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ABSTRACT The design and optimization of coils for Inductive Power Transfer (IPT) systems is an iterative
process conducted in Finite Element (FE) tools that takes a lot of time and computational resources. In order
to overcome such limitations in the design process, new empirical equations for the evaluation of the self-
inductance and mutual inductance values are proposed in this work. By means of a multi-objective genetic
programming algorithm, the self-inductance, the mutual inductance and the coupling factor values obtained
from FE simulations of IPT link are accounted by analytical equations, based on the geometric parameters
defining the IPT link. The behavioral modeling results are compared with both FE-based and experimental
results, showing a good accuracy.

INDEX TERMS Behavioral modeling, finite element analysis, finite element modeling, inductive power
transfer, magnetic components, optimization process, wireless power transfer.

I. INTRODUCTION
The design of an Inductive Power Transfer (IPT) link involves
system-level specifications that must be matched with a
proper choice of architectures and components [1]. System-
level requirements usually involve power, voltage and current
ratings, switching frequency and source type [2]. In addi-
tion, the chosen architecture has an impact in the resonance
method [3], [4]. All these requirements must be taken into
account in optimizing the system’s components, such as the
magnetic link (coupled coils). The IPT coil design, however,
is subjected to additional constraints, and can be considered
as one of the most critical aspects of an IPT system, as it con-
tributes to several performance benchmarks such asminimum
efficiency requirement (also under misalignment conditions),
safety issue related to leakage magnetic field mitigation, cost,
volume and weight [5].
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FIGURE 1. Quasi-static equivalent circuit model of the inductive link of
an IPT system.

In the quasi-static approximation, the magnetic link can
be modeled as a coupled inductor with losses, represented as
the two-port element depicted in Fig. 1, where LP and LS are
the self-inductances at the primary (transmitting side) and the
secondary (receiving side), M is the coil mutual inductance,
RP and RS are the respective coil resistances, and k is the
coupling factor, defined as:

k =
M
√
LPLS

(1)

The key-performance indicators at system level are strictly
related to these parameters. For instance, once the resonant
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FIGURE 2. (a) A single square-shaped coil and (b) a pair coil with
shielding plates.

the so-called ‘‘behavioral models’’. These models are iden-
tified once for all by using a multi-objective Genetic Pro-
gramming Algorithm (GPA) and a limited set of FEM-based
numerical solutions. This approach provides a solution to all
the above issues, by lowering the computational cost, adding
qualitative information to the design solutions, and providing
a modeling tool that can be easily generalized to a given class
of IPT coils.

The class of magnetic links analyzed in this paper is pre-
sented in Section II, where major details on the investigated
problem are given. Section III is devoted to the derivation of
the behavioral models for the inductances of the given class of
IPT coils, and to their validation against numerical solutions.
These models are successfully validated against experimen-
tal measurements, as shown in Section IV. Conclusions are
drawn in Section V.

II. PROBLEM STATEMENT
The objective of this paper is to derive analytical relations
between the self and mutual inductances of IPT coupled coils
and their geometrical parameters. Themagnetic link of an IPT
systems is a complicated 3D structure, also known as ‘‘pad’’,
consisting of a pair of coupled coils, a magnetic core made of
ferrites, and a conducting shielding.

In this paper, the proposed methodology will be applied
to a quite general class of pads, reported in Fig. 2(a),
made of two identical square-shaped coils with copper wind-
ings (magenta) and ferrite core plates (grey). Fig. 2(b)
shows the two identical coils put at a given vertical distance
(air gap), with the shielding herein assumed at a distance of
10 mm from each coil. This gap value between the ferrite
layer and the aluminum shielding is in line with the typical
mechanical dimensions adopted in design standards [12].

method has been chosen, the losses optimization identifies the 
required values of inductance and coupling factor. Similarly, 
L and k have a direct impact on capacitances, switching 
frequency, and other quantities like the current gain. An opti-
mal design of the IPT link should therefore consider the 
targeted values of L and k, as well as the additional physical 
and geometrical constraints (e.g., weight, maximum footprint 
allowed, etc.). The optimization must be carried out with 
reference to several design variables (degrees of freedom) 
that are available when designing a real IPT link, such as: 
coil shapes, vertical distance (air gap), type of wires, number 
of turns, shapes and physical characteristics of the magnetic 
core (ferrites) and conducting shield, and so on. Therefore, 
if the design can rely on analytical expressions of L and k 
as functions of the above design variables, then a one-step 
optimization procedure may be set up. Indeed, by inverting 
the above relations, a reverse-engineering procedure can be 
implemented to synthesize into one step the optimal coil 
design for the target performance.

Unfortunately, analytical expressions for the inductances 
are available only for very simple cases, which are far from 
real-world applications, as it is the case of regularly-shaped 
coils in air with neither core nor shielding [6]. In all practical 
applications, the inductances and resistances are extracted 
from full-numerical 3D models of the magneto-quasi static 
problem, typically based on Finite Element Method (FEM) or 
Boundary Element Method (BEM). The numerical model of 
the IPT link is therefore the tool commonly used to investigate 
the impact of each design variable on the key parameters [7]. 
For instance, a FEM model has been used in [8] to optimize 
the ferrite arrangements and determine the coil turn number 
for multi-turn spiral coils, whereas in [9] and [10] FEM 
simulations have been carried out to check the influence of 
the misalignment of the coils on their nominal position.
A design approach fully based on numerical models has 

some drawbacks. First of all, the computational cost may 
become unaffordable, although the cost of the single FEM 
simulation can be reduced to few minutes by using suitable 
simplifications (as for instance the equivalent layer for the 
litz-wire [10]). Indeed, in a one-step design the number of 
configurations to be simulated becomes huge, since the opti-
mization must be performed over a set of possible design 
variables, each of which assumes several values in a certain 
given range. A second drawback is the lack of any qualitative 
information on the solution that makes hard to understand and 
foresee the dependence of the output (L and k) on the single 
design choice. A final drawback is the applicability of the 
results, which are strictly valid only for the given IPT system. 
For the above reasons, the design of the coils of an IPT link 
is purely iterative, and from an initial reasonable ‘‘guess’’ 
geometry, it is possible to vary all the geometric aspects to 
obtain the desired features.

An alternative design methodology is investigated in 
this paper. Our goal is to analytically relate the coil induc-
tances to the design variables of real IPT links, by means of



We eventually realized a 0.2 millimeter distance between
conductors and ferrite plates, resulting in an almost negli-
gible gap between ferrite and winding layers, and a conse-
quent minor effect on self-inductance and mutual inductance
values. It is worth highlighting that the behavioral models
presented in this paper are valid for square-shaped coils, like
those ones shown in Fig. 2. Nevertheless, the findings of the
proposed behavioral modeling procedure are general and can
be applied to discover new behavioral models for pads with
different core geometries and windings distribution, given the
relevant FEM-based numerical data.

Given the geometry, the optimal design of this coil pair can
be achieved by working on the following 5 quantities (design
variables):
– IntC , the lateral dimension of the inner hole in the core
plate;

– XC , the external lateral dimension of the core plate;
– IntW , the internal lateral dimension of the winding;
– XW , the external lateral dimension of the winding;
– lg, the coil pair air gap.

Thus, the ultimate goal of this paper is to derive the analytical
expressions that relate the self-inductance L and the mutual
inductanceM to the design variables IntC , XC , IntW , XW , lg.
As detailed in the next Section, the procedure to iden-

tify such analytical expressions requires as input the values
assumed by L and M in a given set of configurations of the
above design variables (the ‘‘training’’ set). The validation
will then require an additional set of data (the ‘‘validation’’
set). These sets of data are here provided by the numerical
solution of the electromagnetic equations in the Magneto-
Quasi-Static (MQS) limit, by using a full 3D numerical
model. Such a model has been implemented by means of
the commercial code Ansys Maxwell [13], based on a dif-
ferential formulation. An adaptive meshing has been adopted
for simulations, and a mesh assessment has been carried out,
leading to the mesh of 41613 elements, with which it has
been possible to achieve discretization errors lower than 3%.
The only simplification introduced with respect to the real
pad is the assumption that the coil windings can be modeled
as equivalent copper layers, where a uniform current density
flows. Indeed, in real pads the coils are made of the so-called
Litz wires, which are suitably designed based on the operating
frequency, to avoid the skin effect and to reduce the proximity
effect in the winding caused by the external magnetic field.
This assumption has no effect on the evaluation of the self and
mutual inductance, since it only affects the AC resistance, but
provides a great benefit in lowering the computational cost of
the numerical simulation.

As first preliminary step, the test conditions to be simulated
by the 3D-FEM numerical solver have been selected. Given
the geometry highlighted in Fig. 2, each coil pair set-up
has to fulfil the following dimensional constraints: IntC ≤
IntW ≤ XW ≤ XC . Accordingly, we define the ranges of
possible geometrical dimensions for each parameter, as listed
in Table 1. Such values are typical for electric vehicle IPT

TABLE 1. Reference dataset of coil geometrical dimensions.

coils. For each value of lg, we have 2125 possible conditions
ensuring that IntC ≤ IntW ≤ XW ≤ XC . However, the
number of conditions for each IntC is not fixed: the greater
this value is, the greater the values of IntW ,XW and XC are,
thus reducing the number of possible conditions for each
IntC . To limit our analysis to only feasible coil designs,
geometrical conditions satisfying ‘‘practical’’ constraints on
the coil dimensions have been introduced. These conditions
are summarized by constraints (2):

IntC ≥ 0.6IntW (2.a)

XC ≤ 1.4XW (2.b)

XW ≥ 1.2 IntW (2.c)

The constraint (2.a) means that the lateral dimension of the
aperture in the ferrite plate should not be too small in compar-
ison to the internal lateral dimension of the winding. In fact,
it is desirable to reduce the quantity of ferrite (thus the coils
weight and cost) in the plate central region, wherein its pres-
ence is almost irrelevant on the self-inductance and coupling
coefficient values [10]. The constraint (2.b) means that the
ferrite plate width should not exceed too much the winding
width. Lastly, the condition in (2.c) implies that the external
lateral dimension of the winding should be sufficiently larger
than the internal one, in order to avoid too thin windings and
consequently higher losses. Applying constraints (2) to the
previous parameter ranges of Table 1 leads to a significant
reduction of the feasible test conditions: for each value of
lg, we eventually have 615 possible conditions that verify
constraints (2). All these test conditions have been simulated
by using Ansys Maxwell solver. The simulation time for a
single run was about 1-3 minutes, on Intel Core i7-8700
CPU@3.20GHz, and 24.0 GB of RAM. The numerical FEM
solver calculates the self and mutual inductance values over
the given set of coils geometrical dimensions, and provides
data sets to the GPA to generate analytical expressions of the
inductance values, as a function of the geometrical parame-
ters IntC , XC , IntW , XW , lg.
It is worth noting that we calculate the inductance values

only under alignment conditions of the IPT coils. In fact, the
pads of Fig. 2 are intended for static IPT system. However,
the proposed modeling approach is fully general and can
be also implemented to search analytical expressions of the
inductance values as a function of misalignment parameters.
For instance, this approach is adopted in [14], where the
mutual inductance value of a coil pair for an automotive



IPT system is derived as a function of the axial and lateral
misalignments of the coils, and parametrized with respect to
their reciprocal rotation angle. Therefore, in this paper we
will only focus on analytical expressions that relate the self-
inductance L and the mutual inductance M to geometrical
design variables under perfect alignment conditions of the
IPT coils.

III. SELF-INDUCTANCE AND MUTUAL INDUCTANCE
BEHAVIORAL MODELING
In the design of an IPT system, the initial structure of the coil
is mainly designed thanks to the intuition of experienced IPT
designers [15]. After the initial design, an enhanced detailed
design is normally realized through additional trials dedicated
to simulations and experiments. This is the result of lack of
formulas for the theoretical design of windings and ferrite
core arrangement. This trial-and-improve approach is not
just time-consuming, but it also prevents the achievement
of a real optimization of the coils and of the overall IPT
system. Enhanced machine-learning algorithms have been
recently proposed in the literature, to support the optimal
and innovative design of new coil pair structures [15], [16].
Unfortunately, these approaches do not provide analytical for-
mulas that can enable coils characterization and optimization.
Conversely, the availability of behavioral analytical models
for the design of IPT links can be extremely helpful in the pre-
design analysis and simulation phases of wireless charging
systems.

The behavioral modeling approach has been recently
demonstrated to be extremely helpful in both static and
dynamic IPT system-level simulations. In [14], a behavioral
analytical modeling of the mutual inductance of a coupled
coil pair used in a static WPT system has been proposed.
The paper also shows that it is possible to use the same
behavioral model for modeling different coil pairs with the
same shape (e.g., rectangular coils) but different dimensions
and form factors. In fact, the model only differs in the formula
coefficients, which can be tuned by means of a reduced
training data set. Therefore, for coil pairs with a similar
structure but different sizes, this kind of behavioral model-
ing can conveniently and reliably be adopted. This result is
helpful in the case of scalable systems, where the designer
can take the advantage of FEM simulations or experimental
measurements executed on a small-size coil pair. Similarly,
in [17] an analytical behavioral model for describing the
mutual inductance between coupled coils in dynamic IPT
systems is presented. The model is able to provide the vari-
ation of such a parameter assuming different trajectories of
the vehicle. By using FEM simulation relevant to reciprocal
positions between the coils, it was possible to build an analyt-
ical behavioral model able to retrieve the mutual inductance
values along all the trajectories of interest.

In this paper, we propose new behavioral models of the

distance. These models can help in the analysis of scalable
coil pairs and facilitate the final coil-pair design optimization.
We achieve these results via a computational approach com-
bining the results of an electromagnetic 3D-FEM numerical
solver and a multi-objective evolutionary algorithm [18].

A. MULTI-OBJECTIVE GENETIC PROGRAMMING
Complex electromagnetic systems are often modeled using
input-output data coming from experimental tests or
FEM-based simulation results. Neural network modeling
approach can be used for this purpose. Unfortunately,
such method hides the analytical correlation among the
parameters, the variables and the performances of the sys-
tems, and has other inherent disadvantages and limitations
(e.g., decisions about the size and topology of the networks
are needed, or a large amount of training and validation data
could be required).

In this paper, the Genetic Programming Algorithm (GPA)
is used for developing self and mutual inductance behav-
ioral models from 3D-FEM simulations. The GPA performs
symbolic regression and determines both the structure and
the coefficients of the model during its evolution. As main
advantage, no a-priori modeling assumptions are required.
The GPA has been largely used for chemical process

modeling (e.g., for reactor systems [19]), for industrial pro-
duction process (e.g., for fiber-to-yarn process [20]), and
more recently for electronics systems modeling (e.g., for
IGBTs [21], for power inductors [22] and power mod-
ules [23]). The scientific literature extensively describes
the GPA [24] and its use in multi-objective evolutionary
approach [25], [26]. Furthermore, several compiled codes,
libraries and toolboxes have been released in the last decade
(e.g., MATLAB case [27]). Accordingly, in this paper only a
brief overview of the GPA is provided, as the main interest
is not the method in itself to generate the behavioral mod-
els, but rather the use of behavioral models for design pur-
poses. Therefore, comparisons neither to other evolutionary
approaches nor to other existing tools will be performed.

The typical flowchart of the GPA is shown in [18]. The
GPA works on a population of individuals (models), each
one representing a potential solution to a problem. During its
evolution, the GPA transforms the current population of mod-
els into a new population by applying the classical genetic
operations (selection, cross-over, mutation, etc.). The GPA
models are typically represented by means of tree structures.
To construct such trees, the GPA considers a non-terminal
set of elementary functions (herein, sum, multiplication, divi-
sion, logarithm, arctangent, hyperbolic tangent, sine, expo-
nential and power function have been used) and a terminal
set composed of constant coefficients and input variables.
Complexity factors (cf) have been assigned to all the elements
included in these sets. For the elements of the terminal set
we have considered cf = 0.6 for the input variables used in
sum and multiplication operations and cf = 1 for the input
variables used in all the other operations, and for constant

self and mutual inductances for a square-shaped coil pair, 
as functions of their geometrical dimensions and reciprocal



coefficients. For the non-terminal set we have adopted
cf = 1 for sum and/or multiplication of elementary functions,
cf = 1.5 for all the other functions. Beyond these ele-
mentary complexity factors, it is convenient to quantify the
global complexity of each discovered GPA model. Thus,
an overall complexity index (Fcomplexity) can be evaluated as
follows: if a function is the argument of another function, then
the complexity factors cf of the two functions are multiplied;
if two functions are multiplied or summed, then their com-
plexity factors cf are summed and subsequently multiplied by
the complexity factor of a sum or a product.

In this paper, the multi-objective GPA is adopted to derive
the self and the mutual inductance behavioral models valid
for a square-shaped IPT coil pair. The self-inductance L and
the mutual inductance M are modeled as explicit functions
of the ‘‘variables’’ IntW , XW , XC , and are parametrized with
respect to ‘‘bias parameters’’ IntC and lg, as given in (3):

L = Lbhv
(
IntW , XW ,XC , p (IntC , lg)

)
(3.a)

M = Mbhv
(
IntW , XW ,XC , p (IntC , lg)

)
(3.b)

The bias parameters determine the numeric coefficient vector
p (IntC , lg). The distinction in ‘‘variables’’ and ‘‘bias param-
eters’’ is dictated by the need of achieving a good tradeoff
between complexity and accuracy of the behavioral models
and making the GPA computational effort affordable. Indeed,
it has been verified that it is quite difficult to get viable GPA
solutions with more than three variables. Moreover, the mea-
sures IntC and lg have been chosen as bias parameters as they
better ensure model coefficients monotonicity with respect to
other possible choices of bias parameters (see Section III.B).

As first preliminary step, we have to select the test con-
ditions to be simulated by the 3D-FEM numerical solver.
For each test condition discussed in Section II, the FEM-
based self and mutual inductance values, LFEM and MFEM ,
have been obtained and subsequently used to derive the
analytical behavioral models, Lbhv and Mbhv. The Kennard
and Stone’s algorithm [28] has been adopted to obtain a
separation of the FEM-based data into a training data set T
(used to derive the behavioral models) and a validation data
set V (used to evaluate the models generalization capability).
The training data set T consists of 960 total test conditions
(320 conditions for each lg), whereas the validation data set
V includes 885 total conditions (295 conditions for each
lg). For a detailed description of the behavioral modeling
approach, let us refer to the GPA implemented to discover
the analytical function of Lbhv. Similar considerations hold
for Mbhv. A set of m1 values of IntC,j1 has been considered,
with j1 = 1, . . . ,m1, and a set of m2 values of lg,j2 has
been analyzed, with j2 = 1, . . . ,m2, thus resulting in the
overallm = m1×m2 geometrical conditions (IntC,j, lg,j), with
j = 1, . . . ,m. For each condition, n combinations of (IntW ,i,
XW ,i, XC,i) have been considered, with i = 1, . . . , n. For
each of the resulting n× m test conditions, a data vector has
been defined, including the test values (IntW ,i, XW ,i, XC,i,
IntC,j, lg,j) and the resultant self-inductance value Lij = LFEM

(IntW ,i, XW ,i, XC,i, IntC,j, lg,j), simulated by means of Ansys
Maxwell. Herein, we have adopted m1 = 4, m2 = 3, n = 80,
resulting in the n × m = 960 total test conditions of the
training data set T. The GPA has to identify the behavioral
model Lbhv such that the value of this function – computed
for each test condition of the training data set T – is as
close as possible to the corresponding training value Lij, ∀i ∈
{1, . . . , n} and ∀j ∈ {1, . . . ,m}. The structure of the function
Lbhv must be the same for all the values of IntC,j and lgj ∀j ∈
{1, . . . ,m}, while the coefficients p are functions of IntC and
lg and can vary with them. To determine such coefficients for
each (IntC , lg) condition, a Non-Linear Least Squares (NLLS)
algorithm, based on the Levenberg-Marquardt optimization
method [29], has been applied to the respective n data vectors.
Thus, the values of the coefficients p have been determined
by minimizing the χ -squared error between the FEM-based
values Lij and the GPA-predicted values Lbhv (IntW ,i, XW ,i,
XC,i, p (IntC,j, lg,j)) ∀i ∈ {1, . . . , n}, as given in (4):

χ2
j =

1
n

n∑
i=1

{
100

Lbhv
(
IntWi,XWi,XCi,p

(
IntCj, lgj

))
−Lij

Lij

}2

(4)

Interpolating functions of p (IntC,j, lg,j) can be determined,
as discussed in next paragraph. Finally, an elitist Non-
dominated Sorting Genetic Algorithm (NSGA-II, [25]) can
be adopted to discover the Lbhv models (and similarly, the
Mbhv models) ensuring optimal trade-off between ‘‘com-
plexity’’ and ‘‘accuracy’’, selected as objective functions for
minimization in this multi-objective optimization problem.
The model complexity, namely the previously introduced
Fcomplexity index, is the result of the complexity factors of
the elementary functions adopted in the model structure.
The model accuracy index, Faccuracy, can be estimated by
means of the Root Mean Square Error (RMSE) between the
FEM-based values and the GPA-predicted values over the
whole training data set:

RMSE =

√√√√ 1
m

m∑
j=1

χ2
j (5)

B. MODELING RESULTS AND DISCUSSION
The multi-objective GPA has been executed over 50 runs,
with a population of 500 models evolving over 300 gener-
ations for each run. The simulation time for a single run was
about 1 h on an Intel Core i7-6500U processor. It is worth
claryfing that the proposed modeling approach is intended to
discover a behavioral model, namely an analytical formula.
Once the behavioral model is identified, the final user does
not need to perform additional runs of the multi-objective
GPA, because the same model formula can be adopted for
similar coil pair geometries, whereas the model coefficient
values can be tuned starting from relevant training data set.
Hence, the use of the discovered analytical formula signifi-
cantly reduces the computation times, if compared to FEM
simulations.



Each GPA model has been scored on the basis of the
following metrics:
– Nrun: the number of runs during which the algorithm has
discovered the model;

– Ngen: the average number of generations during which the
model survived in the population;

– errT ,max : the maximum value of the model percent error
over the training data set T;

– errV ,max : the maximum value of the model percent error
over the validation data set V;

– Nmon: the average number of intervals over which the
model coefficients p change their monotonicity with IntC
and lg.

The best models are the ones maximizing the first two
metrics and minimizing the last three metrics. Only the
non-dominated Pareto-optimal solutions occurring in at least
Nrun = 2 runs, with the maximum training set percent error
errT ,max lower than 11%, with Fcomplexity lower than 9 and
with regular monotonous coefficient trends (Nmon = 1) have
been considered for further comparison. Such GPA solutions
are listed in Table 2, where the models have been sorted based
on their complexity (simpler formulas in the bottom part of
the table). Table 3 provides their respective metrics values.
The solution given in bold in Tables 2-3 presents a good trade-
off among the accuracy (RMSE = 2.4%, with errT ,max =
9.8% and errV ,max = 10.4%), complexity (Fcomplexity = 6.5)
and repeatability (Nrun = 19), and has been selected as a
reference self-inductance behavioral model for the analyzed
dataset. This solution has been re-written in (6):

Lbhv = α0XC + α1XW
√
XC + IntW (α2 + α3XW + α4XC )

(6)

As further improvement of the performed modeling,
we have also tested the discoveredmodel (6) over an extended
air-gap range, including the values lg = {70, 90} mm outside
the original range used for modeling, the other test conditions
being unchanged. More precisely, the values of the model
coefficients αi (i = 0, . . . , 4) for such new air gap values
have been obtained by applying the NLLS algorithm, with the
same fitting procedure used to obtain the coefficient values
for lg = {10, 30, 50} mm. All the coefficients present quite
regular trends and can be well approximated by a third-
order polynomial function of IntC (see Eq. (7)), whose fitting
coefficients βj (j = 0, . . . , 3) change with the air gap and can
be approximated by a fourth-order polynomial function of lg
(see Eq. (8)):

αi = β0Int3C + β1Int
2
C + β2IntC + β3 (7)

βj = γ0l4g + γ1l
3
g + γ2l

2
g + γ3lg + γ4 (8)

The resulting fitting coefficients γk are listed in Table 4. All
the geometrical dimensions in the self-inductance model (6)-
(8) are expressed in mm, while Lbhv is given in µH.
For all the test conditions included in the training and

TABLE 2. Models discovered by multi-objective GPA.

TABLE 3. Metrics values for models listed in Table 2 (Nmon = 1).

TABLE 4. Coefficients of the self-inductance model (6)-(8).

self-inductance model predictions and FEM-based data are
very low and always limited in the range of about ±13%,
as depicted in Fig. 3. Let us note that the test conditions given

validation data sets for the five tested air gap values lg = 
{10, 30, 50, 70, 90} mm, the percent errors between the



FIGURE 3. Predictions of the behavioral model (6)-(8) over training and
validation data set: (top) self-inductance values obtained by FEM
simulations (red markers) and predicted by the model (6)-(8) (blue
markers); (bottom) relative percent errors.

along the x-axis have been sorted first in the ascending order
of lg, then of IntC , XW , IntW and, finally, of XC .
We have further validated the discovered self-inductance

model (6) by proving the generalization capability of the
model coefficient laws given in (7) and (8). An additional
validation data set has been introduced, assembled with the
following values: lg = {20, 40, 60, 80} mm and IntC =
{110, 160, 210} mm, different from the original values lg =
{10, 30, 50, 70, 90} mm and IntC = {85, 135, 185, 235}
mm used to generate the model coefficients. The values
of the remaining parameters {IntW , XW , XC} remain the
ones comprised in the ranges of Table 1 and satisfying
the feasibility constraints (2). For all the considered valida-
tion test conditions, the percent errors of the model (6)-(8)
are very low, with the maximum percent error of 12.2%,
as depicted in Fig. 4. This result confirms the fact that
the proposed behavioral model generalizes well the coef-
ficient trends with respect to both lg and IntC . Hence, the
discovered model (6)-(8) can be reliably applied to evalu-
ate the self-inductance of the square-shaped coils over the
entire range of lg = [10, 90] mm and IntC = [85, 235] mm,
while the ranges of the other parameters (IntW , XW , XC ) can
be easily evaluated by means of the introduced feasibility
constraints (2).

Similarly, the GPA has been set up to discover the analyt-
ical function of Mbhv. The same set of m geometrical condi-
tions (IntC,j, lg,j), with j = 1, . . . ,m, has been considered.
For each condition, n combinations of (IntW ,i, XW ,i, XC,i)
have been used, with i = 1, . . . , n. For each of the resulting
n×m test conditions, a data vector has been defined, including

FIGURE 4. Predictions of the behavioral model (6)-(8) over additional
validation data set: (top) self-inductance values obtained by FEM
simulations (red markers) and predicted by the model (6)-(8) (blue
markers); (bottom) relative percent errors.

the test values (IntW ,i, XW ,i, XC,i, IntC,j, lg,j) and the mutual
inductance values Mij = MFEM (IntW ,i, XW ,i, XC,i, IntC,j,
lg,j), simulated by means of Ansys Maxwell. The GPA has to
identify the behavioral modelMbhv such that the value of this
function – computed for each test condition of the training
data set T – is as close as possible to the corresponding
training value Mij, ∀i ∈ {1, . . . , n} and ∀j ∈ {1, . . . ,m}.
According to previous metrics, the solution for the mutual
inductance behavioral model is given in (9):

Mbhv = ρ0XC + ρ1XW + ρ2IntW

+X2
C

[
ρ3 + ρ4 (IntWXW )−1

]
(9)

where the interpolating functions (10)-(11) have been used to
define the model coefficients as functions of IntC and lg:

ρi = λ0Int3C + λ1Int
2
C + λ2IntC + λ3 (10)

λj = δ0l4g + δ1l
3
g + δ2l

2
g + δ3lg + δ4 (11)

for i = 0, . . . , 4 and j = 0, . . . , 3. The resulting fitting coeffi-
cients δk are listed in Table 5. All the geometrical dimensions
in the mutual inductance model (9)-(11) are expressed in mm,
while Mbhv is given in µH.
Fig. 5 compares the predictions of the mutual inductance

model (9)-(11) with the FEM-based data, for all the test
conditions included in the training and validation data sets for
the five tested air-gap values lg = {10, 30, 50, 70, 90} mm.
The percent errors are quite low and limited in the range of
about±13%. Eventually, Fig. 6 shows the mutual inductance
fittings and percent errors with respect to the FEM-based data



FIGURE 5. Predictions of the behavioral model (9)-(11) over training and
validation data set: (top) mutual inductance values obtained by FEM
simulations (red markers) and predicted by the model (9)-(11) (blue
markers); (bottom) relative percent errors.

TABLE 5. Coefficients of the mutual inductance model (9)-(11).

FIGURE 6. Predictions of the behavioral model (9)-(11) over additional
validation data set: (top) mutual inductance values obtained by FEM
simulations (red markers) and predicted by the model (9)-(11) (blue
markers); (bottom) relative percent errors.

FIGURE 7. The magnetic core built to validate the behavioral modeling
formulas: (a) C1 and (b) C2.

IV. EXPERIMENTAL VALIDATION
In this Section, the experimental validation of the discov-
ered behavioral modeling formulas is presented. IPT link
prototypes, each one composed of two identical coils, are
built for validation, by combining two magnetic ferrite cores
and four winding arrangements. The magnetic tile ferrite-
links employed for the magnetic core are made of the 3C95
material from Ferroxcube [30]. The two cores C1 and C2
depicted in Fig. 7 are realized as follows.

C1. The core shown in Fig. 7(a) is composed of 8 tiles
of 100 mm × 100 mm × 5 mm, and the param-
eters of reference are XC = 300 mm and
IntC = 100 mm.

C2. The core shown in Fig. 7(b) is composed of 12 tiles
of 50 mm × 50 mm × 5 mm, and the parameters of
reference are XC = 200 mm and IntC = 100 mm.

The windings are realized by Litz-wire from Masfarne [31].
The four proposed windings W1, W2, W3 and W4 depicted
in Fig. 8 are realized as follows.

over the additional validation data set described previously 
(including the test conditions for lg = {20, 40, 60, 80} mm 
and IntC = {110, 160, 210} mm). Limited prediction errors 
(within ±15%) prove a good generalization capability of the 
mutual inductance behavioral model (9)-(11).



FIGURE 8. The windings arranged to validate the behavioral modeling
formulas: (a) W1, (b) W2, (c) W3 and (d) W4.

W1. The winding shown in Fig. 8(a) has 3 turns in series,
and the parameters of reference are XW = 180 mm
and IntW = 140 mm. The litz-wire employed is
3000 strands and 0.07 mm diameter.

W2. The winding shown in Fig. 8(b) has 5 turns in series,
and the parameters of reference are XW = 190 mm
and IntW = 135 mm. The litz-wire employed is
3000 strands and 0.07 mm diameter.

W3. The winding shown in Fig. 8(c) has 10 turns in series,
and the parameters of reference are XW = 275 mm
and IntW = 165 mm. The litz-wire employed is
3000 strands and 0.07 mm diameter.

W4. This winding shown in Fig. 8(d) has 10 turns in series,
and the main parameters of reference are XW =

290 mm and IntW = 210 mm. The litz-wire employed
is 1000 strands and 0.2 mm diameter.

The following IPT link prototypes have been considered:
C1-W1, C1-W2, C1-W3, C1-W4, C2-W1, and C2-W2,
where the air gap between primary and secondary has been
varied according to the following values: 10 mm, 30 mm,
50 mm, and 80 mm. Given the geometries, it was impos-
sible to have the combinations C2-W3 and C2-W4 (being
XC < XW ).

As first preliminary validation, we proved the accuracy of
the FEM-based data obtained for the built IPT link prototypes
against the experimental measurements of the resultant self-
inductance and mutual inductance values. Experimental mea-
surements have been performed by using the Keysight
E4990A impedance analyzer. The methodology to obtain
the experimental measurement is as follows: the primary-
side self-inductance LP has been obtained by measuring the
input impedance at the primary terminals with the secondary
coil in open circuit, as shown in Fig. 9(a). Similarly, the
secondary-side self-inductance LS has been measured. The
mutual inductance and coupling factor measurements are

FIGURE 9. Experimental measuring setup to obtain (a) the
self-inductance and (b) the coupling factor measurement of an IPT link.

obtained by connecting one terminal of primary-side and one
terminal of the secondary-side to the impedance analyzer,
then measuring the input impedance when the other two
terminals are connected together, as shown in Fig 9(b). Thus,
we can measure the total equivalent inductance as:

LK = LP(1− k)+ LS (1− k) (12)

Then, from the previous measurements, we can obtain the
coupling factor as given in (13):

k = 1−
LK

LP + LS
(13)

Finally, the mutual inductance M can be expressed as a
function of k , LP and LS , as given in (1).
Measurements, FEM simulations and the results obtained

from the behavioral models given in (6) and (9) are compared
in Fig. 10 to Fig. 15. On the x-axis, the details of the prototype
and tested air gap are provided. The descriptor ‘‘lgx’’, with
x = [1; 3; 5; 8], represents the air-gap length: lg1 = 10 mm,
lg3= 30 mm, lg5= 50 mm, lg8= 80 mm. On the y-axis, one
can visualize the self-inductance, the mutual-inductance and
the coupling factor of the IPT link.

At first, the accuracy of the FEM data is experimen-
tally verified. Fig. 10, Fig. 11, and Fig. 12 show the com-
parison between the FEM-based simulation results and the
experimental measurements for the self-inductance, mutual-
inductance and coupling factor values and the resulting
percent errors. For all the cases, the percent error is always
included in ±30% range (for most cases, strictly included
within ±15%). From Fig. 10 one can notice that the worst
cases occur when the IPT coils are in the closest position.
This is due to the sensitivity of this coefficient to the air
gap distance when it is quite small with respect to the IPT
coil area. The sharp change from 10 mm to 30 mm can



FIGURE 10. Comparison of experimental measurements versus FEM
simulation results of the self-inductance.

FIGURE 11. Comparison of experimental measurements versus FEM
simulation results of the mutual inductance.

FIGURE 13. Comparison of behavioral model results versus FEM
simulation results of the self-inductance.

FIGURE 14. Comparison of behavioral model results versus FEM
simulation results of the mutual inductance.

FIGURE 15. Comparison of behavioral model results versus FEM
simulation results of the coupling factor.

within ±15% (only two cases at the largest distance present
errors around 20%, which still remain acceptable in IPT coils
design context). Overall, the accuracy of the FEM-based data

FIGURE 12. Comparison of experimental measurements versus FEM 
simulation results of the coupling factor.

be seen in the inductance value. Similar considerations are 
valid for the mutual inductance values compared in Fig. 11.
Finally, from Fig. 12 one can notice that most of the cases are



obtained for the built IPT link prototypes is proved against
experimental measurements.

Finally, the predictions of self-inductance, mutual induc-
tance and coupling factor values have been compared to
the FEM-based data, as shown in Fig. 13, Fig. 14, and
Fig. 15 with the resulting percent errors. From this com-
parison, we can see that for all the case studies the self-
inductance, mutual inductance and coupling factor errors
are within ±15%, and for the majority of cases strictly
included within ±10% (in agreement with the percent errors
evaluated in Section III), thus corroborating the good accu-
racy of the behavioral models and the valued chance of
using these formulas to design IPT links without using FEM
simulations.

V. CONCLUSION
The adoption of behavioral models for Inductive Power
Transfer (IPT) coil pairs can considerably reduce the time
and computational costs of IPT systems design. Novel ana-
lytical formulas for the evaluation of the self-inductance
and mutual inductance values are proposed in this work.
A multi-objective genetic programming algorithm has been
adopted to generate these behavioral models for coil pairs,
by taking into account the geometric parameters defining
the IPT link. The behavioral modeling predictions have been
compared with finite element results and experimental data,
showing a good accuracy and generalization capability. The
adoption of these formulas for the design of IPT links can
overcome the iterative design process normally realized in
finite element tools, thus reducing time and computational
resources.
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