
Decentralized Self-Adaptation in Large-Scale Distributed
Systems

Luca Florio
∗ †

Dipartimento di Elettronica, Informazione e Bioingegneria
Politecnico di Milano

Milano, Italy
luca.florio@polimi.it

ABSTRACT
The evolution of technology is leading to a world where com-
putational systems are made of a huge number of components
spread over a logical network: these components operate in
a highly dynamic and unpredictable environment, joining or
leaving the system and creating connections between them
at runtime. This scenario poses new challenges to software
engineers that have to design and implement such complex
systems. We want to address this problem, designing and
developing an infrastructure, GRU, that uses self-adaptive
decentralized techniques to manage large-scale distributed
systems. GRU will help developers to focus on the functional
part of their application instead of the needed self-adaptive
infrastructure. We aim to evaluate our project with concrete
case studies, providing evidence on the validity of our ap-
proach, and with the feedback provided by developers that
will test our system. We believe this approach can contribute
to fill the gap between the theoretical study of self-adaptive
systems and their application in a production context.

Categories and Subject Descriptors
D.2.0 [Software Engineering]: General; C.2.4 [Distributed
Systems]: Distributed Applications

Keywords
Decentralized, Self-Adaptive, Microservices, Docker

1. THE PROBLEM AND ITS IMPORTANCE
The problem we want to address is the effective ap-

plication of self-adaptation to large scale distributed

∗Advisor: Prof. Elisabetta Di Nitto
Email: elisabetta.dinitto@polimi.it
†The research reported in this article is partially supported by
the European Commission grant no. FP7-ICT-2011-8-318484
(MODAClouds).

systems. The importance of this problem stems from the
current IT scenario: the evolution of technology is leading to
a world where each object around us is provided with some
sort of “intelligence”, making it able to compute data and act
according to them, as well as to share these data with other
objects. The increasing number of “intelligent” devices poses
new challenges to software engineers that have to design and
implement systems composed of a great number of elements
interacting between them in different ways. Moreover, these
systems work in a dynamic and unpredictable environment,
and need the capability to adapt in an autonomous way to
every change in the scenario in which they operate: they
should be self-adaptive, meaning that they should be able
to self-configure, self-heal and self-defend [16]. Thus, dis-
tributed self-adaptive systems are an actual need and require
to be studied in order to understand the most effective way
to design and manage such complex systems. However, while
this aspect is addressed in theory, stable platforms and com-
prehensive software engineering approaches for these kinds of
systems are still to come and their application in a “produc-
tion context” is still missing. This research addresses these
challenges aiming to simplify the application of decentralized
self-adaptation to the design and development of distributed
software systems that can benefit from it. We want to fill the
gap between theory and practice, providing to practitioners
a flexible and efficient solution they can adopt to quickly
create an application that relies on a distributed infrastruc-
ture. In order to achieve this objective, we aim to develop an
infrastructure to self-manage distributed systems that can
be integrated seamlessly with existing ones, like Docker [1].
The application of self-adaptation to large-scale distributed
systems is a challenging task. In particular some important
aspects related to distributed systems need to be addressed:

• Absence of a global knowledge. The high number
of nodes and their distribution make difficult to share
the global status of the system.

• Changing environments. Large-scale distributed
systems often present a high level of dynamism that
cannot be controlled: components may join or leave
the system at runtime changing their interconnections.

• System stability and limited resource consump-
tion. The absence of global knowledge and the high
dynamism can led the system to an unstable state, actu-
ating unnecessary optimization actions and consuming
precious computational resources.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

ESEC/FSE’15, August 30 – September 4, 2015, Bergamo, Italy
c© 2015 ACM. 978-1-4503-3675-8/15/08...

http://dx.doi.org/10.1145/2786805.2803192

1022

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55252601?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The application of centralized or hybrid strategies for self-
adaptation in the described context can be difficult, due to
the huge number of possible elements to manage and the
highly dynamic context. Starting from this consideration,
we focus our research on the study of a totally decentralized
self-adaptation strategy. We propose an infrastructure,
GRU, that enables decentralized self-adaptation of
any independently developed distributed software.
GRU supports self-adaptation of any application built as a
composition of distributed and independent microservices
executed within Docker containers. This approach involves
both theoretical and practical challenges, such as the study of
effective self-adaptation strategies based on partial knowledge
and the implementation challenges related to distributed
systems, which have been previously described.

2. RELATED WORK
Self-Adaptive systems have been widely studied in the past

decade, starting from the Autonomic Computing manifesto
by IBM [16]. The literature provides various approaches
to deal with such systems. In particular, self-adaptation
is addressed in various ways, ranging from centralized ap-
proaches [10, 11, 14], where one element is in charge and
manage the others, to completely decentralised ones [6, 12,
17], where all elements are peers and the behaviour of the
system emerges from the interaction of all the elements,
through hierarchical approaches [4, 5, 15], where the ele-
ments are organised into a hierarchy. The great majority
of studies on self-adaptive or autonomic systems have been
evaluated through simulations or toy examples, without a
complete empirical evaluation [18]. The main exception is
the Rainbow framework [14], which has been used to con-
vert a legacy system into a self-adaptive one in the work
described in [9]. However, Rainbow addresses self-adaptation
with a centralized approach, which may be not suitable for
large scale distributed systems composed by a huge num-
ber of nodes. Self-adaptive techniques are used in Cloud
Computing platforms to manage the scaling of computing
instances: Google Cloud Platform takes care of the scaling
of the system, which is completely transparent to the user;
Amazon Web Services uses autoscaling policies defined by
the user; Microsoft Azure allows the user to control the
autoscaling system defining rules. These approaches, that
usually are centralized or hierarchical, do not represent a
complete autonomic or self-adaptive system.

3. CONTRIBUTIONS
The contributions of our work are both theoretical and

practical, involving the study of decentralized self-adaptation
and the creation of a software to apply this approach to a
concrete application domain in a way that can be useful to
practitioners.

3.1 Decentralized Self-Adaptation
The first contribution of our work is related to the ap-

plication of a decentralized approach to self-adaptation for
the management of a distributed system. In order to ob-
tain decentralized self-adaptation, we propose a solution
based on the concept of self-organizing multi-agent
systems [19]. The system is managed by a set of autonomous
agents that are able to interact between them and take lo-
cal decisions from which the global behavior of the system

emerges. The agents communicate through messages and
can self-organize in logical groups of neighbors, exchanging
information related to their internal state (following the “in-
formation sharing pattern” [20]). Self-adaptation is achieved
by the implementation in each agent of an adaptation loop,
that periodically runs and actuates the correct action accord-
ingly to the internal state of the managed system and the
partial information provided by neighbors. The adaptation
loop embodies the MAPE-K loop (Monitor-Analyze-Plan-
Execute on a Knowledge base) [16]. The agents act like a
decentralized and distributed management layer and do not
deal with the functional part of the system: agents act only
as managers and mediators between the different services of
the system, keeping it up and running and taking care of
aspects like scalability, fault tolerance, performance, etc. The
research question we want to answer with this contribution
is the following:

• Is a decentralized approach to self-adaptation
like the one described in [19] suitable for a con-
crete implementation?

3.2 Application Domain
The second contribution of our work regards the appli-

cation of our decentralized self-adaptive approach to a con-
crete application domain. The proposed solution can be
applied to large-scale distributed systems in general, but
we want to focus on the application of decentralized
self-adaptation to the microservices architecture pat-
tern [3] and Docker containers [1]. This architectural
pattern is used to build enterprise application deployed on
cloud. Each microservice is considered as an autonomous
and independent entity and can be implemented with any
language, using the technology which is best suited for that
kind of service. Services just need to expose an interface for
communication. Microservices architecture is usually paired
with Docker [1] containers: each microservice can be “dock-
erized” and run in a container as a process isolated from the
others, having a restricted but direct access to the resources
of the host (reducing the overhead of a traditional approach
based on virtual machines). These technologies have been
widely adopted in the last few years for building enterprise
applications, even by big companies in the IT industry like
Netflix [2]. The software infrastructure behind Netflix is
totally based on microservices running in Docker containers
deployed on the cloud. The use of this strategy allows Netflix
to easily scale in order to satisfy the high number of re-
quests from users as well as to manage possible failures in an
effective way. Despite its advantages, the microservice archi-
tecture introduces additional complexity and new problems
to deal with, most of them related to its distributed nature:
the application is based now on a set of distributed elements
which needs to communicate between them. Elements can
join or leave the system dynamically, due to the scaling of
the application or failures in a part of the network. These
elements should be managed and deployed in an effective
way. Self-adaptation could relieve the developers from the
challenges that the implementation of this kind of systems
implies, so we believe that microservices architecture based
on Docker containers can be a good application domain for
our project. The research question we want to answer with
this contribution is the following:

1023



• Can we build a software to effectively apply
decentralized self-adaptation to microservices
running in Docker containers?

4. EVALUATION OF THE PROJECT
The evaluation of the project is twofold: (i) we need to eval-

uate the capabilities of our solution to effectively manage a
system composed of dockerized microservices; (ii) we need to
evaluate if the proposed solution can be easily used by practi-
tioners to help them build a distributed application based on
Docker containers. We plan to evaluate our approach
based on decentralized self-adaptation addressing a
concrete case study. The target is the realization of a web
application which provides some services to users. The appli-
cation is composed by dockerized microservices and deployed
on a cloud computing platform. The proposed system man-
ages the evolution of the application, dealing with aspects
like scaling, fault tolerance, performance, etc. in order satisfy
the requests of the customers in a maximum response time
defined in the Service Level Agreement. Using the described
strategy we plan to evaluate:

• Ability of the system to scale according to the traffic
load, without over- or under-provisioning of resources.

• Ability of the system to avoid waste of resources, allo-
cating the correct amount of computational power for
each service.

• Ability of the system to manage failures, keeping the
application running with a negligible reduction in the
quality of the service provided.

• Ability of the system to guarantee the quality of service
defined in the Service Level Agreement .

The vast majority of self-adaptive systems have been evalu-
ated through simulation or toy-examples [18]. However, we
believe that an empirical evaluation based on a concrete case
study like the one we described can represent a good evidence
of the validity of our approach. We also plan to evaluate
how our solution can be integrated with tools and
frameworks used by practitioners. The creation of a
self-adaptive system involves specific skills and knowledge,
so the capability of running it as an external component
that can be easily deployed to interact with the managed
system is important to make self-adaptation applicable by
practitioners. The evaluation will take place allowing a group
of developers to test our system and collecting their feed-
back. This kind of evaluation can help to understand how
self-adaptive solutions can be designed to best fit the needs
of developers. in this way we address the following research
question:

• Can we provide a software that can be seam-
lessly integrated in a distributed system mak-
ing it self-adaptive?

5. CURRENT STATUS AND EVOLUTION
The first step in the realization of our project has

been the study of decentralized self-adaptation ap-
plied to distributed systems. We started our research
on the study of an existing prototype of self-adaptive decen-
tralized systems based on the idea described in section 3.1,
the SelfLet framework [13, 8, 7]. A SelfLet based system is
composed by many SelfLets (i.e agents) spread over a logical

Figure 1: Architecture overview of GRU. The ap-
plication is deployed using Docker containers: each
container run a microservice, identified by a color.

network. Each SelfLet provides some services defined by the
user and shares the same conceptual model and architec-
ture. SelfLets communicate through messages dispatched
by a message broker, self-organizing in groups that take de-
cisions on the basis of the partial knowledge of the group
itself. The behavior of the whole system emerges from the
local decision taken by each group of SelfLets. Each SelfLet
implements an adaptation loop, which allow the SelfLet to
actuate an autonomic action on the basis of its internal state
and the neighbors state. The SelfLet framework has been
evaluated only through simulation. In order to verify if its
theoretical basis could be applied to our research, we tested
the SelfLet framework using a concrete case study. We built
an application composed of more then fifty collaborating
nodes and we deployed it on Amazon cloud infrastructure.
We evaluated the capability of the system to handle a vari-
able workload using self-adaptive strategies. We obtained
promising results that prove the validity of our decentralized
approach to self-adaptation and that we will describe in a
future publication. The work on the SelfLet framework al-
lowed us to better understand the issues related to this kind
of systems, and to validate our decentralized approach to
self-adaptation. We concluded that, despite the theoretical
basis of the SelfLet framework is valid, it is not well suited
to be used in a production context by practitioners.
Currently we are focusing on the application of de-
centralized self-adaptation to Docker containers. We
are developing GRU1, the infrastructure that will bring self-
adaptation to Docker containers, making them able to self-
manage. The target is the creation of a multi-agent system
able to self-manage clusters of nodes on which are running
multiple “dockerized” microservices (Fig. 1). Agents can in-
teract with the Docker daemon, actuating autonomic actions
(e.g. scaling, containers migration, etc.) on containers to keep
the application up and running. Each agent implement the
MAPE-K feedback loop, monitoring the status of the contain-
ers in its node and taking decisions on the actions to actuate
starting from the information provided by the containers in
the node and from other agents. Agents can self-organize
in sets using a gossip protocol and communicate between
them using RESTful API. GRU will be self-contained and

1https://github.com/elleFlorio/gru

1024



able to seamlessly integrates with any application based on
Docker containers, as well as with other tools that operates
on containers (e.g. Swarm [1]). We are designing GRU on
the basis of the SelfLet framework, with multiple agents
spread over a logical network that communicate between
them. However, while the SelfLet framework is based on an
internal approach (i.e. the autonomic manager is part of
the application itself), GRU provides an external approach,
where each agent is an entity separated from the managed
application. Despite this choice lead to several challenges
related to the interaction with the managed system, using
the external approach we pose less constraints on developers,
which are free to build their application with the technologies
and languages best suited for it. These are the steps we have
identified to accomplish our goals:

1. Execution of a single agent on a single node.

2. Execution of multiple agents on multiple nodes.

3. Evaluation of the system on a concrete case study.

4. Test of the system by practitioners.

5. Evaluation of the feedback provided by practitioners.

The current status of the development is the execution of a
single agent on a single node.

6. CONCLUSION
The goal of our research is to study how to apply decen-

tralized self-adaptation to the development of large-scale
distributed systems in a way that can contribute to fill the
gap between the theoretical study of self-adaptation and its
concrete adoption by practitioners. We want to focus on
the emerging domain of microservices and Docker containers:
our work can contribute to make easier the development
of applications composed of “dockerized” microservices. To
achieve our goal we are developing GRU, a system able to
self-manage applications based on Docker containers that
integrates seamlessly in the development of such applications.

7. REFERENCES
[1] Docker, (https://www.docker.com/).

[2] Microservices at netflix, (http://www.slideshare.
net/stonse/microservices-at-netflix).

[3] Microservices, (http://martinfowler.com/articles/
microservices.html).

[4] L. Baresi and S. Guinea. A3: self-adaptation
capabilities through groups and coordination. In
Proceedings of the 4th India Software Engineering
Conference, ISEC ’11, pages 11–20, New York, NY,
USA, 2011. ACM.

[5] S. Bouchenak, F. Boyer, B. Claudel, N. D. Palma,
O. Gruber, and S. Sicard. From autonomic to self-self
behaviors: The jade experience. TAAS, 6(4):28, 2011.

[6] T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl,
M. Kit, and F. Plasil. Deeco: An ensemble-based
component system. In Proceedings of the 16th
International ACM Sigsoft Symposium on
Component-based Software Engineering, CBSE ’13,
pages 81–90, New York, NY, USA, 2013. ACM.

[7] N. CALCAVECCHIA. Decentralized management in
distributed autonomic systems. PhD thesis, Italy, 2013.

[8] N. Calcavecchia, D. Ardagna, and E. Di Nitto. The
emergence of load balancing in distributed systems: the
selflet approach. In D. Ardagna and L. Zhang, editors,
Run-time Models for Self-managing Systems and
Applications, Autonomic Systems, pages 97–124.
Springer Basel, 2010.

[9] J. Cámara, P. Correia, R. De Lemos, D. Garlan,
P. Gomes, B. Schmerl, and R. Ventura. Evolving an
adaptive industrial software system to use
architecture-based self-adaptation. In Software
Engineering for Adaptive and Self-Managing Systems
(SEAMS), 2013 ICSE Workshop on, pages 13–22.
IEEE, 2013.

[10] S.-W. Cheng and D. Garlan. Stitch: A language for
architecture-based self-adaptation. Journal of Systems
and Software, 85(12):2860–2875, 2012.

[11] J. R. Cybrynski. Abc of the autonomic computing
toolkit. Technical report, IBM Autonomic Computing
Technical Report, 2005.

[12] F. De Pellegrini, D. Miorandi, D. Linner, L. Bacsardi,
and C. Moiso. Bionets architecture: from networks to
serworks. In Bio-Inspired Models of Network,
Information and Computing Systems, 2007. Bionetics
2007. 2nd, pages 255–262, Dec. 2007.

[13] D. Devescovi, E. Di Nitto, D. Dubois, and
R. Mirandola. Self-organization algorithms for
autonomic systems in the selflet approach. In
Proceedings of the 1st International Conference on
Autonomic Computing and Communication Systems,
Autonomics ’07, pages 26:1–26:10, ICST, Brussels,
Belgium, Belgium, 2007. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications
Engineering).

[14] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based
self-adaptation with reusable infrastructure. Computer,
37(10):46–54, 2004.

[15] E. Hoefig, B. Wuest, B. K. Benko, A. Mannella,
M. Mamei, and E. Di Nitto. On concepts for autonomic
communication elements. In International Workshop on
Modelling Autonomic Communications, 2006.

[16] J. O. Kephart and D. M. Chess. The vision of
autonomic computing. Computer, 36(1):41–50, 2003.

[17] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das,
A. Segal, I. Whalley, J. O. Kephart, and S. R. White. A
multi-agent systems approach to autonomic computing.
In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent
Systems-Volume 1, pages 464–471. IEEE Computer
Society, 2004.

[18] D. Weyns and T. Ahmad. Claims and evidence for
architecture-based self-adaptation: a systematic
literature review. In Software Architecture, pages
249–265. Springer, 2013.

[19] D. Weyns and M. Georgeff. Self-adaptation using
multiagent systems. Software, IEEE, 27(1):86–91, 2010.

[20] D. Weyns, B. Schmerl, V. Grassi, S. Malek,
R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson,
H. Giese, and K. M. Göschka. On patterns for
decentralized control in self-adaptive systems. In
Software Engineering for Self-Adaptive Systems II,
pages 76–107. Springer, 2013.

1025


