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ABSTRACT 

A semi-analytical approach is presented for the optimization of laminated panels with nonsymmetric 

lay-ups, and with the possibility of introducing requirements on the buckling load, the postbuckling 

response and the eigenfrequencies. The design strategy relies on the combined use of semi-analytical 

techniques for the structural analysis and genetic algorithms for the optimization. The structural 

analysis is performed with a highly efficient code based on thin plate theory, where the problem is 

formulated in terms of Airy stress function and out of plane displacement, expanded using 

trigonometric series. The solution of two distinct eigenvalue problems is performed to determine 

eigenfrequencies and buckling load, while an arc-length method is adopted for the postbuckling 

computation. The genetic algorithm is implemented by using proper alphabet cardinalities to handle 

different steps for the angles of orientation, while specific mutation operators are used to guarantee 

good reliability of the optimization. To show the potentialities of the proposed optimization toolbox, 

two examples are presented regarding the design of balanced non-symmetric laminates subjected to 

linear and nonlinear constraints. The accuracy of the analytical predictions is demonstrated by 

comparison with finite element results. 

 

1 INTRODUCTION 

In the past years, many efforts have been directed towards the development of analytical and semi-

analytical methods for the fast analysis of composite panels [1]. In most cases, the methods have 

focused on symmetrically layered structures, thus avoiding the coupling between the in plane and out of 

plane behaviour of the panel. Relatively few works have dealt with non-symmetric lay-ups. Similarly, 

several design optimization procedure have been developed by restricting the design space to the case 

of symmetric lay-ups. Examples are found in two works of the authors [2, 3], where analytical tools are 

coupled with genetic algorithms, and symmetric lay-ups are assumed. In order to fully exploit the 

tailoring opportunities offered by composite materials, novel analysis tools are needed to handle more 

generic lay-up configurations. In this context, closed-form solution are a useful mean to guarantee 

computational effectiveness, which is particularly useful when dealing with optimization procedures. 

However, the complexity of the mechanical couplings characterizing the response of generally layered 

panels often requires the introduction of several simplifying assumptions. 

An early work  of Chandra [4] presents a single-term solution to analyse unsymmetric panels and is 

restricted to the case of axially compressed cross-ply configurations. The Rayleigh-Ritz method is 

adopted by Dano and Hyer [5] to study the response of non-symmetric panels during the cooling from 

the cure temperature. More recently, closed-form solutions were derived by Diaconu and Weaver [6] 

using a single-term approximation to represent the out of plane displacement and considering 

compression load. Nie and Liu [7] extended the formulation to account for shear loads and elastic 

restraints. Both in Refs. [6] and  [7], the approach is valid for infinitely long panels only, and any mode 

change or snap cannot be accounted for. Many of the restrictions necessary to derive closed-form 

solution can be relaxed by adopting multiple-series solutions. In these cases, the equations can be 

obtained analytically, but the solution is computed numerically. 
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An example is found in the work of Zhang and Matthews [8], where the Airy stress function and the out 

of plane displacement are approximated with sine terms or beam eigenfunctions. Zhang at al. [9] 

proposed a formulation based on Karman-Reissner plate theory and asymptotic series solution to study 

the buckling and the postbuckling response of non-symmetric plates. In both cases, the governing 

equations regard the out of plane equilibrium and the strain compatibility. The total number of degrees 

of freedom is still smaller if compared to finite elements, but significantly higher with respect to closed-

form solutions. 

The present work aims to fill the gap between closed-form solutions and semi-analytical approaches by 

presenting a highly efficient solution based on multiple degrees of freedom, but characterized by 

analysis time comparable to closed-form solutions. The approach, which is developed for finite length 

non-symmetric plates and subjected to generic boundary and loading conditions of compression, is 

adopted in the context of a design optimization based on genetic algorithms with linear and nonlinear 

constraints. In particular, buckling, eigenfrequency and postbuckling response are accounted for. 

 

2 ANALYTICAL MODEL 

The analysis tool is based on thin plate assumptions and Classical Lamination Theory (CLT). Flat 

rectangular panels are considered, with the four edges elastically restrained against the rotation. The 

edges can be restrained with a torsion spring of arbitrary stiffness, thus defining any intermediate 

condition between clamped and simply-supported conditions. Furthermore, it is assumed that the four 

edges are free to move along their normal direction, but are forced to remain straight. This latest 

assumption is introduced to account for the presence of the surrounding structure. Loading conditions of 

compression are considered. A Cartesian coordinate system is taken over the panel midsurface with the 

x-axis directed along the longitudinal direction, the y-axis along the transverse direction and the z-axis 

to define a right-handed system. It is here assumed that the panel is part of a larger structure, as in the 

case of aircraft panels, which are assembled in repeating units. A sketch of the panel is reported in 

Figure 1. 

 

 
Figure 1: Panel geometry and reference system. 

The laminate is layered with an arbitrary number of plies, not necessarily stacked to guarantee the 

symmetry with respect to the midplane of the panel. The only assumption here introduced is that one of 

balanced laminate, meaning that the presence of a ply at +θ requires the presence of a ply at –θ.  The 

semi-inverse constitutive law of the laminate is: 

{
𝛏
𝐌

} = [
𝐚 𝐞

−𝐞T 𝐝
] {

𝐍
𝐤

} (1) 

where 𝐍 and 𝐌 are the force and moment resultant along the thickness, while 𝛏 and 𝐤 are the membrane 

strains and the curvatures, respectively. The matrices 𝐚, 𝐝, 𝐞 of Eq. (1) are related to the CLT matrices 

through the relations 𝐚 = 𝐀−1, 𝐞 = −𝐀−1𝐁,  𝐝 = 𝐃 − 𝐁𝐀−𝟏𝐁. Under the assumption of balanced 

laminate and using the Voigt notation, the only null terms of Eq. (1) are 𝑎16 and 𝑎26. 
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2.1 Variational principle 

The postbuckling problem is developed within a variational framework, and is based on the minimum 

potential energy principle. The buckling equations, as well as those regarding the free vibrations, can be 

derived from the linearization of the nonlinear approach. The total potential energy of the laminate is: 

 Π = Πm + Πb + Πk − Vc (2) 

where Πm denotes the contribution due to the membrane stretching, Πb is the bending energy and Πk 

the strain energy stored in the elastic restraints. The term Vc is the potentials of the external compressive 

loads. The strategy here proposed relies on the so-called w-F approach, where the unknowns of the 

problem are the out of plane deflection w and the Airy stress function F. Referring to Eq. (2), the 

equilibrium configuration is obtained by solution of the following constrained minimization problem: 

 

δΠ = 0  

subjected to LL(F, w) +
1

2
LNL(w, w + 2w0) = 0 

(3) 

where w0 defines the initial imperfection. The constraint of Eq. (3) is the compatibility requirement, 

expressed in terms of the linear and nonlinear operators LL and LNL, whose expressions are:  

 
LL(F, w) = a11F,yyyy + (2a12 + a66)F,xxyy + a22F,xxxx − e21w,xxxx − (e11 + e22 −

2e66)w,xxyy − e12w,yyyy − (2e26 − e61)w,xxxy − (2e16 − e62)w,xyyy  
(4) 

 LNL(w, w + 2w0) = w,xx(w + 2w0),yy − 2w,xy(w + 2w0),xy + w,yy(w + 2w0),xx (5) 

The comma followed by an index denotes differentiation with respect to that index. The membrane and 

the bending contributions, expressed in terms of Airy stress function and out of plane displacement, are: 

 Πm =
1

2
∫ ∫ (a11F,yy

2 + 2a12F,xxF,yy + a22F,xx
2 + a66F,xy

2 )
3b/2

−b/2

3a/2

−a/2

dxdy (6) 

 
Πb =

1

2
∫ ∫ (d11w,xx

2 + 2d12w,xxw,yy + d22w,yy
2 + 2d16w,xxw,xy + 2d26w,yyw,xy

3b/2

−b/2

3a/2

−a/2

+ 4d66w,xy
2 ) dxdy 

(7) 

The terms aik and dik are the components of the constitutive law of the in plane compliance of the 

laminate and the so-called reduced bending stiffness, respectively. It is worth observing that the 

coupling terms due to the non-symmetry of the laminate enter in the bending energy expression as the 

matrix 𝐝 is function of 𝐁. The potential of the compression load, introduced with a uniform end 

displacement, is: 

 Vc = 2b N̅xΔU̅ (8) 

where N̅x is the average stress resultant during the loading phase, and ΔU̅ is the average end shortening 

of the panel, defined as: 

 ΔU̅ =  
N̅x

2b
∫ ∫ (−ξx +

1

2
w,x

2 + w0,xw,y + w0,yw,x)
3b/2

−b/2

3a/2

−a/2

dx dy (9) 

The essential boundary conditions of the problem are expressed as: 

 {
𝑤 = 0                           at    x = 0, a  y = 0, b
ΔU = const at    x = 0, a
ΔV = const at    y = 0, b

 (10) 

It is worth noting that the two conditions regarding the in plane displacement of the edges are not 

exactly met within the approach here proposed. However, they are satisfied in a weak form, leading, as 

demonstrated in the next, to accurate results. 

 

2.2 Ritz solution 

The stationarity condition of Eq. (3) is imposed referring to the method of Ritz. The out of plane 

displacement and the initial imperfections are approximated with a double series of sine terms as: 
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 w = ∑ qmn sin
mπx

a

RS

mn

sin
nπy

b
= 𝐍w𝐪;        w0 = ∑ qmn

0  sin
mπx

a

RS

mn

sin
nπy

b
= 𝐍w𝐪𝟎 (11) 

The unknown amplitudes qmn of Eq. (11) are collected in the column vector 𝐪 of dimensions R×S 

defined as 𝐪 = {q11  …  q1S q21 …  q2S … … …  qRS}T, and the matrix of the shape functions 𝐍w is 

defined accordingly. The same strategy is adopted for the initial imperfection, the only difference being 

the fact that the amplitudes 𝐪0 are known a priori to achieve the desired geometric imperfection shape. 

The expansion of Eq. (11) guarantees that the first of the three essential boundary conditions of Eq. (10) 

is identically satisfied.  

To ensure the respect of the compatibility requirement of Eq. (3), the Airy stress function is expanded 

as the sum of five contributions: 

 F(x, y) =
1

2
N̅xy2 + N̅xyxy + FNL(x, y) + G(x, y) + H(x, y) (12) 

where the first two terms are responsible for the uniform stress distribution over the panel, while the 

functions FNL, G and H describe the stress redistribution due to the panel deflection. In particular, the 

term FNL is relative to the postbuckling nonlinear stress redistribution, and its expression is: 

 FNL(x, y) = ∑ fmn cos
mπx

a
cos

nπy

b
   

2R2S

mn=0

= 𝐍NL𝐟  (13) 

The vector of amplitudes 𝐟 can be expressed in terms of q by substitution of Eqs. (11) and (13) into the 

compatibility requirement of Eq. (3). It can be demonstrated that the generic coefficient fi is a quadratic 

function of the deflection amplitudes q, and is obtained by: 

 fi = 𝐪T𝐁i
sym

(
1

2
𝐪 + 𝐪0) (14) 

where 𝐁i
sym

= 𝐁i + 𝐁i
T, and the term 𝐁i is a matrix of scalar coefficients, built according to the 

approach reported in Refs. [10, 11]. 

The functions G and H of Eq. (12) describe the stress distribution due to the linear coupling between the 

in plane and out of plane response of the plate. Their expression is sought in the form: 

 

G(x, y) = ∑ gmn cos
mπx

a
cos

nπy

b
   

RS

mn=1

= 𝐍g𝐠 = 𝐍g diag[𝐛g]𝐪 

H(x, y) = ∑ hmn sin
mπx

a
sin

nπy

b

RS

mn=1

= 𝐍h𝐠 = 𝐍h diag[𝐛h]𝐪 

(15) 

where the relation between the amplitudes gmn, hmn and qmnis given by the vectors 𝐛g and 𝐛h, whose 

expression is obtained by substitution of Eq. (15) into the compatibility equation. The generic 

component bi
g

 of the vector 𝐛g is:   

 bi
g

=
(2e26 − e61) (

m
a )

3 n
b

+ (2e16 − e62)
m
a (

n
b

)
3

a11 (
n
b

)
4

+ (2a12 + a66) (
mn
ab

)
2

+ a22 (
m
a )

4 (16) 

Similarly, the vector 𝐛h has components:   

 bi
h =

e21 (
m
a )

4
+ (e11 + e22 − 2e66) (

mn
ab

)
2

+ e12 (
n
b

)
4

a11 (
n
b

)
4

+ (2a12 + a66) (
mn
ab

)
2

+ a22 (
m
a )

4  (17) 

As observed in Eqs. (13)-(17), the unknown amplitudes of the Airy stress function can be expressed in 

terms of the amplitudes q, which are the only unknown of the problem. After substitution of Eqs. (13) 

and (15) into (6), the membrane energy can be written as the sum of three contributions: 

 Πm = Πm
lin + Πm

nl,ff + Πm
nl,fg

 (18) 



20th International Conference on Composite Materials 

Copenhagen, 19-24th July 2015 

The first term of Eq. (18) is quadratic in q  and is null for symmetric panels. The second and the third 

terms are quartic and cubic in q, respectively. After collecting the coefficients obtained from the 

analytical integration of the membrane energy in the matrices 𝛂
gg

, 𝛂hh and 𝛂
fg

, it is obtained: 

 Πm
lin =

1

2
𝐠T𝛂

gg
𝐠 +

1

2
𝐡T𝛂hh𝐡;       Πm

nl,ff =
1

2
𝐟T𝛂ff 𝐟;       Πm

nl,fg
=

1

2
𝐟T𝛂

fg
𝐠  (19) 

The bending energy is directly computed by substitution of Eq. (11) into Eq. (7), and is written as: 

 Π̃b = Πb + Πk =
1

2
𝐪T(𝐊b + 𝐊k)𝐪 =

1

2
𝐪T�̃�b𝐪 (20) 

where �̃�𝐛  is the reduced bending stiffness matrix, including also the contribution due to the springs.  

Regarding the contribution of the applied loads, it is obtained by substitution of Eq. (11) into (8), and is 

written as:  

 Vc = N̅x
2 ab a11 +

1

2
𝐪T𝐊c(𝐪 + 2𝐪0) (21) 

The matrices 𝐊c and 𝐊s collect the numerical coefficients obtained from the closed-form integration of 

the integrals involved in the expressions of the potential of the external loads. 

 

2.3 Postbuckling equations 

The nonlinear equations governing the postbuckling response of the panel are derived following the 

approach discussed in Refs. [10, 11], where a perturbation arc length approach is implemented. The 

main advantage of this solution scheme relies in its robustness to capture mode changes or snaps. This 

feature is particularly interesting in the context of an optimization procedure, where it becomes 

mandatory to guarantee that each of the structural analysis terminates without convergence issues. The 

set of nonlinear equations governing the postbuckling behaviour of the panel are derived in rate form 

as:  

 
∂Π,η

∂𝐪
= 𝐊𝐪,η + 𝐬Λ,η = 𝟎 (22) 

where Λ and η are the load and the rate parameters, respectively. The first term in the right hand side of 

Eq. (22), is the tangent stiffness matrix, while the second contribution is the incremental load vector, 

which are defined as: 

 𝐊 =
∂2Π

∂𝐪𝟐
       𝐬 =

∂Π

∂𝐪 ∂Λ
 (23) 

The tangent stiffness matrix 𝐊 is obtained as the sum of two contributions, a linear term independent on 

the configuration, and a nonlinear term which is function of the current deformation. The matrix is so 

re-written as: 

 𝐊 = 𝐊lin + 𝐊m
nl(𝐪) (24) 

where the linear contribution is derived from: 

 
𝐊lin =

∂2(Π̃b + Πm
lin + Vc + Vs)

∂𝐪𝟐
 

         = �̃�b + 𝐁
gT

𝛂
gg

𝐁
g

+ 𝐁hT
𝛂hh𝐁h + Λ(𝐊c + 𝐊s) 

(25) 

The second contribution to the tangent stiffness matrix is due to the nonlinear terms of the membrane 

energy, as observed in Eqs. (18) and Eq.  (19). The two terms are written as: 

 𝐊m
nl = 𝐊m

nl,ff + 𝐊m
nl,fg

 (26) 

where 𝐊m
nl,ff

 is obtained by recalling the second of (19). In particular, it is:  

 𝐊m
nl,ff =

∂2Πm
nl,ff

∂𝐪𝟐
= ∑

∂fi

∂𝐪

∂2Πm
nl,ff

∂fi ∂fj

∂fj

∂𝐪
+ ∑

∂Πm
nl,ff

∂fi

∂fi

∂𝐪𝟐
 (27) 
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From the expressions of Eqs. (14) and (19), the expression of the nonlinear stiffness due the membrane 

energy is obtained as: 

 𝐊m
nl,ff = ∑ 𝐁i

sym(𝐪 + 𝐪0)αij
ff(𝐪 + 𝐪0)T𝐁j

sym
+ vi𝐁i

sym

2R2S

i=0

 (28) 

where the term vi is the i-th component of the vector 𝐯, obtained as: 

 𝐯 = 𝛂ff 𝐟 (29) 

and the components of the vector 𝐟 are obtained according to Eq. (14).The second contribution to the 

nonlinear part of the tangent stiffness matrix regards the coupling between the functions F and G, and is 

derived as: 

 
𝐊m

nl,fg
=

∂2Πm
nl,fg

∂𝐪𝟐
= ∑ ∑

∂fi

∂𝐪

∂2Πm
nl,fg

∂fi ∂gj

∂gj

∂𝐪
+

∂gi

∂𝐪

∂2Πm
nl,fg

∂gi ∂fj

∂fj

∂𝐪

RS

j

2R2S

i=0

+ ∑
∂Πm

nl,fg

∂fi

∂fi

∂𝐪𝟐

2R2S

i=0

 

            = �̃� + �̃�T + wi𝐁i
sym

 

(30) 

where the matrix �̃� is defined as: 

 �̃� = ∑ 𝐁i
sym(𝐪 + 𝐪0)αij

fg
�̃�j

g

2R2S

i=0

 (31) 

The row vector �̃�j
g
 is the j-th row of the matrix diag[𝐛g], and the term wi of Eq. (30) is the i-th 

component of the vector w, obtained as: 

 𝐰 = 𝛂
fg

𝐁g𝐪 (32) 

The derivation of the incremental load vector 𝐬 is straightforward, and is obtained as:  

 𝐬 =
∂Vc

∂𝐪 ∂Λ
= Λ𝛂c (𝐪 + 𝐪0) (33) 

 

2.4 Buckling equations 

The buckling equations can be derived from the linearization of the nonlinear, discrete equations of Eq. 

(22). In particular, the buckling eigenvalue problem is obtained by setting to zero the incremental load 

vector s, and by considering null initial imperfections, i.e. 𝐬 = 𝟎 and  𝐪0 = 𝟎.  

Moreover, the approximation of null prebuckling deflections is introduced, i.e. 𝐪 = 𝟎, although for a 

non-symmetric laminate this condition is not exactly met due to the coupled in plane and out of plane 

response. Under the above mentioned assumptions, the problem is reduced to a standard linear 

eigenvalue problem in the form: 

 [(�̃�b + 𝐊m
lin) + λ𝐊c]𝐪 = 𝟎 (34) 

where the contributions to the stiffness matrix and the loading matrix are the same derived in Eq. (25). 

 

2.5 Eigenfrequency equations 

The equations governing the linear free vibrations of the panel are derived by introducing the 

Lagrangian L, which is defined as: 

 L = T − (Πm
lin − Πb) (35) 

The second and the third contributions in the right hand side of Eq. (35) are available from Eqs. (19) 

and (20), while the kinetic energy T is introduced by neglecting the contribution of the in plane inertia 

as: 

 T =
1

2
ρ ∫ ∫ (u̇,x

2 + v̇,x
2 + w,x

2 )dxdy ≈
3b/2

−b/2

3a/2

−a/2

1

2
ρ ∫ ∫ w,x

2
3b/2

−b/2

3a/2

−a/2

dxdy (36) 

where ρ denotes the density per unit surface of the panel. The solution of the free harmonic motion is 

sought as follows: 
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 w(x, y, t) = w(x, y)eiωt (37) 

After substituting Eq. (37) into Eq. (36) and performing the integrals in closed-form manner, the 

approximated kinetic energy is derived in terms of the problem unknowns 𝐪. The discrete equations of 

the panel free vibrations are finally obtained as a standard eigenvalue problem of dimensions RS×RS in 

the form: 

 
∂L

∂𝐪
= [−ω2𝐌 + (𝐊b + 𝐊m

lin)]𝐪 = 𝟎 (38) 

 

3 OPTIMIZATION ALGORTHM 

The optimization process is here performed with a code based on the standard genetic algorithm (GA) 

implementation with modifications specifically introduced for the design of composite structures. In 

particular, new genetic operators are introduced to improve the reliability of the code, on the basis of 

the investigations conducted by Nagendra et al. [12]. The code is implemented in Matlab language, and 

can be easily linked to the structural analysis tool described in the previous section. As input data, the 

optimization routine requires the definition of the number of variables, their range, the cardinality of the 

alphabet to encode the variables, the functions to compute the fitness and the constraints, the penalty 

terms associated to each of the constraints, and the parameters relative to the mutation operators. 

The optimization process begins with the initial construction of a pool of candidates, i.e. the first 

generation of individuals. The quality of each of the individuals, i.e. the first set of possible designs, is 

initially established by evaluation of their fitness function, including the penalty contribution due to the 

constraints that the design is required to satisfy.  

Depending on the fitness of each single individual, the members of the first generation are sorted and 

submitted to the selection process, which can be based on different criteria. In the present 

implementation, a probability is attributed to the individuals based on their ranking: the fittest members 

are those with highest chance of being selected for becoming parents, while the less fit are unlikely to 

be selected. In any case, a not null probability is associated to all the members of the pool, so that even 

the less fit designs have a chance of becoming parents. This aspect, together with the other mutation 

operators, plays an important role in guaranteeing that the optimization process does not converge to 

local minima.  

For each couple of parents, new individuals are created by applying the crossover operator. It consists 

in recombining the information encoded in the chromosomes of the selected parents to obtain a new 

design. The single point crossover is here considered among the various implementations proposed in 

the literature.  

The mutation operator is applied just after the application of the crossover. In this case, mutation is 

performed by means of four different operators. The last step of the genetic process consists in the 

insertion of the offspring into the new generation. The optimization code allows to define an arbitrary 

number of elite members. The overall procedure is repeated until a convergence criterion is met. 

Different criteria are implemented in the code, consisting in the maximum number of generations, 

fitness functions evaluations and generations with no improvement of the best individuals. 

 

3.1 Chromosome encoding 

Genetic algorithms work with populations of designs, where each of the design is identified by a 

chromosome. Each individual is represented by a chromosome, which is responsible for the encoding of 

the genetic information. To this aim, different alphabets can be used, the binary representation being 

one of the most common. In the context of stacking sequence optimization, design variables are 

represented by the angles of orientation of each ply, and the problem becomes an integer optimization 

problem (or a mixed-integer problem if, in addition, other real variables are involved). A suitable 

strategy for the encoding of the angles of orientation of a laminate consists in the use of alphabets of 

higher cardinality, where an integer number is associated to each ply angle. The cardinality of the 

alphabet is then dependent on the number of plies made available for the design. For instance, a 3-ary 

alphabet is considered if the plies can be oriented at 0°, 45°, 90°.  
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In the present work, alphabets of cardinality of 7 and 13 are considered, in order to allow the design of 

panels with plies oriented from 0° to 90°, with steps of 15° and 7.5°, respectively. In the first case, the 

value 0 means 0°, 1 means 15°, 2 stands for 30°, and so on. Furthermore, the pool of available design is 

restricted to that of balanced laminates. To this aim the chromosome encoding is performed such that 

each gene denotes a couple of plies oriented at ±θ. This strategy is inspired by the results reported in 

Ref. [13], where it was demonstrated that a penalty approach is not efficient to enforce the balance 

constraint, adding noise to the fitness function. An example of chromosome decoding is reported in Eq. 

(40) assuming the case of cardinality 7: 

 [303441] → [±45°/±0°/±45°/±60°/±60°/±15°] (39) 

It is remarked that the optimization code implemented allows the introduction of any encoding rule, so 

that the assumption of balanced laminates, or the use of different alphabets can be easily modified. 

Laminates with a variable number of plies are handled by associating an integer value to a dummy ply. 

 

3.2 Genetic operators 

The crossover operator is here implemented in its one-point version, meaning that one single cut point 

is randomly chosen for each of the two parents. The crossover operator is slightly modified when a 

variable number of plies is allowed. In this case, the chromosome is firstly resorted by packing all the N 

empty plies in the first N genes, and the crossover cut point is forced to fall in the remaining genes. 

Regarding the mutation operators, specific operators have been implemented to improve the reliability 

of the procedure, as demonstrated in Ref. [12].  

The first operator is the ply swap, consisting in a random selection and the swap of two plies. The use 

of this operator is motivated by the fact that inner and outer plies have different influences on the 

bending stiffness of the laminate. Therefore the external plies reach convergence faster than the internal 

ones.  

A second mutation operator is the angle ply mutation that consists in randomly picking one gene and 

altering its value with any of the possible angles. In presence of a variable number of plies, two more 

operators are available, namely the ply addition and ply deletion operators. Their application consists in 

the addition of a randomly oriented ply, or the deletion of a ply. It is noted that ply addition and deletion 

operators are applied to the innermost ply, the less influent in terms of laminate bending stiffness. With 

this approach, abrupt changes of laminate bending stiffness, which may have a too drastic impact on the 

mutated individual, are avoided. 

After crossover and mutation operations, the new generation is created applying an elitist selection. 

Elitism is a well know strategy to improve the convergence properties of the genetic algorithm. On one 

hand, it has the effect of speeding-up the convergence to a maximum, but on the other hand it weakens 

the explorative ability of the method in the design space. In this implementation elitism is implemented 

by taking the fittest individual. Elite members are passed intact to the following generation in order to 

guarantee that the fittest individuals are not lost due to the application of the genetic operators during 

crossover and mutation. 

The selection is performed with a tournament with variable size. The effect of enlarging the tournament 

size is to increase the selective pressure, with the risk of reducing the diversity in the new population. 

For this reason, a size of 2 is here considered.  

 

4 ANALYTICAL/NUMERICAL COMPARISON 

Before illustrating the results of the optimization, the quality of the semi-analytical predictions is 

assessed by presenting the comparison between analytical and numerical results. The commercial code 

Abaqus is used for this purpose, and the finite element model is realized by modeling the full 

representative unit of Figure 1. The four edges of the model are subjected to periodic constraints. In 

particular, the two transverse edges are forced to undergo equal translations along the z direction and 

rotations around the x-axis. Furthermore, the edges are forced to remain straight. The longitudinal edges 

are subjected to a constraint equation forcing the nodal degrees of freedom to display equal translations 

along z and rotations around y. Regarding the translation along the x direction, the axial load is 

introduced by defining a constraint equation: 
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 ux
upper

− ux
lower = ∆U (40) 

where ux
upper

 and ux
lower are the set of nodes belonging to the upper and lower edges of the panel, 

respectively, while ∆U is the imposed shortening.  

The finite element analyses are conducted by performing a preliminary eigenvalue analysis to determine 

the bifurcation buckling load. The nonlinear response is studied with a quasi-static nonlinear step, 

assuming an initial imperfection equal to the first buckling mode with maximum nondimensional 

amplitude 𝑤0/𝑡 of 10%. The mesh is realized using four node S4R elements, with a typical dimension 

of 5 mm. 

Two panels are here considered for comparison purposes. They have equal geometry, but different 

stacking sequences. The length a is equal to 450 mm, and the width b is 150 mm. The two panels are 

assumed to be made of the unidirectional material IM7/8552, whose elastic properties are summarized 

in Table 1. 

 

E11 [MPa] E22 [MPa] G12 [MPa] ν12 ρ [kg/m
3
] 

150000 9080 5290 0.32 1570 

Table 1: Material properties of IM7/8552. 

The ply thickness is 0.125 mm. As far as the panels are obtained by the stacking of eight plies, the total 

thickness is 1.0 mm. The lay-ups here considered are:  

 Panel 1: [04/904] 

 Panel 2: [304/-304]  

Semi-analytical calculations are conducted using 12×12 shape functions, corresponding to a total 

number of 145 degrees of freedom, obtained as the sum of the 144 unknown amplitudes and the 

additional unknown due to the load parameter. The buckling loads and the first natural frequency are 

summarized in Table 2. 

 

 Panel 1  Panel 2 

 Pbuck  [N] ω  [rad/s]  Pbuck [N] ω  [rad/s] 

Abaqus 982.9 607.2  1305.1 470.3 

Analytical 979.3 605.6  1315.6 470.9 

%diff -0.37 -0.26  0.80 0.13 

Table 2: Comparison of buckling and eigenfrequency analysis for Panels 1 and 2. 

The percent differences of Table 2 are below 1%, revealing a good degree of agreement between 

numerical and analytical results. It is observed that the quality of the results is slightly lower in the case 

of buckling analysis, probably due to the assumption on null prebuckling deflections introduced in the 

analytical model. 

Postbuckling results are compared in Figure 2 for Panels 1 and 2 in terms of force-shortening curve and 

maximum out of plane displacement during the loading phase.  

  
Figure 2: Numerical/analytical comparison for Panels 1 and 2: 

(a) force-shortening curve, (b) max out of plane displacement. 
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The comparison demonstrates the good quality of the analytical predictions, as the curves are almost 

undistinguishable with those obtained using Abaqus. It is important to remark the time needed to 

complete the analysis: the average time for the Panels 1 and 2 is approximately 0.9 seconds with the 

analytical tool, and 130 seconds with Abaqus. 

To illustrate the potentialities of the method in capturing also the stress redistribution due to the 

postbuckling deflections, the comparison is reported in Figure 3 for Panel 2 in terms of axial force per 

unit length Nxx at a load level of P/Pbuck = 3.0. 

  
Figure 3: Contour of Nxx for Panel 2 at P/Pbuck = 3.0: (a) analytical, (b) Abaqus. 

The results of Figure 3 illustrate similar patterns and a difference below 7% in terms of maximum 

values. Similar results, with good prediction of the contour pattern and a maximum difference of 6.5%, 

are obtained for Panel 1.  

 

5 DESIGN OPTIMIZATION USING THE FAST METHOD 

To illustrate the potentialities of the fast design procedure, the optimal design of two panels is 

discussed, introducing requirements on the linear and nonlinear response.  

The dimensions of the panel are assumed to be known a priori: the length is fixed to 450 mm and the 

width is 150 mm. The laminate is layered with a number of 16 plies, whose elastic properties are those 

of Table 1, and the overall thickness of the laminate is 2 mm. The optimization problem is presented in 

the form of a stacking optimization problem, where the design variables are the angles of orientation of 

the plies. The constraint of balanced laminate is enforced a priori by assuming a stacking sequence with 

plies at ±θ, thus reducing the total number of design variables to 8. Each ply is allowed to assume an 

orientation between 0° and 90°. Two possible angle steps are assumed. In a first optimization the plies 

are allowed to vary with an angle of 15°. The total number of possible designs is equal to 7
8
, and the 

optimal configuration is denoted as Opt15. In a second run, the plies can vary with a step of 7.5°, thus 

allowing a huge enlargement of the design space to 13
8
 combinations (more than 800 million possible 

designs). In this case, the optimum is denoted as Opt75.  

The optimization aims to improve the panel response with respect to a quasi-isotropic baseline with lay-

up [±45/02/902/02]s, quantifying the possible benefits due to the adoption of different ply steps.  

The optimization problem is formulated as the maximization of the linear buckling load subjected to a 

constraint regarding the first natural frequency and the maximum out of plane displacement in the 

postbuckling field. In particular, the problem is formulated as: 

 
                                  max    Pbuck 

                                  subject to:  {
ω > ω̅
wmax < w̅max  at P = 2.5 P̅buck

 
(41) 

The overline denotes the reference quantities, which are established by analyzing the baseline 

configuration. In particular, the first natural frequency of vibration is ω̅ = 1600 rad/s, while the 

buckling load is P̅buck = 23.1 kN. 

The constraint on the maximum out of plane displacement is w̅max  = 3.90 mm, and is measured at a 

load level equal 2.5 times the buckling load. This latest condition ensures that, within the design space 

under investigation, all the panels are required to work in the postbuckling field. Indeed, the solution of 

the unconstrained buckling maximization problem identifies the configuration with all the plies at ±45° 
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as the optimal solution and the corresponding buckling load is Pbuck = 27.8 kN. It is interesting to 

highlight that the configuration that maximizes the buckling load exhibits a maximum out of plane 

displacement of 6.98 mm when P = 2.5 P̅buck, therefore violating the nonlinear constraint here 

imposed. 

 

5.1 Results 

The results obtained for the two optimizations are here discussed. The parameters to set up the analysis 

are the same in both cases, apart from the size of the population, which is equal to 30 individuals when 

the ply step is 15°, and is 50 when the step is increased 7.5°. The number of élite individuals is fixed to 

1, so guaranteeing that the best member of each generation is passed intact to the following generation. 

Fitness scaling is performed using a rank-based strategy, where the fitness is scaled depending on the 

rank of each individual instead of its score. 

The stopping criterion is based on the maximum number of generations without improvements. The 

procedure terminates if the weighted average relative change in the best fitness function value over 50 

generations is less than or equal to a tolerance set of 1e-8. 

The fitness of the best individual of each generation, until convergence, is reported in Figure 4.  

 

  
Figure 4: Fitness function versus generation: (a) Opt15, (b) Opt75. 

The first optimization terminates after 81 generations, while the second one requires a total of 92 

generations to meet the stopping criterion. Considering the numbers of individuals used in the two 

cases, the overall number of function evaluations is equal to 2430 for the first run and 4600 for the 

second one. In any case, a reduced computational effort is guaranteed in both cases, thanks to the 

efficient implementation of the analysis tool. All the analysis are performed on Core i7 2.30 GHz 

laptop, with 16 GB of RAM. The computational time to perform the two optimizations is approximately 

39 and 77 minutes, respectively.  

The two optimal configurations and the corresponding values of buckling load, first natural frequency 

and maximum out of plane displacement are summarized in Table 3.  

 

 Layup Pbuck 
[kN] 

ω  
[rad/s] 

wmax  
[mm] 

Ref. values [±45/02/902/02]s 23.1 1600 3.87 

Opt15 [±60/±45/±30/±02/±30/±45/±60] 25.6 1913 3.90 

Opt75 [±52.5/± 60/±22.5/±7.52/±30/±60/±52.5] 25.8 1909 3.78 

Table 3: Results of the optimization. 

As observed from Table 3, the two optimal solutions satisfy the design constraints and allow an increase 

of the panel buckling load. The Opt15 is characterized by a buckling load 10.8% higher compared to the 

baseline. On the other hand, no significant improvement is achieved by enlarging the design space as in 

the case of the Opt75 design. In this case, the buckling load is 11.7% higher than the baseline, but still 

very close to the Opt15 configuration. 
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6 CONCLUSIONS  

The development of a semi-analytical procedure with postbuckling capabilities has been discussed 

together with its implementation in the context of an optimization toolbox based on genetic algorithms. 

The main advantage of the approach is the possibility of considering a wide class of laminates, 

including those characterized by midplane unsymmetry, in a very efficient manner. The comparison 

with Abaqus simulations allowed to conclude that the method combines the rapidity typical of closed-

form solutions with the accuracy of finite element analyses. As a result, the method is particularly 

suitable to perform structural optimizations, even when large design spaces are of concern. In this 

sense, the proposed optimization toolbox can successfully be employed to fully exploit the tailoring 

opportunities offered by composite materials, making possible the design of structures characterized by 

unconventional layups. Two applicative examples have been discussed regarding the buckling 

maximization of panels layered with 16 plies and ply angles oriented with steps of 7.5° and 15°. The 

results have illustrated the possibility of improving the buckling load of the structure while restricting 

its postbuckling deflections at a given load level. No significant improvement was observed by 

enlarging the design space from ply steps of 15° to 7.5°, but general conclusions cannot be drawn as 

loading conditions were restricted to the case of pure compression. The benefits of considering ply steps 

of 7.5° could be more relevant if more complex loading conditions are investigated. In this sense, 

further investigation is still needed. 

 

7 ACKNOWLEDGEMENTS  

The research leading to these results has been partially funded by the European Commission Seventh 

Framework Programme FP7/2007-2013 under grant agreement n°213371, MAAXIMUS 

(www.maaximus.eu). 

 

8 REFERENCES 

[1] C. Bisagni and R. Vescovini, "Analytical formulation for local buckling and post-buckling 

analysis of stiffened laminated panels," Thin-Walled Structures, 47, 2009, pp. 318-334. 

[2] C. Bisagni and R. Vescovini, "Fast tool for buckling analysis and optimization of isotropic and 

composite stiffened panels," Journal of Aircraft, 46, 2009, pp. 2041-2053. 

[3] R. Vescovini and C. Bisagni, "Buckling analysis and optimization of stiffened composite flat 

and curved panels," AIAA Journal, 50, 2012, pp. 904-915. 

[4] R. Chandra, "Postbuckling analysis of crossply laminated plates," AIAA Journal, 13, 1975, pp. 

1388-1389. 

[5] M.-L. Dano and M.W. Hyer, "Thermally-induced deformation behavior of unsymmetric 

laminates," International Journal of Solids and Structures, 35, 1998, pp. 2101-2120. 

[6] C.G. Diaconu and P.M. Weaver, "Postbuckling of long unsymmetrically laminated composite 

plates under axial compression," International Journal of Solids and Structures, 43, 2006, pp. 

6978-6997. 

[7] K. Nie, Y. Liu, and Y. Dai, "Closed-form solution for the postbuckling behavior of long 

unsymmetrical rotationally-restrained laminated composite plates under inplane shear," 

Composite Structures, 122, 2015, pp. 31-40. 

[8] Y. Zhang and F.L. Matthews, "Postbuckling behaviour of curved panels of generally layered 

composite materials," Composite Structures, 1, 1983, pp. 115-135. 

[9] J. Zhang, Q. Li, and Y. Shu, "Nonlinear stability of unsymmetrically laminated angle-ply shear-

deformable plates in biaxial compression," Thin-Walled Structures, 38, 2000, pp. 1-16. 

[10] R. Vescovini and C. Bisagni, "Two-step procedure for fast post-buckling analysis of composite 

stiffened panels," Computers & Structures, 128, 2013, pp. 38-47. 

[11] E. Byklum and J. Amdahl, "A simplified method for elastic large deflection analysis of plates 

and stiffened panels due to local buckling," Thin-Walled Structures, 40, 2002, pp. 925-953. 

[12] S. Nagendra, D. Jestin, Z. Gürdal, R.T. Haftka, and L.T. Watson, "Improved genetic algorithm 

for the design of stiffened composite panels," Computers & Structures, 58, 1996, pp. 543-555. 

[13] L. Grosset, S. Venkataraman, and R.T. Haftka, "Genetic optimization of two-material 

composite laminates," in 16th ACS Conference, Blacksburg, Virginia, 2001. 


