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Abstract Constraint LTL over clocks is a variant of CLTL, an extension of linear-
time temporal logic allowing atomic assertions in a concrete constraint system.
Satisfiability of CLTL over clocks is here shown to be decidable by means of a re-
duction to a decidable SMT (Satisfiability Modulo Theories) problem. The result
is a complete Bounded Satisfiability Checking procedure, which has been imple-
mented by using standard SMT solvers. The importance of this technique derives
from the possibility of translating various continuous-time metric temporal logics,
such as MITL and QTL, into CLTL over clocks itself. Although standard decision
procedures of these logics do exist, they have never been realized in practice. Suit-
able translations into CLTL over clocks have instead allowed us the development
of the first prototype tool for deciding MITL and QTL. The paper also reports
preliminary, but encouraging, experiments on some significant examples of MITL
and QTL formulae.

1 Introduction

Constraint LTL [18], called CLTL, is an extension of linear-time temporal logic
allowing atomic assertions in a concrete constraint system. By carefully choosing
the constraint system, CLTL may be decidable, as well as expressive and well-
suited to define infinite-state systems and their properties.

In this paper, we define a variant of CLTL, called CLTL over clocks (CLTLoc),
where arithmetic variables occurring in atomic assertions behave as clocks. At
every (discrete) position in time, a clock measures the real time elapsed since the
last position when the clock itself was “reset” (i.e., the variable was equal to 0);
clocks can also be compared against an integer constant. By definition, in CLTLoc
each position i P N is associated with a real value (a “delay”) corresponding to
the “time elapsing” between i and the next position i ` 1. This allows mixing of
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discrete events with continuous-time, a typical situation arising in many computer-
controlled applications.

Satisfiability of CLTLoc is here shown to be decidable by means of a reduction
to a decidable SMT (Satisfiability Modulo Theories) problem, resulting in a com-
plete Bounded Satisfiability Checking procedure. Although other automata-based
decision procedures are also suitable to show decidability of CLTLoc (e.g., [18]),
the novelty of our reduction is that it can easily be implemented by using stan-
dard SMT solvers, such as [25]. In fact, the paper also reports on a new, publicly
available, software tool to verify CLTLoc, allowing the application of CLTLoc to
the specification and the verification of timed systems. However, a further advan-
tage of our approach is that various continuous-time metric temporal logics, such
as MITL (Metric Interval Temporal Logic) [4] and QTL (Quantified Temporal
Logic) [22], may be translated into CLTLoc itself. These translations have allowed
us the development of the first available tool for deciding both MITL and QTL.
In this paper we report encouraging experiments on some significant verification
examples, such as the timed lamp and its properties, in CLTLoc, MITL and QTL.
Further evidence of the generality and effectiveness of our approach is provided
by our translation of the extension of QTL with so-called Pnueli and counting
modalities [29] into CLTLoc, thus providing its first concrete decision procedure.

In general, the existing level of support for verification of continuous-time tem-
poral logics is not as well developed as for discrete-time models. Uppaal [7] is the
de-facto standard tool for verification of Timed Automata, but it does not support
continuous-time temporal logics: not only satisfiability checking is not available in
Uppaal, but even the formalization of system properties in temporal logic is not
allowed, aside from rather simple invariants and reachability properties. Satisfi-
ability Modulo Theories is a promising but well-consolidated field, supported by
efficient solvers that are able to decide problems of many disciplines. In particular,
decidable SMT problems have been already considered in the recent past, for in-
stance to solve reachability [26] and the bounded version of language inclusion [6]
for Timed Automata. The idea is to give a direct representation of bounded runs
of Timed Automata through an SMT formula, capturing a bounded unrolling of
the transition relation. Similarly, also Bounded Model-Checking of Linear Tempo-
ral Logic on Timed Automata [5] can be tackled by reducing the problem to an
instance of a SMT problem, by using a technique extending the traditional BMC
procedure for LTL finite automata [17], but by restricting the set of valid runs
to those that are periodic in the values of the clocks. Finite or periodic runs of
Timed Automata can then be encoded in SMT formulae with explicit arithmetic.
Nonetheless, also this approach has so far failed to produce a concrete decision
procedure for logics such as MITL and QTL. This difficulty is caused by the gap
of translating formulae into Timed Automata, a step which is avoided by our
approach. Standard decision procedures of MITL and QTL logics were already
defined some time ago (e.g., [4,24,30]), typically based on Timed Automata [3],
but, to the best of our knowledge, they have never been realized in practice. This
may suggest that these procedures are not easily implementable.

Temporal Logics such as TPTL (Timed Propositional Temporal Logic), MTL
(Metric Temporal Logic), MITL and QTL, and operational model such as Timed
Automata as well, may be interpreted over dense time domains in two ways: the
“pointwise” semantics and the “continuous (or “interval-based”) semantics [16]. In
the pointwise semantics, an atomic formula is interpreted as an instantaneous event
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with a timestamp. A behavior (or run) of the system is described by a timed word,
which is a sequence pa0, t0qpa1, t1q . . . , where each ai is a symbol of the alphabet
and each ti is a real-valued timestamp. A timed word must be strictly increasing
(ti ă ti`1) and must verify the non-Zeno condition, i.e., it is finite or it diverges to
infinity. The pointwise semantics is very natural when considering specifications
of Timed Automata, with atomic formulae interpreted as state transitions. In the
continuous semantics, atomic formulae are instead interpreted as state predicates,
i.e., continuous flows or signals. A signal (also called a timed state sequence) is a
mapping associating values in R` with states. A finite variability condition (strictly
related to the non-Zeno condition) is always assumed. There are various results of
expressiveness and decidability concerning MTL over the two semantics. First, it
is obvious that a MTL (and MITL as well) formula interpreted over the pointwise
semantics can always be translated into an equivalent MTL (or MITL) formula in
the continuous semantics. However, other results are less immediate. For instance,
MTL is undecidable in the continuous semantics [4] (unless time-singular intervals
are ruled out, thus obtaining the logic MITL), but it is decidable, although not
primitive recursive, in the pointwise version over finite models [27]–paving the way
to showing that MTL in the continuous semantics is strictly more expressive than
MTL in the pointwise semantics [19,16] (over both finite and infinite models). No
similar expressiveness result is known for MITL.

CLTLoc is naturally defined over timed words and it as expressive as Timed
Automata [15], i.e., it can define the same class of languages (the timed ω-regular).
In this paper, we prove that CLTLoc is decidable, with an SMT-based procedure
which has been implemented. We applied the resulting tool to a few examples of
CLTLoc specifications, showing that their verification is feasible.

However, CLTLoc can also be used as a tool to interpret and verify other metric
temporal logics. For instance, in [13] we provide a complete translation of MITL
formulae over the continuous semantics into equisatisfiable CLTLoc formulae, thus
allowing their verification with our CLTLoc tool. We have implemented this trans-
lation and we report on various experimental results on MITL specifications.

We also consider the case of MITL over the pointwise semantics, first by study-
ing its expressiveness compared to CLTLoc. In this case, MITL is less expressive
than CLTLoc, but we prove that CLTLoc is equally expressive with projection-

closed MITL (pMITL), an extension of MITL allowing existential propositional
quantifiers [21]. Clearly, MITL formulae on timed words may be verified by a
simple conversion into equivalent MITL formulae on signals, which can then be
translated into CLTLoc. However, the translation from pMITL to CLTLoc, de-
fined in the equivalence proof, is much more compact than the one defined for the
continuous case, since in general signals may be more complex than timed words.
Therefore, it may be more efficient to apply the new translation to convert MITL
pointwise formulae directly into CLTLoc.

The paper is organized as follows. The first part is devoted to the main def-
initions and to the proofs of decidability of CLTLoc and of equal expressiveness
of CLTLoc and pMITL: Sect. 2 defines CLTLoc, and illustrates it by means of
a running example (a timed lamp), while Sect. 3 briefly recalls the definition of
MITL and some of its variants, both in the pointwise and in the continuous cases;
Sect. 4 proves that CLTLoc is decidable; Sect. 5 shows that pMITL and CLTLoc
are equally expressive over the pointwise semantics.



4 Marcello M. Bersani et al.

The remainder of the paper is devoted to illustrate the ideas and experimental
results of our verification tool for CLTLoc: Sect. 6 outlines the SMT-based decision
procedure of CLTloc, Sect. 7 recalls the general idea of [13] behind the translation
of MITL over the continous semantics into CLTLoc, while Sect. 8 illustrates the
tool, showing verification results for CLTLoc and MITL. Sect. 9 concludes.

2 Constraint LTL over clocks

Constraint LTL (CLTL [18,11]) is an extension of LTL allowing atomic formulae
over a constraint system. Let AP be a finite set of atomic propositions, let V be
a finite set of variables and let D “ pD,Rq be a constraint system, where D is
a specific domain of interpretation for variables and constants and R is a finite
family of relations on D (of various arities). The set AP coincides with the set R0

of 0-ary relations. Temporal terms are defined by the syntax: α :“ c | x | Xα, where
c is a constant in D and x is a variable in V . Operator X is very similar to the
LTL next operator X, but it only applies to temporal terms, with the intended
meaning that Xα is the value of α in the next position.

An atomic constraint is a term of the form Rpα1, . . . , αnq, for n ě 0, where R is
an n-ary relation of R and α1, . . . , αn are temporal terms.

Well-formed CLTL formulae are defined as follows:

φ :“ p | Rpα1, . . . , αnq | φ^ φ |  φ | X pφq | Y pφq | φUφ | φSφ

where p P AP , every αi is a temporal term, R P R, X, Y, U and S are the usual
“next”, “previous”, “until” and “since” operators of LTL, with the same meaning.
The dual operators “release” R, and “trigger” T may be defined as usual, i.e., φRψ

is  p φU ψq and φTψ is  p φS ψq. The semantics of CLTL is defined with
respect to a constraint system D and the strict linear order pN,ăq representing
positions in time. An interpretation is a pair pπ, σq, where σ : N ˆ V Ñ D is a
mapping assigning for every variable x P V its value σpx, iq at each position i P N
and π : NÑ ℘pAP q is a mapping associating a set of propositions with each position
in N. The semantics of CLTL at a position i P N over an interpretation pπ, σq is
defined in Table 1. The only case that needs to be explained is the evalutation σ

of temporal terms:

σpi, αq “ σpi` |α|, xαq

where xα is the (unique) variable occurring in term α and |α| is the depth of a
temporal term, namely the total amount of temporal shift needed in evaluating α:
|x| “ 0 when x is a variable, and |Xα| “ |α| ` 1. A formula φ P CLTL is satisfiable

if there exists a pair pπ, σq such that pπ, σq, 0 |ù φ. In this case, we say that pπ, σq
is a model of φ and we write simply pπ, σq |ù φ.

CLTLoc is a special case of CLTL, where the domain D is R` (the set of
nonnegative reals), the set RzR0 of relations is tă,“u and the arithmetic variables
behave as clocks.

Hence, the valuation of clocks is defined by a mapping σ : NˆV Ñ R`, assign-
ing, for every position i P N, a real value σpi, xq to each clock x P V . Intuitively,
a clock x measures the time elapsed since the last time when x “ 0, i.e., the last
“reset” of x. To ensure that time progresses at the same rate for every clock, σ
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pπ, σq, i |ù pô p P πpiq for p P AP

pπ, σq, i |ù Rpα1, . . . , αnq ô pσpi` |α1|, xα1 q, . . . , σpi` |αn|, xαn qq P R

pπ, σq, i |ù  φô pπ, σq, i ­|ù φ

pπ, σq, i |ù φ^ ψ ô pπ, σq, i |ù φ and pπ, σq, i |ù ψ

pπ, σq, i |ù X pφq ô pπ, σq, i` 1 |ù φ

pπ, σq, i |ù Y pφq ô pπ, σq, i´ 1 |ù φ^ i ą 0

pπ, σq, i |ù φUψ ô D j ě i : pπ, σq, j |ù ψ ^ pπ, σq, n |ù φ @ i ď n ă j

pπ, σq, i |ù φSψ ô D 0 ď j ď i : pπ, σq, j |ù ψ ^ pπ, σq, n |ù φ @ j ă n ď i

Table 1 Semantics of CLTL.

must satisfy the following condition: for every position i P N, there exists a “time
delay” δi ą 0 such that for every clock x P V :

σpi` 1, xq “

#

σpi, xq ` δi, time progress

0 reset x.

In this case, σ is called a clock valuation. An interpretation for a CLTLoc formula
φ is a pair pπ, σq, where σ is a clock valuation and π : NÑ ℘pΣq. The definition of
the semantics of CLTLoc over pπ, σq is the same of CLTL.

It is often convenient to assume that at every position there is at least one
clock which is not reset. To ensure that this is the case, just add a new clock Now,
which is never reset, except possibly at position 0. Hence, the time delay δi is
uniquely defined in each position i as σpi ` 1,Nowq ´ σpi,Nowq. The initial value
of a clock, σp0, xq, may be any non-negative value. If needed, one or more of the
clocks may be initialized to 0 just by adding a constraint of the form x “ 0.

To compare CLTLoc with other formalisms, we introduce the satisfiability of
CLTLoc formulae over timed ω-words. A timed ω-word over ℘pΣq is a pair pπ, τq
where π : N Ñ ℘pΣq and τ is a monotonic function τ : N Ñ R such that @i τpiq ă
τpi` 1q (strong monotonicity). The value τpiq is called the timestamp at position
i, i P N. Given a CLTLoc interpretation pπ, σq, let τ be such that τpiq “ σpi,Nowq.
Then, pπ, τq is called the timed ω-word associated with pπ, σq and it is denoted by
rpπ, σqs.

A relation |ù can be defined for every timed ω-word pπ, τq as follows. Let
pπ, τq |ù φ hold if there exists an interpretation pπ, σq such that pπ, σq |ù φ and
pπ, τq “ rpπ, σqs. A CLTLoc formula φ is satisfiable over timed ω-words if pπ, τq |ù φ,
for some pπ, τq.

Before going further, to motivate our approach, we provide an example of a
CLTLoc formula representing a simple yet realistic timed system.

Example 1

We consider the LTL specification of a timed lamp and its properties (studied in
Sect. 8) from [28]. The lamp is controlled by two buttons, labeled ON and OFF
respectively, which cannot be pressed simultaneously. The lamp itself can be either
on or off. When ON is pressed the lamp is immediately turned on, regardless of
its current state; similarly, if OFF is pushed then the lamp is immediately turned
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off, also regardless of its current state. After ON is pressed, the lamp will not stay
on forever, but, if no more buttons are pressed, it will automatically turn off with
a delay ∆, a positive real constant. By pressing the ON button before the timeout
expiration then the timeout is extended by a new delay ∆.

Our CLTLoc formula makes use of atomic propositions on, off and l represent-
ing, respectively, events “push button ON” and “push button OFF” and the state
“light is on”. Clocks may be used to measure the exact time elapsed since the
last on; clearly some clock must be “reset” (i.e., set to 0, in analogy to Timed
Automata) whenever ON is pressed, while when a clock is equal to ∆ then the
timeout expires. To simplify the introduction of clocks, we first define a few short-
hands called rst-c, testc“∆ and test0ăcď∆. They have the intuitive meaning (which
will be formalized after the main specification) that they are true if, and only if, a
clock c is reset or, respectively, c “ ∆, or 0 ă c ď ∆. The specification of the lamp,

still lacking the precise clock specification, is defined by formula G
´

Ź5
i“0piq

¯

,

where G pφq is the usual globally operator defined by KRφ.

 pon^ offq (1)

on ô rst-c (2)

Yplq ñ test0ăcď∆ (3)

turnoff ô Yplq ^ poff_ testc“∆q (4)

lô  turnoff S on. (5)

Formula (1) ensures mutual exclusion; (2) states that the timeout must be (re)started
whenever button ON is pressed; (3) constrains the time elapsed since the previous
instant if the light was on at that moment (i.e., not more than ∆); (4) defines (for
readability) an event turnoff, capturing the two cases when the lamp (supposed
to be ON in the previous instant) must be turned off at the current instant (i.e.,
OFF being pressed or the timeout expiring); finally, (5) gives the specification of
the light, as being on if, and only if, there was in the past an on event not followed
by a turnoff. Initialization is implicit in the specification (at instant 0, the light is
off).

To complete the specification, we must formalize also the behavior of clocks. In
CLTLoc, “resetting a clock” c, e.g., following an on event, is as simple as stating
that on ñ c “ 0; testing a clock c against a constant ∆ and causing say, a turnoff

is a simple as stating that c “ ∆ñ turnoff. Unfortunately, the same clock cannot
be tested and reset at the same time. When this is required, it is possible to
introduce two clocks c0 and c1, rather than just one clock, so that they can be
reset alternatively: only one of the two clocks is reset and a new reset of the same
clock will eventually occur only after the occurrence of a reset of the other clock.
The behavior of this clock pair is described by the axiom G pp6q ^ p7qq, where
formulae (6) and (7) are:

ľ

iPt0,1u

´

ci “ 0 ñ  X
´

pc
pi`1q2

ą 0 U ci “ 0q
¯¯

(6)

c0 “ 0 ñ  pc1 “ 0q (7)
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and ¨2 stands for the modulo 2 operator (i.e., 12 “ 1, 22 “ 0). Finally, the above
clock shorthands rst-c, testc“∆ and test0ăcď∆ are defined as follows:

rst-c ô c0 “ 0_ c1 “ 0

test0ăcď∆ ô
ł

iPt0,1u

0 ă ci ď ∆

testc“∆ ô
ł

iPt0,1u

´

ci “ ∆^ pc
pi`1q2

ą ∆_ c
pi`1q2

“ 0q
¯

.

3 MITL, MITLp0,8q, QTL, and pMITL

Let I be an interval of the form xa, by or of the form xa,`8q, where 0 ď a ă b are
integer constants, x is either p or r, and y is q or s. Given a finite alphabet AP of
atomic propositions, the syntax of (well-formed) formulae of MITL is defined as:

φ :“ p | φ^ φ |  φ | φUIφ

where p P AP . We often write, as customary, U instead of Up0,`8q.
Boolean operators _,J,K,ñ and the globally GI and eventually FI operators

can be defined by the usual abbreviations, e.g. FIφ “ JUIφ and GIφ “  FIp φq.
A signal is a function M : R` Ñ ℘pAP q which is assumed to be finitely variable,

i.e., such that in every finite interval there is a finite number of change points to
the value of the atomic propositions in AP .

The continuous semantics of MITL is defined in Table 2, for every t P R` and
for every signal M . Notice that in the definition of the semantics an interval I is
interpreted as an interval of real numbers.

M, t |ù pô p PMptq p P AP

M, t |ù  φôM, t ­|ù φ

M, t |ù φ^ ψ ôM, t |ù φ and M, t |ù ψ

M, t |ù φUIψ ô Dt1 ą t t1 ´ t P I,M, t1 |ù ψ and @ t ă t2 ă t1 M, t2 |ù φ

Table 2 Continuous semantics of MITL.

A MITL formula φ is satisfiable in the continuous semantics if there exists a
signal M such that M, 0 |ù φ. In this case, M is called a continuous model of φ.

The pointwise semantics is defined by introducing a relation |ù, defined in
Table 3 for every timed ω-word pπ, τq and for every position i P N. A MITL formula
φ is satisfiable in the pointwise semantics if there exists a timed ω-word pπ, τq such
that pπ, τq, 0 |ù φ. In this case, pπ, τq is called a pointwise model of φ.

A useful operator on timed words is “next” XI , with the intuitive meaning
that XIφ holds at position i if φ is true at position i ` 1, and the difference of
timestamps τpi`1q´ τpiq is in I. Since we adopted the strict version of UI , X can
be defined as XIφ “ KUIφ. It is also possible to define MITL with the non-strict
version of UI , but in this case it is necessary to introduce also the (non-metric)
next operator X as primitive.
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pπ, τq, i |ù pô p P πpiq for p P AP

pπ, τq, i |ù  φô pπ, τq, i ­|ù φ

pπ, τq, i |ù φ^ ψ ô pπ, τq, i |ù φ

pπ, τq, i |ù φUIψ ô Dj ą i : τpjq ´ τpiq P I, pπ, τq, j |ù ψ and @ i ă k ă j pπ, τq, k |ù φ

Table 3 Pointwise semantics of MITL.

It is sometimes useful to extend MITL with past-time operators, and in partic-
ular with the “since” temporal operator φSIψ, whose semantics is the dual of the
one of UI (PI is the past-time dual of FI , so PIφ “ JSIφ). MITL with past-time
operators (MITL+Past) is strictly more expressive than MITL [16] over both the
continuous and pointwise semantics. Nevertheless, our encoding for the continu-
ous semantics, presented in Sect. 7, can also deal with past-time operators, so the
examples of Sect. 8 will also include them.

From timed words to signals. MITL formulae may give different results when inter-
preted over the pointwise semantics and over the continuous semantics. To preserve
their meaning, they must be translated into different MITL formulae. The trans-
lation is straighforward. Consider, for example, a timed word ζ4X “ pπ4X , τ4Xq

such that for all i P N it is π4Xpiq “ tpu, and τ4Xpiq “ 4i; that is, p always holds
along ζ4X , and all timestamps are multiples of 4. Formula Fp0,4qppq, states that p
holds in at least one position whose timestamp is in the open interval p0, 4q. It is

easy to see that ζ4X , 0 |ù G
´

 Fp0,4qppq
¯

, i.e., Fp0,4qppq never holds along ζ4X since

for each position i there is no k such that τpkq ´ τpiq P p0, 4q.
Consider now a signal M4X : R` Ñ ℘pAP q such that M4Xpiq “ tpu for ev-

ery i P N which is a multiple of 4. The value of M4Xptq for every other t P R`
can be defined by adopting the intuitive convention that the positions of a timed
word are considered to represent instantaneous events, hence every atomic propo-
sition is false in the instants that are not timestamps: p R M4Xptq if t is not a
multiple of 4. However, it is immediate to see that, whatever convention is used,

M4X , 0 ­|ù G
´

 Fp0,4qppq
¯

. In fact, Fp0,4qppq must hold over M4X at least in every

instant t which is not an exact multiple of 4. The formula must be modified to be

G
´

 p_ Fp0,4qppq
¯

. It is easy to see that, if p is the only atomic proposition, the

new formula over the continuous semantics is equivalent to the original formula
over the pointwise semantics.

MITLp0,8q and QTL. A syntactic restriction of MITL, called MITLp0,8q, is one
in which in intervals I “ xa, by it is either a “ 0 or b “ 8. Its semantics can easily
be derived from the semantics of MITL.

The logic QTL is MITLp0,8q in which intervals are only of the form p0, 1q.
Despite their apparent simplicity, MITLp0,8q and QTL have the same expressive
power of MITL [23].

Projection-closed MITL. Finally, we define an extension of MITL, here called
projection-closed MITL, pMITL for short [21]. This logic, defined on timed words, is
obtained by adding a set pAP of n ě 0 propositional variables q1, . . . , qn, which can
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be existentially quantified. The logic is called “projection-closed”, since the actual
extension to MITL is its capacity of adding new propositional variables, which
can then be eliminated (“projected” away) by an external existential quantifica-
tion, hence without extending the alphabet. This allows the definition of timed
ω-languages that are not counter-free [21] (e.g., “the number of occurrences of
event a is even”), which cannot be defined in MITL.

The syntax of pMITL is defined by the clause: Dq1 . . . qnφ, where pAP “

tq1, . . . , qnu for some n ě 0 and φ is a MITL formula on the alphabet APYpAP . To
follow our definitions of pointwise semantics, the semantics of pMITL may, e.g.,
be defined by extending mapping π also to set pAP : π : NÑ ℘pAP Y pAP q. Then,
we introduce the semantic clause:

pπ, τq, i |ù Dq1 . . . qnφô there exists π1 :NÑ ℘pAP Y pAP q | pπ1, τq, i |ù φ and

@j P N π1pjq ´ pAP “ πpjq ´ pAP

The meaning is that pπ, τq, i |ù Dq1 . . . qnφ if there exists a mapping π1 : N Ñ

℘pAP Y pAP q such that pπ1, τq, i |ù φ and, at every position j, π1pjq may differ from
πpjq only in the presence or in the absence of q1, . . . , qn.

Notice that the alphabet of pMITL is only apparently extended with the set
pAP : every proposition in pAP must be existentially quantified, hence the actual
alphabet is still set AP . This point is important when comparing the expressiveness
of pMITL with CLTLoc.

4 Decidability of CLTL over clocks

We show that any CLTLoc formula φ over a set of clocks V can be translated into
a suitable Büchi automaton AR

φ that accepts words including both sequences of
symbolic valuations [18,10] and constraints representing the clock regions induced
by φ. Automaton AR

φ is built using a slight variation of the construction of [18,
11], where instead variables are not restricted to behave as clocks.

The set Rφ of clock regions induced by φ can be determined from constraints
in φ, by applying arguments akin to those used in [3] to define the region graph
for a timed automaton. Automaton AR

φ is defined as the product of the Büchi
automaton Aφrecognizing the symbolic models of φ [18] with the automaton ARφ

recognizing the language of successive regions of Rφ. In other words, automa-

ton AR
φ accepts all the symbolic models belonging to L pAφq and such that the

sequence of regions determined by clock constraints within symbolic valuations
obeys the time-successor relation. The following construction only guarantees that
time elapses and that all clocks progress of the same amount, but it does not en-
force time progress. Since φ is a CLTL formula where atoms may be relations over
clocks, AR

φ does not force the value of the clocks, which is instead constrained only
by the formula φ itself. Hence, the definition of the initial region does not follow
the standard construction where all clocks are zero. Therefore, we simply consider
each region as potentially initial.

To represent correctly the elapsing time as measured by clocks, the models of
CLTLoc define sequences of clock regions R0R1, . . . such that, for all time positions
i, Ri`1 is a time-successor of region Ri [3], except for those clocks that are reset in
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Ri`1. Let φ be a CLTLoc formula and x, y P V . If cpxq is the maximum constant
in φ clock x is compared to, then

acpxq :“ tx “ 0u Y tx ă c, c ă x, x “ c | @c P N`, c ď cpxqu

is the set of all clock constraints between x and constant cpxq and

acpx, yq :“ tx` c „ y, y „ x` c, y`d „ x, x „ y`d | @c, d P N`, c ă cpyq, d ă cpxqu,

where „P tă,“u, is the set of all clock constraints between x and y. Finally, set:

acpφq :“
ď

x,y PV,x­“y

acpxq Y acpx, yq

is the set of all clock constraints induced by φ. Let Rφ be the set of all clock
regions over acpφq as defined in [3].

To enforce the time-successor relation between adjacent regions, let ARφ
“

pRφ, δq be the automaton where δ is the transition relation containing all tran-
sitions R Ñ R1 such that R1 P Rφ is a time-successor of R P Rφ, except for the
clocks whose value is 0 in R1.

We briefly recall some key elements of Aφ (see [10] and [18] for further details).
A symbolic valuation for a CLTL formula φ is a maximally consistent set of con-
straints of constraint system D over the terms appearing in φ, including those of
the form Xix and also every constant 0 ď c ď cpxq, for each x P V ; for CLTLoc
the constraint system is D “ pR,ă,“q. We indicate by SV pφq the set of symbolic
valuations associated with φ. Let |

sym
ùùù denote the symbolic satisfaction relation:

given a sequence of symbolic valuations ρ P SV pφqω, we write ρ |
sym
ùùù φ when ρ

symbolically satisfies φ. We say that a symbolic model ρ admits an arithmetical
model if there exists an assignment σ : N ˆ V Ñ D that satisfies ρ. The closure
of φ, denoted clpφq, is the smallest set containing all subformulae of φ and closed
under negation. An atom Γ Ď clpφq is a maximally consistent subset of formulae
of clpφq, such that, for each subformula ξ in φ, either ξ P Γ or  ξ P Γ . Let Q be
the set of all the atoms Γ .

Automaton Aφ is the generalized Büchi automaton pSV pφq, QˆSV pφq, I, η, F q,
where SV pφq is the input alphabet and QˆSV pφq is the state space. It is a special-
ized version of the Vardi-Wolper automaton for LTL formulae recognizing models
for formula φ, i.e., sequences of symbolic valuations that admit an arithmetical
model. The following lemma of [18] is key to prove the decidability of the satisfi-
ability of CLTLoc formulae.

Lemma 1 ([18]) Let φ be a CLTL(pR,ă,“q) formula and ρ P SV pφq. Then, ρ P

L pAφq if, and only if, ρ |
sym
ùùù φ and ρ admits an arithmetical model.

Now, we define AR
φ as the tuple pSV pφq ˆRφ, Qˆ SV pφq ˆRφ, I

1, η1, F ˆRφq.

Relation η1 is defined as follows: pΓ, sv,Rq
psv,Rq
ÝÝÝÝÑ pΓ 1, sv1, R1q P η1 if, and only if,

– pΓ, svq
sv
ÝÝÑ pΓ 1, sv1q P η and

– RÑ R1 P δ and
– sv1 YR1 is satisfiable.
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Set I 1 Ď IˆRφ consists of initial states (atoms) of Aφ, that are consistent with the
regions in Rφ, i.e., if pΓ, svq P I and R P Rφ, then svYR is satisfiable. Satisfiability
of quantifier-free formulae over pR,ă,“q is well-known to be decidable [31,20].

A run ρ of AR
φ is a sequence:

pΓ0, sv0, R0q
psv0,R0q
ÝÝÝÝÝÝÑ . . . pΓi, svi, Riq

psvi,Riq
ÝÝÝÝÝÝÑ pΓi`1, svi`1, Ri`1q . . .

where pΓ0, sv0, R0q P I
1. Let pπ, σq be a sequence, with π : N Ñ ℘pAP q and σ :

Nˆ V Ñ R. Then, pπ, σq witnesses ρ, i.e., pπ, σq |ù ρ, when for all i ě 0:

πpiq “ Γi XAP and σ, i |ù svi YRi.

Lemma 2 Let φ be a CLTLoc formula. Then, pπ, σq |ù φ if, and only if, there is an

accepting run ρ of AR
φ such that pπ, σq |ù ρ.

Proof We first show that if pπ, σq |ù φ then there is an accepting run of automaton
AR
φ . We have to show that when the variables of φ behave like clocks, then the

sequence of valuations defines a sequence of successive clock regions, hence ρ is
also a run of AR

φ . By Lemma 1, formula φ, being also a CLTLppR,ă,“qq formula, is
satisfiable if, and only if, there is a run ρ “ sv0sv1 . . . of automaton Aφ recognizing
symbolic models of the formula. In fact, we have that σ, i |ù svi. Since the set of
clock regions is a partition of the clocks space, there is only one region R P Rφ such
that σ, i |ù Ri, with Ri “ R. Therefore, σ, i |ù svi Y Ri and model pπ, σq induces
a sequence of regions R0R1 . . . . We now prove that each RiRi`1 in the sequence
R0R1 . . . is a pair of successive regions. In fact, if σpi, xq and σpi ` 1, xq are two
adjacent valuations for a clock x of φ, then either there is a t ą 0 such that xpi`1q “
xpiq` t or xpi`1q “ 0 (reset). Therefore, Ri`1 is a time successor of Ri (except for
the clocks whose value is 0 in Ri`1) and the sequence R0R1 . . . is a sequence of
successive regions belonging to the language L pARφ

q. By construction, each atom
Γi is such that πpiq “ Γi X AP . At each position i, we have that πpiq “ Γi X AP

and σpiq |ù svi YRi. Hence, pπ, σq |ù ρ.
We now show that if automaton AR

φ has an accepting run then φ is satisfiable.
By Lemma 1, the sequence sv0sv1 . . . of symbolic valuations is a symbolic model
of φ (interpreted as a pure CLTLppR,ă,“qq formula) that admits an arithmetical
model; i.e., there is an infinite sequence of valuations of the variables occurring in
φ and satisfying the constraints in svi, for all i ě 0. We show that one can build a
sequence of valuations that respects also the constraints in the sequence of clock
regions R0R1 . . . . The proof is by induction on i ě 0. First, the initial state of the
run is satisfiable by definition of AR

φ , hence there is a valuation that satisfies it.
The inductive step is that if, for i ą 0, σ0σ1 . . . σi´1 is a sequence of valuations
V Ñ R that satisfy both sv0sv1 . . . svi´1 and R0R1 . . . Ri´1, then there is sigmai
such that σ0σ1 . . . σi satisfy both sv0sv1 . . . svi and R0R1 . . . Ri, i.e, the sequence can
be extended to i. By definition of AR

φ , the set of constraints sviYRi is satisfiable.
Note that svi and Ri have some common constraints, and in particular those of
the forms x „ c, c „ x, x „ y and y „ x (where „P tă,“u and c P t0, . . . , cpxqu). In
addition, Ri has constraints of the form x` c „ y and y „ x` c. If all constraints
are of the form x “ c for all x P V , then svi and Ri define the same constraints
on the clocks at position i, hence a valuation that satisfies svi (which exists by
Lemma 1) also satisfies Ri.
If, instead, the constraints of some clocks are of the form c1 ă x ă c2 or of the form
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cpxq ă x, then the region defined by svi is open and dense. In this case, constraints
of the form x ` c „ y and y „ x ` c appearing in Ri define a subset of the region
defined by svi which is also open and dense. To extend sequence σ0σ1 . . . σi´1 with
a valuation σi, the latter must obey constraints of the following forms (we write
σipxq to indicate the value of clock x in valuation σi): (i) σipxq „ c or c „ σipxq,
(ii) σipxq „ σi´kpyq for some k ě 0 (these correspond to CLTL constraints such
as Xx ą y), (iii) σipxq ` c „ σipyq or σipyq „ σipxq ` c. Since these constraints
correspond to regions that are open and dense, σi does actually exist. [\

As already noticed, time progress is not guaranteed by the construction of AR
φ .

However, this requirement is easily achieved by the CLTLoc formula GF px “ 0q_
FG px ą cpxqq (where cpxq is the biggest constant clock x is compared to), for all
clocks x P V . The same condition is considered in [3] to guarantee time progression
for Timed Automata.

Finally, the main result of this section is a direct consequence of Lemma 2 and
of well-known properties of CLTL and Timed Automata:

Theorem 1 Satisfiability for CLTLoc is decidable.

Proof Let φ be a CLTLoc formula. By Lemma 2, we can build automaton AR
φ ,

recognizing symbolic models of φ and which has an accepting run (i.e., it accepts a
non-empty language) if, and only if, φ is satisfiable. Checking the emptiness of the
language L pAφq can be done by standard techniques, which look for cycles in the

graph of AR
φ passing through (at least) one accepting control state. The language

of AR
φ is not empty if there exists a path of AR

φ of the form

pΓ0, R0q . . . pΓl´1, Rl´1qpΓl, Rlq . . . pΓk, Rkq

where Γk “ Γl, Rk “ Rl and all atoms belonging to F occur at least once in
pΓl´1, Rl´1qpΓl, Rlq . . . pΓk´1, Rk´1q. The word recognized by the run is ultimately
periodic, over the alphabet SV pφq ˆRφ of the form:

psv0, R0q . . . psvl´1, Rl´1q ppsvl, Rlq . . . psvk´1, Rk´1qq
ω .

Complexity

The satisfiability problem for CLTLoc is PSPACE-hard, as every LTL formula
(whose satisfiability problem is PSPACE-complete) is also a CLTLoc formula.
PSPACE-completeness of CLTLoc can be roved by applying arguments similar
to those used in [3] to show that the transition relation of the automaton to be
checked for emptiness is computable in PSPACE. Consider a CLTLoc formula φ.
Let |φ| be the number of subformulae of φ, let N be the number of clock variables
in φ, and let K be the biggest constant against which the clock variables of φ
are compared. Since the number of clock regions is OpN ! ¨KN

q [3], the number of

states of AR
φ is Op2|φ| ¨N ! ¨KN

q. However, to check L pAR
φ q for emptiness, we do

not need to build the whole state space, but we can work on-the-fly by considering
only a constant number of vertices at a time. Since the space needed to store a
vertex of AR

φ , when using a binary encoding for K, is polynomial in |φ| logpKq, the

algorithm for checking the emptiness of AR
φ is in PSPACE.
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In Section 6, we provide a way to solve in practice the satisfiability of CLTLoc
through the method used in [11] to solve satisfiability of CLTL. The technique
relies on encoding CLTLoc formulae into formulae of a decidable fragment of first-
order logic, which can then be solved by off-the-shelf SMT solvers. The decision
procedure hinges on finding a finite sequence of assignments to the clocks appear-
ing in the CLTLoc formula φ, which satisfies φ and it is a witness of an ultimately
periodic sequence of successive clock regions. Since the clock regions define a par-
tition of the space of clock assignments, each clock assignment uniquely identifies
a region; thus, an exhaustive definition of all the regions is not needed.

5 Comparing CLTLoc and pMITL on the pointwise semantics

In this section we show that, over timed words, CLTLoc and pMITL have the same
expressive power. To this end, we devise two semantics-preserving transformations,
from pMITL formulae to CLTLoc ones and vice-versa.

Before presenting the transformations, we remark the following.

Remark 1 Propositional letters in CLTLoc formulae can be replaced by constraints
on clocks that exactly capture their semantics. More precisely, every propositional
letter p can be replaced by a new clock cp, assuming that p ô cp “ 0 (hence,
 p ô cp ą 0). For example, formula p ñ X p p^X ppqq becomes cp “ 0 ñ

X pcp ą 0^X pcp “ 0qq.

As a consequence of Remark 1, in the following we will freely introduce proposi-
tional letters in CLTLoc, as they can be easily eliminated.

5.1 From pMITL to CLTLoc

To transform pMITL formulae into CLTLoc ones, we first remark that the follow-
ing equivalences hold for pMITL formulae, where U is an abbreviation for Up0,8q
– note that Up0,8qφ ” Ur0,8qφ because we adopted the strict version of the until
operator.

Lemma 3 Let pπ, τq be a timed word and 0 ă a ď b. Then, for any i ě 0,

p1q pπ, τq, i |ù φUra,byψ ô pπ, τq, i |ù φUψ ^Gp0,aqpφ^ φUψq ^ Fra,bypψq

p2q pπ, τq, i |ù φUpa,byψ ô pπ, τq, i |ù φUψ ^Gp0,aspφ^ φUψq ^ Fpa,bypψq

p3q pπ, τq, i |ù φUp0,byψ ô pπ, τq, i |ù φUψ ^ Fp0,bypψq

When b is 8, equivalences p1q, p2q can be simplified, respectively, in φUra,8qψ ” φUψ^

Gp0,aqpφ^ φUψq and φUpa,8qψ ” φUψ ^Gp0,aspφ^ φUψq.

Thanks to Lemma 3, we can focus only on temporal operators U and FI .
We also have the following result, which shows that a formula Fxa,bypψq must

stay true for at least b´ a time units.

Lemma 4 Consider the MITL formula Fxa,bypψq. For any timed word pπ, τq there

cannot be two positions i ă j such that τpjq ´ τpiq ă b ´ a, pπ, τq, i ­|ù Fxa,bypψq,

pπ, τq, j ­|ù Fxa,bypψq, and there is i ă k ă j such that pπ, τq, k |ù Fxa,bypψq.
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θ

ê if j is the current position, then there are two timestamps t, t1 such that: (i) τpjq ď
t ă t1 ď τpj`1q; (ii) there is a position k such that pπ, τq, k |ù ψ and τpkq´ t P xa, by;
and (iii) there is no position k1 such that pπ, τq, k1 |ù ψ and τpk1q ´ t1 P xa, by

θ
é if j is the current position, then there are two timestamps t1, t such that: (i) τpjq ď t1 ă

t ď τpj`1q; (ii) there is no position k1 such that pπ, τq, k1 |ù ψ and τpk1q´ t1 P xa, by;
and (iii) there is a position k such that pπ, τq, k |ù ψ and τpkq ´ t P xa, by

Table 4 CLTLoc additional predicates introduced for subformulae θ of the form Fxa,bypψq.

Proof Assume that there are three positions i ă k ă j in pπ, τq that violate the
property. Then, there is position k1 ą k such that τpk1q´τpkq P xa, by and pπ, τq, k1 |ù
ψ; in addition, for any position k2 such that τpk2q P xa ` τpiq, b ` τpiqy or τpk2q P
xa`τpjq, b`τpjqy it is pπ, τq, k2 ­|ù ψ. Since τpjq´τpiq ă b´a, then a`τpjq ă b`τpiq,
hence for any position k2 such that τpk2q P xa ` τpiq, b ` τpjqy it is pπ, τq, k2 ­|ù ψ.
But a` τpiq ă τpk1q ă b` τpjq, which leads to a contradiction. [\

Corollary 1 For any timed word pπ, τq and a pair of positions i, j such that τpjq ´

τpiq ď b, between i (included) and j (excluded) there cannot be more than 2
Q

b
b´a

U

instants k such that the value of Fxa,bypψq differs in k and k ` 1.

Let us consider a pMITL formula φ such that AP is the set of its non-quantified
propositional letters, and pAP is the set of quantified ones. The corresponding
CLTLoc formula is built upon the set AP , plus a set of fresh propositional letters
that correspond to set pAP , and which are then transformed into constraints over
a corresponding set of clocks VpAP as shown in Remark 1. Moreover, we introduce
additional clocks and propositional letters which capture the semantics of the
subformulae of φ.

For each subformula θ we introduce

– a propositional letter, θ, which represents the truth of θ in the current position;
– two clocks, z0θ and z1θ , which are reset at each position i in which θ holds, and

its value differs from the one in i´ 1 or the one in i` 1 (or both).

We also introduce two clocks, z0δ and z1δ , which measure the distance between two
consecutive elements of the timed word; that is, at each instant either one or the
other is reset, and they are reset in an alternate way. In addition, if θ is of the
form Fxa,bypψq, we also introduce:

– two additional propositional letters,
θ

ê and
θ
é, which are formalized in Table

4, and which represent the condition where θ would become false (resp. true)
between the current and the next positions, if suitable timestamps were added
to the timed word;

– 2d auxiliary clocks, where d “ 2r b
b´a s` 1, x0θ, x̂

0
θ, . . . x

d´1
θ , x̂d´1

θ , such that xjθ is

reset at the current position if, and only if, x̂jθ is reset at the next position; the

clocks are reset whenever
θ
é or

θ

ê hold in the current position.

Formula (8) enforces that the occurrence of a change in the truth of subformula
θ entails the reset of one of z0θ , z

1
θ , and that clock z0θ is reset in the origin.

z0θ “ 0^XG
´

θ ^ p Xpθq _  Ypθqq ô z0θ “ 0_ z1θ “ 0
¯

(8)
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Let a P N and value ak be pa mod kq. The clocks associated with a subformula θ

are alternatively reset. Hence, between any two resets of clock z0θ there must be a
reset of clock z1θ , and vice-versa:

G

¨

˝

ľ

iPt0,1u

ˆ

ziθ “ 0 ñ X

ˆ

pz
pi`1q2
θ “ 0qRpziθ ‰ 0q

˙˙

˛

‚. (9)

Formula 10 defines that clock z0δ “ 0 (resp. z1δ “ 0) is reset in all even (resp. odd)
positions.

z0δ “ 0^G

¨

˝

ľ

iPt0,1u

ˆ

ziδ “ 0 ñ z
pi`1q2
δ ą 0^X

ˆ

z
pi`1q2
δ “ 0

˙˙

˛

‚ (10)

We define clocksθ “
10
Ź

j“8

j.

Let θ be Fpa,bqψ. Its 2d associated clocks xjθ, x̂
j
θ (0 ď j ď d ´ 1) are reset in

pairs, i.e., a reset of xjθ is immediately followed by a reset of x̂jθ, as defined by

Formula 11. In addition, clock x̂d´1
θ is reset in the origin (where no other clock x̂jθ

is reset).

G

¨

˝

d´1
ľ

j“0

´

xjθ “ 0 ô X
´

x̂jθ “ 0
¯¯

˛

‚^ x̂d´1
θ “ 0^

d´2
ľ

j“0

x̂jθ ą 0 (11)

Auxiliary clocks are reset according to Formulae (12) and (13). More precisely,

Formula (12) states that every time one of propositions
θ
é,

θ

ê holds, an auxiliary
clock is reset, and that no two auxiliary clocks are reset at the same time. In
addition, clock x0θ is reset in the origin.

x0θ “ 0^XG

¨

˝

¨

˝

θ
é _

θ

êô

d´1
ł

j“0

xjθ “ 0

˛

‚^

¨

˝

d´1
ľ

i“0

d´1
ľ

j“0,i­“j

 pxiθ “ 0^ xjθ “ 0q

˛

‚

˛

‚ (12)

Formula (13), instead, states that the resets of clocks xiθ are circularly ordered.
That is, if xiθ “ 0, then, from the next position, all clocks are strictly greater than

0 until xi`1d
θ “ 0 occurs.

G

¨

˝

d´1
ľ

i“0

¨

˝xiθ “ 0 ñ X

¨

˝pxi`1d
θ “ 0qR

ľ

jPr0,d´1s, j‰i`1d

pxjθ ą 0q

˛

‚

˛

‚

˛

‚ (13)

We define auxclocksθ “
Ź13
j“11pjq.

We now define a mapping m associating a pMITL formula with an equivalent
CLTLoc formula, thus capturing the semantics of pMITL in CLTLoc.

The cases for Boolean connectives and the non-metric U operator are straight-
forward.

‚ θ “ p P AP : we simply write p.
‚ θ “ p P pAP : we introduce clock cp and write cp “ 0 wherever p appears.
‚ θ “  ψ: in this case it is mpθq “ θ ô  ψ.
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‚ θ “ γ ^ ψ: we have: mpθq “ θ ô γ ^ψ.

‚ θ “ γUp0,8qψ: we need to take into account that the U operator in
MITL is strict, whereas it is not in CLTLoc, hence we have the following:

mpθq “ θ ô XpγUψq .

‚ θ “ Fpa,bqpψq: The semantics of the FI operator is captured by the
following formulae. We focus on the case in which I “ pa, bq, the others being
similar.

Formula (14) captures the condition when subformula θ is true at a position
i. It identifies two conditions: either none of the d auxiliary clocks x̂jθ is reset in i

(which means that i ą 0, as by Formula (11) x̂d´1
θ is reset in the origin), or one of

them is. In the former case, there are no time instants between τpi´1q and τpiq in
which θ can change value, so the subformula in i has the same value that it had
in i´ 1, hence θ holds in i if it held in i´ 1 (i.e., if Ypθq is true). In the latter case
(which includes the origin), the clock x̂jθ that is reset is used to count the time

and to check that there is a future position in which ψ holds and such that x̂jθ is
in pa, bq there.

θ ô

¨

˝ 

d´1
ł

j“0

x̂jθ “ 0^Ypθq

˛

‚_

d´1
ł

j“0

´

x̂jθ “ 0^X
´

x̂jθ ą 0 U
´

ψ ^ a ă x̂jθ ă b
¯¯¯

(14)

Formulae (15) and (16) capture the conditions that define proposition
θ
é. More

precisely,
θ
é holds at position i when a clock xjθ is reset at i (hence x̂jθ is reset

at i ` 1), and there is a time instant τpiq ď t ă τpi ` 1q – i.e., one that might
not correspond to a timestamp in timed word pπ, τq – such that there is a future
position k, with τpkq “ t` b, in which ψ holds, hence in k it is xjθ “ τpkq´ τpiq ě b

and x̂jθ “ τpkq ´ τpi ` 1q ă b. In addition, at time t subformula θ would become
true, which can only happen if it does not hold in t, because the endpoints of
interval pa, bq are excluded. For this to occur, either there are no positions in the
timed word with timestamps in interval pτpkq ´ pb ´ aq, τpkqq, or ψ does not hold
in any of the positions k1 such that τpk1q P pτpkq ´ pb´ aq, τpkqq. In the former case
τpkq´ τpk´ 1q ě b´ a, hence one of z0δ , z

1
δ is ě b´ a. In the latter case, ψ does not

hold in k ´ 1 (i.e.,  Ypψq holds in k), and the last time ψ switched from true to
false was at least b ´ a time units before τpkq, that is, the clock between z0ψ and

z1ψ that is not reset in k is ě b´ a. In the formulae of this section we write zδ „ c

as an abbreviation for
Ž

iPt0,1u z
i
δ „ c (similarly for zψ „ c).

θ
éô

d´1
ł

j“0

¨

˚

˚

˝

xjθ “ 0 ^

X

˜

xjθ ą 0 U

˜̃

ψ ^

xjθ ě b ^ x̂jθ ă b

¸

^

˜

zδ ě b´ a _

 Ypψq ^ zψ ě b´ a

¸̧¸

˛

‹

‹

‚

(15)

Formula (16) defines a sufficient condition for one of the d auxiliary clocks xjθ, with
j P r0, d´ 1s to be reset. More precisely, if ψ holds at a position k and there is no
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position k1 ă k such that τpkq ´ τpk1q ă b ´ a and ψ holds in k1, then θ became
true at time instant τpkq ´ b, so there is a clock xjθ that in k has value ě b.

ψ ^
`

zδ ě b´ a _  Ypψq ^ zψ ě b´ a
˘

ñ

d´1
ł

j“0

´

xjθ ě b^ x̂jθ ă b
¯

(16)

Formulae (17)-(18) are the analogous of (15)-(16) for the case in which θ is

(and becomes) false. More precisely, Formula (17) states that
θ

ê holds at position
i when a clock xjθ is reset at i (hence x̂jθ is reset at i ` 1), and there is a time
instant τpiq ă t ď τpi` 1q such that there is a future position k, with τpkq “ t` a,
in which ψ holds, hence in k it is xjθ “ τpkq´ τpiq ą a and x̂jθ “ τpkq´ τpi` 1q ď a.
Moreover, at time instant t subformula θ would become false, which can only
happen if it does not hold in t (again, because the endpoints of the interval are
excluded). For this to occur, either there are no positions in the timed word with
timestamps in interval pτpkq, τpkq ` pb ´ aqq, or ψ does not hold in any position
k1 such that τpk1q P pτpkq, τpkq ` pb ´ aqq, hence including k ` 1. In the former
case τpk ` 1q ´ τpkq ě b ´ a, hence one of z0δ , z

1
δ is ě b ´ a in k ` 1. In the latter

case, a clock zjψ is reset in k, and there is no k1 ą k such that ψ holds in k1, and

a ă τpk1q ´ t ă b, that is, zjψ “ τpk1q ´ τpkq ă b´ a, as τpkq “ t` a.

θ

êô

d´1
ł

j“0

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

xjθ “ 0 ^

X

¨

˚

˚

˚

˚

˚

˝

xjθ ą 0U

¨

˚

˚

˚

˚

˚

˝

¨

˚

˚

˝

ψ ^

xjθ ą a ^

x̂jθ ď a

˛

‹

‹

‚

^

¨

˚

˚

˚

˚

˚

˝

Xpzδ ě b´ aq _

1
ł

i“0

¨

˚

˚

˝

ziψ “ 0 ^

 X

˜

ziψ ą 0U

˜

ψ^

ziψ ă b´ a

¸̧

˛

‹

‹

‚

˛

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

(17)
Formula (18) states a sufficient condition for the reset of one of the clocks xjθ which
is similar to Formula (16).

ψ ^

¨

˚

˝

Xpzδ ě pb´ aqq _
ł

iPt0,1u

ziψ “ 0^ X
´

ziψ ą 0U
´

ψ ^ ziψ ă b´ a
¯̄

˛

‹

‚

ñ

d´1
ł

j“0

˜

xjθ ą a ^

x̂jθ ď a

¸

(18)

Formula mpθq in this case is
18
Ź

j“14

j.

Theorem 2 Let φ be a pMITL formula. A timed word pπ, τq is a model for φ (i.e.,

pπ, τq |ù φ) if, and only if, it is also model for the following CLTLoc formula (where

subpφq is the set of subformulae of φ):

ľ

θPsubpφq

Gpmpθqq ^ clocksθ ^
ľ

θPsubpφq,θ“Fxa,bypψq

auxclocksθ. (19)

Proof First of all, for any timed word pπ, τq that is an interpretation for φ, there is
a CLTLoc interpretation pπ, σq such that pπ, τq “ rpπ, σqs and for each θ P subpφq it
is pπ, σq |ù clocksθ and also pπ, σq |ù auxclocksθ if θ “ Fxa,bypψq. In fact, formulae
clocksθ and auxclocksθ only impose an ordering in the reset of clocks, and such
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an ordering is compatible with any distribution of the propositions in π, including

the fresh ones introduced by the encoding such as
θ
é and

θ

ê .

We now show by induction that, for all θ P subpφq, it is pπ, τq, i |ù mpθq; in
addition, pπ, τq, i |ù θ if, and only if, pπ, τq, i |ù θ (i.e., a subforumula θ holds
at position i if, and only if, the corresponding proposition θ introduced by the
translation is true at i).

The cases of propositional letters and operators are trivial, and so is the case
of the non-metric U temporal operator.

If θ “ Fpa,bqpψq we first show that formulae (15)-(18) correctly capture the

intended meaning of
θ
é and

θ

ê . More precisely,
θ
é and/or

θ

ê hold at position i if the
value of θ would not stay constant between timestamps τpiq and τpi`1q if suitable
positions were added to the timed word between i and i` 1.

In fact,
θ
é holds if there are at least two timestamps t1 ă t in interval rτpiq, τpi`

1qs such that the conditions for θ being true are not met in t1, but they are in t. For
this to occur, a sufficient and necessary condition is that there is τpiq ď t1 ă τpi`1q
in which the conditions are met for θ to become true, i.e., it would be true right
after t1, but not in t1 itself. This is equivalent to having a position k such that
τpkq “ t1 ` b where ψ holds, and it does not hold in interval pτpkq ´ pb´ aq, τpkqq.
For ψ not to hold in pτpkq ´ pb ´ aq, τpkqq there are two cases. In the first case,
there are no positions k1 such that τpk1q P pτpkq ´ pb´ aq, τpkqq. This occurs when
τpkq ´ τpk ´ 1q ě b ´ a, i.e., when zδ ě b ´ a in k. In the second case, ψ does not
hold in k ´ 1 (i.e.,  Ypψq in k), and the last time ψ was true was at least b ´ a

instants ago, i.e., zψ ě b´ a in k These two cases correspond to the antecedent of

Formula (16), which entails that in k one of the xjθ clocks is ě b, whereas x̂jθ ă b.
Hence, there is i1 such that τpkq ´ τpi1q ě b, τpkq ´ τpi1` 1q ă b. Since t1` b “ τpkq,
it is τpiq ď t1 ă τpi` 1q, τpkq ´ τpiq ě b, and τpkq ´ τpi` 1q ă b, so i is precisely i1

captured by Formula (16), and Formula (15) holds in i. Finally, clock xjθ reset in
i cannot be reset again before or in k, since, by Corollary 1, between i (included)
and k (excluded) there can be at most d´ 1 positions in which the conditions for
θ
é or for

θ

ê hold, and there are d clocks xjθ.
Conversely, if it does not exist a t1 P rτpiq, τpi ` 1qq in which the conditions for θ
to become true hold, then there is no position k such that τpkq “ t1 ` b and the
conditions of the antecedent of Formula (16) are met. In addition, the right-hand

side of Formula (15) does not hold in i, and
θ
é is false there.

The case for
θ

ê is similar. It holds if there are at least two timestamps t ă t1 in
rτpiq, τpi`1qs such that the conditions for θ being true are met in t, but not in t1. For
this to occur, a sufficient and necessary condition is that there is τpiq ă t1 ď τpi`1q
in which the conditions are met for θ to become false, i.e., it would be true right
before t1, but not in t1 itself. This is equivalent to having a position k such that
τpkq “ t1 ` a where ψ holds, and it does not hold in interval pτpkq, τpkq ` pb´ aqq.
For ψ not to hold in pτpkq, τpkq ` pb ´ aqq there are two cases. In the first case,
there are no positions k1 such that τpk1q P pτpkq, τpkq ` pb´ aqq. This occurs when
τpk`1q´ τpkq ě b´a, i.e., when Xpzδ ě b´ aq in k. In the second case, ψ becomes
false (i.e., a clock ziψ is reset in k), and it does not hold until ziψ becomes ě b´ a.
These two cases correspond to the antecedent of Formula (18), which entails that
in k one of the xjθ clocks is ą a, whereas x̂jθ ď a. Hence, there is i1 such that
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τpkq ´ τpi1q ą a, τpkq ´ τpi1 ` 1q ď a. Since t1 ` a “ τpkq, it is τpiq ă t1 ď τpi ` 1q,
τpkq ´ τpiq ą a, and τpkq ´ τpi ` 1q ď a, so i is precisely i1 captured by Formula
(18), and Formula (17) holds in i. Finally, clock xjθ reset in i cannot be reset again
before or in k, by Corollary 1 as before.
Conversely, if it does not exist a t1 P pτpiq, τpi ` 1qs in which the conditions for θ
to become false hold, then there is no position k such that τpkq “ t1 ` a and the
conditions of the antecedent of Formula (18) are met. In addition, the right-hand

side of Formula (17) does not hold in i, and
θ

ê is false there.
Finally, we show that Formula (14) holds. For θ to be true in a position i, we

have three cases: either i “ 0, hence x̂d´1
θ is reset in i, by Formula (11); or i ą 1

and nothing changes between positions i ´ 1 and i; or there are two timestamps
in rτpi´ 1q, τpiqs in which θ can change value, hence a clock x̂jθ is reset in i. In the

second case no clock x̂jθ is reset in i (i.e.,  
Žd´1
j“0 x̂

j
θ “ 0, so i cannot be the origin),

and θ holds in i´ 1, i.e., Ypθq in i. In the first and third cases a clock x̂jθ is reset
in i, and there is a position k such that ψ holds in k, and τpkq ´ τpiq P pa, bq, i.e.,
a ă x̂jθ ă b there. Again, x̂jθ cannot be reset between i and k by Corollary 1. [\

Before concluding this section we remark that the encoding presented above can
also be used to realize a decision procedure for the satisfiability of MITL formulae.
For this, it is enough, given a MITL formula φ, to build the corresponding CLTLoc
formula (19), then solve it using the tool presented in Section 8.

5.2 From CLTLoc to pMITL

To show the equivalence between pMITL and CLTLoc, in this section we build
a model-preserving transformation from CLTLoc to pMITL formulae. Since, as
shown in [15], the future-only fragment of CLTLoc has the same expressiveness as
the full language, including past operators, here we focus on the former.

Let us consider a future-only CLTLoc formula φ, with a set V of clocks ap-
pearing in it. Without loss of generality, we assume that all clocks of V are reset in
the origin. To capture the behavior of the clocks of V , we introduce the following
quantified propositions of set pAP :

– For each x P V we introduce a propositional letter rx, which holds when clock
x is reset (i.e., when condition x “ 0 holds).

– For each constraint x „ c (with c ą 0), independent of the nature of rela-
tion „, we introduce two propositional letters pxďc and pxăc, which capture,
respectively, the conditions x ď c and x ă c.

The behavior of the new propositional letters is defined by Formula (20), which
captures when pxďc and pxăc holds with respect to the truth of rc. In the formula
we introduce abbreviation Gi

Ipφq “ φ ^GIpφq (resp. FiIpφq “ φ _ FIpφq), where i
stands for “included”, which requires (resp. allows) φ to hold in the current instant
(hence Gi

pφq “ Gi
p0,8qpφq).

Gi

¨

˚

˝

rx ñ

¨

˚

˝

Gi
p0,csppxďcq ^ Fip0,cs

´

Gp0,8qp pxďcq _ p pxďcqUp0,8qrx
¯

^

Gi
p0,cqppxăcq ^ Fip0,cq

´

Gp0,8qp pxăcq _ p pxăcqUp0,8qrx
¯

˛

‹

‚

˛

‹

‚

.

(20)
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Temporal operators appearing in φ, instead, are transformed as follows:

Xpφq ÞÝÑ KUp0,8qφ (21)

φUψ ÞÝÑ ψ _ pφ^ φUp0,8qψq. (22)

Theorem 3 For any CLTLoc formula φ there is an equivalent pMITL formula φ1.

Proof Formula φ1 is built according to the rules outlined above: temporal operators
are replaced as in (21) and (22) and every constraint of the form x „ c is replaced
by a suitable formula over propositions rx, pxďc and pxăc (for example, x “ 0 is
replaced by rx, and x “ c is replaced by pxďc ^ pxăc). In addition, the following
conjunct is included in φ1:

Ź

x„c in φ (20).

To show that φ1 has the same models as φ we prove that propositions rx, pxďc
and pxăc correctly capture constraints x “ 0, x ď c and x ă c (the case for X

and U is trivial). The case for x “ 0 is trivial, as it need not obey any constraint,
except formula φ itself. To show that pxďc holds if, and only if, x ď c does, consider
the case where x ď c holds at position i of the timed word; then, there must be a
k ď i such that x “ 0 in k and τpiq´ τpkq ď c. As shown above, this corresponds to
rx holding in k, so the antecedent of Formula (20) holds there. As a consequence,
pxďc holds in all positions k1 ě k such that τpk1q ´ τpkq ď c, hence including i.
Suppose instead that x ď c does not hold in i. Since we assume that all clocks are
reset in the origin, there must be a k ď i such that x “ 0 in k and τpiq ´ τpkq ą c.
Again, the antecedent of Formula (20) holds in k. By Formula (20) there must be
a position k ď k1 ă i such that Gp0,8qp pxďcq _ p pxďcqUp0,8qrx holds there, and
since there is no reset of clock x in pτpkq, τpiqs,  pxďc must hold in i, i.e., pxďc
does not hold there. The case for pxăc is similar. [\

6 Solving CLTL-over-clocks satisfiability

In this section, we outline a decision procedure for the satisfiability problem of
CLTLoc, by means of a SMT-based technique instead of automata. This approach
is along the lines of previous works [8] and [9], where a complete procedure, called
k-bounded satisfiability, was used to solve CLTL satisfiability by means of a poly-
nomial reduction to a SMT problem. CLTL satisfiability can be decided by con-
sidering finite amount of k-bounded satisfiability tests, for increasing values of k.
To deal with variables that behave like clocks, the method developed in [9] is here
extended to represent time progress.

Given a CLTL formula φ, we say that φ is k-bounded satisfiable if there exists an
ultimately periodic sequence of symbolic valuations sv0, . . . , svl´1psvl . . . svk´1q

ω,
which is a symbolic model of φ and such that there is a partial assignment of values
to all the variables occurring in φ only for a finite number of positions in time, from
0 to k`1. In other words, in k-bounded satisfiability we look for a finite sequence of
symbolic valuations sv0, . . . , svl´1psvl . . . svk´1qsvk, where svk “ svl, which admits
a k-bounded arithmetical model and that is representative of an infinite symbolic
model for φ of the form sv0, . . . , svl´1psvl . . . svk´1q

ω. While PSPACE-complete, in
practice k-bounded satisfiability can be quite efficient, at least when the value of
k is small enough to perform the check: checking k-bounded satisfiability is then
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equivalent to solve a few SMT problems in P. Obviously, the upper bound for k is
in general exponential in the size of the formula.

In [9] we show how to solve k-bounded satisfiability for CLTL formulae over a
class of arithmetical constraints that include the family of clock constraints used
in Sect. 2. The k-bounded satisfiability problem is solved through a polynomial-
time reduction to the satisfibility problem of a formula in the theory of Equality
and Uninterpreted Functions combined with Linear Integers/Reals Arithmetic.
The combination of the two theories is decidable and its decision procedure is
implemented by many SMT-solvers. The reduction of [9] has been implemented
in the ae2zot plugin of the Zot tool [2]. Therefore, an instance of the k-bounded
satisfiability problem for CLTL formulae has the complexity of the underlying
SMT problem, which depends on the arithmetic theory required. In our case, since
clocks are in R, we solve SMT problems in QF-EUF Y LRA, whose complexity
is P. A peculiarity of the SMT-based approach is that, if the set of symbolic
valuations partitions the space Dλ (with D the domain of the variables in V and
λ the size of a symbolic valuation, i.e., the number of temporal terms in it), then
a sequence of valuations uniquely induces a sequence of symbolic valuations. By
solving the k-bounded satisfiability problem for a formula φ we obtain, from the
model of the QF-EUF formula, a finite prefix σk of some infinite model σ that
satisfies the formula. Prefix σk is a sequence of valuations, complying with the
constraints in the formula, that induces an ultimately periodic symbolic model for
φ. Hence, unlike automata-based techniques, our approach does not require the
explicit construction of the set SV pφq because symbolic valuations of the model
are deduced from σk. We exploit this to avoid building the set of clock regions
induced by CLTLoc formulae.

To solve the satisfiability of CLTLoc we still use k-bounded satisfiability to look
for ultimately periodic models, but we extend the method in order to represent
clock regions and time progression. Representing clock regions is quite straight-
forward and exploits the fact that regions partition the space of all possible clock
valuations. In other words, a clock valuation identifies a clock region, so it is not
necessary to precompute the set of all clock regions from the formula. The only
requirement to be enforced is the periodicity of the sequence of clock regions corre-
sponding to clock valuations. If one is looking for a model of length k, the sequence
of clock regions is of the form: R0 . . . Rl´1pRl . . . Rk´1q

ω, which is obtained from a
finite sequence R0 . . . Rl´1pRl . . . Rk´1qRk with the periodicity constraint Rl “ Rk.
The QF-EUF encoding of CLTL formulae is defined to enforce periodicity of all
atomic formulae (atomic propositions and clock constraints) between positions
k and l. For instance, given two clocks x, y, if x “ y holds at position k (i.e.,
xpkq “ ypkq) then, by the periodicity constraints, it must also hold at position l:
xpkq “ ypkq ô xplq “ yplq. To obtain a periodic sequence of regions we provide the
solver with all the clock constraints of set acpφq (see Section 4) which may occur
in the definition of regions in Rφ (but not all the regions). Observe that, for any
variable x, xpiq is the value σkpi, xq of variable x at position i of the k-bounded
model whereas, for instance, Xxpiq is the value σkpi` 1, xq.

Let φ be a CLTL formula, V be the set of clocks appearing in φ, x, y P V and
cpxq be the maximum constant with which clock x is compared in φ. We recall the
following definitions from Section 4. Set acpxq is the set of all clock constraints
between x and constant cpxq and set acpx, yq is the set of all clock constraints
between x and y. Set acpφq is the set of all clock constraints induced by φ.
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As in [9], we introduce a variable loop : N Ñ N to represent position l and to
encode arithmetical terms α (with domain R) appearing in formula φ, i.e., those
of the set termspφq, we introduce an arithmetic formula function α : NÑ R; e.g., if
x is a clock in φ then x is the function associated with it.

Let θ P acpRφq. We write θpiq to indicate formula θ where all clocks are ex-
pressed by their associated function and with parameter i; e.g., if θ is x „ y then
θpiq is xpiq „ ypiq. We indicate with PerpacpRφqq the following QF-EUF formula

ľ

θPacpφq

θpkq ô θploopq

that constrains regions at positions l (loop) and k to be the same.
Time elapsing is represented by function δ : N Ñ R that forces all clocks

in φ to progress by the same amount of time between any two positions of the
finite model. Strict monotonicity of time is guaranteed by letting function δ to be
strictly positive in t0, . . . , ku. Finally, since variables x are defined over R but x
are clocks, we enforce all clocks to be nonnegative at 0. We indicate with AdvpCφq

the following QF-EUF formula:

k
ľ

i“0

¨

˝δpiq ą 0 ^
ľ

xPCpφq

pxpi` 1q “ xpiq ` δpiq _ xpi` 1q “ 0q

˛

‚.

Formula
Ź

xPCpφq xp0q ě 0 is added to define the initial value of clocks.
We solve the satisfiability problem of CLTLoc formula φ by feeding the SMT

solver the set of constraints

|φ1|k Y PerpacpRφqq YAdvpCφ1q,

where |φ1|k is the bounded representation of φ1 described in [9].

. . .

. . .

2.1

0.1

2.3

0.3

3.2

1.2

5.5

1

6

0.5

6.6

1.1

0.2 0.9 2.4 0.5 0.6

l kk ´ 1

RlRl´1 Rk

y

x

δ

R
svl svk

Fig. 1 A (portion of) bounded model satisfying infinitely often formula px ă XyqUpx “ 1q.
Numbers colored in grey are associated with terms Xx and Xy at position k.

Figure 1 shows a portion of a model satisfying infinitely often the CLTLoc
formula φ “ px ă XyqUpx “ 1q. The prefix would be trivial, then only the periodic
part is depicted. The depth |φ| (i.e., the maximum depth of variables appearing in
φ, see Section 2) is 1, because of term Xy, constant cmax is 1 and set acpφq of clock
constraints induced by the formula (see Section 4) is tx “ 0, 0 ă x ă 1, x “ 1, 1 ă
x, y “ 0, 0 ă y ă 1, y “ 1, 1 ă y, x ă y, x “ y, y ă xu. Set SV pφq is not defined here,
for the sake of space. Solid rectangles in Figure 1 represent symbolic valuations
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svl and svk where arrows aÑ b represent constraints of the form a ă b. They are
defined as tx ă Xx, y ă Xy, x ă y,Xx ă Xy, x ă Xy,X ă y, x ă 1, 1 ă y, 1 ă Xx, 1 ă
Xyu. Let us denote this set as S. Perpacpφqq enforces regions Rl and Rk (dashed
rectangles) to be equal through the following logical equivalences, for all θ in S:
txplq “ 0 ô xpkq “ 0, 0 ă xplq ă 1 ô 0 ă xpkq ă 1, xplq “ 1 ô xpkq “ 1, . . . yplq ă
xplq ô ypkq ă xpkqu. In Figure 1, Rl “ txplq ă yplq, 0 ă xplq ă 1, 1 ă yplqu and
Rk “ txpkq ă ypkq, 0 ă xpkq ă 1, 1 ă ypkqu. The complete definition of |φ|k can be
found in [9].

For all formulae θ occurring in the definition of symbolic valuations in SV pφq,
formula θplq ô θpkq enforces svl to be equivalent to svk. Formula 1 ď l ď k ´ 1
imposes that position l is a valid position. The semantics of formula φ is achieved
by the fixpoint definition of U over all positions between 0 and k. As in [9],
formula φ is associated with a formula predicate over N and its translation is
Źk´1
i“0 φpiq ô pxpiq “ 1q _ pXypiq ą xpiq ^ φpi ` 1qq. To represent correctly the

semantics of temporal formulae, all the subformulae φ1 of a CLTLoc formula must
have the same truth value at positions k and l. This is enforced by imposing
that φ1plq ô φ1pkq, for all φ1 occurring in φ. The eventuality of px “ 1q, i.e., a
positive occurrence of subformula px “ 1q in the loop, is guaranteed by formula
φpkq ñ l ď iφ ď k ^ pxiφ “ 1q that imposes subformula px “ 1q to be satisfied
at position iφ, between l and k, when formula φ holds at k. In Figure 1, value
xk´1 “ 1 satisfies the eventuality for φ and for all the positions from l to k it holds
that x ă Xy. Hence, φ is satisfied infinitely often in the loop.

7 Encoding Metric Temporal Logics over the continuous semantics

We exploit the decision procedure for CLTLoc outlined in Sect. 6 to define mecha-
nisms for deciding various metric temporal logics over continuous time. In [13], [14]
and [12], we have defined several satisfiability-preserving reductions from metric
temporal logics to CLTLoc; hence, satisfiability of formulae of these former logics
can be determined by solving the corresponding problem for CLTLoc. In particular,
MITL, MITLp0,8q, MITLp0,8q with counting modalities [29], and their extensions
with past operators are the logics we have targeted so far.

We now briefly show how to encode MITL and MITLp0,8q (hence, QTL) for-
mulae into CLTLoc ones, by providing some highlights of the reduction in a special
case.

In general, in [4] it is shown that a signal can be seen as an infinite sequence
of adjacent non-empty intervals starting from the origin. Each interval is a convex
set of points over R that defines exactly the set of atomic propositions that are
true in all the time instants in it. In our translation, we represent the truth of
MITL (or MITLp0,8q) formulae, over the sequence of time intervals, by CLTLoc
formulae that capture their semantics. We assume that signals are finitely variable.
For these signals, time can be partitioned in a countable set of adjacent intervals
such that the value of every subformula of φ is constant in each interval. In the case
of MITL, we also restrict signals to intervals that are left-closed and right-open

(l.c.r.o. signals, ). This allowed us to devise a simpler translation
and, however, it can be relaxed. For instance, under the l.c.r.o assumption, a
formula can not hold in isolated points but if it holds at time instant t then it
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holds over a non-empty interval rt, t`εq, for some ε ą 0. Then, the case of isolated
points is not considered for l.c.r.o signals.

For each subformula θ of φ, we introduce a CLTLoc predicate
r

θ that represents
the value of θ in the intervals and the following abbreviations:

ξ
r

“  
r

ξ  ξ “  Yp
r

ξ q^
r

ξ !ξ “  Yp ξ
r

q^ ξ
r

where  ξ, for example, captures the situation in which ξ changes value from false
to true, with the formula being true in the current interval.

For simplicity, we focus our attention on temporal operators Fp0,bspψq and
Pr0,bqpψq. We remark that it can be shown that, if ψ holds only in l.c.r.o. intervals,
so do Fp0,bspψq and Pr0,bqpψq (the same does not hold, for example, for Fp0,bqpψq).

For each subformula θ of φ, we introduce two clocks, z0θ and z1θ , which measure
the time from the last change point (either  θ or !θ, so we have  θ _!θ ô z0θ “

0_ z1θ “ 0), and whose resets alternate. Our translation defines the (sufficient and
necessary) conditions causing events  θ and !θ to occur, for all θ.

Formula (23), then, captures the condition in which formula θ “ Fp0,bspψq

becomes false: in this case, ψ must become false, and it cannot become true again
for b instants (i.e., ψ cannot become true again before its associated clock that is
reset when ψ becomes false hits b).

!θ ô !ψ ^ ψR 

¨

˝ ψ ^
ľ

iPt0,1u

ziψ ď b

˛

‚ (23)

The case for θ becoming true is not shown for brevity.

Consider the case θ “ Pr0,bqpψq. Formula (24) captures the condition in which
θ becomes true. This occurs when ψ becomes true and either the current instant
is the origin (O is an abbreviation for  YpJq), or ψ has never become true since
the origin, or the last time ψ changed value (necessarily from false to true), this
occurred more than b instants ago (i.e., the clock associated with ψ that is not
reset now is ě b).

 θ ô  ψ ^

¨

˝O _Y

ˆ

  ψS pO^ ψ
r

q

˙

_
ł

iPt0,1u

ziψ ě b

˛

‚ (24)

To conclude this section, we provide an example of MITL formula over two
l.c.r.o. signals, whose model is intrinsically aperiodic in the values of the delays
between changepoints. The existence of formulae admitting only aperiodic models
shows that, in the decision procedure of Sect. 6, the periodicity must be enforced
on the set of constraints defining regions, but not on the actual values of the
clocks, nor on the time differences δ; therefore, the encoding of a CLTLoc formula
φ1 cannot include constraints of the form δpkq “ δpmq and xpkq “ xpmq, for some
k ą m ě 0. In other words, there are aperiodic models that do not admit a periodic
sequence of time increments δp0qδp1q . . . pδpmq . . . δpk ´ 1qω, even if the sequence of
clock regions is periodic.
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Fig. 2 Aperiodic model for MITL formula of Example 2

Example 2

Consider the behavior of two Boolean signals p, q, depicted in Figure 2. Signal p
holds in r2k, 2k ` 1 ` εq, for all k, and it is false elsewhere, as formalized by the
following MITL formulae (recall that Gi

Ipφq “ φ^GIpφq):

Gx0,1sp^Gi
pGx0,1spñ Gx2,3spq (25)

Gx0,1sq ^Gi
pGx0,1sq ñ Gx2,3sqq. (26)

Both signals p and q hold over intervals longer than one time unit, because of
the l.c.r.o. assumption. In addition, we require that q is at least as long as p

by formula Gi
ppñ qq. Formulae (25)-(26) above may, in general, admit periodic

models; therefore, we have to restrict the set only to aperiodic models. This may
be achieved by enforcing that, over intervals of the form r2k`1, 2k`2s, with k ě 0,
signal q is strictly longer than p, while over intervals r2k ` 1.5, 2k ` 2q both p and
q are false, as required by the following two formulae1:

Gi
pGx0,1spp^ qq ñ Fx1,2spp p^ qqU

i
pGx0,0.5s qqq (27)

Gi
p p^ q ñ Gx1,2spq (28)

Signals p and q become false before each time instant 2k ` 1.5 by requiring that
 p ^ q occurs until both p and q are false over an interval of length 0.5. Let
tpk P p2k ` 1, 2k ` 1.5q be the instant where p becomes false, and tqk “ tpk ` δpkq P

p2k ` 1, 2k ` 1.5q the one where q becomes false; let δk “ tpk ´ tqk be the length
of the interval where p does not occur while q does. Formula (28) lengthens the
duration of p of δpkq time units over the next interval starting at 2k: p holds in
rtpk`1, tpk`2`δpkqq. The series of values δk is strictly monotonic decreasing, because
each value is arbitrarily strictly less than the previous one, i.e., δpkq ą δpk`1q, for
all k ě 0. Therefore, the sequence of δpiq is not periodic, although the sequence of
clock regions induced by the clocks in the CLTLoc formula corresponding to the
formulae above is.

1 With slight abuse, we use rational bound 0.5; as customary, a formula with only integer
bounds can be obtained by doubling all constants appearing in the formula.
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8 Implementation and Experimental Results

The decision procedure of Sect. 6 for CLTLoc is implemented in a plugin, called
ae2zot, of our Zot toolkit [2], whereas the reductions outlined in Sect. 7 are im-
plemented in the qtlsolver tool, available from [1]. The tool translates MITL and
MITLp0,8q into CLTLoc, which can be checked for satisfiability by ae2zot.

The resulting toolkit has a 3-layered structure, where CLTLoc is the inter-
mediate layer between SMT-solvers and various temporal formalisms that can be
reduced to CLTLoc. This not only supports (bounded) satisfiability verification
of different languages, but it also allows the expression of different degrees of
abstraction. For instance, MITL abstracts away the notion of clocks, inherently
encompassed within temporal modalities, which are instead explicit in CLTLoc
(as witnessed by the example of the timed lamp in Sect. 2) and available to a
user, e.g., to express or verify properties where clocks are very convenient. In fact,
preliminary experimental results point out that the time required to solve CLTLoc
may be significantly smaller than the one needed for more abstract classes of lan-
guages, such as MITL. This gap is caused by the “effort” required to capture the
semantics of temporal modalities, which, on the other hand, allow for more concise
and manageable high-level specifications. One can then take advantage of the lay-
ered structure, which allows the resolution of a formula to be compliant also with
constraints imposed at lower layers, for instance by adding at the CLTLoc layer
some extra formula limiting the set of valid models (e.g., by discarding certain
edges of some events or by adding particular timing requirements). Also the third
layer (the SMT solver) may be used to add further constraints, e.g., to force the
occurrence of a proposition or of a certain clock value at a specific discrete position
of the finite model.

The current implementation of qtlsolver supports various reductions. More
precisely, it realizes the MITL-to-CLTLoc translation tailored to l.c.r.o. signals,
as highlighted in Sect. 7. It also implements a translation from MITLp0,8q to
CLTLoc. This translation does not assume any special shape for signals, except
that they be finitely variable; it natively supports operators Fx0,by and Gx0,by (and
their past counterparts), where the bounds can be either included or excluded.
These operators allow us to define concisely Fxa,by and Gxa,by as abbreviations. For

instance, Gp3,6qpφq is equivalent to Gp0,3q

´

Fp0,3q

´

Gp0,3qpφq
¯¯

; defining a similar

equivalence using only the Fp0,1q and Gp0,1q modalities (see, e.g., [22]) involves the
recursive expansions of each conjunct of Gp3,4qpφq ^Gr4,5qpφq ^Gr5,6qpφq, where

Gpn,n`1qpφq is equivalent to Gpn´1,nq

´

Fp0,1q

´

Gp0,1qpφq
¯¯

.

The following two encodings are currently available (they both include past
operators):

MITL: providing a direct definition of MITL operators, assuming l.c.r.o. intervals;
QTL: providing the definition of MITLp0,8q operators with unrestricted signals

(other than they be finitely variable), and MITL operators through abbrevia-
tions.

We used the above two encodings and the CLTLoc decision procedure to carry
out some verification experiments on the example of the Timed Lamp described
in Sect. 2. More precisely, we have built several descriptions of the behavior of
the lamp: (i) the CLTLoc model presented in Sect. 2; (ii) a MITL specification
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assuming l.c.r.o. signals; (iii) a MITLp0,8q specification in which predicates on

and off are constrained to be true only in isolated instants. On each of these
specifications we have carried out three experiments, assuming ∆ “ 5: a check
of the satisfiability of the specification, to show that it is consistent (sat); the
(dis)proof of property “the light never stays on for more than ∆ time units” (p1);
the proof of property “if at some point the light stays on for more than ∆ time
units, then there is an instant when on is pressed, and then it is pressed again
before ∆ time units” (p2). Depending on the temporal logic and of the restrictions
on the signals (l.c.r.o. or not) the formalization of the timed lamp and of the
properties can change.

In the case of the CLTLoc specification of the timed lamp, in order to formalize
properties p1 and p2 we introduce an auxiliary clock caux, which is reset every
time the light is turned on, i.e., caux ô l^Y p lq. Then, in CLTLoc property p1 is
captured by formula G pY plq ñ caux ď ∆q. In addition, property p2 is formalized
by the following formula:

F pl^ caux ě ∆q ñ F pon^Xp rst-cUpon^ test0ăcď∆qqq (29)

The behavior of the timed lamp can be captured by the following MITL formula
over l.c.r.o. signals (we write φSiψ for ψ _ pφ^ φSp0,8qψq and PiIφ for φ_PIφ):

Gi
´´

l ô p onSi off q ^Pip0,∆qponq
¯

^ pon ñ  offq
¯

(30)

In MITL over l.c.r.o. signals, where predicates hold over non-null intervals, we
limit the length of intervals in which on (and off) holds to be at most 1 by adding
the following constraint:

Gi
´

 Gp0,1sponq ^  Gp0,1spoffq
¯

. (31)

Over unrestricted signals, instead, we force on to hold only in isolated instants by
adding the following MITLp0,8q constraint (and similarly for off)

Gi
´

 pon Up0,`8qJq ^  pon Sp0,8qJq
¯

. (32)

Properties p1 and p2 over unrestricted signals are captured by the following MITLp0,8q
formulae (where Fi stands for Fip0,`8q):

Gi
´

Fip0,∆sp lq
¯

(33)

Fi
´

Gi
p0,∆splq

¯

ñ Fi
´

on^ Fp0,∆sponq
¯

(34)

Over l.c.r.o. signals property p1 is still captured by Formula (33); property p2,
instead, is more involved, and corresponds to the following formula:

Fi
´

Gi
p0,∆splq

¯

ñ Fi
´

p on^Pip0,∆qponqqUion
¯

(35)

Table 8 reports the time and space required for the checks outlined above (all
tests have been done using the Common Lisp compiler SBCL 1.1.2 on a 2.13GHz
Core2 Duo MacBook Air with MacOS X 10.7 and 4GB of RAM; the solver was z3
4.0). All bounded satisfiability checks have been performed using a bound k “ 20.
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Table 5 Experimental results with the timed lamp, reporting Time (sec) and heap size (MB).

Problem Satisfiable? CLTL-o-c MITL (l.c.r.o) MITLp0,8q (unrest.)

sat Yes
0.48/0.33 15.5/13.84 4.24/3.04

5.63 66.45 27.12

p1 Yes
0.52/0.35 36.74/33.16 17.2/14.86

6.22 102.47 63.5

p2 No
0.67/0.49 6.61/5.09 257.1/240.88

6.55 110.27 58.66

The first line of each row shows the total processing time (i.e., parsing and solving)
and the time taken by the SMT-solver (both times in seconds). The second line
reports the heap size (in Mbytes) required by Z3. In every case the specification is
satisfiable, property p1 does not hold (the tool returns a counterexample), while
property p2 holds (“unsat” is returned). In addition to the results shown in the
table, a variant of Formula (29) where test0ăcă∆ is used instead of test0ăcď∆ (i.e.,
ď is replaced by ă) is shown to not hold, and a counterexample is obtained in less
than 1 second.

Finally, we present an interesting behavior over unrestricted signals. The be-
havior is captured by the following formulae, which state that p and q only occur
in isolated instants, with p occurring exactly every 80 time units, and q occurring
within 80 time units in the past from each p (origin excluded).

Gi

˜

Gp0,80qp pq ñ Gp80,160qp pq ^

ppñ Fp0,160qpq ^ pq ñ p qqUJq

¸

^

p ^ Gp0,80qp pq ^ Gp0,8qppñ Pp0,80qqq

(36)

In this case, the bound k “ 10 is enough to prove that the formula is satisfiable: a
model is produced in about 40 secs. In aroud the same time, the solver shows that
property Gi

pp ñ Fp0,80qpqqq holds for model (36) (up to the considered bound),

whereas property Gi
pq ñ Fp0,80qpqqq does not hold. It is worth noticing that, in

Formula (36), the constants 80 and 160 occurring in the temporal modalities are
significantly greater than the above bound k “ 10, since in principle any value is
possible for the clock increments between two consecutive positions. Therefore, the
length of the intervals described by a CLTLoc model is independent of the bound
k, as long as k is large enough to capture all change points that are necessary to
build a periodic sequence of regions.

9 Conclusions

This paper investigates a bounded approach to satisfiability checking of an exten-
sion of CLTL where variables behave like clocks (CLTLoc). The decidability of
the logic (by means of an automata-based technique) is shown first, followed by
an encoding into a decidable SMT problem. This encoding, implemented in our
ae2zot tool, allows, both in principle and in practice, the use of SMT solvers to
check the satisfiability of CLTLoc. We provide a short but non-trivial example of
a CLTLoc specification describing a timed behavior over continuous time, which
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should demonstrate the effectiveness of this approach, as we are able to (dis)prove
various properties of the specification. The paper also outlines continuous time,
metric temporal logics, namely MITL and MITLp0,8q (a generalization of QTL),
showing that their extension pMITL, allowing existential propositional quantifiers,
is as expressive as CLTLoc over the pointwise semantics. An encoding of MITL
over the continuous semantics into CLTLoc is implemented in our qtlsolver tool.
This shows that CLTLoc can be considered as a target language to reduce decision
problems of various continuous-time formalisms, such as temporal logics, but in
principle also Timed Automata or Timed Petri Nets.

To the best of our knowledge, our approach is the first allowing an effective
implementation of a fully automated verification tool for continuous-time metric
temporal logics such as MITL. The tool is still a non-optimized prototype, whose
performance might also be substantially improved in future versions. Clearly, ver-
ification of formulae requiring many clocks may in general be infeasible, since
satisfiability of MITL is EXPSPACE-complete (but we also support verification
of an interesting, PSPACE-complete fragment of MITL). However, in practice a
large number of clocks is not very frequent, and the examples of MITL formulae
that we studied were verified in a fairly short time.
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