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Abstract—In nowadays life, mobile phones are becoming a
cheaper and smaller alternative to laptops for simple, everyday
tasks. They experienced an astonishing growth in functionalities
and, because of their constant presence in our life, mobile phones
became fundamental for the interaction with information coming
from the environment. Nevertheless, their resources are limited,
both in terms of performance and power, and their availability
can greatly vary over time. Especially when dealing with power
consumption, mobile devices cannot disregard environment con-
ditions and user habits. Both internal and external conditions
are rapidly changing and may influence the response of the
entire system, e.g., switching between network types may causes
an unpredictable power consumption. In order to puzzle out
all these issues, we regard the definition of a power/energy
model for mobile devices as a first mandatory step. In literature,
several attempts to do so are present, basing their approaches
on techniques coming from different computer science fields.
They differ in the way they consider hardware components, in
the operating system they are suitable for and in the scope of
their tests and experiments. Within this paper, we categorize
techniques presented in the major works in the field, in order to
be able to compare different methods, highlight open issues and
give suggestions on future works.
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I. INTRODUCTION

Mobile devices are getting more and more popular in
nowadays life. They are now cheaper, smaller and much
portable than laptops and they are substituting them in a
large variety of functionalities [1]. Due to their growth in
functionalities and constant presence in our life, mobile
devices are one of the most important interaction points
between people and the surrounding environment. However,
it has to be considered that resources management in such
devices should be specifically crafted to satisfy the mobile
requirements: power sources availability can greatly vary
over time, computational power is limited [2], as well as
the disk space. Both internal and external conditions change
quickly, influencing the behavior of the entire system, e.g.,
not having a fixed localization causes the switch between
network types, causing an unpredictable power consumption
and network instability. Within this context, it is clear that
mobile devices belong to a constrained and fluctuating
environment, which requires resource allocation policies that
differ from those which have been developed for traditional
computational world [3], [4], [5]. One of the most remarkable
constraint is the battery power: this is a fundamental and

highly constrained resource, thus its management has both
great research interest and practical applications [6], [7]. The
constraint imposed by the battery capacity suggests the idea
of developing accurate models for power consumption of
mobile devices, to understand if an optimized usage profile
may increase the device lifetime.
In literature, there exist several attempts to define
power/energy models for mobile devices, whose approaches
come from different fields of computer science. Carroll and
Heiser presented a work about the power consumption of
a Openmoko Neo Freerunner mobile phone, whose circuit
schematics are publicly available [8]. The main purpose of
their studies was to induce a power distribution breakdown in
the main components of a smart device. Even if it provides
a useful insight on power consumption of smartphone
components, their technique relies in publicly available
component schematics, therefore they are not portable.
Another approach overcoming this issues relies on the use
of sensors available on the smartphone, to build the power
model. PowerBooter and PowerTutor [9] automatically build
a model using built-in battery voltage sensors to monitor
power consumption and control the power management
of individual components. A third approach is based on a
logging application released into the wild [10], using the data
retrieved to built the power model. Thanks to this technique,
the authors demonstrated that the power consumption strongly
depends on the owner’s behavior too, highlighting its impacts
on the modeling abilities.
Given the huge number of works in the field of power
modeling, we strongly believe that a categorization is
necessary, to promote the comparison among these different
techniques. Differently from what presented in [2], we
decided to give an overview on the characteristics of the most
influential research works in this field. Thus, this survey is
written focusing on measurements and models, to catalog the
state-of-the-art according to the level of abstraction used in
estimation, i.e., system, application or user level. In addition,
a set of discriminant features able to characterize mobile
devices power estimation methods is presented here.
The remaining part of this paper is organized as follows:
Section II presents the adopted categorization criteria;
Sections III to V describe and analyze the models developed
so far, with a detailed insight of the most remarkable works;
Section VI highlights the open issues with currently available
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methods, and finally Section VIII discusses the conclusions
of this work.

II. STRUCTURE

In order to compare and analyze the most influential re-
search works in the field of power consumption modeling
on mobile devices, we defined a set of categories to group
similar methodologies and better evidence their differences.
This taxonomy is based on the level of abstraction used for
data gathering, which induces different modeling approaches.
The chosen categories are:

• System level: the works in Section III have, as their pri-
mary goal, the development of a model able to compute
the whole system power consumption at a given time.
This category is further divided by considering the way
in which power measurements are performed, i.e., using
external systems, internal HW/SW components or via
internal APIs of the operating system.

• Application level: in Section IV, the power consumption
is modeled per single application or per applications that
have specific workload characteristics, e.g., an intensive
network usage.

• User level: Section V includes all the works taking into
account also the user behavior and the impact of different
usage patterns in overall power consumption.

This high level classification summarizes the existing power
modeling methodologies, giving just a bird’s eye view of the
approaches to the problem: each method should be then prop-
erly described to better compare techniques and to perform a
more detailed analysis. A set of discriminant features/aspects
is here reported:

(a) Model generation: the method used to build the model
from the available data, e.g., Finite State Automata
(FSA) or Linear Regression (LR), (see Table I for further
details);

(b) Model granularity: the level of detail of the model,
i.e., the entire system, a single application, or a single
component;

(c) Model adaptivity: the ability of the model to change
according to changes into the environmental conditions;

(d) User behavior: whether the user behavior is taken into
consideration during the model construction phase or in
the testing phase;

(e) Analyzed data source: whether the evaluation phase
is performed using ad-hoc stress-applications or real
applications or data (see Table I);

(f) Target devices/OS: the devices that the system is able
to model and/or the OS they are running on (see Table
II);

(g) Measurement method: whether the information about
the battery status or the current power consump-
tion is retrieved using an external or internal
tools/instrumentation (see Table I).

III. SYSTEM-LEVEL POWER MODELING

A large number of works aims at creating system-wide
power models of the entire mobile device. The required data

can be gathered either by attaching external sensors to the
device (offline method) or relying on the operating system’s
APIs (online method).
An offline approach allows an accurate inspection of the
behavior of the mobile device, given predetermined and con-
trolled external conditions. Given the great variety of mobile
devices on the market and the OS release versions they
may run, it is almost unfeasible to generate offline power
consumption models for each combination of device and OS
version. Moreover, this analysis does not evolve with the
running life of the device, while an online methodology and
a run-time generated model is able to adapt itself to new
software updates or even new devices. On the other hand,
an adaptive model generation cannot be as precise as the one
developed using external measurement system, relying only on
software APIs to gather information on the actual battery state.
Recently, some smartphones are given a wider set of hardware
sensors, thus allowing an intermediate approach to be used,
with internal sensors providing precise data about the device
power consumption. This last approach provides intermediate
precision results between the external measurements and the
APIs approach, but it lacks of flexibility, since can be applied
only to those devices equipped with internal sensors.
With these considerations in mind, we will now analyze
how different measurement methods have been applied in
some remarkable works in this field: Section III-A presents
some results using external measurements, while Section III-B
discusses those works that make use of system APIs; finally,
approaches based on custom and internal measurements are
described in Section III-C.

A. Using External Measurements

The models shown in this section rely on external tools
to gather data from the device. This approach provides very
precise information, but it is really invasive.
The goal of [19] is to consider the contribution of independent
component on the whole energy consumption. The power con-
sumption is measured by inserting a resistor in series between
the battery and its connector on the phone and a sampling
board is used to measure the battery voltage. Measurements
are managed by a central Power Server, which is in charge
of sending the test scripts on the device and retrieve the
resulting traces without requiring any user interaction. Tests
are specifically designed to stress each considered compo-
nent, providing a model of power consumed by a specific
component. The analysis performed involved data sending
over a wireless network, using an Android device. Collected
traces allowed the analysis of the energy consumed in different
communication phases, e.g., during data sending phase.
In an influential study, Anand et al. [11] propose a 2-way Op-
erating System-level power management. This system consists
in a modified version of Linux, running on a handheld iPAQ.
I/O peripherals are fully described using a state enumeration,
called power modes, each one associated to a power consump-
tion values expressed in mW. In order to measure the power
states, the authors removed the battery from the iPAQ device
and sampled the amount of current drawn at 50Hz through an
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TABLE I
CATEGORIES AND RELEVANT FEATURES OF MAIN WORKS (MODEL GENERATION TECHNIQUES ARE FINITE STATE AUTOMATON (FSA), LINEAR

REGRESSION (LR), GENETIC ALGORITHM (GA), PRINCIPAL COMPONENT ANALYSIS (PCA), FINITE STATE MACHINE (FSM), AUTO REGRESSION
(AR) AND FACTOR ANALYSIS (FA).

Category Work
Features

Model Generation Model Granularity Model Measurement Analyzed User Target OSAdaptivity Method Data Source Behavior

System Level

[10] FSA + LR

System/Component no
External Tools stress/users yes Android

[11] Heuristic stress

no

Linux
[12] GA

Custom Internal
stress/users Symbian

[9] LR
stress

Android
[13] PCA + LR System yes Linux/Symbian/Android
[14] FSA + LR Internal Windows Phone/Android

Application Level [15] Component Application yes External Tools stress no Android
[16] no Custom Internal stress/users Symbian

User Level [17] PCA + FA System yes Internal user logs yes Android[18] AR

TABLE II
EMBEDDED HARDWARE COMPONENTS CONSIDERED BY SOME RELEVANT PAPERS IN THIS SURVEY

Work HW Components Screen CPU GPS SD Card Bluetooth Audio Network Wi-fi NoneTreated as Independent
[10]

√ √ √ √ √ √ √

[11]
√

[12]
√ √ √ √ √

[9]
√ √ √ √ √ √ √ √ √

[13]
√ √ √ √ √ √

[14]
√ √ √ √ √

[15]
√ √ √ √ √ √ √

[16]
√ √

[17]
√ √ √ √ √ √

[18]
√

external power supply. In this system, applications are allowed
to query the power mode of I/O peripherals and can disclose
hints about expected device discharge rate in a different power-
mode. The system provides also a decision phase for power
saving, relying on heuristics based on the hints given to the
applications. Experiments are performed focusing on a Web
browser and an email reader application.
Another remarkable contribution is Cinder, an OS based on
the HiStar kernel [20]. Cinder provides a low-level abstraction
for energy management and it is meant specifically for mobile,
energy constrained devices. Measurements are taken through
an Agilent Technologies E3644A (i.e., a DC power supply
with a current sensor) on an HTC Dream mobile phone. Even
though this research work does not directly focuses on power
modeling, the authors clearly state that Cinder needs a solid
model in order to work properly: the suggested approach was
to “build a model from offline-measurements of device power
states in controlled setting”.
A very deep analysis of power consumption on smartphones
was done by Carrol and Heiser [8]. They tried to understand
where and how energy is drained, to provide basis for under-
standing and managing mobile devices power consumption.
Their considered physical measurements of supply voltage and
current at component level on a piece of real hardware, using a
National Instruments PCI-6229 DAQ. With this experimental
setup, the authors were able to directly estimate the power
consumed by the main components of the mobile device (see
Tab. II for details). Moreover, they measured total power
consumption by inserting a sense resistor between the power
supply and the device. To construct their model, they ran two
different benchmarks: at first, a series of micro-benchmarks

designed to independently characterize single components,
then a series of macro-benchmarks based on real usage scenar-
ios. They noticed that the majority of power consumption can
be attributed to the GSM module, the display (including the
LCD panel and touchscreen), the graphics accelerator/driver,
and the backlight.
In almost all benchmarks, the brightness of the backlight
was the most critical factor in determining power consump-
tion. They also showed the impact of the screen image on
power consumption. The GSM module consumes a significant
amount of both static and dynamic power (both maintaining a
connection with the network and during a phone call), while
the RAM, audio and flash subsystems showed the lowest
power consumption. Using the data collected, Carrol and
Heiser built an energy model based on usage patterns in order
to understand when and where the daily energy use and battery
life is wasted. The defined usage patterns are: suspend (a
baseline case of a device which is on standby), casual (user
who uses the phone for a small number of voice calls and text
messages each day), regular (a commuter with extended time
of listening to music or podcasts, combined with phone calls
of different length, messaging and emailing) and business (a
user that makes talking and email use together with some web
browsing). This kind of analysis clearly shows how different
usage have different impact on the power consumption.
Shye et al. describe in [10] both a power-modeling approach
for Android-based mobile devices and a novel energy-saving
policy to manage the screen brightness. Measurements are
performed with a Fluke i30 AC/DC current clamp, while
the operating voltage is retrieved through Android APIs. The
modeling phase consists of a 2 states FSA: stand-by mode and
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active mode. In the former state the consumption is accounted
as fixed, while in the latter one the power consumption is
computed through a LR model, given by the R-Tool fed with
data collected by stressing a single hardware component at a
time. This model predicts the power behavior of each scenario
with a median 6.6% relative error. Moreover, the authors
used data coming from several users to identify the most
consuming component, which turn out to be the screen. By
making the system automatically adjust the screen brightness,
they managed to save up to 10% total energy, with minimal
impact on user satisfaction.

B. Using only system APIs

Different power modeling approaches rely only on device
APIs to collect data. OS APIs have some limitations in terms
of precision, but they are present on every device and are less
invasive than direct measurements.
For instance, Xiao et al. [21] present a methodology for build-
ing a system-level power model, without requiring laboratory
measurements. This approach relies only on data provided by
the OS, thus it can be adapted to any device. They developed
a LR model with non negative coefficients, describing the
aggregate power consumption of processors, wireless network
interface and display. In order to perform LR, they analyzed
data regarding the activity levels of each hardware component,
i.e., the hardware performance counters (HPCs) for processor,
the downlink and uplink data rates for the wireless interfaces,
and the brightness level for the display. They discovered that a
LR model is sufficient to model the relation between the vari-
ables they chose and the power consumption. They used five
types of different workloads to construct their model: idle with
different brightness levels, audio/video playing, audio/video
recording, file download/upload at different network data rates
and data streaming. One of the main features of this work is
the possibility to adapt the model to new hardware. In fact,
when a new hardware component is installed into the mobile
device, it is possible to add regression variables describing the
activity levels of the new component, define new test cases
to stress it and, finally, fit the new data with a regression
model. If an analytical power model of the new hardware
component is provided, it is also possible to merge it with the
existing system-level model. They reported a median error of
2.62% in the power estimation in real mobile Internet services.
Moreover, they provided a power model that is independent
from usage scenarios and that can be used for runtime power
estimation with reasonable accuracy.
In [22], a context-aware system able to accurately predict the
battery lifetime is proposed. The energy consumed by each
system component is considered dependent on its operational
state and on the amount of time spent in the state. As a
consequence, the system power consumption is modeled as the
sum of single components. Data about the discharge rate were
collected in several contexts, where a single system context
is a combination of CPU utilization, LCD brightness, Wi-Fi
state, IO idle rate and volume of data transferred. Finally,
multiple LR technique was used to build a model able to
describe the battery discharge rate, by basing on the system

component states. The system was tested using a HTC G1
smart phone, running the Android OS. Data were collected
using 40 different test scenarios: 16 of those were used to build
the model, the remaining to evaluate the generated model.
The proposed model was able to predict the remaining battery
lifetime with a relative error of 10%.
Another remarkable contribution is given by Pathak et al.
[14], who propose a new power modeling approach, able to
capture both utilization-based and non-utilization-based power
behavior. This methodology is based on a fine-grained energy
estimation, obtained by tracing applications system calls. Their
scheme consists of two major components. The first one is
a Finite State Machine (FSM) to model the power states
and state transitions. Some of the states have constant power
consumption (they represent non-utilization power consump-
tion), while others leverage on a LR model (the second major
component of the model) to capture the power consumption
due to system calls of a generated workload. Moreover, a
testing application is used to systematically uncover the FSM
transition rules. Tests were performed on a HTC Touch Pro
and a HTC Tytn 2, powered by Windows Mobile 6, and a
HTC Magic running Android. They claim this new model-
ing approach improves the accuracy of fine-grained energy
estimation compared to utilization-based model. Indeed, their
model have a 80th percentile error of less than 10% estimating
the power consumption of 50 ms of a generic application
execution, while the utilization-based model have an error
that varies between 16% and 52%. Its error for the whole
application, with 1 sec granularity, varies between 0.2% and
3.6%, compared to the error 3.5-20.3% given by utilization-
based model.

C. Using Custom and Internal Measurements

Several works have been specifically designed to exploit
interfaces already available on specific devices or OSes, e.g.,
the Advanced Configuration and Power Interface (ACPI) or
the Nokia energy profiler. The use of these interfaces provides
precise information about the battery status (e.g., voltage, cur-
rent and temperature) or even the current power consumption
of the device at a specific time instant. These choices lead
to the generation of very precise power consumption models,
but they are not portable on devices without specific hardware
interfaces, e.g., many Android-powered device may be unable
to provide the required data with the required precision.
An interesting system called Sesame is proposed in [13]. It
is a self-modeling approach to build high-rate mobile system
models without any need for external measurements. At first,
Sesame collects data traces, i.e., system statistics and data
provided by the ACPI, building an initial set of predictors;
they may be user-defined and may depend on the platform in
use. Predictors may include, among the others, CPU utiliza-
tion, cache misses, Wi-Fi traffic and/or LCD backlight level.
Then, the model is built using two iterative techniques, model
molding and predictor transformation. The former generates a
model using LR, while the latter improves the accuracy of a
molded model, transforming the original predictors and finding
better linear combinations of the original predictors. The
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model is composed by a set of sub-models, each corresponding
to a different system configuration. Sesame was implemented
both for laptops and smartphones, using a Linux kernel. The
system overhead, in the worst case, has been computed to be
3% and 12% on the laptop and on the smartphone, respectively,
while average values are measured to be around 1% and
5%. This study highlighted that data collection frequency
influences the system accuracy, drastically dropping when the
data collection frequency matches the frequency of the register
used to store the monitored value. Accuracy was reported as
86% and 82% at 1 Hz and 100 Hz on the smartphone and
95% and 88% at 1 Hz and 100 Hz on the laptop, respectively.
In the model generation, Sesame provides energy estimations
with error of at most 12% at 1 Hz and 18% at 100 Hz for
laptops, and 12% at 1 Hz and 22% at 100 Hz for a Nokia
N900 smartphone.
Another work exploiting the ACPI interface is proposed in
[23]: the proposed methodology involves a mixed-approach,
combining the recently observed device power consumption
history with offline benchmark measurements to predict the
battery lifetime. The offline measurements are used to offer
a baseline for prediction, while more recent data are used
to react to unpredictable events online. Offline measurements
were computed running on a quiescent system with constant-
power workloads, i.e., repeated executions of a single program
to completely discharge a fully charged battery. Starting from
the offline history curve, several LRs are used to predict the
battery lifetime, taking into consideration the current system
conditions too. The online data are retrieved using Smart
Battery [24] and the ACPI interface. Their method achieved
a 5% maximum error for predicting the power consumption
of constant workloads, with the exception of media, whose
fluctuations during execution cause the error rate to reach the
10%.
The work described in [12] targets Nokia devices with Sym-
bian OS and exploits the Nokia Energy Profiler tool, which
provides precise power measurements with respect to OS
APIs. An unsupervised method to model a device energy
consumption is proposed, based on Genetic Algorithms (GA).
This solution relies on online measurements through system
APIs to generate on-demand models: for instance, a new
model may be needed when the system configuration changes.
Data retrieved through the available APIs include the battery
voltage, current and other informations. In order to build a
model, their method needs a training dataset where data are
collected exercising independently all the remarkable phone
features; a GA is then used to choose the relevant features.
The features exercised include Wi-Fi, GSM, CPU and GPS.
The presented experiments considered training data mostly
collected in predefined conditions. However, the system was
tested using a real-location use case scenario too. The model
predicts power consumption with a 95th percentile error of
0.313. This error increases when the application is released
“into the wild” with more frequent and overlapping feature
usage.
In [25] an energy estimation system has been presented: it is
able to compute at run-time the power consumption of tasks
executed in RAM and to perform data transfers over the Wi-

Fi network. In this work, a battery monitor unit is assumed
to be already integrated into the target devices. At first, an
initial offline profiler is used to generate a first model state,
using the profiled data. Then, a power estimator component
produces the energy estimation on a defined interval, taking
into consideration a computation model and a communication
model. Those models are characterized by a set of parameters,
computed at run-time using a recursive least square LR with
exponential decay method. This phase uses the feedbacks from
a runtime profiler, which gather information about the battery
voltage, temperature and current from the battery monitor.
The last remarkable contribution in this section is by Zhang
et al. [9], specifically crafted for online generation of power
models. They started their study analyzing each component
separately, using external tools. They realized that the power
consumption of major components affects the system indepen-
dently, e.g., power consumption of the entire system when 3G
and Wi-Fi are active is the sum of 3G and Wi-Fi contributions.
After that, they evaluated the intra and inter class variance
and noticed that different devices have power models pretty
far from each other: this justifies the need to develop a power
model for each device. In order to do so, their method was
modified to be able to create power models, starting from data
coming from sensors within each device. The result indicates
that the power model built with PowerBooter is accurate
to within 4.1% of measured values for 10-second intervals.
However, this model presents two main limitations: the need
of a specific discharge curve for every specific device and the
need for a mobile phone that allows superuser access in the
OS.

IV. APPLICATION-LEVEL CONSUMPTION

This section discusses those works that profile applications
power consumption. Compared to system-wide models, this
approach allows a more fine-grained profiling. In addition,
several works studied the impact of network data transmission
of the single application, since the network activity consumes
a significant part of the available battery power.
A tool for power-aware applications is proposed in [15]. The
idea is to predict the power consumption of an application
during its development phase. The goal is to identify “hot-
spots” inside the code before the application is released
and tested on an actual device: the tool presented, named
System Power Optimization Tool (SPOT), allows developers
to create high-level architectures representing the program
and the components it uses. SPOT generates the code and
integrates the information about energy consumption, with an
error of 3-4%, with respect to the actual power consumption.
Alternatively, it can create the code to be run on a real device,
adding some logging functionalities to save useful information
to refine the power model offline. The main limitations of
SPOT are the lack of integration with the Android SDK and
the limited number of devices available to test an application.
In [26], the goal is to model energy consumption of those
applications that require a network activity, for each available
technology (i.e., 3G, GSM and Wi-Fi). This study considers
two main contributions to power consumption due to network
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activity in cellular mode: the transmission energy and the
Radio Resource Control protocol, responsible for scaling the
power consumed by the radio basing on inactivity timers. They
reported an initial high cost of association with an access point
in Wi-Fi mode, but a low cost of maintaining the connection
active. Experiments were performed using the Nokia Energy
Profiler to gather precise power consumption information in
real-time. Results have shown that GSM consumes 40% to
70% less energy compared to 3G to download data, while Wi-
Fi is more energy efficient than both cellular networks once it
is associated. The energy model was build taking into account
both the size of transfer and the time between consecutive
transfers.
In [16], the analysis focuses only on the Wi-Fi connection.
Even in this case, power consumption was measured using the
Nokia Energy Profiler. During the measurements, the basic
components of the devices were in use, to minimize the
dependencies with other components. Power consumption data
has been collected testing the network interface in different
operational modes and during TCP download at different data
rates. The power consumption was modeled using a set of
linear equations. With these equations, they estimated the
power consumed to upload or download with a mean absolute
percentage error of 6.8% and 5.8%, respectively.
The last remarkable application of power profiling is described
in [27]. In this study, application power profiles were used for
malware detection. The authors estimated the power consump-
tion of various activities done by the user, such as calling or
surfing the Web. Using these measures as a ground truth, they
monitored power consumption during device usage, in order
to spot abnormal consumptions. Then, when the phone was
recharging, they used a more fine grained analysis on each
application, in order to spot the ones that are contributing the
most to the power consumption variations. Using this kind of
analysis, they managed to achieve a 89% detection rate, in
case of a message forwarding malware.

V. USER-LEVEL CONSUMPTION

Mobile devices are able to run several different applications
and the amount of time spent by a user on each one of those
contributes to determine the device battery lifetime. Since each
user has different needs, it would be reductive to build efficient
power consumption models without taking into consideration
the impact of the user behavior. This section discusses those
works which took into account the user experience, to properly
build personalized power consumption models.
Vallina-Rodriguez et al. clearly explains why those models
that ignore the users usage patterns are limited [17]. They de-
veloped an application to collect information about the users,
which were analyzed using the Principal Component Analysis
(PCA), a statistical approach able to discover the component
with the biggest impact on power consumption. The results
showed that the components consuming the most were strictly
dependent on the user. As a consequence, power optimizations
may be performed on unused components, if user’s behavior
would not have been taken into consideration. However, this
work showed that PCA can be used to highlight each device

major consuming components and to build personalized power
models.
In [28], Kang et al. created a power model considering the
usage pattern, thus overcoming the limitation of the models
considering only the device. They consider a mobile device
having a constant number of states, each of which is a tuple
containing the condition of the phone components, e.g., a
state is determined by (LCD;VOICE;DATA) = (ON;ON;ON).
The authors noticed that users spend different time into each
state. In [18] they create a daily and weekly user profile,
reflecting life patterns, i.e., working, resting, and sleeping
for both weekdays and weekends. Then, they measured the
battery consumption and time spent in each operational state,
using a data collecting application running on Android-based
platforms. The application periodically recorded information
about usage patterns and power consumption to a log file,
later sent to and processed by a server, to build the model.
This was the same concept of PowerDoctor [29]: it makes use
of real world data to build user-specific power consumption
models. As far as we know, it has been tested considering
only the CPU and the display as modeled components, but the
authors claim that an extension of the work to all the device
components is possible. PowerDoctor groups data into chunks,
one for every 1% drop of the battery level. These chunks are
then organized according to the active hardware components,
considering only those with little standard deviation; a LR is
finally used to build the model. Experimental results showed
that this application can predict power consumption with a
percentage error between 5.7% and 7.2%.
A detailed and wide study on how intentional user activities
impact on the device power consumption is performed in [30].
One aspect of this data analysis involves the energy consump-
tion: it is claimed that the energy consumption is influenced by
the platform itself (hardware/software components) and by the
applications and the user interaction. Their results showed that
user activities contribute heavily towards energy drain. The
same authors presented a study about network connectivity
on smartphones [31], implementing a tool that provides an
application-level view of mobile devices traffic. Analyzing
data gathered with this tool, they noticed that Web browsing
contributes over 50% of the traffic, while email, media and
maps contribute to roughly 10% each. They also discovered
that most data transfers are small, making the radio controller
waste power in its sleep-active-idle cycle. Also, this fact makes
tools like Catnap [32] almost useless, since they aim to reduce
power consumption during long transfers. In their study, Falaki
et al. showed that reducing the tail time from 12 seconds to
4.5 allows to save 35% power in radio communications. Thus,
having perfect knowledge of the incoming traffic permits to
save up to 60% power, meaning that this methodology can be
improved by a model considering usage patterns.
Finally, a Battery Lifetime Predictor is presented in [33].
The approach compared the device actual discharge with
a measured base curve, obtained when the device was in
idle, i.e. no applications were running. To compute the base
curve, it is necessary a one-time offline measurement, that
can be repeated periodically, to consider also battery aging
phenomena. This method works only with a predefined set of
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measured applications and the prediction is not valid anymore,
if a new application is added. CABMAN was prototyped for
both Linux and Symbian OS, using as test devices an HP
laptop with a new battery, a Dell laptop with a very old battery
and a regular HP iPAQ PDA. The battery lifetime predictor
has a percentage error rate varying between 1.2%, having a
new battery, and 6.1%, when the battery is very old.

VI. EXISTING TECHNIQUES OPEN ISSUES

So far we have seen how the problem of building power
consumption models for mobile devices has been tackled using
a variety of different approaches. Here we present the issues
arising when comparing the discussed methodologies.
In general, offline data gathering mechanisms give more
precise results, but it is more static and consequently less prone
to adaptation. As a consequence, it is rarely used when the
goal is to give the users an estimation of their devices battery
lifetime. Moreover, it lacks of generalization abilities, since
the gathered data are specific for a given device. Conversely,
it is possible to use an online data gathering approach to build
power models at runtime. These models, despite being less
precise, have better adaptation capabilities and are the most
suited to cope with the fast growing market of smart devices.
Among these, we can distinguish models that take into account
the user interaction [17], [18] from those which do not [22],
[21]. User-based models provide a better estimation of battery
lifetimes, since they model the user behavior on the same
device used.
However, the approach which models the user along with
the device requires strong assumptions, first of all that the
device is used by only one user. This fact is commonly
true for smartphones, but it may not be the case for tablets
(e.g., they can be used by a whole family or by a working
team). Moreover, the idea of modeling the user implicitly
makes the assumption that he/she will always use his/her
device in the same way: this may not hold, for instance, if
he/she goes into vacation or he/she changes his job or habits.
Some of the methodologies analyzed try to cope with this
making the continuously adapt the model over time, even if
the user behavior is not changing. On the other hand, state-of-
the-art component-based models are built using benchmarks
applications: since these applications are built to stress one
component at a time, the models built on top of them can rarely
predict if any interaction arises among different components
from everyday usage of the phone.

VII. DIRECTION OF FUTURE WORKS

In order to overcome the limitations highlighted in Section
VI, we believe that a new approach would be useful. Our
opinion is that models relying on data gathered by external
tools are unfeasible: given the growing number of smart
devices currently available on the market, it is impossible
to test and profile the discharge behavior of all of them. A
solution to this problem is to use data coming from the device
itself, even if this approach is slightly less precise. In order to
give a precise estimation of mobile battery lifetime, we cannot
disregard the user behavior while building models. However,

user-centric models available nowadays are built considering
only high-level actions, such as Calling or Surfing the Web,
whose power consumption can vary depending on the state
of the phone components (e.g., the signal strength has a huge
impact on the power consumption while calling over the GSM
network). We believe that a solid model has to be built for
every phone component before taking into account the user
impact on power consumption. This separation between user
and device would allow to make comparisons among different
devices and could lead to power benchmarking of devices still
not available on the market. Then, a strong power profiling of
phones components can be integrated into a fine user-profiling
model, to give even better estimation capabilities.

VIII. CONCLUSIONS

In this survey, we reviewed the state-of-the-art of power
and energy consumption modeling for mobile devices, high-
lighting the remarkable open issues. This topic is very crucial
nowadays, since mobile devices derive the energy required
for their operations from batteries with limited capacity. As
a consequence, energy efficiency and optimal power manage-
ment are crucial on those devices. Hence, the need to create
models to describe their power consumption behavior.
As shown in previous sections, many techniques are available
in literature. It is possible to group them into three big
sets by basing on the approach they adopted: system level,
application level and user level. In this survey, differently from
previous approach [2], we also defined a set of feature able to
characterize those techniques.
By basing on the previous analysis, it emerged that a run-time
system level generated model is able to adapt itself to new
software updates or even new devices, but it is less accurate
because is does not have access to data coming from device
real usage scenario. Moreover, it is useful to model the power
consumption of a single application in execution on the system
to perform fine-grained power consumption techniques and
to profile the application consumption over time. Finally, it
has been demonstrated that it is not possible to build efficient
power consumption models without taking into consideration
the device usage patterns: a knowledge on user’s behaviors
allows to build more precise battery lifetime estimators, since
each device is tuned on specific habits. However, those tech-
niques modeling usage patterns along with power consumption
often make strong assumptions and have some limitations. In
our opinion, a future power model should be portable, thus not
relying in data coming from external measurements, but should
also have a strong component profiling technique integrated
with a fine grained one on the user profile.
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