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Featured Application: Optimized parallel solution of large magneto-quasi-static problems.

Abstract: This paper proposes an optimal strategy to parallelize the solution of large 3D magneto-
quasi-static (MQS) problems, by combining the MPI and OpenMP approaches. The studied numerical
problem comes from a weak-form integral formulation of a MQS problem and is finally cast in
terms of a large linear system to be solved by means of a direct method. For this purpose, two
main tasks are identified: the assembly and the inversion of the matrices. The paper focuses on the
optimization of the resources required for assembling the matrices, by exploiting the feature of a
hybrid OpenMP–MPI approach. Specifically, the job is shared between clusters of nodes in parallel
by adopting an OpenMP paradigm at the node level and a MPI one at the process level between
nodes. Compared with other solutions, such as pure MPI, this hybrid parallelization optimizes the
available resources, with respect to the speed, allocated memory, and the communication between
nodes. These advantages are clearly observed in the case studies analyzed in this paper, coming
from the study of large plasma fusion machines, such as the fusion reactor ITER. Indeed, the MQS
problems associated with such applications are characterized by a huge computational cost that
requires parallel computing approaches.

Keywords: eddy currents; fusion technology; integral equations; magneto-quasi-statics; MPI; OpenMP;
parallel computing

1. Introduction

Low-frequency electromagnetic problems in the so-called magneto-quasi-static (MQS)
limit (such as, for instance, eddy current problems) can be conveniently solved through
numerical models coming from integral formulations, with the advantage of limiting the
meshing to the conducting regions only. For real-world applications, however, the final
formulation likely leads to large linear systems of equations, and suitable strategies are
required to lower the computational cost of the numerical solution, such as those based on
fast Fourier transform [1], fast multipole method [2], and H-matrix [3]. However, there are
cases of interest where the dimensions are not so large to require the use of such techniques.
For such cases, a direct solution method is preferable, since it provides intrinsic robustness
and accuracy, with a modest increase in computational cost.
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The final goal of this work is the optimization of the solution of integral formulations
of eddy current problems solved with direct methods, in applications where long transients
must be studied, and where an effective pre-conditioning is not possible. The applications
targeted here come from the world of the nuclear fusion machines, and specifically refer to
the evaluation of the current density induced in the conducting structures as a consequence
of an electromagnetic transient associated with plasma disruptive events. The proposed
optimization is based on the parallelization of the tasks associated with the numerical
implementation of the integral formulation, based on a hybrid OpenMP–MPI approach.

The classical approach in parallel computing was based on the assumption that the
systems were homogeneous, with each single node sharing the same characteristics: in this
case, the computation time required by each node would be the same, if the same tasks were
assigned to each single node. The present approach is based on the use of computational
resources with high performance, made by cluster multicore systems [4], where variability
and heterogeneity between the cores and between nodes introduces major issues, such as
load imbalance, that strongly affect the effectiveness of parallel computation [5]. Optimizing
the resources is of a primary importance for an efficient use of supercomputers, that are
usually shared among several users. Traditional load-balancing techniques, such as those
based on global re-partitioning of the threads, require a priori estimations on the time
needed for completing each single task or, alternatively, require a dynamical reallocation of
the loads based on a real-time check of the status of the nodes [6].

More recently, this problem has been addressed by using hybrid parallel programming
paradigms, like those that adopt both a parametrized communication paradigm, such as
the message passing interface, MPI [7], and an application programming interface, such as
OpenMP [8,9]. Such a hybrid programming approach has been used in several fields, such
as computational fluid dynamics [10,11], chemical simulations [12,13], geotechnics [14],
high efficiency video coding [15], and electromagnetic simulations [16–18], due to its
very interesting performance [19]. As pointed out in [19,20], the advantages of using
a hybrid OpenMP–MPI programming approach are many, as follows: (i) suitability to
the architecture of modern supercomputers, with interconnected shared memory nodes;
(ii) improved scalability; (iii) optimization of the total consumed memory; (iv) reduction in
the number of MPI processes. On the other hand, a few disadvantages can be observed, as
follows: (i) complexity of the implementation; (ii) total gains in performance. These two
issues require special care in the implementation of a hybrid approach, to handle the added
extra costs to the existing code.

The main contribution of this paper is that of defining and assessing the implementa-
tion of such an approach when solving the integral formulation of eddy current problems
by means of a Galerkin-based finite elements method, such as CARIDDI code, which is
widely used in the fusion community [21]. The proposed solution fully exploits the main
advantages of both paradigms: the MPI approach is more efficient in the process-level par-
allelization, whereas the OpenMP approach optimizes the lower level parallelization. The
performance improvement is not only related to memory saving, but also to the reduction
in the communication [22], with a consequent dramatic lowering of the latency time for the
job to go in running state. The effectiveness of the proposed approach is witnessed by the
obtained speed-up values for the analyzed real-world applications, about ×30 and ×50.

The paper is organized as it follows: Section 2 provides a short description of the
numerical formulation of the MQS problem, and the tasks associated with building and
solving the final numerical system are discussed. In Section 3, two different approaches for
parallelizing the assembly of the system’s matrices are presented and compared: a pure
MPI approach and the proposed hybrid OpenMP–MPI one. In Section 4, first a benchmark
test to validate the hybrid approach is provided. Then, the analysis of case studies referred
to large nuclear fusion machines is carried out, comparing the computational performance
of pure MPI and OpenMP–MPI approaches.



Appl. Sci. 2022, 12, 627 3 of 16

2. Numerical Formulation of the Magneto-Quasi-Static Problem

An electromagnetic problem in the so-called magneto-quasi-static problem (MQS)
limit is studied here; namely, a low frequency eddy currents problem in non-magnetic
conductors: these are typical conditions encountered in the applications analyzed in this
paper, that are related to the plasma fusion machines, such as the fusion reactor ITER [23].
The mathematical model may be cast in integral form by introducing a vector potential, A,
and a scalar one, φ, to define the electrical field, E, and the magnetic one, B, as follows:

E = −∂A
∂t
−∇φ, ∇×A = B, (Coulomb gauge ∇ · A = 0) (1)

In this way, Faraday’s law is implicitly imposed. The vector potential is calculated
from the current density, J, flowing inside the conductors’ region, VC, and from the density,
JS, of the currents located outside that region, as follows:

A(r, t) =
µ0

4π

∫
VC

J(r′, t)
|r− r′|dV′ + As(r, t), As(r, t) =

µ0

4π

∫
R3−VC

J(r′, t)
|r− r′|dV′) (2)

The integral formulation of the problem comes from the imposition of the constitutive
equation J = σE in the ohmic conductors by means of the weighted residual approach,
as follows: ∫

VC

W ·
(

σ−1J− E
)

dV = 0, ∀W ∈ S (3)

The subspace S contains the functions solenoidal in VC, satisfying the interface condi-
tions for the current at the boundary: S =

{
J ∈ L2

div, ∇ · J = 0 in VC, J · n̂ = 0 on ∂VC
}

. By
replacing (1) and (2) in (3), the final weak form is obtained, as follows:∫

VC

W ·
{

σ−1J +
∂

∂t

[
µ0

4π

∫
VC

J(r′, t)
|r− r′|dV′ +

∂As

∂t

]}
dV = 0, ∀W, J ∈ S (4)

The above formulation is implemented in the code CARIDDI [21], that is here adopted
to perform the numerical analysis of the considered case studies. The numerical model
implemented in CARIDDI solves Equation (4) by applying Galerkin’s method, starting
from the following decomposition in edge elements, Nk, of the unknown current density,
as follows:

J = ∑
k

Ik∇×Nk (5)

By using (5) in (4), under the assumption of time-harmonic signals, the vector, I, of the
unknown coefficients, Ik, can be calculated by solving the following linear system:(

R + L
d
dt

)
· I = Z · I = V0 (6)

The resistance R and inductance L matrices in (6) are calculated by means of the
following integrals in the conducting regions, VC:

Rij =
∫

VC

∇×Ni(r) · σ−1∇×Nj(r)dr (7)

Lij =
µ0

4π

∫
VC

∫
VC

∇×Ni(r) · ∇ ×Nj(r′)
|r− r′| drdr′ (8)

whereas V0 is a known vector that is computed from the external imposed sources,
as follows:

V0,k = −
d
dt

∫
VC

∇×Nk(r) · As(r, t)dr (9)
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Once the numerical problem (6) is solved, the flux density B is obtained at any given
position r as B = Q·I, where the generic entry of the matrix Q is defined as follows:

Qki =
µ0

4π

∫
VC

(∇xNk(r′))× (ri − r′)

|ri − r′|3
dr′. (10)

The solution of the linear system (6) via a direct method requires a first step of matrix
assembly, followed by a final step of matrix inversion. Specifically, the following four tasks
may be identified:

(a) assembly of the known-terms vector, V0;
(b) assembly of the resistance and inductance matrices, R and L;
(c) assembly of the flux density matrix, Q;
(d) inversion of the impedance matrix, Z, defined as in (6), via factorization and

back substitution.

In real-world applications such as those analyzed in this paper, related to fusion
machines, the high computational burden requires the use of efficient parallel computing
techniques, as discussed in the next section. In this paper, we focus on the parallelization
of the assembly phase; whereas, the matrix inversion is here performed by using the best
available routines, such as the Scalapack one [24]. The “inversion phase” (task (d)) is
usually the most time consuming when using a direct solver, but it is worth noticing that
in many practical cases also tasks (a)–(c) in the “assembly phase” can be very demanding
of both CPU and RAM resources. Indeed, if we denote with Ndo f the degrees of freedom
of the numerical problem, the time required for the inversion (ti) is proportional to N3

do f ,

ti = ki N3
do f ; whereas, the assembly time (ta) is proportional to N2

do f , i.e., ta = kaN2
do f .

Following this consideration, one can be brought to affirm that the assembly time is lower
than the inversion one. However, in many applications, the actual CPU-times for the two
phases are comparable, since ki depends only on the computational resources, whereas ka
depends on the accuracy. Indeed, there are some cases of practical interest among the MQS
problems where the required accuracy imposes values of ka that may lead to values of ta
comparable to, or even greater than, ti. This happens, for instance, when the density of the
electrical current varies rapidly in space and in time and consequently a high accuracy in
the evaluation of the inductance matrix is required. Let us note that a higher accuracy may
be achieved in two ways, as follows: (i) by refining the meshing, hence increasing Ndo f ;
(ii) by using the same mesh (hence the same Ndo f ), but increasing the number of integration
Gauss points, n. It is evident that solution (i) is not preferable when direct methods are
used, given the cost of inversion. Let us then study the sensitivity of the assembly cost
to increasing the values of n. The simulation times required for the inversion of (6) and
for assembly of the matrix, L, are reported in Figure 1, as a function of Ndo f . For a lower
accuracy (n = 1), ti is always greater than ta, but for a better accuracy (n > 1), the assembly
time is longer than the inversion one for Ndo f < N∗do f , where N∗do f increases with n—it is
6500 for n = 270,000 for n = 3, and 351,000 for n = 4.
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Another source of computational burden is the calculation of the matrix L, i.e.,
task (b): the double integration in (8) requires a proper handling of the singularities in
the kernels, to retain the property of L to be positive definite. An adaptive procedure for
integrating these singularities is given in [25].

3. Parallel Computing Based on a Hybrid OpenMP–MPI Approach
3.1. Parallelization Strategy Based on MPI Approach: Description and Limits

The numerical model of the MQS problem, described in the previous section, has been
implemented in a parallel-computing scheme, based on a pure MPI approach, which is
here briefly summarized (further details are given in [26]).

As for task (a), when assembling the known-terms vector, V0, the sources are the
impressed currents, given in an external mesh (the sources mesh). The computation of the
entries of V0 requires a double loop: the first on the mesh elements, the second one on the
external mesh (as shown in Algorithm 1). Actually, V0 is a small size vector, and hence,
although each MPI process allocates the whole vector in V0_loc, only a part of its memory
is used. Then, a reduction operation is required in order to gather the final vector.

Algorithm 1 Evaluation of V0, pure MPI approach

// Initialization
Split Source Points between MPI processes
// Parallel pure MPI computation
for each MPI process do

for each iel mesh element point do
for each iel0 source mesh element do

compute V0 contribution, between iel and iel0
end for

end for
end for
// All reduce of the local contribute on the global V0
mpi_allreduce(V0_loc,V0_global)

The assembly cost for task (b) is mainly related to the inductance matrix L, being R a
sparse matrix [26]. The choice of the most suitable parallelization approach for computing
the L matrix comes from a trade-off between the needs of optimizing the costs of computa-
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tion, memory writing, and communications. For this purpose, two main strategies have
been in the past investigated by the authors [26]: in the first one, the element by elements
interactions needed to compute the integrals in (8) are distributed all over available MPI
processes; in the second one, each process takes care of building a sub-block of the L matrix.
Overall, numerical experiments in [26] show that the first approach proved to be the most
effective one, given the characteristics of the transient electromagnetic problems of interest
in the study of nuclear fusion machines. For this reason, we have adopted such an approach,
that is here implemented by means of a hybrid OpenMP–MPI paradigm.

Looking at its definition in (8), the assembly of L requires two nested loops on the
mesh elements, to compute the element–element interactions, as shown in Algorithm 2. To
this end, a critical point is the need to accumulate and store these interactions in a correct
way. Three dummies’ memories are defined:

- MDMESH, used to store the geometrical mesh information. These data have a dimension
of the order of magnitude of the number of the mesh elements;

- MDL, used to temporarily store the entries Lij produced during the main loop of
element–element interactions. This memory has the same dimension of MLOC, that is
the chunk memory required for matrix storage at each node;

- MDEE, used to carry on the main loop of element–element interactions: such a memory
is of the order of N2

do f ,el , being Ndo f ,el the number of degrees of freedom per element.

Algorithm 2 Assembly of L matrix, pure MPI approach

Equally distribute element-element interactions among MPI processes
// Initialization
for each MPI process

Allocate dummy memory MdMesh
Allocate dummy memory MdEE
Allocate dummy memory MdL

end for
Broadcast the geometrical information
// Parallel pure MPI computation
for each MPI process do

for each element iel1 do
for each element iel2 do

Compute local iel1-iel2 interactions
Accumulate local interactions in MdL

end for
end for

end for
//Final Communications Step
for each MPI process do
Allocate local memory Mloc
end for
for each MPI process do

Send and receive the local matrices MdL
Accumulate in Mloc

end for
deallocate(MdMesh, MdEE,MdL)

As for task (c), the assembly of the flux density matrix, Q, is obtained through a
double loop, the first on the mesh elements, and the second one on the requested field
points, as shown in Algorithm 3. In a pure MPI approach, the set of field points are equally
distributed among MPI processes. Memory is then allocated in each MPI process.
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Algorithm 3 Evaluation of Q m, pure MPI Approach

// Initialization
Equally distribute field points among MPI process
Broadcast the geometrical information
// Parallel pure MPI computation
for each MPI process do

for each mesh element iel do
for each field point ifp in the set belonging to current process do

Compute Magnetic Field or Vector potential
Accumulate the values

end for
end for

end for
//Final allreduce
mpi_allreduce(MagField,Vector potential)

As a general comment, we stress that with the pure MPI paradigm, due to the limited
size of per node memory and to the need of each MPI process to allocate not only the
memory required to store the local portion of the matrices but also the dummy memory
required to carry on the computation, it may not be possible to launch a number of MPI
process equal to the number of the physical cores available at the node. For the above
reasons, many of these cores are forced to stay idle during the job execution because there
is no more space to allocate. This fact limits the maximum achievable speed-up.

For example, to compute the L matrix, the mesh information should be available at
each MPI process in the dummy memory MdMesh defined above: in practical applications,
this memory likely reaches the dimensions of some GBs. In the following, we refer to the
typical case of homogeneous supercomputing systems, made by nodes that are equal in
terms of core number, memory, and operating frequency. In order to assess the performance,
let us here define the following quantities:

- NMPI—number of the MPI processes;
- NN—number of the cluster nodes;
- M—total memory required to store the global matrix (for example, L);
- MN—total memory available at any node;
- MD—dummy memory per MPI process;
- MDT—dummy memory per thread;
- MLOC—memory available at each node (for all is needed at the node);
- MAV—actual available memory at each node.

In the ideal case, the maximum computation speed-up would be equal to the total
number of MPI processes, NMPI . At each node, the number of running processes is
NMPI/NN , and thus the available memory is given as MLOC = M/NN . Note that the
available memory must be used not only the matrix storage (chunk memory) but for any
other data required by the process. Unfortunately, the dummy memory, MD, is replicated
NMPI/NN times, due to the distributed memory approach adopted here. Therefore, the
actual available memory at each node, MAV, is reduced with respect to MN , and must be
larger than the requested chunk memory, MLOC. These conditions are summarized in (11),
that sets the limit for the pure MPI approach by imposing a maximum value to NMPI :

MAV = MN −
NMPI
NN

MD ≥ MLOC =
M
NN

(11)

3.2. Parallelization Strategy Based on Hybrid OpenMP–MPI Approach

A hybrid OpenMP–MPI approach is here proposed to overcome the abovementioned
limits of the pure MPI approach. The underlying idea is to allocate in each node only one
instance of the MD memory, and then to use all the physical cores only for computation.
This means that we must logically separate allocation from computation, that is forbidden
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in a pure MPI paradigm, which maps one-to-one cores and processes. The solution could
be provided by the use of the OpenMP environment directives: the node computation is
broken down among the physical cores (threads) present in the node, that share the same
memory on the node thanks to the shared memory approach implemented by OpenMP.

A hybrid OpenMP–MPI approach may be then implemented, based on the two fol-
lowing steps:

(1) as in the pure MPI paradigm, the overall computation is partitioned in MPI processes,
limiting the number of the processes at node level (in the ideal case this number
would be 1);

(2) the computational burden of each MPI process at node level is divided (again) in
several threads, in accordance with the characteristics of the OpenMP paradigm.

In order to investigate the memory allocation scheme of the hybrid approach, we
firstly recall that in OpenMP environment, each thread should allocate its local memory in
order to face its own computation. Note that the dimension of the dummy memory per
thread, MDT , is much lower than MD. In order to speed up the inter-thread computation
and to fully gain from the modern CPU architecture, MDT should match the local core
cache size (cache coherence, e.g., [27]). Let us now define as NT the number of threads per
node: if we use one MPI process per node, and after considering that MD is allocated only
once, Condition (11) on the available memory for the pure MPI approach is replaced for
the hybrid OpenMP–MPI one by the following:

MAV = MN − NT MDT −MD ≥ MLOC =
M
NN

(12)

In view of comparing the two approaches, it is convenient to introduce the following
speed-up parameters: SMPI = NMPI (for pure MPI approach) and SH = NT NN (for hybrid
OpenMP–MPI). They can be expressed from (11) and (12), as follows:

SMPI ≤
MN
MD

NN −
M

MD
, SH ≤

MH −MD
MDT

NN −
M

MDT
(13)

The above relations set the upper bounds for the two speed-up parameters, that
linearly depend on the number of nodes, NN : Figure 2 shows the corresponding straight
lines, whose intersection occurs at:

N∗N =
(MDT −MD)M

(MDT −MD)MN + M2
D

(14)

where N∗N > 0, since MN > M > MD ≥ MDT ≥ 0. For NN > N∗N , it is always SH > SMPI
and the distance between the two bounds increases monotonically, as shown in Figure 2.
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Indeed, this result can be demonstrated by considering the ratio between the slopes of
the straight lines—from (13), as follows:

MN
MD

MN−MD
MDT

=
MDT
MD

MN
MN −MD

< 1 (15)

where the inequality holds since MDT < MD, and MD � MN , hence MN/(MN −MD) ≈ 1.
As clearly shown in Figure 2, this hybrid OpenMP–MPI approach provides two

advantages over the pure MPI approach, as follows:

(i) resources saving—for a fixed speed-up S, the required number of nodes NN is lower;
(ii) speed-up advantage—for fixed resources (NN), the speed-up, S, is higher.

In addition, as pointed out in the Introduction, the approach also reduces the commu-
nication burden, because the parallel routines impose a fast communication between each
thread in the node.

It is worth noticing that it is not trivial to accomplish OpenMP–MPI paradigm, since
three critical issues arise, as follows:

(i) Need for local thread memory— the main loop is distributed among all available
threads, each of them requesting its local memory to work properly. This memory
is related to mesh element information (e.g., the curls of the elements, the shape
functions, geometrical information, element local output, and so on). Anyway, it is
usually very small (few GBs) and, in cases of practical interest, is much smaller than
the required output global node memory.

(ii) Global matrix memory update—once the single thread made its own job, the thread
local output should be accommodated into the global memory of the node. This is a
non-trivial operation, and it is a bottleneck for the method, because the local update
must be carried out by each thread in a sequential access, so to guarantee consistency.
To this end, the CRITICAL OpenMP directive is used [6].

(iii) Global input memory access—this access is critical being shared between the threads.
It may cause “cache missing”.

Of course, all of the above issues cause a degradation of the performances; moreover,
as we can see in Section 4, they do not significantly affect the obtained speed-up parameters.

Let us now describe the changes introduced by the proposed hybrid approach in
the algorithms for assembling the matrices and vectors of the Numerical Problem (6). In
building the known-terms vector V0, a hybrid implementation of the external loop (over
the mesh elements) is handled by all threads. The local memory V0_loc is automatically
obtained by the means of OpenMP reduction operations (Algorithm 4).

The new algorithm to be used to assembly the matrix L is described in Algorithm 5. In
the MQS applications, such as those analysed in this paper, the fully populated matrix L is
by far the largest quantity. The entries of this matrix are arranged in a 2D cyclic block size
fashion, in view of using the Scalapack inversion routine [24,26]. To this end, the entries
MdL are reorganized in MLOC in the last step (final communication step). Once again, we
stress the advantage of the hybrid approach over the pure MPI approach: since it is usually
NN ≈ NMPI , the memories MdMesh and MdL (by far the largest ones) are allocated only
once in the node, instead of being allocated for each process in the pure MPI approach.

Finally, the Q matrix can be very large if the computation of the flux density is required
in a huge number of points and/or in each element of the mesh. With the hybrid approach,
the external element loop is distributed among the threads in the current MPI process, see
Algorithm 6.
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Algorithm 4 Evaluation of V0, hybrid OpenMP-MPI Approach

// Initialization
Split Source Point between MPI process
// Parallel pure MPI computation
for each MPI process do

for each iel mesh element point do
#pragma omp parallel for
#pragma ompreduction(+:V0loc)
for each iel0 source mesh element do

compute V0_loc
end for

end for
end for
// Synchronization point
mpi barrier
// All reduce of the local contribute on the global V0
mpi_allreduce(V0_loc,V0_global)

Algorithm 5 Assembly of L matrix, hybrid OpenMP-MPI approach

Equally distribute element-element interactions among MPI processes
// Initialization
for each MPI process do

Allocate dummy memory MdMesh
Allocate dummy memory MdL
Allocate dummy memory MdEE

end for
for each MPI process do

Broadcast the geometrical information
end for
// Hybrid MPI openMP computation
for each MPI process do

Declare MdEE as private for each thread
#pragma omp parallel for
for each element iel1 do

for each element iel2 do
Compute local iel1-iel2 interactions
Compute the local interactions on a private dummy mem. MdEE
#pragma omp critical
Accumulate the local interactions on the shared mem. MdL

end for
end for

end for
for each MPI process

Allocate local memory Mloc
end for
//Final Communications Step
for each MPI process do

Send and receive the local matrices MdL
Accumulate the contribute on Mloc

end for
deallocate(MdMesh, MdEE,MdL
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Algorithm 6 Evaluation of Q matrix, hybrid OpenMP-MPI Approach

// Initialization
Equally, distribute field points among MPI process
Broadcast the geometrical information
// MPI OpenMP computation
for each MPI process do

for each iel mesh element do
#pragma omp parallel for
for each ifp field point do

Compute Magnetic Field or Vector potential
Accumulate the values

end for
end for

end for
//Final allreduce
mpi_allreduce(MagField,Vector potential)

4. Case Studies and Discussion

The hybrid OpenMP–MPI approach presented in this paper has been implemented
in two parallel computing systems with different characteristics: a proprietary system
(SUNCUDA Cluster) and a supercomputing facility (MARCONI Cluster) [28]. The details
of such systems are given in Table 1. Note that the proposed hybrid paradigm is general
and can be applied to computing systems with different features.

Table 1. Features of the adopted parallel systems.

SUNCUDA Cluster MARCONI Cluster

Number of nodes 2 3216
Number of processors per node 2 2

Processor type Intel Xeon E5-2690@2.9 GHz Intel Xeon 8160@1.10 GHz
Number of cores per processor 8 48

RAM at each node 128 GB 192 GB

4.1. A Benchmark Case Study

A preliminary case, that is studied as a benchmark, refers to the simple MQS problem
described in Figure 3, with a pancake coil that is inducing currents into a nearby conducting
plate. The numerical model of the MQS problem is characterized by a mesh with 13,500 ele-
ments, 15,376 points, and 25,650 DoFs. Although the size is not so large to require a parallel
computation approach, we analyse this case study with the only scope of comparing the
performance of OpenMP only and OpenMP–MPI approaches.

The assembly of V0 and L (tasks (a) and (b) defined in Section 2) have been performed
by using both OpenMP only and OpenMP–MPI approaches, and the results are provided
in Table 2. Specifically, the speed-up obtained has been evaluated with respect to the use
of 1 OpenMP thread and 1 MPI node, that is assumed as the reference. The computation
times for the reference case are 8.93 s and 2693 s for tasks (a) and (b), respectively. Table 2
shows an almost linear increase in the speed-up values versus the number of threads, with
a slight degradation obtained for task (b). The degradation comes from two major critical
issues, as follows: (i) a larger thread memory is needed for evaluating integral (8), that
is characterized by element–element interactions; (ii) the output of this calculation has to
be stored at the node level in a matrix that is shared among all the threads. To guarantee
consistency, the update of such a matrix is performed by a sequential access of the threads.
The advantage of using the proposed hybrid OpenMP–MPI approach is the possibility to
optimize the memory and to obtain the same speed-up for both the assembly tasks.
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Table 2. Benchmark case: speed-up values for tasks (a) and (b) with OpenMP–MPI on SUNCUDA
Cluster.

MPI
Tasks OpenMP Threads

Speed-Up Values

Assembly of V0 Assembly of L

1 (reference) 1 (reference) 1 1
1 4 4.0 3.4
1 8 7.4 6.7
4 1 3.7 3.8
4 4 14 15
4 8 26 27

4.2. Case Study 1: A Plasma Ring

Case study 1 refers to the study of the interaction of a plasma ring subjected to an
asymmetric kink instability in the presence of a conducting vacuum vessel and a set of
toroidal field coils, as shown in Figure 4. The kink is described by assuming the plasma as
a single tilted and shifted filament, with respect to its axisymmetric equilibrium position.
In Figure 4a, we show a sector of 90◦ of the total mesh, together with the surface enclosing
the plasma rings necessary for integrating the Maxwell stress tensor. In Figure 4b, we show
the time history of the x component of the resultant force due to the interaction between
the plasma ring and the toroidal field, computed by means of the j× B expression and by
using the Maxwell stress tensor. We notice that this method is very efficient in presence
of a 3D plasma current distribution with time-varying shape and position. For this case,
we adopted a mesh with 44,200 elements, 88,400 nodes, 12,600 points, and Ndo f = 44,202.
For eddy current problems in nuclear fusion machines, such as in this case study and in
case study 2, discussed later on, a satisfactory estimation of the current density, j, in the
conductors, comes from the choice of linear basis functions and a number of Gauss points
equal to 2, in the numerical computation of the integrals—see [21].
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for the integration of the Maxwell stress tensor; (b) the time history of the x resultant on the tilted
filament due to the toroidal field (TF).

For this case study, the computational effort for task (c) has been evaluated—evaluation
of the flux density matrix Q. Here, the reference time is given by the solution evaluated
with 10 nodes, 2 MPI tasks per node, and 1 OpenMP thread: such a time is 1932 s on the
Marconi cluster. Table 3 shows the speed-up values as functions of the total nodes, of the
OpenMP threads and of the MPI tasks. The speed-up value depends almost linearly by
the number of MPI tasks and OpenMP threads. It is noteworthy that this performance
is obtained with a proper handling of the memory burden, since the memory is equally
partitioned between the nodes involved in the computation. From Table 3, we can see
that using 40 nodes and 1 MPI task per node provides a lower speed-up with respect to
using 20 nodes and 2 MPI tasks per node. This is due to the reduction in the amount of
communication needed in the second case, as this amount depends on the granularity of
the test case.
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Table 3. Case study 1: speed-up values for task (c) with OpenMP–MPI on MARCONI Cluster.

OpenMP
Threads per Node

10 Nodes
2 MPI per Node

20 Nodes
2 MPI per Node

40 Nodes
1 MPI per Node

1 (reference) 1 (reference) 1.99 1.99
5 4.96 9.85 9.88
10 9.86 19.7 19.7
15 14.8 29.5 23.2

4.3. Case Study 2: Fusion Reactor Eddy Currents Analysis

Case study 2 is taken from a typical eddy current problem in nuclear fusion machines,
associated with the fast electromagnetic transients produced by disruption of the confined
plasma. The reference machine is the fusion reactor ITER [18]. By exploiting the symmetry
and periodicity of the problem, the computational domain can be limited to a sector of 40◦

of the tokamak (Figure 5a). The main conducting components falling into such a sector have
been modelled, such as the vacuum vessel, the thermal shield, the coils, and the supports,
etc. The 3D mesh consists of 80,573 elements, 138,762 nodes, and Ndo f = 106,544 DoFs. As
pointed out, the boundary conditions impose cyclic symmetry at ±20◦.
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Figure 5. Case study 2: (a) a 40◦ sector of ITER magnet system; (b) distribution of ohmic power
density at a given time instant during the considered transient event.

Table 4 provides the computed costs of the assembly of L (task b). As a reference case,
here we have assumed the choice of 22 OpenMP threads and 1 MPI task per node. The
reference time is 16,064 s. Table 5 reports the speed up values for the inversion of Z (task
d), with the reference solution given by 22 OpenMP threads and 2 MPI tasks per node,
with 2 nodes. The reference time is here 907 s. Once again, the behavior of the speed-up
scale is quite linear when increasing the number of nodes, with a limited degradation.
Comparing the reference time for task b (assembly of L) and task d (inversion), we observe
that this case study is another example where the inversion time is much smaller than the
assembly one, as already pointed out in Section 2 and in discussing the benchmark case
study. In addition, the numerical solution of problems such as those in case studies 1 and
2 exploits the symmetry of the machines, thus limiting the solution domain to a sector.
Moreover, the periodic symmetric conditions require considering n replicas of the DoF
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during the assembly phase, thus increasing the corresponding time, without affecting the
inversion time.

Table 4. Case study 2: speed-up values for task b, with OpenMP–MPI on MARCONI Cluster.

OpenMP Threads per Node Nodes 1 MPI per Node Speed-Up

22 (reference) 1 (reference) 1.0
22 25 23.9
22 36 33.1
22 64 53.5

Table 5. Case study 2: speed-up values for task d with OpenMP–MPI on MARCONI Cluster.

OpenMP Threads per Node Nodes 2 MPI per Node Speed-Up

22 (reference) 2 (reference) 1.0
11 8 2.4
22 8 4.3
11 18 4.9
22 18 7.9

5. Conclusions

A hybrid parallel computation approach implementing the joint use of MPI and
OpenMP paradigms is here implemented and applied to challenging numerical magneto-
quasi-static (MQS) problems. The approach has been used to parallelize the assembly of
the inductance matrix: it has been shown that this task may be cost demanding as well
as involving the task of matrix inversion, when high accuracy is required in the solution
of MQS problems (for instance, when using 2 or more integration Gauss points). The
pure MPI and the hybrid OpenMP–MPI approaches have been theoretically compared
in terms of their computational performance in assembling such a matrix. The hybrid
OpenMP–MPI approach saves resources (since it requires a lower number of nodes for a
fixed computational time) and provides better performance (it requires lower times for
fixed number of nodes). The analyzed case studies demonstrate speed-up values up to
about 50×.

The proposed approach has a potential great impact on the efficient use of parallel
computational resources, suggesting an efficient handling of tasks and threads, to avoid
resources (cores and/or ram) being idle while the other processes are running elsewhere.
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