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Abstract Purpose: Single Incision Laparoscopic Sur-
gery (SILS) decreases post-operative infections, but in-
troduces limitations in the surgeon’s manoeuverability
and in the surgical field of view. This work aims at en-
hancing intraoperative surgical visualization by exploit-
ing the 3D information about the surgical site. An inter-
active guidance system is proposed wherein the pose of
pre-operative tissue models is updated online. A critical
process involves the intraoperative acquisition of tissue
surfaces. It can be achieved using stereoscopic imag-
ing and 3D reconstruction techniques. This work con-
tributes to this process by proposing new methods for
improved dense 3D reconstruction of soft tissues, which
allows a more accurate deformation identification and
facilitates the registration process.

Methods: Two methods for soft tissue 3D recon-
struction are proposed:Method 1 follows the traditional
approach of the block matching algorithm. Method 2

performs a non-parametric Modified Census Transform
to be more robust to illumination variation. The Sim-

ple Linear Iterative Clustering (SLIC) super pixel al-
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gorithm is exploited for disparity refinement by filling
holes in the disparity images.

Results: The methods were validated using two video
datasets from the Hamlyn Centre, achieving an accu-
racy of 2.95 mm and 1.66 mm respectively. A compari-
son with ground truth data demonstrated the disparity
refinement procedure: (i) increases the number of re-
constructed points by up to 43%; (ii) does not a↵ect
the accuracy of the 3D reconstructions significantly.

Conclusion: Both methods give results that compare
favourably with the state-of-the-art methods. The com-
putational time constraints their applicability in real-
time, but can be greatly improved by using a GPU im-
plementation.

Keywords surface reconstruction · super pixel
segmentation · robotic surgery · census trasform ·
depth estimation

1 Introduction

In open surgery of the abdomen, the trauma of laparo-
tomy wounds is a source of infection or dehiscence and
may increase the likelihood of post-operative chest in-
fection, ileus and immobility [30]. The evolution of new
minimally invasive approaches, such as Minimally In-
vasive Surgery (MIS) and Single Incision Laparoscopic
Surgery (SILS), allows to perform the surgery by bring-
ing the surgical instruments and endoscope to the sur-
gical site through few or only one small incision, im-
proving the physiological and immuno responses with
respect to open surgery [6], and reducing the trauma,
without compromising the surgical quality [27, 31].

However, MIS and SILS introduce some limitations,
including: (i) the insertion of the instruments through
few access ports and their required length reduces the
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surgeon’s manoeuverability at the surgical site; (ii) the
freedom of movement of the endoscopic cameras inside
the patient’s body is limited, due to the single endo-
scopic port access; (iii) the structures of interest, such
as blood vessels or cancer areas, cannot be viewed from
di↵erent points of view, compromising the accuracy and
safety of the surgery; and (iv) the surgical field visible
to the surgeon is limited by the viewing angle of the
endoscopic cameras. Such factors extend the learning
curve for surgeons and increase operating times [28].

The recent development of advanced robotic sys-
tems for MIS and SILS has been motivated by draw-
backs related to the manoeuvrability of the surgeon
[28]. Robot-assisted devices can greatly help to restore
the intuitiveness of operations in such procedures, but
this is largely dependent on system’s surgical vision. For
example, the da Vinci R� Surgical System [8] allows in-
tuitive execution of surgery and hand-eye coordination
through 3D vision and the configuration of its surgical
console. Thus, a requirement in robotic MIS and SILS
is to provide an appropriate surgical vision system opti-
mally coupled to the control of the robotic arms. How-
ever, in many cases this many not be enough, especially
in SILS operations: once the robot is inside and mov-
ing around the patient’s body, it is easy for the surgeon
to get disoriented since the pose of the robot cannot
be observed (or easily inferred) from the outside. This
requires an extra learning phase even for experienced
laparoscopy surgeons, and also poses a safety risk for
the operation.

Computer assisted technologies can enhance the view
of the surgical field. Augmented Reality (AR) or Aug-
mented Virtuality (AV) systems can provide a more
comfortable and e�cient environment for the surgeon
during surgery [15]. For example, in [16], pre-operative
information about the disease and a surgical plan are
fused with the intra-operative visualization of the sur-
gical field.

Nevertheless, aligning multimodal pre-operative pa-
tient data is highly challenging in soft-tissue surgery
since the anatomy undergoes significant changes be-
tween the data acquisition (pre-operative) phase and
the surgical procedure (intra-operative) due to di↵er-
ent factors [33]: (i) di↵erent pose of the patient with
respect to the pose in which the pre-operative image
was taken; (ii) CO2 abdominal insu✏ation for increas-
ing the working volume (pneumoperitoneum); (iii) in-
strument tissue interaction; (iv) heart beat; (v) breath-
ing; etc. Overcoming these challenges requires online
estimation of the tissue deformations to correct the pre-
operative plan, which can be done, for example, through
methods of depth estimation from stereo endoscopic im-
ages (3D reconstruction). The denser the reconstruc-

tion, the more accurate the deformation identification
will be. The real-time 3D information from the surgi-
cal site can also help the surgeon to understand the
relationship between the organs and the robotic de-
vices. Moreover, for robotic SILS procedures the sur-
gical site visualization issues can be overcome by in-
troducing a virtual environment including a dynamic
model of the robot within a surgical scene recreated
from pre-operative information. This virtual environ-
ment can be updated in real-time by exploiting 3D re-
construction of the soft tissues [4, 22].

In this paper, we present two methods for dense
3D reconstruction of soft tissue from endoscopic im-
ages, exploiting a super pixels approach for the dispar-
ity map refinement. The dense surface reconstruction
algorithm facilitates the registration process between
the pre-operative model and the intra-operative site.
The methods form the basis of the virtual assistive sys-

tem, introduced in [20], for intra-operative guidance and
improved surgical safety for abdominal SILS procedures
(Fig. 1). The system provides: (i) surgical guidance by
exploiting patient-specific pre-operative 3D models ob-
tained from CT scans to improve the operative vision;
and (ii) improved surgical safety by providing the visu-
alization of the pose of the robotic devices.

The paper is organized as follows: After a brief re-
view on the state-of-the-art in Section 2, a description
of the virtual assistive system and the contribution of
this paper are presented in Section 3. The complete
algorithms for soft tissue surface reconstruction are de-
scribed in Section 4. Section 5 presents the evaluation
of the proposed methods, and the obtained results are
presented and discussed in Section 6 and Section 7 re-
spectively.

2 State of the art

The surface reconstruction of man-made environments
using stereo images is a well understood concept [14,
23]. However, 3D surface reconstruction of surgical en-
doscopic images is still an active area of research due to
some challenging aspects that include: (i) the applica-
tion in surgery requiring high accuracy and robustness
in order to ensure patient safety; (ii) di�culties arising
due to large lens distortion, many texture-less areas, oc-
clusions introduced by the surgical tools, specular high-
lights, smoke and blood produced during the interven-
tion [25]; etc. Many approaches have been proposed in
literature in order to achieve more reliable, robust, and
real-time depth measurement to represent a deform-
ing environment. Some approaches are based on fea-
ture detection and tracking [13], allowing the recovery
of a sparse surface. In [26], a semi-dense reconstructed
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surface is obtained using feature detection and prop-
agating the information into neighboring regions. The
robustness of these methods depends on the availability
of stable features. Other solutions are based on finding
correspondences in the pixel intensities to give dense
reconstructed surfaces. In [22], dense GPU-enhanced
3D reconstruction is obtained using the Hybrid Recur-
sive Matching algorithm performing a non-parametric
transformation on the images. A non-parametric im-
age transformation with model based methods is also
exploited in [24] for dense 3D reconstruction, with the
assumption of a smooth and continuous surgical sur-
face. [19] presents a comparative study of such state-
of-the-art methods. Recently, color-based segmentation
was used in stereo methods for depth estimation [11].
Such techniques first segment a reference image into
regions and then label each region with disparity val-
ues, preserving the boundaries of the objects. For exam-
ple, the segmentation is used in combination with belief
propagation within a Markov Random Field framework
in [32]. However, segmentation algorithms are compu-
tationally expensive and infrequently used on surgical
images.

3 Research Overview

The overall goal of our research is to enhance the vi-
sual information provided to the surgeon during robotic
SILS procedures in the abdomen. Towards this end, a
first prototype of a virtual assistive system was pre-
sented in [20]. An overview is shown in Fig. 1. In the
pre-operative phase, the surgeon extracts 3D surface
models from a CT scan dataset of the patient. These
models are inserted into a virtual environment. A stereo
camera calibration and a real-virtual camera calibration
are performed. During the surgery, a semi-automatic
registration of the virtual abdomen on the real patient
creates a connection between the reality and the virtual
environment, which consists of:

1. View of the entire abdomen model, where it is possi-
ble to visualize at run-time the motion of the robot
and the surgical tools. The possibility to change the
transparency of the model of the skin allows the sur-
geon to plan the entry point, adjusting the access
region with respect to the target to be reached.

2. A virtual camera image plane, which shows the struc-
tures from the same point of view as the real endo-
scopic camera. This can enable the visualization of
the hidden structures using the transparencies func-
tion. A zoom feature allows the surgeon a wider field
of view if desired.

extraction of organ 
models

Dense 3D 
Reconstruction

real-virtual patient 
registration

real-virtual camera 
calibration

real surgical 
site

CT scan 
images

endoscopic 
stereo cameras

virtual environment

stereo camera 
calibration

Pre-operative phase Intra-operative phase

Fig. 1 Virtual Assistive System. The left side shows the pre-
operative phase with the processing of the CT scan images
and the cameras calibration. The right side shows the intra-
operative phase with the processing of the surgical images
and the integration between the real and virtual images. The
endoscope shown is from the Da Vinci R� system

The current design of the virtual assistive system

from [20] is reliable only under the assumption that the
patient remains in the same condition as he/she was
during the CT scan phase. However, this is an ideal
condition, and as noted earlier, the changes in anatomy
from pre-operative phase to intra-operative phase are
unavoidable. To overcome this drawback, the 3D re-
construction of the tissues at run-time can serve as the
keystone for updating the pre-operative tissue models.
Moreover, by knowing the pose of the tissue surface
with respect to the robotic devices, it would be possi-
ble to define areas to be protected, e.g., main vessels or
vital structures, improving the safety of the surgery.

3.1 Research Contributions

Two techniques for 3D surface reconstruction of soft
tissue are investigated in this paper:

1. Method 1 follows the traditional approach of the
block matching algorithm [23].

2. Method 2 exploits a non-parametric transformation
to make the stereo matching more robust to illumi-
nation variations.

The paper introduces a novel method to enhance the
density of the reconstructed surface from these methods
through disparity refinement based on Simple Linear
Iterative Clustering (SLIC) super-pixels algorithm [1].

The algorithms introduced here are designed to en-
hance the visualization during robotic SILS procedures
and are integrated into the virtual assistive system as
highlighted in Fig. 1.



4 Veronica Penza et al.

4 Materials and Methods

The workflow for the soft tissue 3D reconstruction al-
gorithm using the two methods is shown in Fig. 2 and
it is described in detail in the following subsections.

4.1 Pre-Processing

Surgical images acquired from an endoscope need pre-
processing in order to facilitate the search for pixel cor-
respondences. For greater accuracy in the 3D recon-
struction we calibrate the cameras using the OpenCV
Library [17], obtaining the intrinsic and extrinsic pa-
rameters. The images are then undistorted and recti-
fied, so that the corresponding pixels lie on the same
horizontal line (epipolar line) [9]. Generally, the stereo
cameras are on the tip of the inserted endoscope de-
vice and in proximity to a light source. The two cam-
eras are exposed di↵erently to the light source due to
their di↵erent position with respect to it. This can pro-
duce over or under exposure and di↵erences in bright-
ness/exposure between the images. Image processing
removes such artifacts in the images and enhances the
identification of the correspondences in texture-less and
homogeneous areas. These steps are described in the
following paragraphs.

Specularity Removal. Clinical images are usually a↵ec-
ted by specular reflections due to the tissue characteris-
tics and the proximity of the light source. The specular
reflections appear as bright regions in the endoscopic
images and can be mistaken for regular/irregular tis-
sue. The algorithm described in [3] is implemented for
removing specular highlights.

Image Equalization. Histogram equalization is perfor-
med to improve contrast and enhance details that are
over or under-exposed. The method used is a function
from the OpenCV Library (equalizedHist). The equal-
ization is performed only in Method 1, since the Census
transform in Method 2 already makes it robust to illu-
mination variation.

4.2 Surface Reconstruction

The two cameras of the endoscope record the surgical
field from two di↵erent points of view. The di↵erence in
position of an object between the left and right images
is called disparity (d). Knowing the distance between
the cameras (s) and the focal length of the cameras
(f), the depth, i.e. the z coordinate of the reconstructed
point, can be calculated with the following equation:

RGB images

Sum of Hamming 
Distance (SHD)

Sum of Absolute 
Difference (SAD)

Modified Census 
Transform

undistortion and 
rectification

Equalization

Specularity Remover

winner takes all with 
spurious remover

3D points

SLIC super pixels 
segmentation

plane/median 
fitting

Left-Right Consistency 
Check (LRC)

disparity computation with 
sub-pixel refinement

speckle remover

Method 1 Method 2

Fig. 2 Workflow of the proposed surface extraction algo-
rithm. Two methods are proposed: Method 1 one based on
SAD and Method 2 based on Census transform. Both meth-
ods are improved using the disparity refinement with super-
pixel segmentation

depth(i, j) =
(f · s)

disparity(i, j)
(1)

where i and j are respectively rows and columns of
the image.

Stereo correspondence is the process of identifica-
tion of the matching between each pixel of the left and
the right images (im

l

and im
r

). The process can be
divided in three steps, as stated in [23]: (i) Matching
cost computation; (ii) Aggregation cost computation;
and (iii) Disparity computation. The two methods are
described below:

Method 1

1. Matching cost computation: This method uses
the absolute intensity di↵erence (AD) [10] operation
to calculate the similarity between two pixels.

2. Aggregation cost computation: The aggrega-
tion of the matching cost is done by summing the
AD of a window of size n x m, i.e., by computing
the Sum of Absolute Di↵erences (SAD). Eq. 2 shows
the SAD value for a pixel (i, j):
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I(i,j) I(i,j,k)
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Sum of Absolute 
Differences
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k = 0 : max_disparity
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Fig. 3 Disparity computation algorithm forMethod 1. It uses
the intensity of the pixels and the Sum of Absolute Di↵erences
(SAD) operation for the aggregation

SAD(i, j, d) =

m/2
n/2X

h=�m/2
h=�n/2

|I
l

(i+ h, j + k)� I
r

(i+ h� d, j + k)| (2)

where I
l

and I
r

is the intensity of each pixel of im
l

and im
r

respectively, and d is the disparity. The
matching cost computation and aggregation cost of
Method 1 are shown in Fig. 3.

3. Disparity computation: The computation of the
final disparity involves choosing the disparity at each
pixel that is associated with the minimum of the ag-
gregation cost value. The Winner Takes All (WTA)
strategy from [23] is used to find the minimum ag-
gregation cost value at each pixel. Two optimiza-
tions are used to reduce the number of incorrect
values (from an incorrect matching). With the first
optimization, the disparity is defined to be invalid
if two minimum aggregation cost values in the same
image are within a threshold [18]. This operation
helps to invalidate incorrect pixels on uniform sur-
faces. The second optimization, a Left-Right Con-
sistency (LRC) Check, is performed in order to in-
validate half-occluded pixels, i.e., objects viewed in
one image but not in the other.

Method 2

1. Matching cost computation: The non-parametric
Census transform [2] is applied on im

l

and im
r

, with

a sparse modified approach from [12]. It converts
each pixel inside a moving window into a string of
bits C(i, j) (see Eq. 3), representing neighbor pix-
els according to a comparison with the central pixel
and the mean value of the pixels inside the window
(Eq. 4).

C(i, j) =

m/2O
h=�m/2

n/2O
k=�n/2

⇠(I(i, j), I((i, j) + (h, k)))

(3)

where
N

denotes the concatenation to a bit string.
⇠ is the function for comparing the two intensities,
defined as:

⇠(I, I 0) =

8>><>>:
00 I 0  min(I, Ī))
01 I 0 < I

10 I 0 > I

11 I 0 � max(I, Ī))

(4)

where I’ is the moving pixel in the window compared
with the central pixel I and Ī is the average of the
pixel intensities inside the window.
The similarity between the two Census transformed
images is analysed using theHamming Distance (HD)
measure applied to a moving window. HD compares
bit strings representing the pixels and identifies the
number of positions at which the corresponding bits
are di↵erent, as shown in Eq. 5.

HD(i, j, d) =
m·nX
b=0

C
l

(i, j)
b

� C
r

(i� d, j)
b

(5)

where C
l

and C
r

are the Census transform of the
left and right images respectively, � is the XOR
operator and b represents the bit string.
The HD is computed only for a chessboard pattern
of pixels inside the window in order to decrease the
computational time of the algorithm.

2. Aggregation cost computation: The aggrega-
tion of the matching cost is done by summing the
Hamming Distance over the window of size n x m,
computing the Sum of Hamming Distance (SHD).
The matching cost computation and aggregation cost
of Method 2 is shown in Fig. 4.

3. Disparity computation: This step uses the same
strategy as that for the Method 1.

To avoid separated layers in the reconstructed sur-
face resulting from pixel-level precision, a sub-pixel re-
finement is applied using a parabola fitting [29] in both
methods. A speckle removal filter is also applied in order
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Fig. 4 Disparity computation algorithm forMethod 2. It uses
Sparse Modified Census transform and Hamming distance as
cost and aggregation function. The disparity value is the one
associated with the minimum of the aggregation cost value

to remove small artefacts, i.e., regions of large and small
disparities that can be generated near the boundaries
of shapes. This method is adopted from the OpenCV
Library [17] function (filterSpeckles).

4.3 Disparity Refinement

The disparity map, computed so far from the proce-
dures described above, can contain invalid values (holes),
which can compromise the usefulness of the reconstruc-
ted surface. As mentioned in Section 3, the 3D recon-
struction of the surgical field serves to update the pose
of the pre-operative models considering the real organ
deformations, and also to update the pose of safety
areas to be protected from the surgical tools during
surgery. Problems can arise if the motion and the de-
formation of the soft tissue are not identified, i.e., if the
reconstructed surgical field is not dense and accurate.

To address these issues, a method to exploit the
over-segmentation of the reference image Im

l

is intro-
duced here, which further refines the results and fills the
holes in the disparity map. Im

l

is segmented using the
Simple Linear Iterative Clustering (SLIC) super-pixels
algorithm [1], which adapts the k-means clustering ap-
proach to generate super-pixels e�ciently and in less
computational time. At each super-pixel, a label L is
assigned. Then Im

l

(L) is set as a group of pixels from
the left image with the same label, i.e., belonging to the
same super-pixel. The same labels are assigned to the
disparity map, disparity(L). Each super-pixel is ideally
a homogeneous area with similar or at least continuous
depth. This information can be exploited in order to fill

Super pixel segmentation Disparity Map

Fig. 5 The superpixel areas (on the left) can be used to fill
gaps in the disparity image (on the right)

the holes in the disparity map, avoiding large discon-
tinuities within a super-pixel, as shown in Fig. 5. We
apply two di↵erent strategies depending on the valid
values inside a label:

1. Plane fitting: The invalid disparity values are fit-
ted to a plane which is computed on the valid val-
ues of the disparity map. The Locally Optimized
RANSAC (LO-RANSAC) method [5] is used to find
the optimal plane parameters in the pixel space, us-
ing the model of the plane described in Eq. 6.

disparity(i, j) = a · i+ b · j + c (6)

where a, b and c are the coe�cients of the fitted
plane.

2. Median fitting: If the plane fitted on the valid
values is not reliable (according to the LO-RANSAC
results), the invalid disparity values are replaced by
the median of the valid disparity values.

5 Evaluation

5.1 Quantitative Evaluation

This section presents the evaluation of the methods
for the 3D surface reconstruction. The performances of
Method 1 and Method 2 are evaluated against the met-
rics of accuracy, computational time, and percentage of
matched pixels.

The Hamlyn Centre Laparoscopic/Endoscopic Video
dataset [7], with an associated ground truth represent-
ing a surgical scene, is used for the evaluation.

Stereo images of a silicon heart phantom were used
in order to validate the results and ensure the proposed
methods are robust and reliable when applied to a sur-
gical scenario. The dataset consisted of intrinsic, ex-
trinsic, and distortion parameters for the cameras and
a ground truth from a CT scan. We used 20 frames
from two videos, heart1 and heart2. These frames are
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named h1
i

and h2
i

respectively, where i indicates the
frame number. The ground truth sets are called g1

i

and
g2

i

. The point clouds computed using the two methods
are pc1

i

and pc2
i

. The use of this dataset for the eval-
uation of the proposed system was preferred over other
standard datasets, such as the Middlebury evaluation
[22], because these provide only static images and do
not show surgical scenarios, which present specific is-
sues related to endoscopic imaging.

The error evaluation consists of computing the Eu-
clidean distance between the corresponding points from
the extracted point cloud and the rectified ground truth,
as in Eq. 7. The final accuracy of each point cloud is
computed as the median value of these Euclidean dis-
tances. Method 1 and Method 2 are evaluated on the
two datasets heart1 and heart2 with and without the
application of the disparity refinement exploiting SLIC
Segmentation (hereinafter called SLIC refinement).

error(i, j) =q
(pc

xi,j � g
xi,j )

2 + (pc
yi,j � g

yi,j )
2 + (pc

zi,j � g
zi,j )

2

(7)

where pc
xi,j , pc

yi,j and pc
zi,j are the 3D coordi-

nates of a point from the computed point cloud, and
g
xi,j , gyi,j and g

zi,j are the coordinates from the ground
truth. Since the point cloud and the ground truth are
represented as 2D maps, we can simply calculate this
error for each point considered as a pixel of the image.

A non-parametric test (Wilcoxon p < 0.05) was per-
formed on the point clouds to test if the accuracy before
and after SLIC refinement was significantly di↵erent,
for both Method 1 and Method 2. The same test was
also performed to verify if the accuracy obtained with
Method 1 and Method 2 was significantly di↵erent.

The percentage of matched pixels is computed as the
ratio of the valid reconstructed points identified in the
region of interest with respect to the total number of
points of the image. This region takes into consideration
only the area of the image with a pixel intensity > 32,
eliminating the areas where the heart phantom is not
visible. An example of the region of interest used for
the evaluation is shown in Fig 6.

The computational time is the time of execution of
the algorithms. The code was developed in C++, using
OpenCV for the management of the images with Robot
Operating System (ROS) as framework [21]. The pro-
gram was running on a system with GNU/Linux oper-
ating system, and a CPU Intel Core i7-4820K with 4
cores and hyper-threading (8 virtual cores).

The parameters and labels used during the evalua-
tion are listed in Table 1. The window dimension for the

Fig. 6 Example of the region of interest for heart1 and
heart2 models. The points marked with magenta color were
not included in the evaluation of the methods

Census transform and the Aggregation cost of Method

2 are taken from [12], where the authors identify the
optimal parameters taking into consideration accuracy
and computational time.

Table 1 Parameters used in the evaluation

Parameters Value
Census window 9x9
Census Block Size 11x11
SAD Block Size 11x11
Threshold Spurious remover 10
Threshold LRConsistency Check 4
LO-RANSAC max iteration 100
Number of sample frames 20
Labels Value
Method 1 M1
Method 1 with SLIC refinement M1R
Method 2 M2
Method 2 with SLIC refinement M2R

5.2 Qualitative Evaluation

The target application for this research is robotic SILS
procedure for the abdomen. Unfortunately, video da-
tasets with ground truth information are not available
for this anatomical region. Therefore, qualitative eval-
uations of the proposed methods were performed using
the heart data set from the Hamlyn Center. This data
set approximates the envisioned application area of our
system well, including motions of structures/organs and
the presence of surgical instruments in the field of view.

6 Results

Fig. 7 shows a sample image from heart1 processed with
both methods, following the workflow of Fig. 2. The
figure demonstrates the presence of the invalid values
in the disparity map as well as the almost complete
correction of the map with the application of SLIC re-
finement. The e↵ect is clearly seen considering the per-
centage of matched pixels in Fig. 8. The application of
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iml 

imr 

RGB Specularity  
remover

Equalization Method 1

Method 2Census Transform

Fig. 7 Example of the application of the workflow presented in this paper on one frame of heart1 dataset. From left to right,
the RGB stereo images Il and Ir, the stereo images after the specularity removal filter and Method 1 at the top and Method 2 at
the bottom. The Method 1 images show the equalization of the image, the disparity map calculation, the SLIC segmentation
and the successive refinement of the disparity map. The Method 2 images show the Census transform, the disparity map
calculation, the SLIC segmentation and the successive refinement of the disparity map

the SLIC refinement increases the percentage of valid
values to more than 70% in this case.

A box plot representing the accuracy is shown in
Fig. 9. These results show an accuracy of 3.17mm and
3.27mm using M1 and M1R and an accuracy of 1.68mm

and 1.77mm for M2 and M2R respectively. We can also
see how the variance of these results is similar, indicat-
ing good consistency between the presented methods.

Fig. 10 shows a colormap representing the accuracy
of the reconstructed surface computed with the meth-
ods. Here again, the result of applying the SLIC refine-
ment is demonstrated and how the filled holes present
a low error with respect to the ground truth.

For the impact of the SLIC refinement on the accu-
racy, the non-parametric test did not reject the null hy-
pothesis for both methods. This implies that the SLIC
refinement did not have a statistically significant im-
pact on the accuracies of M1 and M2. The same test
rejected the null hypothesis in the comparison between
the values obtained with M1 and M2. This implies that
M2 is statistically better and provides significantly im-
proved accuracy over M1.

We can see the results of the evaluation in Table
2, which shows the median values for the accuracy,
percentage of matched pixels, and computational time.
Both methods have a similar computational time, around
1.21s per frame (with an image resolution of 288x360),
and the SLIC refinement adds an overhead of only 0.1s
in both cases.

The results from the qualitative evaluation are shown
in Fig. 11. We can see that applying the methods on an
image representing a more complex surgical scenario,
with di↵erent abdominal structures and instruments
visible in the field of view, the methods are still able

to reconstruct the surface, and SLIC refinement seems
to fill correctly the invalid values of the disparity map.

Table 2 Median values of the accuracy, percentage of

matched pixels, and computational time for both methods
and data sets, with and without SLIC refinement

M1 M1R M2 M2R
Accuracy [mm]

heart 1 2.95 3.11 1.66 1.75
heart 2 3.38 3.43 1.70 1.79

Percentage of matched pixels [%]
heart 1 57.5 72.6 51.9 72.6
heart 2 55.4 66.5 44.7 66.5

Computational time [s]
heart 1 1.21 1.30 1.21 1.29
heart 2 1.21 1.31 1.21 1.30

7 Discussion and Conclusion

The research presented in this paper aims at improv-
ing a dense 3D surface reconstruction of surgical envi-
ronments, specifically to enable enhanced visualization
during robotic SILS procedures of the abdomen. The
3D surface information from the surgical scene can be
exploited to update the pose of pre-operative models ex-
tracted from a CT scan. These models, inserted into a
virtual assistive system, can provide guidance informa-
tion to the surgeon, helping to improve the quality and
safety of procedures through augmented visualization.
In addition, information about the pose of the surgical
robot with respect to tissue surfaces can assist in defin-
ing and enforcing safety constraints intra-operatively.
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Fig. 8 Box plot representation of the percentage of matching
pixels (pixels that are considered valid) with Method 1 and
Method 2 evaluated on heart1 and heart2 without and with
the SLIC refinement
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Fig. 9 Box plot representation of the accuracy obtained with
Method 1 andMethod 2 evaluated on heart1 and heart2 with-
out and with the SLIC refinement
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Fig. 10 2D representation of the reconstructed 3D surface,
obtained from Method 1 and Method 2 with and without
SLIC refinement. The color represents the error
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Fig. 11 Qualitative results obtained by the application of
M1 and M2 on a surgical video. The image on the left shows
Iml. The images on the right show the disparity maps ob-
tained with the di↵erent methods presented in this paper

Two methods for 3D surface reconstruction were
presented based on a traditional approach (M1) and
a non-parametric transformation approach (M2). The
comparison between the two methods shows that M2
has a significantly higher accuracy respect to M1 (around
1.7mm). According to our team of surgeons, for the pro-
posed application, the overall system accuracy should
be below 10mm. This is motivated by the fact that
abdominal surgery cannot be considered as a precision
surgery and it is characterized by the presence of mo-
tions and deformations of the organs. For this reason,
the obtained accuracy with both methods can be con-
sidered as a good result since it should allow to comply
with the required accuracy.

Regarding the valid reconstructed points, M1 pro-
vides a higher percentage of matching pixels. The meth-
ods were also complemented to enhance the density of
the reconstruction using the SLIC disparity refinement.
With the refinement, the percentage of matching pixels
increases in both methods, reaching the 72.6% in the
best case. The refinement provided an improvement in
the matching percentage up to 23% in M1 and 43% in
M2, without any statistically significant impact on the
accuracy.

A comparison of our error results with those from
[19], which tests di↵erent state-of-the-art algorithm us-
ing the same video dataset, demonstrated that our er-
rors are:

– lower as compared to Stereo Block Matching (SBM)
and variational (Svar) algorithms.

– similar magnitude as compared to Stereo Semi-Global
Matching (SSGBM).

The strength of the methods presented in this pa-
per is the usage of the SLIC Super Pixel algorithm to
obtain high density valid disparity map, which can be
exploited for augmented reality applications.
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In comparison to [22] the accuracy achieved is slightly
worse (mean error 2.47mm against 1.55mm), while the
percentage of pixel reconstructed obtained exploiting
the SLIC refinement is higher (72.6% against 66.2%).

In the extension of this research, future work will be
focused on the development of a real-time implementa-
tion of the proposed algorithm, potentially based on a
hybrid CPU-GPU processing framework. The expected
speed-up is between 10 and 30 times for the current
resolution of the images, which would allow reaching
the target framerate of 25fps. For higher resolution im-
ages, in order to maintain a real-time execution of the
algorithm, a sub-sampling could be applied. The mo-
tion tracking of the organs will also be investigated in
combination with the soft tissue surface reconstruction.
Finally, the components will be integrated into the vir-
tual assistive system.
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