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ABSTRACT 
Autonomous driving vehicles and the control system design have been undergoing rapid 
changes in the last decade and affecting the concept and behaviour of human traffic. 
However, the control system design for autonomous driving vehicles is still a great 
challenge since the real vehicles are subject to enormous dynamic constraints depending 
on the vehicle physical limitations, environmental constraints and surrounding 
obstacles. This paper presents a new scheme of nonlinear model predictive control 
subject to softened constraints for autonomous driving vehicles. When some vehicle 
dynamic limitations can be converted to softened constraints, the model predictive 
control optimizer can be easier to find out the optimal control action. This helps to 
improve the system stability and the application for further intelligent control in the 
future. Simulation results show that the new controller can drive the vehicle tracking 
well on different trajectories amid dynamic constraints on states, outputs and inputs. 
 
Keywords: Autonomous Driving Vehicles, Control Optimizer, Hard Constraints, 
Softened Constraints, Control System Design, Model Predictive Control. 

1. INTRODUCTION 
Autonomous driving vehicles and the control system design have undergone rapid and 
widespread development in the last decade. Applications of advanced control 
techniques, AI and communication networks have been making autonomous driving 
vehicles changing our society. Controllers for autonomous driving vehicles and driver 
assistance systems can be based on model-free or model-based models. For model-free 
controllers, the feedback error and the control action are mostly generated from fuzzy 
logic, neural networks and AI. However, due to the limit size of this paper, we mainly 
focus on the model-based controllers using objective functions subject to dynamic 
constraints. This paper mainly uses the vehicle dynamic modelling from the book 
reference in [1].  

Controller design for autonomous driving vehicles can be implemented with 
conventional PID, H2 and H∞ feedback controllers. An adaptive PID controller with 
integration of multi-sensor navigation and trajectory tracking is presented in [2]; The 
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controller can maintain the system stability and handle the instantaneous trajectory 
error. A new conventional controller based on sliding mode and fuzzy logic is 
introduced in [3]; The authors presented a new robust adaptive controller for trajectory 
tracking and lane keeping for autonomous driving vehicles dealing with unstructured 
uncertainties and disturbances. Path-tracking issue for controlling autonomous driving 
vehicles with integral sliding mode is also presented in [4]; The authors designed the 
radial basis function neural network and nonlinear feedback-based integral sliding mode 
controller and extended Kalman filter to ensure the system stability and minimize the 
tracking error.  

A new conventional method of active disturbance rejection control based on PID, 
nonlinear feedback, and robust control based on the extension of the vehicle model is 
referred to [5]; This method deals with the velocity varying and the lateral uncertain 
disturbances, feedforward and feedback to control the lateral and longitudinal motion. A 
brief comparison among trajectory tracking controllers for autonomous driving vehicles 
is presented in [6]; This paper summarized conventional control methods of H2, H∞, 
PID, sliding mode and linear quadratic regulator (LQR). Authors in [7] showed that, the 
LQR strategies are more suitable and robust against the system uncertainties and 
measurement noises. Model Predictive Control (MPC) develops from the LQG 
algorithms. LQG refers to infinite horizon optimizer and the algorithms are much 
simpler and deal better with disturbance rejection; While MPC refers to finite horizon 
optimizer, the algorithms are more complex and needed to perform more complicated 
calculations online. However, MPC shows better trajectory tracking and considerably 
smoother control action changes [8]. 

LQR and linear matrix inequalities (LMI) are widely applied for online control 
optimizer subject to dynamic constraints that the conventional controllers cannot be 
used. A new method for autonomous driving vehicle with Lyapunov function based on 
LQR-LMI algorithms is proposed in [9]; In this model-based controller LQR and MPC, 
the system is considered fully modelled and all states are considered fully observed. The 
mismatch between the model and the real vehicle as well as the noises and uncertainties 
from the system are not considered. Therefore, several linear quadratic Gaussian (LQG) 
methods are studied and applied with Gaussian noises as well as the uncertain measured 
outputs, where the full system states may not need to be observed. The design of LQG 
with adaptive Q-matrix improves the vehicle tracking performance in [10]; This method 
can handle better the model-plant mismatch and noises.  

Recent research references of model-based MPC methods for controlling 
autonomous vehicles are enormous. Some highlighting recent MPC references are 
found in [11-21]: A new presentation for robust MPC (RMPC) subject to the uncertain 
system using LMIs subject to inputs and outputs saturated constraints is presented in 
[11]; This paper describes a new RMPC method with polytopic uncertainties and 
constraints for linear time varying (LTV); This RMPC can maintain the system stability 
amid the presence of the system uncertainties. [12] presents the generation of feasible 
paths for autonomous mobile robots and nonlinear model predictive control (NMPC); 
Several NMPC methods are developed and compared to show the ability of the NMPC 
to maintain the system stability and trajectory tracking ability.  

At [13] presents a controller for autonomous vehicle steering system in MIMO 
system; A new adaptive MPC (AMPC) is implemented. This AMPC provides better 
trajectory tracking performances for dynamic changing systems. [14] develops a new 
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fault tolerant AMPC algorithm of robust trajectory tracking control for autonomous 
vehicles; This method includes AMPC and novel Kalman filter; The proposed method 
can detect and isolate the faults and keep the system stability. At [15] presents the 
implementation of MPC-based trajectory tracking with hard constraints on outputs and 
inputs; In this method, the nonlinear model is linearized and discretized. A review of 
shared control for automated vehicles for advanced driver assistance systems (ADAS) 
presents in [16]; Most of the controllers recently used in autonomous systems are LQ, 
H2, H∞, LMI- H∞, LMI-LQ, and MPC; However, there is still no attempt to develop 
MPC with softened constraints. [17] introduces a novel method of MPC-based with PID 
for control of autonomous vehicles tracking trajectories; The PID provides feedback 
from the MPC optimizer; Simulations show good performances of trajectory tracking 
and speed tracking. [19] presents a new MPC proposal for autonomous driving vehicles; 
MPC optimizer calculates the optimal inputs of steering wheel and vehicle speed 
subject to the vehicle physical constraints. And finally, [20, 21] present novel control 
algorithms based on fuzzy control for intelligent vehicle lane change and tracking 
setpoints for RMPC. Latest advanced control system designs are referred to from 
reverence [22-29]. 

From the recent reference reviews, there is still lack of MPC application with 
softened constraints. The idea of this paper comes from the fact that, MPC is a finite 
horizon optimizer subject to dynamic constraints. If we include all these constraints into 
this optimizer, the MPC will have a lot of constraints on states, inputs and outputs, and 
therefore, the optimizer may not find out a solution. Since the MPC is designed for an 
on-line calculation and any infeasible solution is not tolerated. Thus, it would be better 
if we converse some constraints from the vehicle dynamics into softened constraints, it 
will widen the ability of the MPC optimizer to find out solution and will improve 
considerably the stability and robustness of this MPC controller.  

The structure of this paper is as follows: Part 2 introduces the vehicle modelling and 
constraints; Part 3 presents the NMPC with hard constraints; Part 4 presents the new 
NMPC with softened constraints; Part 5 illustrates the two schemes’ performances; and 
finally, Part 6 is our conclusion and recommendation. 
 

2. VEHICLE MODELLING AND CONSTRAINTS 
 

In this paper, the vehicle model is based on [1], where the vehicle is modelled as a four 
wheels model. This vehicle is assumed to be totally identified on x and y coordinate at 
the centre of the rear wheels by the Global Positioning System (GPS). The vehicle body 
angle, 𝜃, and the steering angle, 𝜑, are also always identified by 3D sensors system 
embedded into the vehicle. The distance between the centre of the front wheels and the 
rear wheels is called the vehicle wheelbase, l, and the rolling radius of the vehicle wheel 
is r, as shown in Figure 1.  

The vehicle steering wheel can rotate in a hard limit angle of +/- 675 degrees and 
make the front wheels turning in hard angle ranges of +/- 45 degrees. From now on, for 
the simplicity purpose, we call the vehicle steering wheel angle as the vehicle front 
wheels angle because this angle is used to calculate the vehicle movement direction. In 
all calculations and simulations from now on, we use the vehicle wheelbase, l = 2 
meters, and the wheel rolling radius, r = 0.25 metre. It is assumed that all of the vehicle 
parameters are totally identified and always measured by x, y, 𝜃, and 𝜑. Therefore, the 
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vehicle can be totally controlled by the two inputs, �̇�, and �̇� (the angular velocity of the 
vehicle driven rolling wheels and the steering wheel). 

 

Figure 1. Vehicle modelling  

The vehicle dynamics in [1] shows that the vehicle can move forward and reverse as 
well can be driven by front wheels or by rear wheels. Equation (1) shows the vehicle 
moving forward and driven by the rear wheels 

⎣
⎢
⎢
⎡
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⎥
⎥
⎤
=

⎣
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Equation (2) shows the vehicle driven by the rear wheels but moving in reverse 
speed. In the calculations and simulations, we assign the reverse speed as in negative 
sign. 
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Finally, equation (3) shows the vehicle driven by front wheels and moving forwards, 
where we control the vehicle speed from the front rolling wheels.  
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⎥
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0
0
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1
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In the above equations, [𝑥, 𝑦, 𝜃, 𝜙]C are the vehicle states and outputs. The two 
control inputs are the vehicle rolling wheel angular velocity, 𝑣9, and the steering wheel 
angular velocity, 𝑣>. Therefore, 𝑟𝑣9 is the vehicle speed in kilometre per hour (km/h), 
and 𝑣> is the vehicle steering angular velocity in revolutions per minute (rpm).  
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A real vehicle always has a strict steering angle limit at: 

−
𝜋
4 ≤ 𝜙 ≤

𝜋
4 (4) 

The vehicle represented in equations (1) or (2) or (3) can be controlled for tracking a 
given trajectory from a given starting position to a given destination position. It is 
assumed that the vehicle must start from an initial position [𝑥G, 𝑦G, 𝜃G, 𝜙G] at the time t = 
0, and moving to the destination at the end of a trajectory, [𝑥H, 𝑦H, 𝜃H, 𝜙H] at the time t = 
T. 

In vehicle dynamics, the vehicle tire slip will be taken place when the vehicle speed 
is greater than 12 km/h. Then, the vehicle sideslip will increase exponentially when the 
vehicle speed exceeds 67 km/h. Therefore, the vehicle steering angle must be always 
put in strict constraints of the vehicle speed, as shown in Figure 2. 

 

Figure 2. Vehicle steering angle vs vehicle speed 

Figure 2 shows that, at low speed of less than 16 km/h, the steering angle can move 
almost freely in its limit of +/- 45 degrees. The steering angle will be reduced to less 
than +/- 12 degrees when the vehicle speed increases from 16 km/h to 40 km/h. Then, 
the limit of steering angle will rapidly reduce to less than +/- 4 degrees as the vehicle 
speed exceeds more than 67 km/h. These dynamic constraints can be changed somehow 
into softened constraints in order to widen the ability of the MPC controller to find out 
the solution. The basic MPC algorithms will be presented in the next part 

 

3. NMPC WITH HARD CONSTRAINTS 
 

Vehicle models in (1), (2), and (3) are all nonlinear forms and can be linearized and 
transformed into discretized time models. Equations (1), (2), and (3) can be considered 
as the first order continuous derivative equation as: 



Autonomous Driving Vehicles and Control System Design 

1086 
 

�̇� = 𝑓(𝑥, 𝑢) (5) 

where x is the state variables, 𝑥 ≜ [𝑥, 𝑦, 𝜃, 𝜙]′, and u is the inputs, 𝑢 = [𝑢9, 𝑢>]C. The 
first order nonlinear in (5) can be approximated in a Taylor series at any referenced 
position of (𝑥O, 𝑢O) for �̇�O = 𝑓(𝑥O, 𝑢O), that: 

�̇� ≈ 𝑓(𝑥O, 𝑢O) + 𝑓Q,O(𝑥 − 𝑥O) + 𝑓R,O(𝑢 − 𝑢O) (6) 

in which, 𝑓Q.O and 𝑓O.Q are the Jacobean function of 𝑥 and 𝑢, moving around the 
referenced positions (𝑥O, 𝑢O). 

Subtraction (6) for �̇�O = 𝑓(𝑥O, 𝑢O), we can obtain an approximation linear form for 
the continuous time (𝑡): 

 𝑋Ṫ(𝑡) = 𝐴(𝑡)𝑋T(𝑡) + 𝐵(𝑡)𝑢W(𝑡) (7) 

in which the approximation of  𝑋T(𝑡) = 𝑋(𝑡) − 𝑋O(𝑡) =

⎣
⎢
⎢
⎡𝑥
(𝑡) − 𝑥O(𝑡)
𝑦(𝑡) − 𝑦O(𝑡)
𝜃(𝑡) − 𝜃O(𝑡)
𝜙(𝑡) − 𝜙O(𝑡)⎦

⎥
⎥
⎤
, and 𝑢W(𝑡) =

𝑢(𝑡) − 𝑢O(𝑡) = X𝑢9
(𝑡) − 𝑢O9(𝑡)

𝑢>(𝑡) − 𝑢O>(𝑡)
Y, 

𝐴(𝑡) =

⎣
⎢
⎢
⎢
⎡0 0 −𝑢O9(𝑡) 𝑠𝑖𝑛 𝜃O (𝑡) 0
0 0 𝑢O9(𝑡) 𝑐𝑜𝑠 𝜃O (𝑡) 0
0 0 0 RZ[(\)

] ^_`a bZ(\)
0 0 0 0 ⎦

⎥
⎥
⎥
⎤
, 𝐵(𝑡) =

⎣
⎢
⎢
⎢
⎡𝑐𝑜𝑠 𝜃O

(𝑡) 0
𝑠𝑖𝑛 𝜃O (𝑡) 0
\cdbZ(\)

]
0

0 1⎦
⎥
⎥
⎥
⎤
 

The continuous approximation form of 𝑋Ṫ(𝑡) in equation (7) can be transferred into 
the discrete-time form in 𝑘 and 𝑘 + 1 = 𝑘 + 𝛥𝑡	,	with 𝛥𝑡 being the length of the 
sampling interval or the computer scanning speed. The discrete inputs 𝑢(𝑘) will be kept 
at constant values from the time interval k to 𝑘 + 1. The discrete form for NMPC 
optimizer now can be written as: 

𝑋T(𝑘 + 1) = 𝐴(𝑘)𝑋T(𝑘) + 𝐵(𝑘)𝑢W(𝑘) 

𝑌T(𝑘) = 𝐶(𝑘)𝑋T(𝑘) 
(8) 

in which,   

𝐴(𝑘) =

⎣
⎢
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⎥
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⎢
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⎥
⎤
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𝐶(𝑘) = ;

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

=,  

and, 

𝑋T(𝑘) = 𝑋(𝑘) − 𝑋O(𝑘) =

⎣
⎢
⎢
⎡𝑥
(𝑘) − 𝑥O(𝑘)
𝑦(𝑘) − 𝑦O(𝑘)
𝜃(𝑘) − 𝜃O(𝑘)
𝜙(𝑘) − 𝜙O(𝑘)⎦

⎥
⎥
⎤
, and 

𝑢W(𝑘) = 𝑢(𝑘) − 𝑢O(𝑘) = X𝑢9
(𝑘) − 𝑢O9(𝑘)

𝑢>(𝑘) − 𝑢O>(𝑘)
Y 

In those approximation discretized vehicle dynamics, there are two control inputs of 
vehicle speed, 𝑢9(𝑘) − 𝑢O9(𝑘), and the steering angular velocity, 𝑢>(𝑘) − 𝑢O>(𝑘). 
There are four measured outputs, 𝑦(𝑘) = 𝑌T(𝑘) = 𝐶(𝑘)𝑋T(𝑘). These outputs will be 
updated at each time interval. The discretized vehicle dynamics in (8) is the time variant 
model since this system is depending on the time interval updating or the computer 
scanning speed, 𝛥𝑡. 

The MPC algorithms for this vehicle dynamics can be expressed in finite horizon 
prediction outputs and inputs. For the simplicity, from now on, we assign the horizon 
output equal to the horizon input or 𝑁R = 𝑁l. The MPC objective function for the 
vehicle tracking trajectory subject to hard constraints will be: 

𝑚𝑖𝑛
n≜opRq,…,pRqstuv[w

x𝐽z𝑈, 𝑥(𝑘)| = ∑ ~(𝑦j��|j − 𝑟j��|j)′𝑄(𝑦j��|j −
���9
��G

𝑟j��|j) + 𝛥𝑢j��|j′ 𝑅𝛥𝑢j��|j��,
 

(9) 

subject to: 

𝑢j ∈ 𝒰, and 𝑢j�� ∈ [𝑢𝑚𝑎𝑥��d], 𝛥𝑢j�� ∈ [𝛥𝑢𝑚𝑎𝑥��d], for𝑖 = 0,1, … , 𝑁R − 1, 

𝑦j ∈ 𝒴, and 𝑦j��|j ∈ [𝑦𝑚𝑎𝑥��d], for𝑖 = 0,1, … , 𝑁l − 1, 

𝛥𝑢j = 𝑢j − 𝑢j�9 ∈ 𝛥𝒰, and 𝛥𝑢j�� = 0, for 𝑖 ≥ 𝑁R, 

𝑥j|j = 𝑥(𝑘),  𝑥j���9|j = 𝐴(𝑘)𝑥j��|j + 𝐵(𝑘)𝑢j��,  𝑢j��|j = 𝑢j���9|j +

𝛥𝑢j��|j,𝑦j��|j = 𝐶(𝑘)𝑥j��|j, 

where 𝑥(𝑘) are the state variables at the present discrete time (k), 𝑈 ≜
o𝛥𝑢j, … , 𝛥𝑢j��uv[w is the solution of predictive input horizon from k to Nu. And Ny is 
the predictive output horizon; 𝑦j��|j are the outputs at the present discrete time (k), 
𝑟j��|j is the tracking trajectory setpoints; 𝛥𝑢j��|j is the input predictive increments, 
𝛥𝑢j��|j = 𝑢j��|j − 𝑢j���9|j; 𝑄 = 𝑄C ≥ 0, 𝑅 = 𝑅C > 0 are the weighting matrices for 
outputs and inputs, respectively.  

By substituting 𝑥j��|j = 𝐴j𝑥(𝑘) + ∑ 𝐴�𝐵𝑢j���9��j�9
��G , equation (9) can be 

rewritten as 
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𝑉z𝑥(𝑘)| =
1
2 𝑥

′(𝑘)𝑌𝑥(𝑘) + 𝑚𝑖𝑛
n
�
1
2𝑈

′𝐻𝑈 + 𝑥 ′(𝑘)𝐹𝑈� (10) 

subject to the linear matrices v inequality (LMI), 𝐺𝑈 ≤ 𝑊 + 𝐸𝑥(𝑡), where the 
column vector 𝑈 ≜ ~𝑢j′ , …	 , 𝑢j���9′ � ∈ ℝ`,				𝑠 ≜ 𝑚𝑁R is the optimization vector, 𝐻 =
𝐻′ > 0, and H, F, Y, G, W, E are obtained from Q, R and in (9) as only the optimizer 
vector U is needed, the term involving Y is usually removed from (10). The 
optimization problem (10) is a quadratic program (QP). The MPC optimizer will 
calculate the optimal input vector 𝑈 ≜ o𝛥𝑢j, … , 𝛥𝑢j��uv[w subject to the hard 
constraints of the inputs, 𝑢j ∈ 𝒰, and 𝑢j�� ∈ [𝑢𝑚𝑎𝑥��d]; of the outputs 𝑦j ∈ 𝒴, and 
𝑦j��|j ∈ [𝑦𝑚𝑎𝑥��d]; and of the input increments 𝛥𝑢j�� ∈ [𝛥𝑢𝑚𝑎𝑥��d]. But only the 
first input increment, 𝛥𝑢j, is taken into the implementation. Then, the optimizer will 
update the outputs and states variables with the new update input and repeat the 
calculation for the next time interval. Therefore, the MPC is also called as the receding 
time horizon control. A diagram control system for this NMPC is shown in Figure 3. 

 

 

 

 

 

Figure 3. NMPC diagram system 

The NMPC optimizer in Figure 3 receives the online optimal control action, 𝛥𝑢(𝑘), 
and feeds into the vehicle dynamics model and update the update current states, inputs 
and outputs. The update states, inputs and outputs will feedback and compare to the 
reference trajectory data. The new differences of states, inputs and outputs, then, again 
feed in the NMPC optimizer for the next online optimal input 𝛥𝑢(𝑘) calculation.  

Next part, we present the development of NMPC with softened constraints. 
 
4. NMPC WITH SOFTENED CONSTRAINTS 
 

When all constraints are set into hard constraints, difficulty will arise since the 
controller may not find out the solution satisfying all constraints and the controller may 
become infeasible.  

In reality, some physical constraints can be violated a little bit during evolution of the 
system since some initial conditions may lead to some violations in constraints. So that 
we can consider and assign some constraints as softened constraints in order to widen 
the possibility of the MPC to find out optimal solution. The softened constraints can be 
formulated into the following form: 

X1 𝑧�C
𝑧� 𝑋 + 𝜇𝜀�𝐼

Y ≥ 0 (11) 

NMPC Vehicle Dynamics 
Model 

Referenced Trajectory Data 
𝑥O(𝑘), 𝑦O(𝑘), 𝜃O(𝑘), 𝜑O(𝑘)	
𝑢O(𝑘), 𝑟O(𝑘), 𝑓𝑜𝑟	𝑘 = 1 → 𝑁 = 

+ 

𝛥𝑢(𝑘 + 1) 
𝛥𝑥(𝑘)	
𝛥𝑢(𝑘) 

Update outputs and puts 
𝑥O(𝑘 + 1), 𝑦O(𝑘 + 1), 𝜃O(𝑘 + 1), 𝜑O(𝑘 + 1)	
𝑢O(𝑘 + 1), 𝑟O(𝑘 + 1) 
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�
min
�
𝑋�� ≤ 𝑥�cQ>

∀𝑧� ∈ 𝑣𝑒𝑟𝑡 x𝜒R∗z.§𝑘|
j��|j z𝑥(𝑘)|� , ∀𝑖 ∈ {1, . . , 𝑁}

 

where 𝜇 is assigned as big values as a weighting factor (𝜇 > 0), and 𝜀� is the 
constraints penalty terms (𝜀� ≥ 0) added into the MPC objective function. 𝑋 and 𝑧� are 
the corresponding matrix of the hard constraints. So that some hard constraints can be 
converted into the softened form. The new MPC algorithm subject to softened 
constraints can be written as: 

𝑚𝑖𝑛
n≜opRq,…,pRqstuv[w

�𝐽(𝑈, 𝑥(𝑘)

= ª ~(𝑦j��|j − 𝑟j��|j)′𝑄z𝑦j��|j − 𝑟j��|j| + 𝛥𝑢j��|j′ 𝑅𝛥𝑢j��|j

���9

��G

+ 𝜀�′(𝑘)𝛬𝜀�(𝑘) + 2𝜇′𝜀j��|j�¬ 

(12) 

subject to (11) and: 

𝑢j ∈ 𝒰, and 𝑢j�� ∈ [𝑢𝑚𝑎𝑥��d], 𝛥𝑢j�� ∈ [𝛥𝑢𝑚𝑎𝑥��d], for𝑖 = 0,1, … , 𝑁R − 1, 

𝑦j ∈ 𝒴, and 𝑦j��|j ∈ [𝑦𝑚𝑎𝑥��d], for𝑖 = 0,1, … , 𝑁l − 1, 

𝛥𝑢j = 𝑢j − 𝑢j�9 ∈ 𝛥𝒰, and 𝛥𝑢j�� = 0, for 𝑖 ≥ 𝑁R, 

𝑥j|j = 𝑥(𝑘), 𝑥j���9|j = 𝐴(𝑘)𝑥j��|j + 𝐵(𝑘)𝑢j��, 𝑢j��|j = 𝑢j���9|j +

𝛥𝑢j��|j,𝑦j��|j = 𝐶(𝑘)𝑥j��|j, 

where, 𝜀�(𝑘) = ~𝜀l; 𝜀R�, 𝑦𝑦j��|j𝑦�cQ��dand 𝑢𝑢j��|j𝑢�cQ��d; And 𝛬 = 𝛬C ≥ 0 is 
the additional penalty matrix (generally 𝛬 > 0 and assign to small values); In this new 
NMPC, the penalty term of soften state constraints ∑ ~𝜀j��|j′ 𝛬𝜀j��|j + 2𝜇′𝜀j��|j�

�®
��G  is 

added into the objective function with positive definite and symmetric matrix 𝛬; This 
term penalizes violations of softened constraints and when possible, the free constrained 
solution will be returned.  

Now this NMPC calculates the new optimization vector 𝑈¯ = °𝑈𝜀 ± and the new 

NMPC computational algorithms will be: 

𝛹¯z𝑥(𝑡)| = 𝑚𝑖𝑛
n³

�
1
2𝑈¯

′𝐻¯𝑈¯ + 𝑥 ′(𝑡)𝐹 𝑈¯�, (13) 

subject to 𝐺¯𝑈¯ ≤ 𝑊 + 𝐸¯𝑥(𝑘), 
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where 𝑈¯ ≜ °𝑢j′ , 𝑢j�9′ , . . . , 𝑢j��®�9
′ , 𝜀j′ , 𝜀j�9′ , . . . , 𝜀j��®

′ ±
′
 is the optimization vector, 

𝐻¯ = °𝐻 0
0 𝑀± and 𝐹 = [𝐹 𝜇], and matrices for inequality constraints H, F, G, W, and 

E are obtained from equation (10), 

𝐺¯ = µ
𝐺 0
𝑔¯ −𝐼
0 −𝐼

· with 𝑔¯ =

⎣
⎢
⎢
⎢
⎡

0 0 0 … 0
𝑍𝐵 0 0 … 0
𝑍𝐴𝐵 𝑍𝐵 0 … 0
… ⋱ ⋱ ⋱ ⋮

𝑍𝐴�®�9𝐵 𝑍𝐴�®�>𝐵 … … 𝑍𝐵⎦
⎥
⎥
⎥
⎤
, 

𝑊 = µ
𝑊
𝑤¯
0
· with 𝑤¯ = ¼

𝑧
⋮
𝑧
½, and 𝐸¯ = µ

𝐸
𝑒¯
0
· with 𝑒¯ =

⎣
⎢
⎢
⎢
⎡
−𝑍
−𝑍𝐴
−𝑍𝐴>
⋮

−𝑍𝐴�®⎦
⎥
⎥
⎥
⎤
. 

To illustrate the ability of the new controller, we test the two NMPC schemes in (9) 
and in (12) with following simple example as considering the below nonlinear system: 

�̇�9 = 2𝑥> + 𝑢(1 + 𝑥9)	
�̇�> = 2𝑥9 + 𝑢(1 − 3𝑥>) 

(14) 

It is assumed that this system in (14) is subjected to the hard state and input 

constraints 𝑥��d = °−1−1± and −2 ≤ 𝑢 ≤ 2. The linearized approximation of this system 

from (7) is: �̇� = 𝐴𝑥 + 𝐵𝑢, in which, 𝐴 = °0 2
2 0± and 𝐵 = °11±. The weighting matrices 

are chosen as 𝑄 = °1 0
0 1± 			and				𝑅 = 1. The weighting matrices for softened 

constraints are chosen as 𝛬 = °1 0
0 1± 			and				𝜇 = 10,000. It is assumed that the system 

is starting form an initial state position, 𝑥G = °−0.72−0.35±. Figure 4 shows the performances 

of two NMPC schemes: This initial state position x0 does not lead to any violation of 

states and input (𝑥��d = °−1−1± and −2 ≤ 𝑢 ≤ 2). In this 𝑥G, the solutions of the two 
control schemes are always available. We can see that, the NMPC with softened state 
approaches the asymptotic point faster than the hard constraints. It means that, if we 
loosen somehow some constraints, the optimizer can generate easier optimal inputs and 
the system will be more stable. 

Now, it is interesting to see in Figure 4 that, both schemes have 𝑥9	��dÃcOÄ = −0.8475 

and 𝑥9	��d
¯_Æ\ÇdÇÄ = −0.8483, almost reach the hard constraint of 𝑥��d = °−1−1±. These 

states still have not violated the state constraints but if we select some other initial 
positions 𝑥G, that may lead to some state and input violations. 
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Figure 4. Comparison of two RMPC schemes 

Now, if we select 𝑥G = °−0.9−0.8±, this initial condition will lead to the violations of the 

state and the input constraints as 𝑥9	��d = −1.0441 and 𝑢�cQ = 2.2303. These 
violations make the RMPC with hard constraints infeasible. Meanwhile, the RMPC 
scheme with softened constraints is still working well and still easily to find out optimal 
input solutions as shown in Figure 5. And after a short transitional period, the fully 
constrained solution is returned or there is no more constrained violation. 

 
Figure 5. Softened Constraint RMPC 
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The two NMPC schemes will be further analysed and simulated in the next part with 
different trajectories and control parameters. 

 
5. NMPC TRACKING TRAJECTORY PERFORMANCES 
 

Firstly, we test the two NMPC schemes tracking on a full circle from an initial position 
outside. In this example we select an initial position of 𝑥G = [−0.5 −0.5 0 0]′. 
The constraints are imposed on this vehicle as: the input limits, 𝑢[−1,−1]′��d, 
𝑢[1, 1]′�cQ; the increasement of input limits, 𝛥𝑢[−0.5, −0.5]′��d, 𝛥𝑢[0.5,0.5]′�cQ; and 
the coordinate limits, 𝑦[−1,−1,−1,−1]′��d, and 𝑦[1, 1, 1, 1]′�cQ; In our NMPC 
algorithms, the predictive horizons are set with 𝑁R = 𝑁l = 10; The state and the input 
penalty matrices are set with 𝑄 = 𝑑𝑖𝑎𝑔{1, 1, 1, 1} and 𝑅 = 𝑑𝑖𝑎𝑔{1, 1}. Performances of 
the two MPC schemes are shown in Figure 6. 

 

Figure 6. NMPC schemes tracking a circle 

Figure 6 shows that, the softened constraints scheme goes to setpoints faster than the 
hard constraints. The control input actions of the softened constraints are also likely 
smoother than hard constraints. However, the softened constraints scheme is more 
complex and leads to longer elapsed CPU time (0.89 sec) vs hard constraints scheme 
(0.74 sec).  

Next, we test these two schemes tracking on real polynomial trajectories with 
different MPC control parameters to have a look closer inside the ability of each 
scheme. Now, we assume having a feasible polynomial trajectory from x0, y0 of [0, 0] to 
xT, yT of [10, 10]. The vehicle is starting from an initial condition at [𝑥G, 𝑦G, 𝜃G, 𝜙G] =
[0, −0.5, 0, 0]′, and arriving the destination condition at [𝑥H, 𝑦H, 𝜃H, 𝜙H] = [10, 10, 0, 0]′ 
The prediction horizon is set with 𝑁R = 𝑁l = 10; The penalty matrices for states and 
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inputs are set with 𝑄 = 𝑑𝑖𝑎𝑔{1, 1, 1, 1} and 𝑅 = 𝑑𝑖𝑎𝑔{1, 1}; The vehicle speed vs the 
steering angular velocity are fully controlled. Performances of the two schemes are 
shown in Figure 7. 

 

Figure 7. NMPC schemes tracking trajectory 

Figure 7 shows that the softened constrained scheme goes faster to track on the 
trajectory and always maintains the tracking errors smaller than the hard-constrained 
scheme. The control inputs of the softened scheme are also smoother. The hard-
constrained scheme becomes more difficult to drive the vehicle tracking to the 
trajectory. However, the CPU elapsed time of the softened scheme becomes great 
challenge for computer system. The time of elapsed CPU for softened constraints 
scheme is 4.27 secs, while the time for hard constrained scheme is only 2.45 secs for the 
whole trajectory control. 

In order to shorten the CPU elapsed time, we try to reduce the MPC prediction 
horizon. But the too short prediction horizon will lead to the harder control actions and 
will lead the system to infeasible and instable. Figure 8 shows the performances of the 
two schemes with shorter state and input prediction horizon of 𝑁R = 𝑁l = 5. 

When we shorten the state and control prediction horizon to Ny=Nu=5, both schemes 
are still stable and working well. But the hard-constrained scheme likely generates 
harder control actions and has more difficult to approach to the trajectory. However, the 
hard-constrained scheme needs only 1.84 secs for elapsed CPU time while the softened 
scheme consumes of 3.23 secs for elapsed CPU time for the whole drive. 

If we lengthen the prediction horizon, the system will become loose, more flexible 
but it will lengthen considerably the CPU time, and have bigger tracking errors. Figure 
9 shows the performances of the softened constrained scheme with the control horizon 
of Ny=Nu=10 vs Ny=Nu=30. 
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Figure 8. NMPC schemes with shorten prediction horizon N=5 

 

Figure 9. NMPC schemes with N=10 vs N=30 

The short control prediction horizon leads to the harder control actions and the 
system approaches the setpoint faster. However, the longer horizon leads to smoother 
control actions and system becomes loose and more stable. The time for elapsed CPU 
for long prediction horizon, N=30, is 7.65 secs, considerably greater than the time for 
CPU with short prediction horizon N=10, of 4.47 secs. 
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In MPC algorithms, the CPU discrete time interval or computer scanning speed is also 
an important factor affecting their performances. The MPC discretized system is a time 
variant model and depending on the length of time intervals or the computer scanning 
speed. Figure 10 shows the performance of the two schemes with scanning time interval 
of 0.1 sec vs 0.5 sec.  

 

Figure 10. NMPC schemes with short vs long time interval 

The too fast scanning speed will lead to instable. The control system will become 
more sensitive and more difficult to control. When the scanning time interval is set at 
0.1 sec, the time of elapsed CPU will be 21.74 secs. While the scanning time interval is 
set at slower speed of 0.5 sec, the CPU elapsed time reduces to only 4.15 secs.  

Finally, we illustrate the run of different state and input penalty matrices, Q and R. If 
we set R too bigger than Q, it means that a small change of input will lead to a big value 
at the objective function. The control system becomes less sensitive and more stable. 
But it becomes more difficult to track the setpoints. On the other hand, if we set R too 
small values to Q, the control actions will become harder, and the system will approach 
the setpoints faster. But the system will become less stable. Figure 11 shows the 
performances of the softened constrained scheme with R=60 and R=1. 

If we set the input penalty matrix, R=60, the control system becomes less sensitive to 
any change of the inputs since the inputs can be changed in only small increasements 
(Light Input Changes). The system goes smoother and more stable. But the tracking 
errors become bigger. If we set the input penalty matrix, R=1 only, the inputs can 
change harder (Heavy Input Changes), and the tracking errors are smaller.  But the 
control system will become less stable. 
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Figure 11. NMPC with light vs heavy input matrix R=60 vs R=1 

The above simulations of both NMPC schemes for tracking different trajectories with 
different control parameters show that the NMPC scheme with softened constraints is 
more stable but really needs more time of elapsed CPU and more complicated and 
complex in programming.   
 
6. CONCLUSION  
 

The new NMPC subject to softened constraints has shown its ability to maintain the 
stability amid presence of enormous constraints on states, outputs and inputs where the 
conventional NMPC schemes with hard constraints become infeasible because of the 
constrained violations. Conversion of some hard constraints into softened constraints 
helps to widen the feasible boundary for optimal control actions. The constrained 
violations are usually taken place in short transitional periods until the NMPC optimizer 
finding out the optimal control actions, that fully satisfy all constraints. The new 
controller scheme can be also applied for intelligent control of neural networks, fuzzy 
logic and AI in the future. The next research will be focused on the real vehicles and the 
controller will be the combination of advanced control techniques including online 
video processing, GPS, LIDAR, and high internet human-machine interfaces. 
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