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Abstract. We study the asymptotic behavior, as the lattice spacing ε tends to zero, of the dis-
crete elastic energy induced by topological singularities in an inhomogeneous ε periodic medium

within a two-dimensional model for screw dislocations in the square lattice. We focus on the

| log ε| regime which, as ε → 0 , allows the emergence of a finite number of limiting topological
singularities. We prove that the Γ-limit of the | log ε| scaled functionals as ε → 0 equals to

the total variation of the so-called “limiting vorticity measure” times a factor depending on the

homogenized energy density of the unscaled functionals.
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Introduction

This paper deals with the rigorous coarse graining of the discrete elastic energy induced by
topological singularities in an inhomogeneous periodic medium. As a paradigmatic example, we
consider a two-dimensional periodically inhomogeneous model for screw dislocations (see [11]).

Screw dislocations are straight line defects in the periodic structure of the crystal for which the
Burgers vector, which is a vector of the underlying lattice measuring defects of the crystalline order,
is parallel to the dislocation line [19]. In the framework of anti-plane elasticity, a finite distribution
of dislocations is identified by a finite sum of Dirac deltas, representing the positions of the defects,
with integer weights, representing the signed moduli of the Burgers vectors. In this context, screw
dislocations are topological singularities of the vertical displacement u : Ω ∩ εZ2 → R , namely,
points around which the elastic part of the discrete gradient of u has non trivial circulation (see
Section 1). Here and in what follows Ω ∩ εZ2 ⊂ R2 denotes the reference configuration of the
crystal lattice, of lattice spacing ε > 0 . According to the theories of Nabarro-Peierls and Frenkel-
Kontorova [18], plastic deformations, corresponding to integer jumps of the displacement u , do not
store elastic energy. As a consequence of that, one can model the energy stored by the deformation
of the crystal introducing periodic potentials, which, in view of the Hooke’s law, are quadratic
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close to the wells. In this respect, the simplest elastic energy can be taken of the form

(0.1) Fε(u) :=
∑

i∈Ω∩εZ2

[
dist2(u(i+ εe1)− u(i),Z) + dist2(u(i+ εe2)− u(i),Z)

]
.

The energy Fε shares the same asymptotic behavior as other functionals describing the emergence
of topological singularities, both in discrete and continuum framework, such as the XY model
for spin systems [4] and the Ginzburg-Landau (GL) functional for superconductors [13]. For
the three models above the picture is nowadays very clear; in the | log ε| regime, the discrete
vorticity measures (corresponding to the Jacobians of the order parameter in the Ginzburg-Landau
context) are pre-compact (in an appropriate sense known as flat convergence) and converge, up to
a subsequence, to a finite sum of Dirac deltas with integer weights. Up to a prefactor, the Γ-limit of
the family of energies agrees with the total variation of such a limit measure [25, 21, 22, 1, 23, 4, 16].
The asymptotic equivalence of the three models at energy regimes | log ε|p for every p ≥ 1 has been
provided in [5] in terms of Γ-convergence. Moreover, in [6] (see also [7, 8]) it has been shown that
the next order term in the expansion of the energy is the so-called renormalized energy [25, 13]
governing the interactions among the singularities.

The analysis of a variant of the GL functional in a periodic inhomogeneous medium has been
recently provided in [2]. There, it is considered a GL model that depends on two scales, namely,
the coherence length ε (playing the same role as the lattice spacing here) and the periodic inhomo-
geneity scale δε . In such a framework, it is shown that the Γ-limit combines both homogenization

and concentration effects depending on the ratio | log δε|
| log ε| . Our aim is to extend such a continuum

analysis to the discrete setting, showing that the techniques are robust enough in order to neglect,
at the | log ε| regime, further discrete-to-continuum effects. Here we consider a discrete analog of
the problem in [2], focussing on the analysis of energies of the type (0.1) which includes periodic
inhomogeneities at scale Tε for some finite T ∈ N . More precisely, we investigate elastic energies
of the form (see Section 1 for details)

(0.2) Eε(u) :=
∑

i∈Ω∩εZ2

[
a1
( i
ε

)
dist2(u(i+ εe1)− u(i),Z) + a2

( i
ε

)
dist2(u(i+ εe2)− u(i),Z)

]
,

where a1, a2 : Z2 → [0,+∞) are two functions satisfying the following assumptions: for k = 1, 2

Periodicity: There exists T ∈ N such that ak(·) is T -periodic,(P)

Growth: There exist two constants γ1, γ2 with 0 < γ1 ≤ γ2 such that(G)

γ1 ≤ ak(y) ≤ γ2 , for every y ∈ Z2.

We aim at determining the asymptotic behavior of Eε as ε → 0 in the | log ε| energy regime. In
view of assumption (G) we have that the functionals Eε are bounded from below by (γ1 times) the
functional Fε , and hence they share the same compactness property as Fε . As for the Γ-limit,
one expects that “far” from the singularities the discrete deformation gradient of the displacement
u is “small”, hence coinciding with its elastic part; therefore, Eε(u) ∼ Gε(u) , where

Gε(u) :=
∑
i

[
a1
( i
ε

)
|u(i+ εe1)− u(i)|2 + a2

( i
ε

)
|u(i+ εe2)− u(i)|2

]
.

The asymptotic behavior of the functionals Gε has been provided in [3], where it has been shown
that Gε Γ-converge with respect to the strong L2-convergence to the functional

Ghom(u) :=

∫
〈Ahom∇u ,∇u〉dx ,

where Ahom is a two-by-two symmetric matrix defined by a suitable homogenization formula in the
discrete setting (see formula (2.2)). Since at the | log ε| regime the energy of an isolated singularity
concentrates at any scale between ε and 1 , by the reasoning above we can deduce that, outside a
“small” region enclosing the singularities, the functional Eε behaves as Gε which, in turn, can be
approximated by the homogenized energy Ghom . In this framework, we may describe the energy
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around a singularity of degree z by an asymptotic formula of the type (see Remark 3.1)

ψ(z) := lim
R
r→+∞

min
{∫

BR\Br
〈Ahom∇u,∇u〉dx : u ∈ SBV 2(BR \Br) ,

e2πıu ∈ H1(BR \Br) , deg(e2πıu, ∂Br) = z
}

=
1

2π

√
detAhom z2 ,

from which the Γ-limit is obtained by locally optimizing the degree (approximating a singularity
of degree z by |z| singularities of degree ±1). This heuristics suggests that

(0.3) Γ- lim
ε→0

Eε(uε)
| log ε|

=
1

2π

√
detAhom

∑
k

|zk| ,

where the zk’s denote the degrees of the limiting singularities. We prove (0.3) in our main result,
stated in Theorem 1.2.

Although the heuristic argument described above looks somehow elementary, making it rigorous
is not an easy task. The proof of the lower bound follows, up to some vanishing discrete-to-
continuum errors, along the lines developed in the continuum setting treated in [2] and recently
exploited in a simplified version in the discrete setting in [12]. The strategy consists in applying
the ball construction, introduced by Sandier [24] and Jerrard [20] for the GL functional. Such
a technique allows us to prove the existence of a finite (i.e., independent of ε) number of balls
outside of which the main energy concentrates. For what concerns the upper bound, we need some
extra care with respect to the continuum case since in the construction of the recovery sequence
we cannot exclude the presence of short dipoles at the discrete level. Nevertheless, the energy
bound shows that there can be at most | log ε| such dipoles of length ε and that, therefore, they
cannot further contribute to the limit energy (see Propositions 3.4 and 3.6).

We finally remark that it would be interesting to extend, at least in the | log ε| regime, the
variational equivalence between screw dislocations functional, GL model and XY energy from the
homogeneous setting studied in [5] to the periodic inhomogeneous setting considered here. This
requires, in particular, to extend the main result of this paper to the XY model, that amounts to
consider energy as in (0.2) with dist2(·,Z) replaced by fXY (·) := 1− cos(2π·) . We notice that the
potential fXY is still one-periodic and quadratic close to the wells. However, although heuristics
suggests that the only behavior to look at is the one close to the wells, generalization of our
strategy to such a potential seems to be non-trivial. Finally, we remark that in our analysis the
inhomogeneity coefficients ak are T -periodic for some finite T ∈ N . The case where T = Tε →∞
as ε→ 0 is also interesting and could be treated using the techniques introduced in [2].

Acknowledgments: R. Alicandro and L. De Luca are members of the Gruppo Nazionale per
l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale
di Alta Matematica (INdAM). The work of M. Cicalese was supported by the DFG Collaborative
Research Center TRR 109, “Discretization in Geometry and Dynamics”.

1. The discrete model

In this section we introduce the main objects we deal with and we state our main result.

The discrete setting. Let Q = [0, 1]2 be the closed unit square in R2 with bottom left corner at
the origin and let Ω ⊂ R2 be an open bounded set with Lipschitz continuous boundary. For every
ε > 0 we set

Ω2
ε := {i ∈ εZ2 : i+ εQ ⊂ Ω} , Ωε :=

⋃
i∈Ω2

ε

(i+ εQ) ,

Ω0
ε := Ωε ∩ εZ2 , Ω1

ε := {(i, j) ∈ Ω0
ε × Ω0

ε : |i− j| = ε} .

Moreover, we define the ε-discrete boundary of Ω as ∂εΩ := Ω0
ε \ Ω2

ε .



4 R. ALICANDRO, M. CICALESE, AND L. DE LUCA

Furthermore, we set

Dε(Ω) := {u : Ω0
ε → R}

and for every (i, j) ∈ Ω1
ε we define the discrete partial derivative of u in the direction j−i

ε as

du(i, j) := u(j) − u(i) . Denoting by {e1, e2} the canonical basis of R2 , for every k ∈ {1, 2} and
for every u ∈ Dε(Ω) we set

dekε u(i) := du(i, i+ εek) , for (i, i+ εek) ∈ Ω1
ε .

The energy functional. Let a1, a2 : Z2 → [0,+∞) be two functions satisfying assumptions (P)
and (G) in the introduction. For every ε > 0 we define the energy functional Eε : Dε(Ω)→ [0,+∞)
as

(1.1) Eε(u) :=
∑
i∈Ω2

ε

2∑
k=1

ak
( i
ε

)
dist2(dekε u(i),Z) .

In the following we will adopt also localized versions of the functional Eε ; more precisely, for every
open bounded set A ⊂ R2 with Lipschitz continuous boundary the functional Eε(·;A) : Dε(A) →
[0,+∞) is defined as in (1.1) with Ω replaced by A . Let A ⊂ R2 be open and bounded. For
every ε > 0 and for every u ∈ Dε(A) we denote by Π(u) the piecewise affine interpolation of u
on the cells i + εQ (with i ∈ A2

ε). Moreover, we set wu := e2πıu and we denote by Π(wu) the
piecewise affine interpolation of wu . The following lemma, whose proof is straightforward, relates
the discrete energy Eε defined in (1.1) with the continuum Dirichlet energy of Π(u) and Π(wu) .

Lemma 1.1. Let A ⊂ R2 . There exists a universal constant C > 0 depending only on γ1 and γ2

such that the following facts hold true for ε small enough:

(i) for every u ∈ Dε(A)

Eε(u;A) ≤ C
∫
Aε

|∇Π(wu)|2 dx ;

(ii) for every u ∈ Dε(A)

(1.2) Eε(u;A) ≤
∫
Aε

|∇Π(u)|2 dx ;

moreover, if v ∈ C2(A) and u = v A0
ε , then

(1.3)

∫
Aε

|∇Π(u)|2 dx ≤ C
∫
A

|∇v|2 dx ;

(iii) for every u ∈ Dε(A)

(1.4) Eε(u;A) ≥ γ1

4π2
XYε(u;A) =

γ1

4π2

∫
Aε

|∇Π(wu)|2 dx ,

where XYε(·, A) : Dε(A)→ [0,+∞) is the functional defined by

(1.5) XYε(u;A) :=
∑
i∈A2

ε

2∑
k=1

(1− cos(2πdekε u(i))) .

The discrete topological singularities. In what follows we introduce the notion of discrete
vorticity measure associated to a displacement u ∈ Dε(Ω) . To this purpose, we let P : R→ Z be
the function defined by

P(t) := argmin{|t− s| : s ∈ Z} ,
with the convention that, if the argmin is not unique, then we choose the smallest one. Let
u ∈ Dε(Ω) be fixed. For every i ∈ Ω2

ε we define the vorticity of u at i as

αu(i) := −P(de1ε u(i))− P(de2ε u(i+ εe1)) + P(de1ε u(i+ εe2)) + P(de2ε u(i)) .
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Notice that we can alternatively write

(1.6)
αu(i) =

(
de1ε u(i)− P(de1ε u(i))

)
+
(
de2ε u(i+ εe1)− P(de2ε u(i+ εe1))

)
−
(
de1ε u(i+ εe2)− P(de1ε u(i+ εe2))

)
−
(
de2ε u(i)− P(de2ε u(i))

)
.

One can easily check that the vorticity takes values in the set {−1, 0, 1} . Furthermore, we define
the discrete vorticity measure µ(u) as

µ(u) :=
∑
i∈Ω2

ε

αu(i)δi+ ε
2 (e1+e2) .

For every u ∈ Dε(Ω) , one can check that if A is an open subset of Ω such that |Π(wu)| ≥ η on
∂Aε for some η > 0 , then

(1.7) µ(u)(Aε) = deg(Π(wu), ∂Aε) .

Here and below, for every open bounded set E with Lipschitz continuous boundary and for every
h ∈ H 1

2 (∂E;R2) with |h| ≥ η > 0 , deg(h, ∂E) is the winding number of the map h
|h| : ∂E → S1,

i.e.,

deg(h, ∂E) :=
1

2π

∫
∂E

h

|h|
· ∂
∂τ

( h2

|h|
;− h1

|h|

)
dH1 ,

where τ is the tangent field to ∂E and the product in the above formula is understood in the sense
of the duality between H

1
2 and H−

1
2 (see [14, 15]).

We set

X(Ω) :=

{
µ =

K∑
k=1

zkδxk : K ∈ N , zk ∈ Z \ {0} , xk ∈ Ω

}
,

Xε(Ω) :=

{
µ ∈ X(Ω) : µ =

∑
i∈Ω2

ε

α(i)δi+ ε
2 (e1+e2) : α(i) ∈ {−1, 0, 1}

}
, for every ε > 0 .

The Γ-convergence result. The main result proved in this paper is stated in the next theorem
whose statement requires the definition of flat convergence of measures. The latter, together with
the usual weak star convergence of measures, are recalled below for the reader’s convenience.

Let Cc(Ω) denote the space of continuous functions compactly supported in Ω endowed with
the supremum norm. We say that a family {µε}ε of measures converge weakly star in Ω to a

measure µ, and we write µε
∗
⇀ µ if for any ϕ ∈ Cc(Ω)

〈µε, ϕ〉 → 〈µ, ϕ〉 as ε→ 0 .

Let C0,1(Ω) denote the space of Lipschitz continuous functions on Ω endowed with the norm

‖ψ‖C0,1 := sup
x∈Ω
|ψ(x)|+ sup

x,y∈Ω
x 6=y

|ψ(x)− ψ(y)|
|x− y|

,

and let C0,1
c (Ω) be the subspace of its functions with compact support in Ω. The norm in the dual

of C0,1
c (Ω) is denoted by ‖ · ‖flat and referred to as flat norm, while

flat→ denotes the convergence
with respect to this norm.

Theorem 1.2. Let Ahom be the two-by-two symmetric matrix defined in formula (2.2) below. The
following Γ-convergence result holds true.

(i) ( Γ-liminf inequality) For any family {uε}ε with uε ∈ Dε(Ω) such that µ(uε)
flat→ µ with

µ ∈ X(Ω) , we have

lim inf
ε→0

Eε(uε)
| log ε|

≥ 1

2π

√
detAhom|µ|(Ω).
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(ii) ( Γ-limsup inequality) For every µ ∈ X(Ω), there exists a sequence {uε}ε with uε ∈ Dε(Ω)

such that µ(uε)
flat→ µ and

(1.8) lim sup
ε→0

Eε(uε)
| log ε|

≤ 1

2π

√
detAhom|µ|(Ω) .

The Γ-convergence result above is complemented by the following compactness statement that,
in view of (1.4), is a corollary of [6, Theorem 3.1].

Theorem 1.3. Let {uε}ε with uε ∈ Dε(Ω) be such that Eε(uε) ≤ C| log ε| . Then, up to a

subsequence, µ(uε)
flat→ µ for some µ ∈ X(Ω) .

2. Periodic homogenization of discrete energies

In this section we specialize to our case a homogenization result in the framework of discrete-
to-continuum limits that has been proven in [3]. We first introduce some notation. For every open
bounded set A ⊂ R2 and for every δ > 0 we define the functional Gδ : Dδ(A)→ [0,+∞) as

(2.1) Gδ(u;A) :=
∑
i∈A2

δ

2∑
k=1

ak
( i
δ

)
(dekδ u(i))2 ,

where a1 and a2 satisfy properties (P) and (G). With a little abuse of notation, we say that a
family of discrete functions {uδ}δ with uδ ∈ Dδ(A) for every δ > 0 converge in L2(A) to a function
u ∈ L2(A) if the family of its piecewise affine interpolations {Π(uδ)}δ extended to 0 outside Aδ
converge in L2(A) to the function u . Furthermore, for every ξ ∈ R2 and for every δ > 0 we define
the set

Dξ
δ (A) := {u ∈ Dδ(A) : u(i) = ξ · i for every i ∈ ∂δA} ,

where · denotes the standard scalar product in R2 . The following result is an immediate conse-
quence of [3, Theorem 4.1 & Remark 5.2].

Theorem 2.1. The functional Gδ(·;A) Γ-converge as δ → 0 with respect to the strong convergence
in L2(A) to the functional Ghom(·;A) : L2(A)→ [0,+∞) defined as

Ghom(u;A) :=


∫
A

〈Ahom∇u ,∇u〉dx if u ∈ H1(A)

+∞ elsewhere ,

where Ahom is the two-by-two symmetric matrix defined by the following homogenization formula

(2.2) 〈Ahomξ , ξ〉 := lim
t→+∞

1

t2
min

{ ∑
i∈(tQ)0

1

2∑
k=1

ak(i)(dek1 u(i))2 : u ∈ Dξ
1 (A)

}
.

For every ϕ ∈ C0,1(R2) we define the functionals

Gϕδ (u;A) :=

{
Gϕδ (u;A) if u(i) = ϕ(i) for every i ∈ ∂δA ,
+∞ otherwise ,

and

Gϕhom(u;A) :=

{
Gϕhom(u;A) if u− ϕ ∈ H1

0 (A) ,
+∞ otherwise .

Proposition 2.2. The functionals Gϕδ (·;A) Γ-converge as δ → 0 with respect to the strong con-
vergence in L2(A) to the functional Gϕhom(·;A) .

Remark 2.3. Notice that, in view of properties (P) and (G), the matrix Ahom defined in (2.2)
satisfies

γ1|M |2 ≤ 〈AhomM,M〉 ≤ γ2|M |2 for every M ∈ R2 .

In the following, with a little abuse of notations, we extend the functional Ghom by setting

(2.3) Ghom(u;A) :=


∫
A

〈Ahom∇u,∇u〉dx if u ∈ SBV 2(A)

+∞ elsewhere ,
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where ∇u denotes the absolutely continuous part of the measure derivative Du with respect to
the Lebesgue measure in R2 .

3. Asymptotic analysis on annuli

In this section we prove some auxiliary results on the asymptotic behavior of the minimal energy
Eε on annuli, showing that it converges in a suitable sense to the minimal energy of the functional
Ghom defined in (2.3). We start by introducing some notations. For every 0 < r < R and for every
x ∈ R2 we set Ar,R(x) := BR(x) \Br(x) and Ar,R := Ar,R(0) . Moreover, we set

A r,R(z) := {u ∈ SBV 2(Ar,R) : w = e2πıu ∈ H1(Ar,R;S1) , deg(w, ∂Br) = z} .

Remark 3.1. Let z ∈ Z\{0} and let
√
Ahom be the unique two-by-two positive definite symmetric

matrix such that
√
Ahom

√
Ahom = Ahom , where Ahom is defined in (2.2). For every 0 < r′ < R′ ,

we set

A Ahom

r′,R′ (z) :={u ∈ SBV 2
(√

Ahom(Ar′,R′)
)

: w = e2πıu ∈ H1
(√

Ahom(Ar′,R′);S1
)
,

deg
(
w, ∂(

√
Ahom(B′r))

)
= z} .

By a change of variable for every 0 < r′ < R′ and for every u ∈ A Ahom

r′,R′ (z) we have

(3.1)

Ghom

(
u;
√
Ahom(Ar′,R′)

)
=

∫
√
Ahom(Ar′,R′ )

∣∣√Ahom∇u
∣∣2 dx

=

∫
√
Ahom(Ar′,R′ )

∣∣∣∇(u ◦√Ahom

)∣∣∣2 dx

≥det
√
Ahom min

v∈A r′,R′ (z)

∫
Ar′,R′

|∇v|2 dy

=
√

detAhom z2

∫
Ar′,R′

|∇θ|2 dx =
1

2π

√
detAhom z2 log

R′

r′
,

where θ ∈ SBV 2(R2 \ {0}) is the function defined by

(3.2) θ(x) :=
1

2π


arctan x2

x1
+ 3

2π if x1 < 0

π if x1 = 0 and x2 > 0
arctan x2

x1
+ π

2 if x1 > 0

2π if x1 = 0 and x2 < 0 .

By (3.1) we have, in particular, that the function

(3.3) zθAhom
:= zθ ◦

(√
Ahom

)−1

is a minimizer of Ghom in A Ahom

r′,R′ (z) . Denoting by λ and Λ the minimal and the maximal eigenvalue

of
√
Ahom , respectively, we have that 0 < λ < Λ and λAr,R ⊂

√
Ahom(Ar,R) ⊂ ΛAr,R . It follows

that, there exists a constant CAhom,z > 0 depending only on Ahom and z (and independent of r
and R) and a function f(r,R,Ahom, z) with |f(r,R,Ahom, z)| ≤ CAhom,z such that

min
u∈A r,R(z)

Ghom(u;Ar,R) =Ghom(zθAhom
;
√
Ahom(Ar,R)) + f(r,R,Ahom, z)

=
1

2π

√
detAhom z2 log

R

r
+ f(r,R,Ahom, z) ,

whence we deduce that

(3.4) lim
R
r→+∞

1

log R
r

min
u∈A r,R(z)

Ghom(u;Ar,R) =
1

2π

√
detAhom z2 .

Note that the same argument above shows also that

(3.5)

min
u∈A r,R(z)

Ghom(u;Ar,R) ≤Ghom(zθAhom
;Ar,R) + C ′Ahom,z

≤ 1

2π

√
detAhom z2 log

R

r
+ C ′Ahom,z

,
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for some constant C ′Ahom,z
depending only on Ahom and z .

3.1. Lower bound. We show that the asymptotical minimal energy Eε induced by a singularity
at ξ with weight z ∈ Z\{0} in an annulus Ar,R(ξ) is bounded from below by 1

2π

√
detAhom z2 log R

r .
We prove that this bound holds true also when the radii are powers of ε . To this purpose, for
every z ∈ Z \ {0} , for every 0 < r < R and for every δ > 0 , we define

A r,R,δ(z) :={u ∈ Dδ(Ar,R) : µ(u)(Br+
√

2δ) = z and µ(u)(i+ δQ) = 0 for every i ∈ (Ar,R)2
δ} .

Furthermore, we say that a family of bonds J := {(jm−1, jm)}m=1,...,M ⊂ (Ar,R)1
ε is a simple and

closed path if jm 6= jn for every pair (m;n) ∈ {0, 1, . . . ,M}2 \ {(0;M), (M ; 0)} with m 6= n and
j0 ≡ jM ; we denote by AJ the finite subset of (Ar,R)0

ε enclosed by the union of the segments
[jm−1, jm] as m = 1, . . . ,M .

Proposition 3.2. Let z ∈ Z \ {0} and let 0 < r < R . Let Eδ be the functional defined in (1.1)
for ε = δ with ak satisfying (P) and (G) . Then,

(3.6) lim inf
δ→0

min
u∈A r,R,δ(z)

Eδ(u;Ar,R) ≥ min
u∈A r,R(z)

Ghom(u;Ar,R) .

Proof. We set

(3.7) S := {(0, x2) : x2 < 0} .
For every δ > 0 let uδ be a minimizer of Eδ(·;Ar,R) in A r,R,δ(z) . We aim at constructing a
function ũδ , which in an open set U compactly supported in Ar,R \ S satisfies

Gδ(ũδ;U) = Eδ(uδ;U) .

Since uδ ∈ A r,R,δ(z) , using a Poincaré lemma type argument, we can construct a function ũδ ∈
Dδ(Ar,R) such that

(3.8) dũδ(i, j) = duδ(i, j)− P(duδ(i, j)) for every (i, j) ∈ (Ar,R)1
δ \ S1

δ ,

where S1
δ := {(i, i+ δe1) : i ∈ S ∩ (Ar,R)2

δ} . By (3.8) we have that

dũδ(i, j)− P(dũδ(i, j)) = dũδ(i, j) for every (i, j) ∈ (Ar,R)1
δ \ S1

δ ;

moreover, we claim that

(3.9) de1δ ũδ(i) + z = de1δ uδ(i)− P(de1δ uδ(i)) for every (i, i+ δe1) ∈ S1
δ ,

whence we deduce that

P(dũδ(i, i+ δe1)) = −z for every (i, i+ δe1) ∈ S1
δ .

To prove (3.9) we fix (i, i+δe1) ∈ S1
δ and we consider a generic family of bonds {(jm−1, jm)}m=1,...,M ⊂

(Ar,R)1
δ \ S1

δ such that j0 = i + δe1 , jM = i , and such that {(jm−1, jm)}m=1,...,M ∪ (i, i+ δe1) is
a simple and closed counterclockwise oriented path in Ar,R . Since, by (1.6),

M∑
m=1

(
duδ(jm−1, jm)− P(duδ(jm−1, jm))

)
+ de1δ uδ(i)− P(de1δ uδ(i)) = z ,

by (3.8), using that uδ ∈ A r,R,δ(z), we get

(3.10)
de1δ ũδ(i) =−

M∑
m=1

dũδ(jm−1, jm) = −
M∑
m=1

(duδ(jm−1, jm)− P(duδ(jm−1, jm)))

=− z + de1δ uδ(i)− P(de1δ uδ(i)) ,

i.e., (3.9). We set
S̄δ := {x ∈ (Ar,R)δ : x = y + te1 , y ∈ S , t ∈ [0, δ)} ,

and we define βδ : S̄δ → R2 as βδ(x) = de1δ ũδ(i) + z for every x ∈ i + δQ with i ∈ S ∩ (Ar,R)2
δ .

Moreover, we define vδ : (Ar,R)δ → R as

(3.11) vδ(x) :=


Π(ũδ)(x) if x ∈ (Ar,R)δ \ S̄δ

vδ(y) +

∫ t

0

βδ(y + se1) ds if x = y + te1 , y ∈ S , t ∈ [0, δ] .
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By construction, vδ ∈ SBV 2((Ar,R)δ) , Svδ ⊂ S+ δe1 and [v+
δ −v

−
δ ] = −z . Furthermore, by (3.8),

(3.9) and (3.11) , for every r < r′ < R′ < R and for δ small enough, we have∫
Ar′,R′

|∇vδ|2 dx ≤ Eδ(uδ;Ar,R) ≤ C .

Therefore, we can apply Ambrosio compactness result [10] to deduce that, up to a (not relabeled)
subsequence vδ → v in L2(Ar′,R′) for some function v ∈ SBV 2(Ar′,R′) ; notice that, by [2, Theorem
1.5], v ∈ A r′,R′(z) . Now, for every η > 0 , we get that Π(ũδ) = vδ → v in L2(Ar′,R′ \ Iη) , where
we have set

Iη := {(x1, x2) : −η ≤ x1 ≤ η , −R ≤ x2 ≤ −r} ;

we can thus apply Theorem 2.1 to deduce that for every r < r′ < R′ < R

Ghom(v;Ar′,R′)− ω(η) ≤Ghom(v;Ar′,R′ \ Iη) ≤ lim inf
δ→0

Gδ(ũδ;Ar′,R′ \ Iη)

= lim inf
δ→0

Eδ(uδ;Ar′,R′ \ Iη) ≤ lim inf
δ→0

Eδ(uδ;Ar,R) ,

for some ω(η) tending to 0 as η → 0 , where the equality above is a consequence of (3.8); therefore,
sending r′ → r and R′ → R we get (3.6). �

Proposition 3.3. Let Eε be the functional defined in (1.1) with ak satisfying (P) and (G) and
let Ahom be the matrix defined in (2.2). Then for any 0 ≤ s1 < s2 < 1 we have

(3.12) lim inf
ε→0

1

| log ε|
inf

u∈A εs2 ,εs1 ,ε(z)
Eε(u;Aεs2 ,εs1 ) ≥ 1

2π
(s2 − s1)

√
detAhom z2 .

Proof. The proof follows along the lines of the one of [2, Proposition 3.2]. We fix R > 1, set Kε,R =

b(s2 − s1) | log ε|
logR c, and note that Aεs2 ,εs1 ⊃

Kε,R⋃
k=1

ARk−1εs2 ,Rkεs2 . Let moreover uε ∈ A εs2 ,εs1 ,ε(z)

be such that

(3.13) Eε(uε;Aεs2 ,εs1 ) ≤ inf
u∈A εs2 ,εs1 ,ε(z)

Eε(u;Aεs2 ,εs1 ) + C,

for some constant C (independent of ε) and let k̄ = k̄ε,R ∈ {1, . . . ,Kε,R} be such that

Eε(uε;ARk̄−1εs2 ,Rk̄εs2 ) ≤ Eε(uε;ARk−1εs2 ,Rkεs2 ) , for all k = 1, . . . ,Kε,R .

Therefore

(3.14) Eε(uε;Aεs2 ,εs1 ) ≥
Kε,R∑
k=1

Eε(uε;ARk−1εs2 ,Rkεs2 ) ≥ Kε,R Eε(uε;ARk̄−1εs2 ,Rk̄εs2 ) .

By the change of variable y = R1−k̄ε−s2x, u′
ε,k̄

(y) := uε(R
k̄−1εs2y) , we have

(3.15) Eε(uε;ARk̄−1εs2 ,Rkεs2 ) = ER1−k̄ε1−s2 (u′ε,k̄;A1,R) .

Therefore, by using (3.13), (3.14), (3.15), and Theorem 3.2, we deduce that

lim inf
ε→0

1

| log ε|
inf

u∈A εs2 ,εs1 ,ε(z)
Eε(u;Aεs2 ,εs1 )

≥ lim inf
ε→0

1

| log ε|
Eε(uε;Aεs2 ,εs1 )

≥ lim inf
ε→0

Kε,R

| log ε|
inf{ER1−k̄ε1−s2 (u;A1,R) : u ∈ A 1,R,R1−k̄ε1−s2 (z)}

≥ lim
ε→0

(s2 − s1

logR
− 1

| log ε|

)
lim inf
ε→0

inf{ER1−k̄ε1−s2 (u;A1,R) : u ∈ A 1,R,R1−k̄ε1−s2 (z)}

=
s2 − s1

logR
min

u∈A 1,R(z)
Ghom(u;A1,R) .

Formula (3.12) follows from the estimate above as R→ +∞ thanks to (3.4). �
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3.2. Upper bound. The analysis carried out in this subsection will be crucial for the proof of
the Γ-limsup inequality in Theorem 1.2(ii).

Proposition 3.4. Let Eε be the functional defined in (1.1) with ak satisfying (P) and (G).
Let moreover Ahom be the matrix defined in (2.2) and θhom be the function in (3.3). Then, for
every ρ > 0 and for every 0 < s < 1 , there exists a family {uε,s}ε with uε,s ∈ Dε(Aεs,ρ) and
uε,s(·) = zθhom(·) on ∂εAεs,ρ and a constant C independent of ε such that

(3.16) ‖µ(uε,s) Aεs,ρ‖flat ≤ Cε| log ε|
and

(3.17) lim sup
ε→0

1

| log ε|
Eε(uε,s;Aεs,ρ) ≤

s

2π

√
detAhom z2 .

The proof of Proposition 3.4 needs some auxiliary results. The next lemma shows that, if
{uδ}δ is a family of functions with uniformly bounded energy Eδ which satisfies suitable boundary
conditions, then the measures µ(uδ) can have at most a finite number K of dipoles of size δ , with
K independent of δ .

Lemma 3.5. Let A,A′ ⊂ R2 be open and bounded with A ⊂⊂ A′ . For every δ > 0 , let Gδ(·;A)
be the functional defined in (2.1) for ε = δ with ak satisfying (P) and (G) . Let {uδ}δ be such
that, for every δ > 0 , uδ ∈ Dδ(A) and uδ = ū on ∂δA for some ū ∈ C∞(A′) . If

(3.18) sup
δ>0
Eδ(uδ;A) ≤ C ,

for some constant C > 0 (independent of δ) , then there exist K = K(C) and L = L(C) in N such
that:

(a) ] suppµ(uδ) ≤ K ,
(b) µ(uδ)(BLδ(ξ)) = 0 for every ξ ∈ suppµ(uδ) .

Proof. For every δ > 0 let ûδ ∈ Dδ(A
′) be the function defined by

ûδ(i) :=

{
uδ(i) if i ∈ A0

δ

ū(i) if i ∈ (A′)0
δ \A0

δ .

Since ū ∈ C∞(A′) , by (3.18) we have

(3.19) sup
δ>0
Eδ(ûδ;A′) ≤ C .

For every δ > 0 we set

Ēδ :=
{

(i, j) ∈ (A′)1
δ : dist(dûδ(i, j),Z) ≥ 1

8

}
,

and we notice that, by construction, for δ small enough

Ēδ =
{

(i, j) ∈ A1
δ : dist(duδ(i, j),Z) ≥ 1

8

}
.

By property (G) and by (3.18), we have that

(3.20) ] suppµ(uδ) ≤ ]Ēδ ≤
64

γ1
C ,

hence (a).
In order to prove (b), we fix ı̂δ ∈ A2

δ such that µ(uδ)(̂ı
δ + δQ) 6= 0 and we set

L := sup
{
l̄ ∈ N : B2lδ (̂ı

δ) ⊂ A′ and µ(ûδ)(B2lδ (̂ı
δ)) 6= 0 for every l = 1, . . . , l̄

}
.

In view of (3.20) it is enough to show that L is bounded by a constant depending only on C . To
this purpose, we define Lbad as the set of indices l = 1, . . . , L such that the annulus A2l−1δ,2lδ (̂ı

δ)

contains at least one bond in Ēδ . Notice that, if l /∈ Lbad , then µ(ûδ)(Bρ(̂ı
δ)) = µ(ûδ)(B2l−1δ (̂ı

δ))
for every 2l−1δ < ρ < 2lδ . In view of (3.20), we have that ]Lbad ≤ K . If L ≤ K + 3 , the claim is
proven. Otherwise, noticing that there exists a universal constant η > 0 such that

min
A

(2l−1+
√

2)δ,(2l−
√

2)δ

|Π(wûδ)| ≥ η for every l /∈ Lbad ,
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by (1.4) and by (1.7), for δ small enough, we get

Eδ(ûδ, A′) ≥Eδ(ûδ;Aδ,2Lδ (̂ıδ))

≥
L∑
l=1

l/∈Lbad

Eδ(ûδ;A2l−1δ,2lδ (̂ı
δ))

≥ γ1

4π2

L∑
l=3

l/∈Lbad

∫
A

(2l−1+
√

2)δ,(2l−
√

2)δ
(ı̂δ)

|∇Π(wûδ)|2 dx

=
γ1

4π2

L∑
l=3

l/∈Lbad

∫
A

(2l−1+
√

2),(2l−
√

2)
(ı̂δ)

|∇Π(wûδ)(δx)|2 dx

≥ γ1

2π
η2 log 2(L− 3−K) ,

which, in view of (3.19), implies the claim. �

For every A ⊂ R2 open and for every δ > 0 , let Ã
K,L

A,δ be the set of the functions u ∈ Dδ(A)
satisfying properties (a) and (b) of Lemma 3.5 for some K,L ∈ N and such that

(3.21) u = zθAhom
on ∂δA ,

where θAhom
is defined in (3.3).

Theorem 3.6. For every δ > 0 let Eδ be the functional defined in (1.1) for ε = δ with ak satisfying
(P) and (G) . Then, for every z ∈ Z \ {0} and for every 0 < r < R , there exist K = Kr,R,z and

L = Lr,R,z in N and a family {uδ}δ ⊂ Ã
K,L

Ar,R,δ(z) such that

(3.22) lim sup
δ→0

Eδ(uδ;Ar,R) ≤ 1

2π

√
detAhom z2 log

R

r
+ CAhom,z ,

for some constant CAhom,z depending only on Ahom and z .

Proof. By (3.5), we have that

min
u∈A r,R(z)

Ghom(u;Ar,R) ≤ Ghom(zθAhom
;Ar,R) + C ′Ahom,z

;

therefore, it is enough to construct a family {uδ}δ with uδ ∈ Ã
K,L

Ar,R,δ(z) for every δ > 0 , such that

lim sup
δ→0

Eδ(uδ;Ar,R) ≤ Ghom(zθAhom
;Ar,R) + C ,

for some constant depending only on Ahom and z .
By the very definition of θ in (3.2) we have that θ ∈ C∞(R2 \ Sθ) , ∇θ ∈ L∞(R2 \ 0) , Sθ ≡ S

with S defined in (3.7) and

(3.23) θ+ − θ− = 1 on S ;

therefore, all the properties above are inherited by θAhom
, up to replacing S with

√
Ahom(S) .

For every η > 0 , we set

(3.24) Iη := {x ∈ R2 : dist
(
x,
√
Ahom(S)

)
≤ η} .

We claim that for every η > 0 , there exists a family {ũηδ}δ ⊂ Ã
K,L

Ar,R,δ for every δ > 0 and for some
K,L ∈ N depending only on r , R and z, such that

(3.25) lim sup
δ→0

Eδ(ũηδ ;Ar,R) ≤ Ghom(zθAhom
;Ar,R) + ω(η) .

with ω(η) → 0 as η → 0 . Notice that, suitably choosing η = η(δ) → 0 as δ → 0 , by the claim

above, we have that the sequence {uδ}δ with uδ = ũ
η(δ)
δ , satisfies the statement of the theorem.



12 R. ALICANDRO, M. CICALESE, AND L. DE LUCA

It remains to prove the claim. For any η > 0 , by Proposition 2.2 , there exists {uηδ}δ ⊂
Dδ(Ar,R \ Iη) such that uηδ = zθAhom

on ∂δI
η and

(3.26)
lim sup
δ→0

Eδ(uηδ ;Ar,R \ Iη) ≤ lim sup
δ→0

Gδ(uηδ ;Ar,R \ Iη) ≤ Ghom(zθAhom
;Ar,R \ Iη)

≤Ghom(zθAhom
;Ar,R) ,

where the first inequality follows by the very definitions of Eδ and Gδ . We define the map ũηδ ∈
Dδ(Ar,R) as

(3.27) ũηδ (i) :=


uηδ (i) if i ∈ (Ar,R \ Iη) ∩ (Ar, R)0

δ

zθAhom
(i) if i ∈ (Iη \

√
Ahom(S)) ∩ (Ar,R)0

δ

zθ+
Ahom

(i) if i ∈ (
√
Ahom(S)) ∩ (Ar,R)0

δ .

It holds that

(3.28) lim sup
δ→0

Eδ(ũηδ ; (Iη +B√2δ) ∩Ar,R) = ω(η) ,

for some ω(η)→ 0 as η → 0 . By (3.26) and (3.28), (3.25) follows.

Now we show that there exists K = Kr,R,z and L = Lr,R,z in N such that ũηδ ∈ Ã
K,L

r,R,δ for every

δ > 0 . By construction ũηδ satisfy (3.21) for every δ, η > 0 . Moreover, by the very definition of
ũηδ in (3.27) we have that

µ(ũηδ )(i+ δQ) = 0 for every i ∈
(
Ar,R ∩ (Iη +B√2δ)

)2
δ
.

Notice that the functions obtained extending ũηδ to the larger annuli Ar′,R′ ⊃ Ar,R by setting
ũηδ := zθAhom

still have equi-bounded energy. Therefore, in view of (3.26), we can apply Lemma

3.5 to the sets A = Ar,R \ Iη and A′ = Ar′,R′ \ I
η
2 to deduce that there exist K,L ∈ N depending

only on r , R and z such that ]suppµ(ũηδ ) ≤ K and µ(ũηδ )(BLδ(ξ)) = 0 for every ξ ∈ suppµ(ûηδ ) ;

this proves that ũηδ ∈ Ã
K,L

Ar,R,δ and concludes the proof.
�

Proof of Proposition 3.4. Let R > 1 and set Mε,R := d log ρ+s| log ε|
logR e for every ε > 0 . Moreover,

for every m = 1, . . . ,Mε,R we set δε,m := ε1−sR1−m and we notice that δε,m ≤ δε,1 = ε1−s → 0 as
ε→ 0 for all m = 1, . . . ,Mε,R . We define the function uε,s ∈ Dε(Aεs,ρ) as

uε,s(i) :=

{
uδε,m

(
i

Rm−1εs

)
if i ∈

(
ARm−1εs,Rmεs

)0
ε

for some m = 1, . . . ,Mε,R

zθAhom
(i) elsewhere in (Aεs,1)0

ε ,

where {uδ}δ is the family provided by Theorem 3.6. By (3.22) and by change of variable, for every
m = 1, . . . ,Mε,R we have that

(3.29)

Eε(uε,s;ARm−1εs,Rmεs) = Eδε,m(uδε,m ;A1,R)

≤ 1

2π

√
detAhom z2 logR+ CAhom,z + ω(δε,m)

≤ 1

2π

√
detAhom z2 logR+ CAhom,z + max

m=1,...,Mε,R

ω(δε,m) ,

where maxm=1,...,Mε,R
ω(δε,m)→ 0 as ε→ 0 . Since

Mε,R∑
m=1

∑
i∈∂εBRm−1εs

2∑
k=1

ak
( i
ε

)
dist2(dekε (zθAhom

(i),Z)

≤CAhom
z2

Mε,R∑
m=1

log
Rm−1εs +

√
2ε

Rm−1εs −
√

2ε
≤ CAhom

z2
+∞∑
m=1

R1−mε1−s = CAhom
z2ε1−s R

R− 1
,

by summing (3.29) for every m = 1, . . . ,Mε,R we get

lim sup
ε→0

1

| log ε|
Eε(uε,s;Aεs,ρ) ≤

s

2π

√
detAhom z2 + CAhom,z

s

logR
,
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whence (3.17) follows by taking the limit as R→ +∞ . Therefore, by Theorem 3.6, we have that,

for every M = 1, . . . ,Mε,R , the function uδε,m ∈ Ã
K,L

A1,R,δε,m for some K, L ∈ N depending only

on R and z , whence we deduce that ] supp
(
µ(uε,s) (ARm−1εs,Rmεs)

)
≤ K and

µ(uε,s)(BLε(ξ)) = 0 for every ξ ∈ suppµ(usε) .

It follows that

‖µ(uε,s) ARm−1εs,Rmεs‖flat ≤ KLε for every m = 1, . . . ,Mε,R ,

which summed over m = 1, . . . ,Mε,R , yields (3.16), and concludes the proof. �

Remark 3.7. We notice that Propositions 3.3 and 3.4 hold true also if the center of the annulus
is a point ξε depending on ε , since all the estimates in the previous proofs do not depend on the
center of the annulus. As for the lower bound in Proposition 3.3, the set A r,R,ε should be replaced
by the set

A r,R,ε(z; ξε) :={u ∈ Dε(Ar,R(ξε)) : µ(u)(Br+
√

2ε(ξε)) = z

and µ(u)(i+ εQ) = 0 for every i ∈ (Ar,R(ξε))
2
ε} ,

and hence the statement becomes

lim inf
ε→0

1

| log ε|
min

u∈A εs2 ,εs1 ,δ(z;ξε)
Eε(u;Aεs2 ,εs1 (ξε)) ≥

1

2π
(s2 − s1)

√
detAhom z2 .

Analogously, the upper bound in Proposition 3.4 reads as follows: For every ρ > 0 , for every
0 < s < 1 and for every {ξε}ε ⊂ R2 , there exists a family {uξεε,s}ε ⊂ Dε(Aεs,ρ(ξε)) and uξεε,s(·) =
zθAhom

(· − ξε) on ∂εAεs,ρ(ξε) such that

(3.30) ‖µ(uξεε,s) Aεs,ρ(ξε)‖flat ≤ Cε| log ε| ,

(with C independent of ε) and

(3.31) lim sup
ε→0

1

| log ε|
Eε(uξεε,s;Aεs,ρ(ξε)) ≤

s

2π

√
detAhom z2 .

4. Proof of the Γ-liminf inequality

This section is devoted to the proof of Theorem 1.2(i). The proof will follow along the lines of
[2, Proposition 5.2], with some differences due to the peculiarities of the discrete setting we work
with in this paper. We start by introducing some notations and preliminary results that have been
proven in [6] and [2] and that will be useful in our analysis.

The next result is [6, Proposition 3.3] (the functional XYε is defined in (1.5)).

Proposition 4.1. There exists a positive constant β such that for any ε > 0, for any function
u ∈ Dε(Ω) and for any i ∈ Ω2

ε such that mini+εQ |Π(wu)| ≤ 1
2 , it holds

XYε(u; i+ εQ+B√2ε) ≥ β .

In what follows, we recall the ball construction procedure introduced by Sandier [24] and Jerrard
[20] in the context of the Ginzburg-Landau functional for providing lower bounds of the Dirichlet
energy in presence of topological singularities. Here we adopt the notation of [2, Section 4] (see
also [17, 9]).

Let B = {Br1(x1), . . . , Brn(xN )} be a finite family of open balls in R2 and let µ =
∑N
n=1 z

nδxn

with zn ∈ Z \ {0} . Notice that in [2] it was assumed that the balls have disjoint closures but this
is actually not necessary up to an additional merging procedure (see [2, Section 4]). Let moreover
E(B, µ, ·) be the increasing set-function defined on open subsets of R2 in the following way: If
Ar,R(x) is an annulus that does not intersect any B ∈ B, we set

(4.1) G(B, µ,Ar,R(x)) := |µ(Br(x))| log
(R
r

)
,
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For every open set A ⊂ R2 we set

(4.2) E(B, µ,A) := sup
∑
j

G(B, µ,Aj),

where the supremum is taken over all finite families of disjoint annuli Aj ⊂ A that do not intersect
any B ∈ B . For every ball B ⊂ R2, let r(B) denote the radius of the ball B; moreover, for every
family B of balls in R2 we set

Rad(B) :=
∑
B∈B

r(B).

The following result is [2, Proposition 4.2].

Proposition 4.2. There exists a one-parameter family of open balls B(t) with t ≥ 0 such that,
setting U(t) :=

⋃
B∈B(t)B, the following conditions are fulfilled:

(1) B(0) = B ;
(2) U(t1) ⊂ U(t2) for any 0 ≤ t1 < t2 ;
(3) the balls in B(t) are pairwise disjoint;
(4) for any 0 ≤ t1 < t2 and for any open set U ⊂ R2 ,

(4.3) E(B, µ, U ∩ (U(t2) \ U(t1))) ≥
∑

B∈B(t2)
B⊂U

|µ(B)| log
1 + t2
1 + t1

;

(5) Rad(B(t)) ≤ (1 + t)Rad(B).

We are now in a position to prove the Γ-liminf inequality in Theorem 1.2(i).

Proof of Theorem 1.2(i). We can assume without loss of generality that

(4.4) Eε(uε) ≤ C| log ε| ,
for some constant C > 0 independent of ε . Moreover, by a standard localization argument in
Γ-convergence, we can assume that µ = z0δx0 for some z0 ∈ Z \ {0} and x0 ∈ Ω .

We divide the proof into three steps. In Step 1, using the ball construction procedure in
Proposition 4.2, we show that the sequence {µε}ε is flat-equivalent to a sequence {µε(p)}ε having
uniformly bounded total variation. In Step 2, we show how to modify the functions uε in order to
get rid of the balls containing “short” dipoles far from the limiting singularity. In such a way, we
can bound from below Eε(uε) with the energy of the modified functions ûε , up to paying a finite
error. As a consequence, it is sufficient to estimate the energy of ûε outside a uniformly bounded
family of balls having non-zero measure. This is done in Step 3, where the analysis developed in
Subsection 3.1 is used in order to get the desired lower bound.

We first construct the starting family of balls.

Step 1. For every ε > 0 we set wε := e2πıuε and we denote by w̃ε := Π(wε) its piecewise affine
interpolation. Furthermore, we set µε := µ(uε) . Let Qε denote the set of ε-squares i + εQ ⊂ Ωε
such that mini+εQ |w̃ε| ≤ 1

2 . Since by (1.4) it holds that

Eε(uε) ≥
γ1

4π2
XY(uε; Ω) ,

Proposition 4.1 and by (4.4) implies

(4.5) ]Qε ≤ C| log ε| and |µε|(Ω) ≤ C| log ε| .
In view of (4.5), there exists a family Bε of open balls covering

Qε :=
{
x ∈ Ω : dist

(
x,

⋃
i+εQ∈Qε

(i+ εQ)
)
≤
√

2ε
}

such that

(4.6) Rad(Bε) ≤ Cε| log ε| .
We set Uε :=

⋃
B∈Bε B .
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Let Ω′ ⊂⊂ Ω be such that x0 ∈ Ω′ . By (4.4) and by (1.4), for ε > 0 small enough we have

(4.7)
C| log ε| ≥ Eε(uε) ≥ C

∫
Ω′\Uε

|∇w̃ε|2dx ≥ C
∫

Ω′\Uε

∣∣∣∇ w̃ε
|w̃ε|

∣∣∣2dx

≥C E(Bε, µε,Ω′) ,

where the set-function E is defined in (4.1)-(4.2).
For every ε > 0, let Bε(t) be a time-parametrized family of balls introduced as in Proposition

4.2, starting from Bε =: Bε(0) . For every t ≥ 0, we set Rε(t) := Rad(Bε(t)) , Cε(t) := {B ∈
Bε(t) : B ⊂ Ω′} and Uε(t) :=

⋃
B∈Bε(t)B . Moreover, for any 0 < p < 1 we set

tε(p) :=
1

R1−p
ε (0)

− 1 and µε(p) :=
∑

B∈Cε(tε(p))

µε(B)δxB ,

where xB denotes the center of the ball B . By (4.7), applying (4.3) with U = Ω′, t1 = 0 and
t2 = tε(p) , and using (4.6), we obtain

C| log ε| ≥ E(Bε, µε,Ω′ ∩ (Uε(tε(p)) \ Uε(0))) ≥
∑

B∈Cε(tε(p))

|µε(B)|(1− p)| logRε(0)|

= (1− p)|µε(p)|(Ω′)| logRε(0)| ≥ C(1− p)|µε(p)|(Ω′)| log ε|

for sufficiently small ε. Therefore

(4.8) |µε(p)|(Ω′) ≤ Cp,

for some constant Cp > 0 and on p (but independent of ε). By Proposition 4.2(5) and (4.6), we
have that

Rε(tε(p)) ≤ Rpε(0) ≤ Cεp| log ε|p ,
whence, by applying [2, Lemma 4.3] with ν1 = µε(p) and ν2 = µε, we deduce that

‖µε − µε(p)‖flat(Ω′) ≤ CRε(tε(p))(|µε|+ |µε(p)|)(Ω′) ≤ Cεp| log ε|1+p → 0 as ε→ 0 .

Combining this relation with (4.8) and the fact that µε
flat→ µ yields

µε(p)
∗
⇀ µ = z0δx0 , for every 0 < p < 1 .

Step 2. Let c > 1 be such that log c < p
2
| logRε(0)|
|µε|(Ω′)+1 . Note that, since | logRε(0)| ≥ C| log ε| and

|µε|(Ω′) ≤ C| log ε|, we are allowed to take the constant c in the previous inequality independent
of ε . Notice moreover that by the very construction of Bε(t) and by (1.7) we have that for every
t > 0

µε(B) = deg(w̃ε, ∂B) = deg
( w̃ε
|w̃ε|

, ∂B
)

for every B ∈ Bε(t) .

By [2, Lemma 5.3] applied with Ω = Ω′ , p1 = p and p2 = p
2 , we have that there exist tε(p) ≤ t̂1ε <

t̂2ε ≤ tε(
p
2 ) with (1 + t̂2ε) = c(1 + t̂1ε) such that ]Bε(t) = ]Bε(t̂1ε) for every t ∈ [t̂1ε, t̂

2
ε) and

(4.9)

∫
Ω′∩(U(t̂2ε)\U(t̂1ε))

∣∣∣∇ w̃ε
|w̃ε|

∣∣∣2dx ≤
log c

∫
Ω′\Uε

∣∣∣∇ w̃ε
|w̃ε|

∣∣∣2dx

p
2 | logRε(0)| − log c(|µε|(Ω′) + 1)

≤ C log c Eε(uε; Ω)
p
2 (| log ε| − log | log ε|+ C)− log c (C| log ε|+ 1)

≤ C ,

where the second inequality follows from (4.6) and (4.5) whereas the last inequality is a consequence
of (4.4). We classify the balls in Cε(t̂1ε) into two subclasses, namely

C=0
ε (t̂1ε) :=

{
B ∈ Cε(t̂1ε) : µε(B) = 0

}
,

C 6=0
ε (t̂1ε) :=

{
B ∈ Cε(t̂1ε) : µε(B) 6= 0

}
.
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We first consider the balls in C=0
ε (t̂1ε) . For every ball B ∈ C=0

ε (t̂1ε) we denote by B̂ the only ball in

C=0
ε (t̂2ε) containing B . Note that the center xB of B is the same as the center of B̂ . By (4.9), we

have that

(4.10)
∑

B∈C=0
ε (t̂1ε)

∫
B̂\B

∣∣∣∇ w̃ε
|w̃ε|

∣∣∣2dx ≤ C .

Now we construct a function ûε ∈ Dε(Ω) such that suppµ(ûε) ⊂
⋃
B∈C 6=0

ε (t̂1ε)
B and

(4.11) Eε(uε) ≥ Eε(ûε)− Cp ,
for some constant Cp independent of ε .

To this purpose, we considerB = BR(ξ) and B̂ = BcR(ξ) two balls as above. Since µε(BcR(ξ)) =
µε(BR(ξ)) = 0 , there exists vε : (AR,cR(ξ))∩εZ2 → R such that dvε(i, j) = duε(i, j)−P(duε(i, j))
for every (i, j) ∈ (AR,cR(ξ))1

ε . We let v̄ε denote the average of Π(vε) on AR,cR(ξ). Let σ : [R, cR]→
R be the cut-off function defined by σ(ρ) = ρ−R

R(c−1) . We define the function ûB̂ε : BcR(ξ)∩εZ2 → R
as

ûB̂ε (i) :=

{
σ(|i− ξ|)vε(i) + (1− σ(|i− ξ|))v̄ε if i ∈ AR,cR(ξ) ∩ εZ2,
v̄ε if i ∈ BR(ξ) ∩ εZ2 .

By the Poincaré-Wirtinger inequality, using the fundamental theorem of calculus and (4.10), we

have that there exists a constant Ĉ (independent of ε) such that

Eε(ûB̂ε ;BcR(ξ)) ≤γ2Gε(σ(| · −ξ|)(vε − v̄ε);BcR(ξ))

≤ 4

R2(c− 1)2

∫
AR−

√
2ε,cR(ξ)

∣∣Π(vε)(x)− v̄ε
∣∣2 dx+ 2

∫
AR,cR(ξ)

|∇Π(vε)|2 dx

+
4

R2(c− 1)2

∑
i∈(AR−

√
2ε,cR)2

ε

∫
i+εQ

|vε(i)−Π(vε)(x)|2 dx

≤C
∫
AR,cR(ξ)

|∇Π(vε)|2 dx ≤ Ĉ
∫
AR,cR(ξ)

∣∣∣∇ w̃ε
|w̃ε|

∣∣∣2dx ≤ Cp .

Therefore, setting

ûε(i) :=

{
ûB̂ε (i) if i ∈ B̂ ∩ εZ2 for some B̂ ∈ C=0

ε (t̂2ε)
uε(i) elsewhere in Ω0

ε ,

we have that (4.11) holds true.

Step 3. We now focus on the balls in C 6=0
ε (t̂1ε) . In view of (4.8), we have that ]C 6=0

ε (t̂1ε) ≤ Cp.

Therefore, up to extracting a subsequence we may assume that ]C 6=0
ε (t̂1ε) = L for every ε > 0

and for some L ∈ N . For every l = 1, . . . , L, let xlε be the center of the l-th ball Blε in C 6=0
ε (t̂1ε) .

Up to a further subsequence, we can assume that the points xlε converge to some points in the

finite set {ξ0 = x0, ξ1, . . . , ξL
′} ⊂ Ω̄, where L′ ≤ L . Let ρ > 0 be such that B2ρ(x

0) ⊂⊂ Ω′ and
B2ρ(ξ

j) ∩ B2ρ(ξ
k) = ∅ for all j 6= k . Then xlε ∈ Bρ(ξj) for some j = 1, . . . , L′ and for ε small

enough. We set

µ̃ε :=
∑

xlε∈Bρ(x0)

µε(B
l
ε)δxlε .

By construction, we have that

(4.12) |µ̃ε|(Ω′) ≤ |µε(p)|(Ω′) and ‖µ̃ε − µε(p)‖flat(Ω′) → 0 ,

which, in view of the properties of µε(p), implies that, up to a subsequence, µ̃ε
∗
⇀ µ = z0δx0 .

Therefore, for sufficiently small ε,

(4.13) µ̃ε(B2ρ(x
0)) =

∑
xlε∈Bρ(x0)

µε(B
l
ε) = z0 .

By (4.11) we thus have

(4.14) Eε(uε) ≥ Eε(ûε;B2ρ(x
0))− Cp .
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It remains to prove the lower bound for the right-hand side of (4.14) . To this end, we take

0 < p′ < p such that Rε(t̂1ε) ≤ εp
′
, choose 0 < p̄ < p′ and let gε : [p̄, p′] → {1, . . . , L} denote the

function which associates to any q ∈ [p̄, p′] the number gε(q) of connected components of the set⋃L
l=1Bεq (x

l
ε) . For every ε > 0 , the function gε is monotonically non decreasing so that it can

have at most L̂ ≤ L discontinuities. Let qjε, for j = 1, . . . , L̂, denote the discontinuity points of gε
and assume that

p̄ ≤ q1
ε < . . . < qL̂ε ≤ p′ .

There exists a finite set 4 = {q1, q2, . . . , qL̃} with qi < qi+1 and L̃ ≤ L̂ such that, up to a

subsequence, {qjε}ε converge to some point in 4 , as ε → 0 for every j = 1, . . . , L̂ . Without

loss of generality we may assume that q1 = p̄ , and that qL̃ = p′ . Let λ > 0 be such that
4λ < min{qi+1 − qi : i ∈ {1, 2, . . . , L̃}} and let ε be so small that for every j = 1, . . . , L̂ ,
|qjε − qi| < λ for some qi ∈ 4. Then the function gε is constant in the interval [qi + λ, qi+1 − λ] ,

its value being denoted by M i
ε. For every i = 1, . . . , L̃ − 1 we construct a family of M i

ε ≤ L̃ − 1
annuli that we let Ci,mε := Bεqi+λ(ymε ) \Bεqi+1−λ(ymε ) with ymε ∈ Bρ(x0) and m = 1, . . . ,M i

ε. The

annuli Ci,mε can be taken pairwise disjoint for all i and m and such that

⋃
xlε∈Bρ(x0)

Blε ⊂
Mi
ε⋃

m=1

Bεqi+1−λ(ymε )

for all i = 1, . . . , L̃ − 1 . Note that, for ε small enough, Ci,mε ⊂ B2ρ(x
0) for all i and m . By

(4.12) we have that |µε(Bεqi+1−λ(ymε ))| ≤ C for every i = 1, . . . , L̃ − 1 and m = 1, . . . ,M i
ε .

Therefore, up to passing to a further subsequence, we can assume that M i
ε = M i and that

µε(Bεqi+1−λ(ymε )) = zi,m ∈ Z\{0} , with M i and zi,m independent of ε . Finally, in view of (4.13),
we have that

(4.15)

Mi∑
m=1

zi,m = z0 .

We can apply Proposition 3.3 (see also Remark 3.7) with s1 = qi + λ < qi+1 − λ = s2 to get that
for every i and m there exists a modulus of continuity ω such that

1

| log ε|
Eε(ûε;Ci,mε ) ≥ 1

2π
(qi+1 − qi − 2λ)

√
detAhom|zi,m|2 − r(ε) ,

for some function r with limε→0 r(ε) = 0 . Summing the previous inequality over m and i and
using (4.14) yields

(4.16)

1

| log ε|
Eε(ûε; (B2ρ(x

0))

≥ 1

2π

L̃−1∑
i=1

Mi∑
m=1

(qi+1 − qi − 2λ)
√

detAhom|zi,m| − r(ε)

≥ 1

2π

L̃−1∑
i=1

(qi+1 − qi − 2λ)
√

detAhom|z0| − r(ε)

=
1

2π
(p′ − p̄− 2(L̃− 1)λ)

√
detAhom|z0| − r(ε) ,

where the second inequality follows from (4.15) and by the fact that zi,m ∈ Z \ {0}. Then, the
claim follows by (4.14) and (4.16) taking the limits as ε→ 0 , λ→ 0 , p̄→ 0 , and p, p′ → 1 . �

5. Proof of the Γ-limsup inequality

In this section we prove Theorem 1.2(ii).
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Proof of Theorem 1.2(ii). By standard density arguments, it is enough to prove the claim for

µ =
∑K
k=1 z

kδxk ∈ X(Ω) with |zk| = 1 for every k = 1, . . . ,K . We construct a family of functions

{uε}ε with uε ∈ Dε(Ω) such that µ(uε)
∗
⇀ µ as ε → 0 and (1.8) holds true. To this purpose, we

take ρ > 0 such that B2ρ(x
k) ⊂ Ω for every k = 1, . . . ,K, and B2ρ(x

m) ∩B2ρ(x
n) = ∅ for every

m,n = 1, . . . ,K with m 6= n . Let {(x1
ε, . . . , x

K
ε )}ε be such that xkε = ik + ε

2 (e1 + e2) for some

ik ∈ Ω2
ε and |xkε − xk| ≤ ε for every k = 1, . . . ,K . Moreover, let 0 < s < 1 .

For every k = 1, . . . ,K , let {ukε,s}ε be the sequence in Remark 3.7 for ξε = xkε . Let furthermore

σ : [ρ, 2ρ]→ [0, 1] be the function defined by σ(r) := 1
ρ (r − ρ) and set Θε(·) :=

∑K
k=1 z

kθAhom
(· −

xkε) . We define the function uε,s ∈ Dε(Ω) as

uε,s(i) =


zkθAhom

(i− xkε) if i ∈ Bεs(xkε) ∩ εZ2 for some k ,

ukε,s(i) if i ∈ (Aεs,ρ(x
k
ε))0

ε for some k ,

(1− σ(|i− xkε |))zkθAhom
(i− xkε) + σ(|i− xkε |)Θε(i) if i ∈ Aρ,2ρ(xkε) ∩ εZ2 for some k ,

Θε(i) elsewhere in Ω0
ε.

By construction (see (3.30)),
∑K
k=1 ‖µ(uε,s) (Aεs,ρ(x

k
ε))‖flat ≤ Cε| log ε| for some universal con-

stant C > 0 , µ(uε,s) Ω \
⋃K
k=1Bρ(x

k
ε) = 0 and µ(uε,s)(Bεs(x

k
ε)) = zk , and hence µ(uε,s)

flat→ µ
as ε → 0 for every 0 < s < 1 . Note that, since for every x ∈ R2 \ {0} , z ∈ Z \ {0} and for every
l = 1, 2 ∣∣∣∣∣∇

(∣∣∣ ∂
∂xl

zθAhom

∣∣∣2)(x)

∣∣∣∣∣ ≤ Cz
|x|3

,

then, using (1.2), for every k = 1, . . . ,K we get

(5.1)
Eε(zkθAhom

(· − xkε));B2εs(x
k
ε)) ≤C + C

∫
Aε,2εs (xkε )

1

|x− xkε |2
dx+ Cε

∫
Aε,2εs (xkε )

1

|x− xkε |3
dx

≤C(1− s)| log ε| .

Moreover, by (1.2) and (1.3), for every k = 1, . . . ,K there exists a constant C = C(γ2, ρ,Ω, {zk}k) >
0 such that, for ε small enough,

(5.2) Eε(Θε; Ω \
K⋃
k=1

Bρ(x
k
ε)) ≤ C ,

and

(5.3) Eε
(
(1− σ(| · −xkε |))zkθAhom

(· − xkε) + σ(| · −xkε |)Θε(·);A ρ
2 ,2ρ

(xkε)
)
≤ C .

By (3.31), (5.1), (5.2) and (5.3), we thus get

(5.4)
1

| log ε|
Eε(uε,s) ≤ sK

1

2π

√
detAhom + C(1− s)K + r(ε) .

Suitably choosing sε → 1 as ε→ 0, we have that the functions uε = uε,sε satisfy (1.8).
�
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