

tests, ℎ was set to 13 mm. The edge notch was made by using a sharp razor blade and its 
length, 𝑎𝑎0, was chosen to be 16 mm; as this is longer than the height of the specimen, such a 
length should give a crack driving force which is almost independent of the crack length, 
according to Yeoh [37], i.e. should be enough to neglect edge effects by approaching the 
case of a slab extending to infinity along 𝑥𝑥. The negligible influence of the free edges on the 
strain field was also checked by DIC [36]. 
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For the pure shear specimen the 𝐽𝐽-integral can be easily evaluated as [38, 39]: 
 

𝐽𝐽 = 𝑈𝑈
𝐵𝐵(𝑊𝑊−𝑎𝑎) (9) 

 
where 𝑎𝑎 is the crack length, 𝑊𝑊 the specimen width and 𝑈𝑈 is the work done by the external 
forces. 

Each test was video-recorded with a 10 Megapixels CCD, at a frame rate of 3 fps and a 
resolution of 82.5 pixels/mm.  During the test the camera could not move with respect to the 
dynamometer crosshead, thus it was not able to follow the specimen during deformation. 
Therefore a large field of view had to be used in order to be able to keep the specimen 
inside it from the beginning of the test up to fracture.  However this set-up negatively 
affected the precision of the displacements measured by DIC in the initial stages of the test, 
when the overall displacements were small. 

In order to measure the displacement field via DIC a random speckle pattern was drawn 
on the specimens with a water based metal grey paint, sprinkled by an airbrush.  For the 
correlation analysis the step size between subsets was chosen to be 6 × 10−2 mm, subset size 
being about 0.4 mm 

Three replicates per test were made. 
Some notched biaxial fracture specimens were also used, see Fig.2(a); a 16 mm long 

notch at the centre (along the x direction) was inserted by a sharp razor blade mounted on a 
special fixture. In some special cases also notches with initial length 𝑎𝑎0of 4 and 8 mm were 
considered. 

Although such a setup can be used to test specimens under different biaxility conditions 
[36], in this work only the results obtained for conditions analogous to the pure shear test 
will be considered. These are reproduced by imposing zero displacement along the x-axis, 
while applying a constant displacement rate along the y-direction, up to fracture. In this way 
the results from the two test geometries could be directly compared; results under different 
biaxility conditions will be used only for the validation of the constitutive model. The 
crosshead displacement rate was 1 mm s−1. 

For DIC measurements, tests were video recorded with a 10 Mpixel CCD camera at a 
frame rate of 1 fps and with a resolution of 34 px/mm. The step size was about 0.15 mm, 
with subset size 0.6 mm. In this case the camera was fixed with respect to the crack, whose 
position during the test remains centred at the centre of the dynamometer (see Fig.2(b)) 

There is no known analytic solution giving the 𝐽𝐽-integral for this specimen, so as a 
reference value the one calculated via FE simulations was used (see Sec.3.4). 

As to the fracture behaviour of the investigated materials, it should be noted that the 
filled compounds exhibited sideways crack propagation [40], i.e.  before initiation and 
propagation of the main crack along its original direction, small lateral cracks grew. These 
sideways cracks originated more or less at the original tip, and propagated in a stable way 
along a curved path which starts almost perpendicular to the initial crack and then tends to 
rotate backwards. Fig.3 shows the deformed shape assumed by a crack after sideways crack 
propagation in a NR50 PS sample, just before initiation of the main crack. The sideways 
crack tips are indicated by the arrows. 
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In PS tests, for NR25 sideways propagation stopped very early, sideways crack length 
being shorter than about 0.1 mm, while, for NR50, the sideways crack length before 
initiation of the main crack could reach about a millimeter. 

These cracks have a tremendous impact on the fracture resistance, effectively shielding 
the original tip from the stresses [41]. For instance, if sideways cracks were assumed to 
develop exactly at the original crack tip, a wedge-like strain energy singularity would be left 
there. If the material were linear, rather than the usual 1/𝑟𝑟 strain energy singularity a 
weaker one would develop, and the same can be conjectured for hyperelastic materials 
(asymptotic solutions for the wedge problem in neo-hookean materials can be found in [42]; 
for these materials the conjecture holds). Such a singularity wouldn’t be strong enough to 
lead to a non-vanishing 𝐽𝐽-integral. 

To tackle such a problem, the framework of purely elastic fracture mechanics is too 
narrow and should be abandoned, for instance by introducing a proper non-linear Dudgale 
like process zone ahead of the main crack, but this was not attempted in this work and a 
simpler approach was pursued. Nonetheless, provided the integration path is sufficiently 
wide to enclose the sideways crack, the 𝐽𝐽 -integral can still be evaluated and interpreted as 
the resultant of the material forces acting on all the defects present in the domain enclosed 
by the integration path (compare with [27]). Although such an approach cannot provide a 
measure of the actual material crack resistance, it can still be used to evaluate the proposed 
measuring technique and give an apparent toughness value. 

 
3.4. Finite element simulations 
To calculate the J -integral for the fracture specimens, FE models were developed using 

the commercial FE package ABAQUS [19]. 
Fig.4(a) shows a detail of the mesh used for the PS fracture specimen near the crack tip 

(overall dimensions are given in Fig.1). The gripped region, i.e. the thicker part, was not 
modelled and a 2D model was used.  Due to symmetry only half of the specimen was 
modelled.  As the thickness of the specimens was 

about 1 mm, a plane stress model was used. In a region of radius 1 × 10−1 mm centred at 
the crack tip, elements with a characteristic length of about 5 × 10−3 mm were used. 
Outside of such a region, concentric rings of elements with side length increasing in a 
logarithmic fashion were used, up to a radius of 5 mm. A free meshing technique was used 
elsewhere. Eight-noded rectangular elements were used (CPS8 in ABAQUS). A 
convergence study was run checking convergence of the predicted load and of the 𝐽𝐽 -
integral. The selected mesh comprised about 3600 elements.To simplify the collection of 
results, a boundary displacement rate in the 𝑦𝑦-direction (see Fig.1) was applied to the upper 
boundary of the specimen. The displacements along the 𝑥𝑥 direction at the upper boundary 
were forced to be zero to reproduce the gripping conditions, however this had little 
influence on the load-displacement traces predicted by the FE model. Symmetry conditions 
where applied on the crack plane. 

As to the biaxial fracture tests, modelling the boundary conditions depicted in Fig.2(b) 
would have been very complicated. To keep the model simple, only a rectangular slab with 
dimensions 60 mm x 22 mm, whose mesh is shown in Fig.4(b), was modelled. The slab is 
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centred on the crack and near the right crack tip, where the 𝐽𝐽-integral was evaluated, 
meshing was the same as for the PS case. A slightly coarser mesh was used for the left 
crack tip. The elements used were the same as in the PS model. As to the boundary 
conditions, the very same displacements measured by DIC were applied on the exterior 
boundary of the FE model by exploiting ABAQUS submodelling technique [19], after 
conversion of the DIC results to an ABAQUS database (Sec.3.5). 

Using this approach, it is not possible to predict the boundary loads and to compare them 
with the experimental ones. In order to be able to make a comparison of some global 
quantities to get an estimate of the reliability of the simulations, the major and the minor 
diameters of the deformed crack were chosen (see Sec.4.1). A mesh convergence study was 
run by monitoring the convergence of these variables; the study lead to a model containing 
about 5800 elements. 

The simulations were run for a time corresponding to the fracture time, defined as the 
initiation of propagation of the main in crack in the direction parallel to the initial notch, as 
determined from the video-recordings. 

For both the models, sideways cracks were not modelled. 
The evaluation of the 𝐽𝐽-integral was carried out by using ABAQUS built-in routine, 

which uses domain integration [19]. The values obtained using the method described in this 
subsection will be simply referred as “from FEM” in what follows. 

 

3.5. Conversion of DIC data into a finite element framework 
In this work the DIC commercial software package VIC2D by Correlated Solutions, Inc. 

was used to extract the displacement fields of the tested specimens (see Sec.3). 
The results obtained from the DIC analysis are a set of displacements at some discrete 

points in space, on a regular grid whose spacing is basically given by the step size [1]. In 
order to evaluate the strains and the stresses a set of Python routines was developed to 
convert DIC measurements to an ABAQUS database, i.e. a data structure essentially storing 
mesh geometry and field values, by using the programming interfaces provided by ABAQUS 
itself. In this way it was possible to exploit, for differentiation and integration, the robust 
interpolation scheme provided by the finite element method (as was already suggested by 
other authors [8]), exploit the powerful ABAQUS visualisation and post-processing 
capabilities and obtain a very simple mean of driving simulations of sub-regions of the 
specimen by specifying the displacements measured by DIC (see Sec.3.4). 

For each point where the DIC analysis provides a result, a node is generated at the 
point’s coordinates in the reference configuration (provided by DIC as well); in this work to 
join them into elements, Delauny’s triangulation was used in order to define first order, 
plane stress triangular elements (CPS3 in ABAQUS). The triangulation is performed using 
the facilities provided by the SciPy [43] Python package. Because of intrinsic routine 
limitations it is not possible to triangulate a concave set, so the routines creates elements 
which join the crack faces or other spots where correlation gets lost during the analysis. 
Outside of the crack region this is not a problem since the FE scheme can provide 
interpolated values for the displacement fields. For the elements bridging the crack faces on 
the other hand, the deformation gradient is of course artificially very high, but they can be 
easily excluded from processing using ABAQUS post-processing capabilities. A possible 
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alternative could be to insert, rather than standard FE, some extended finite elements (X-
FE), that can model strong displacement discontinuity [44]. 

The results of the conversion procedure are illustrated in Fig.5, using a biaxial fracture 
specimen as an example. Fig.5(a) shows a detail of the crack region in a NR50 specimen; 
the undeformed configuration is shown. The contour plot gives the vertical displacement v 
in pixels, at the onset of the main crack propagation. Note that around the crack region, and 
in particular at the tip, there is a black area for which there are no data. As the crack is a 
boundary region, correlation cannot be established there, and is immediately lost. Some 
other spots were correlation is lost can be seen too. Fig.5(b) shows the same region 
(undeformed configuration) after conversion to an ABAQUS model; the finite element 
edges are shown superposed to the horizontal displacement (converted to mm). As noted 
before, there are elements bridging the regions where correlation is lost. 

Once the displacement values are defined at the nodes, using the standard FE procedure the 
displacement field is interpolated over each element with adequate elements shape functions as 
𝒖𝒖 =  𝑵𝑵.𝒖𝒖� where 𝑵𝑵 is the shape functions matrix and 𝒖𝒖� are the nodal values; the deformation 
gradient can be calculated, both at nodes and at Gauss’ points as 

 

𝑭𝑭 =  𝛻𝛻 ⊗  𝑵𝑵.𝒖𝒖�  −  𝑰𝑰 (10) 
 

where the gradient is to be taken with respect to reference configuration coordinates. From 
the deformation gradient spectral representation [30] and Eq.4 the evaluation of the stresses 
and of the Eshelby’s tensor follows straightforwardly. 

As to the evaluation of the 𝐽𝐽-integral, in this work attention will be confined to square 
counter clock-wise paths centred around one of the crack tips (Fig.6), for the sake of 
simplicity. These paths are completely defined by r, i.e. half the path side length. When 
needed a normalised curvilinear abscissa along the path will be denoted by 𝑠𝑠. The 
correlation loss near the crack faces implies that no displacement data will be available 
there; it will be shown in the following section that this is of no consequence for an accurate 
evaluation of the 𝐽𝐽-integral. 

The displacement field resulting from the DIC analysis are, generally speaking, noisy. 
Although the differentiation operations needed to compute the stresses are conducted using 
the FE interpolation scheme, the results may turn out to be extremely noisy. 

As an example, Fig.7 shows for a NR0 PS fracture specimen some results taken along a 
path with 𝑟𝑟 = 2 mm, at fracture initiation. Both the magnitude of the displacement vector 
and the 𝑏𝑏22 component of the Eshelby’s tensor (see Fig.6 for the reference system) are 
shown by dashed lines. While the displacement magnitude seems rather smooth, 
differentiation and further elaboration of the data lead to a very noisy Eshelby’s tensor. It 
could be therefore thought that it would be better to smooth the displacement data before 
post-processing. This was attempted in this work using third order bivariate splines; the 
interpolation was performed using SciPy [43] SmoothBivariateSpline function. As it can be 
seen looking at the continuous lines in Fig.7, the resulting Eshelby tensor component is 
actually much smoother. The effect of smoothing on the evaluation of the 𝐽𝐽 -integral is 
discussed in the next section. 

The values obtained using the method described in this subsection will be simply referred as 
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from DIC in what follows. 
 

4. Results 
 

4.1. Constitutive law identification 
The parameters, simultaneously identified from pure shear, uniaxial and equibiaxial 

tensile tests, are shown in Table 1. In order to get a good fit for NR0 and NR50, some of the 
constraints in Eq.6 were relaxed. Anyway the given parameters make the model stable for 
all strains. 

Solid lines in Fig.8 show the results of the fitting procedure for the PS and equibiaxial 
tensile tests. The identified parameters give a fair description of material behaviour for all 
the three materials examined. Similar results were obtained for the uniaxial tensile tests. 

In order to validate the predictive abilities of the identified parameter sets, FE 
simulations were run on PS fracture specimens as described in section 3.4 and the predicted 
load-displacement traces checked against the experimental ones. 

Selected results for PS notched specimens are shown in Fig.9(a). The agreement is good 
for all the materials. Note that,  for NR25,  propagation after the main crack initiation was 
somewhat stable,  while it was unstable for the other materials. Of course the simulations 
were stopped at the initiation time as detected by the test video-recordings. 

For the case of the biaxial fracture specimen, due to the modelling choices made, it is not 
possible to directly compare the load-displacement traces. To compare predicted and 
measured quantities, the diameters of the deformed crack configurations where chosen; 
these were obtained under different biaxility conditions, at fracture initiation [36]. In 
Fig.9(b) the predicted major (asterisks) and minor diameters (crosses) of the deformed crack 
shape are plotted against the corresponding measured values, taken at fracture onset or at 
sideways crack onset if it takes place. The agreement is very good, with errors always 
below 10%. 

Further model validation was made by comparison of the 𝐽𝐽𝑐𝑐-integral values obtained 
from the experimental load traces using Eq. 9 with those obtained from FE simulations for 
PS fracture specimens (Table 2). The results are well matched, taking into account the large 
scatter in experimental fracture loads. 

From the previous results it can be concluded that Ogden’s model and the identified 
material parameters can provide a satisfactory description of the materials under study. 

 
4.2. Evaluation of the J -integral from DIC results 
Beginning with pure shear fracture tests, Fig.10 shows the results for the 𝐽𝐽-integral, 

evaluated on various contours (half side width 𝑟𝑟), and at some values of the boundary 
displacement 𝛿𝛿𝑦𝑦 , obtained on samples made with NR0, NR25 and NR50 respectively. The 
filled symbols represent values calculated by using the raw displacements as extracted from 
the DIC analysis, while the open ones were calculated after the displacement field had been 
smoothed. Dashed lines are the values from the FE simulations. 

As for the case of the 𝐽𝐽-integral calculation in a FE framework (e.g. [19, 45]), it is 
expected that for short paths the estimate may be not precise, in the present case, because of 
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the relatively small number of points along the integration path. Therefore it was expected 
that the 𝐽𝐽-integral value becomes truly path independent only for sufficiently large values of 
𝑟𝑟.  This is what can actually be seen in Fig.10.  However convergence of the J -integral with 
path size is rather fast: for paths with 𝑟𝑟 > 2 mm, which is almost twice the longest sideways 
crack observed in NR50, the value becomes stationary. For 𝑟𝑟 = 2 mm, the integration path 
contains about 270 points. Note that in the cases of NR0 and NR25, for which there are no 
sideways cracks or they are very small, the value of the 𝐽𝐽-integral regularly increases with 
increasing 𝑟𝑟 up to the converged one. Convergence is not always from below in the case of 
NR50. This might be related to the fact that shorter paths include part of the sideways 
cracks, if the boundary displacement is large enough for them to initiate. 

Smoothing does not seem to affect the results if a sufficiently long path is taken, nor it 
influences the convergence rate: the smoothing implied by integration seems to be enough 
to provide reliable values even starting from the noisy DIC data, which lead to very noisy 
integrands (see Fig.7). For this reason, raw displacement data will be used henceforth. 

The results compare fairly well with those from the finite element simulations, for all the 
displacement levels shown. To get a quantitative estimate of the agreement, the values of 
the 𝐽𝐽-integral from DIC were measured for six boundary displacement values on four contours 
with 𝑟𝑟 ≥  2 and averaged. The values obtained by the two methods are plotted one against 
the other in Fig.11 (symbols); a log-scale is employed for convenience. In addition the thin 
grey line gives the bisector of the first quadrant and the black thick line is a linear fit of the 
data (forced through the origin). The correlation coefficient of the fit is 𝑅𝑅2  =  0.994 giving 
a good correlation. Anyway it should be noted that there is a clear difference between the 
values at low 𝐽𝐽 (and consequently at low values of the applied displacement). This was expected 
because of the optical set-up used, which could not follow the crack tip during deformation 
(compare with section 3.3), so that higher errors can be foreseen in DIC displacement fields for 
low values of 𝛿𝛿𝑦𝑦. 

At larger values of the applied displacement the difference levels off and is mostly 
confined into a ±10% band. 

Fracture toughness values obtained for pure shear fracture specimens are reported in 
Table 2 (third column). The estimated mean values are well in line with the results from FE 
simulation and with those obtained from the infinite slab analytical solution, the differences 
in the average values being below 10%. The good agreement holds also for NR50, although 
sideways crack propagation took place in specimens made of this compound. Anyway it 
should be noted that while the sideways crack length could reach about 0.8 mm, their size is 
small relatively to the main crack length 𝑎𝑎0.  

The estimates of the standard deviation of the sample, which are given in parentheses, are 
similar for all the three methods. They are large, reflecting the large scatter in the initiation load 
which was experimentally observed. 

Similar results were obtained by considering biaxial fracture specimens made with NR0 
and NR25. In Fig.12(a) a plot analogous to those in Fig.10 is presented for NR25. The same 
features obtained with PS fracture tests can be seen:  there is no significant difference 
between the applied 𝐽𝐽 calculated by using smoothed or raw DIC data; convergence is rather fast 
and almost achieved for 𝑟𝑟 ≥  2 mm, and the results compare well with the finite element 
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reference solution. 
As to𝐽𝐽𝑐𝑐, it is the one corresponding in Fig.12(a) to 𝛿𝛿𝑦𝑦 = 53 mm. Although it is slightly 

lower than the one obtained with PS fracture specimens (Tab. 2), it is still comparable. For 
NR0 on the other hand the value obtained from the single specimen tested was 11 N/mm, in 
line with the results from PS tests taking into account the large dispersion. 

Different results were obtained instead for the last compound, NR50. Fig.12(b), where 
the values of the applied J versus the boundary displacement are reported, shows that for the 
reference crack length (𝑎𝑎0 = 8 mm) there is a very good agreement between the 𝐽𝐽 values 
from FEM and from DIC, at low values of boundary displacement and almost up to 
fracture. However toughness (the last point of the curve) is well below the one obtained 
with the pure shear test: it is about 50% smaller. To check the independence of the results 
from the geometry, two tests at varying the initial crack length were run for 𝑎𝑎0 4 mm and 2 
mm respectively. 
𝐽𝐽 results for the tests with shorter crack length are also shown in Fig.12(b). DIC results 

shown rather than being averages for different values of r as before, were calculated on the 
largest possible contour (𝑟𝑟 =  𝑎𝑎0). The value at fracture initiation obtained by FE 
simulations is the same for the three crack lengths; this is an indication that, independently 
of 𝑎𝑎0, fracture is to some extent controlled by 𝐽𝐽, the applied boundary displacement being 
such as to give rise to an identical apparent strain energy release rate. However the apparent 
toughness value determined is not consistent with the one from the PS test, and it was 
thought that this could be related to presence of sideways cracks, which are not included in 
the FE models. 

The sideways crack length was measured for these samples from DIC. It was noted that 
with respect to the PS tests, the ratio of the estimated maximum sideways length to the 
initial crack length was generally larger: while for PS specimens it is about 0.04, for the 
square specimens it was found to be about 0.1, 0.25 and 0.75 for 𝑎𝑎0  equal to 8, 4 and 2 mm 
respectively. 

The fact that 𝐽𝐽𝑐𝑐  appears to be lower than for the PS test is in line with the qualitative idea 
that the longer the sideways cracks are the more they shield the main crack. 

As to the results from DIC, up to some boundary displacement value, they match 
perfectly the ones obtained via FEM. They become significantly different only some time 
after the onset of sideways cracks, consistently with the observation on PS specimens that 
short sideways cracks have no noticeable effect. 

For large values of the displacement, DIC results diverge consistently and seem to 
suggest a larger value for 𝐽𝐽𝑐𝑐 than that estimated by FEM. While it is not clear if such a result 
can be definitely related to sideways crack presence (some path dependence was noted on 
the results at larger 𝛿𝛿𝑦𝑦), the problems induced by their presence call for some further 
studies, aimed for instance at clarifying the relationship between the applied J and their 
length, which are outside of the scope of this work. 

 
 

5. Conclusions 
 

The number of steps which are needed to calculate toughness values from displacement 
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fields measured by digital image correlation is quite large: complex non-linear constitutive 
laws must be identified and validated, by itself a non-trivial task; the measured 
displacement field must be transformed into a strain field that must be used to calculate a 
stress field; finally these data can be used to evaluate the J -integral by integration. 

Although there are many sources of error that can come into play during this procedure, 
it has been shown that, in spite of the noise generated by the needed numerical derivatives, 
DIC data can be used effectively to measure toughness for rubber like materials, within the 
framework of non-linear elastic fracture mechanics. The viability of the method was shown 
on two different test configurations. 

The convergence of the calculated value of the 𝐽𝐽-integral with the contour size is 
relatively fast and the results are well in line with those obtained both by experimental data 
reduction schemes relying on the (rare) analytic solution available and by FEM techniques. 

Both FEM and DIC techniques can be used when there is no analytical solution 
available, but broadly speaking a DIC analysis requires less effort, as no model of the body 
geometry is necessary, and it can be applied only to the region containing the crack to be 
studied. 
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Figure Captions 
 
Figure 1: Pure shear test piece used in this work. The thick edges allow clamping 

without excessive slippage. Nominal dimensions in mm. 
Figure 2: Biaxial tensile test (a) Square specimen used for biaxial tests: nominal 

dimensions in mm. (b) A picture of the biaxial dynamometer with the loading rig used to 
test square specimens. 

Figure 3: NR50 PS fracture sample.  Detail of the main crack tip region just before 
initiation of the main crack, showing sideways cracks (indicated by the arrows) 

Figure 4: FE models of fracture specimens. Dimensions in mm. (a) PS fracture 
specimen: detail of the crack tip region. Only the upper half of the specimen is modelled. 
(b) biaxial fracture specimens: submodel. 

Figure 5: NR50, biaxial fracture specimen. Detail of the crack region with contour plot of 
the displacement fields at fracture initiation. Both the pictures are referred to the 
undeformed configuration. (a) Raw data from DIC analysis. (b) Result of the conversion of 
VIC data to a FEM model. 

Figure 6: Scheme of the crack tip in the finite element model resulting from the 
conversion of DIC data into a FE model. The thick line represents the square paths used for 
𝐽𝐽-integral evaluation 

Figure 7: Norm of the displacement field and one of the components of the Eshelby’s 
tensor along a path with 𝑟𝑟 = 2 mm. NR0, PS fracture specimens at initiation time. 

Figure 8: Nominal stress vs. stretch ratio curves for the three materials tested (open 
symbols).  Continuous lines are the Ogden’s model fits to the experimental data. (a) Pure 
shear test. (b) Equibiaxial test. 

Figure 9: Comparison of the FEM results with the experimental ones for various fracture 
specimens. (a) Load-displacement traces for notched PS specimens. Symbols: experimental 
data. Solid lines: FEM predictions. (b) Comparison between the predicted and measured 
diameters of the deformed cracks for biaxial fracture tests. 

Figure 10: Pure shear fracture tests: 𝐽𝐽-integral values for some values of the boundary 
displacement. Solid symbols: eval- uated from the raw DIC displacements. Empty symbols: 
evaluated after DIC displacement smoothing. Dashed lines: FEM predictions. (a) NR0. (b) 
NR25. (c) NR50. 

Figure 11: PS: comparison between FEM and DIC results. 
Figure 12: Biaxial fracture tests: 𝐽𝐽-integral results. (a) NR25, 𝐽𝐽-integral values for some 

values of the boundary displacements. Solid symbols: evaluated from the raw DIC 
displacements. Empty symbols: evaluated after displacement smoothing. Dashed lines: 
FEM predictions. 𝛿𝛿𝑦𝑦 = 53 mm corresponds to fracture initiation. (b) NR50, 𝐽𝐽-integral results 
for different initial crack lengths. 
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Tables 
 

Compound 𝜇𝜇1[MPa] 𝜇𝜇2 [MPa] 𝜇𝜇3 [MPa] 𝛾𝛾1 𝛾𝛾2 𝛾𝛾3 
NR0 0.39 0.036 -0.038 1.96 5.80 5.77 
NR25 0.94 0.041 -3.5e-5 1.00 4.31 -5.65 
NR50 1.39 0.29 -1.4e-4 0.78 3.84 -6.96 

 
 

Table 1:  Ogden’s model parameters identified for the three compounds. 
 
 

 𝐽𝐽𝑐𝑐  [N/mm] 
Compound analytic FEM DIC 

NR0 8 (±28%) 9 (±28%) 8 (±23%) 
NR25 6 (±19%) 5.4 (±17%) 5 (±21%) 
NR50 42 (±12%) 44 (±14%) 41 (±15%) 

 
 
Table 2:  PS fracture test.  Apparent toughness values obtained by Eq. 9 (analytic), via FEM and via 
digital image correlation post-processing, with rough estimates of the standard deviation (three 
samples). 
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Figure 2b 
 

 
 
Figure 3 
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This is the pre-peer reviewed version of the following article:  Caimmi, F., R. Calabrò F. Briatico-Vangosa, C. Marano, 
M. Rink  2015.  J-Integral from Full Field Kinematic Data for Natural Rubber Compounds. Strain 51 (5): 343—356, 
which has been published in final form at http://dx.doi.org/10.1111/str.12145. This article may be used for non-
commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. 

http://dx.doi.org/10.1111/str.12145


 

 
Figure 8a 
 
 

 
Figure 8b 

 
Figure 9a 
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