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Abstract: This study presents a novel approach which combines direct policy search and
multi-objective evolutionary algorithms to solve high-dimensional state and control space water
resources problems involving multiple, conflicting, and non-commensurable objectives. In such
a multi-objective context, the use of universal function approximators is generally suggested to
provide flexibility to the shape of the control policy. In this paper, we comparatively analyze
Artificial Neural Networks (ANN) and Radial Basis Functions (RBF) under di↵erent sets of
input to estimate their scalability to high-dimensional state space problems. The multi-purpose
HoaBinh water reservoir in Vietnam, accounting for hydropower production and flood control,
is used as a case study. Results show that the RBF policy parametrization is more e↵ective than
the ANN one. In particular, the approximated Pareto front obtained with RBF control policies
successfully explores the full tradeo↵ space between the two conflicting objectives, while the
ANN solutions are often Pareto-dominated by the RBF ones.

Keywords: radial basis functions; artificial neural networks; direct policy search;
multi-objective optimization; environmental engineering

1. INTRODUCTION

The optimal operation of water resources systems is a wide
and challenging application domain for optimal control
methodologies and tools. Most of the operation prob-
lems involving water resources systems can be formulated
as Markov decision processes (MDP, see White (1982))
and solved via Dynamic Programming or Reinforcement
Learning (Powell, 2007; Busoniu et al., 2010). For exam-
ple, water reservoir operations are a sequence of release
decisions, made at discrete time instants, over a system af-
fected by stochastic disturbances (i.e., inflows). Similarly,
well field operations are a sequence of pumping rate deci-
sions, made at discrete time instants and di↵erent points
in space, over a system a↵ected by stochastic disturbance
(i.e., groundwater recharge).
Although DP family methods can be applied under mild
assumptions, such as the disturbance process is time-
independent and the objective functions must be time-
separable, they su↵er from a well known dual curse which
prevents them from being employed to solve large-scale
control schemes: i) the curse of dimensionality (Bellman,
1957), namely the computational cost of DP grows expo-
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nentially with state, decision, and disturbance vectors; and
ii) the curse of modeling (Tsitsiklis and Van Roy, 1996),
meaning the use of in-line model-based computations that
make impossible the direct, model-free use of exogenous
information into the controller and the use of process-
based simulation models (e.g., hydrodynamic and ecolog-
ical). Yet, when adapted to the water resources domain,
DP-based approaches su↵er from another curse that might
overly a↵ect the computational requirements: DP methods
are inherently single-objective, while the management of
water resources very often involves multiple, incommensu-
rable objectives. The only way to turn DP into a multi-
objective algorithm is to re-formulate the multi-objective
control problem as a family of parametric single-objective
problems and reiteratively running a single-objective opti-
mization for di↵erent values of the parameters to approx-
imate the continuous Pareto front of the original multi-
objective problem. This remarkably a↵ects the compu-
tational requirements, as the number of single-objective
problems to solve grows exponentially with the objectives
number and most of the water resources problems involves
more than four or five objectives (e.g., Castelletti et al.,
2013a).
Approximate DP methods have been developed to over-
come the above limitations. However, most of them
(e.g., model predictive control, chance-constrained con-
trol) maintains the DP structure, computing approxima-
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tions of the Bellman function and solving single-objective
problems. In this paper, instead, we combine the direct
policy search (DPS, see Rosenstein and Barto (2001))
with multi-objective evolutionary algorithms (MOEAs),
in order to solve high-dimension state and control space
problems and find an approximation of the entire Pareto
front, and the associated control policies, in a single op-
timization run. DPS, also known as parameterization-
simulation-optimization in the water resources literature
(Koutsoyiannis and Economou, 2003), is a simulation-
based approach where the control policy is first param-
eterized within a given family of functions and then the
parameters optimized with respect to the objectives of
the control problem. The selection of a suitable class of
functions to which the control policy belong to is a key
operation, as it might restrict the search for the optimal
policy to a subspace of the decision space that does not
include the optimal solution. In the water reservoir liter-
ature, a number of parameterizations have been proposed
(see Lund and Guzman, 1999, and references therein).
However, they are based largely on empirical or experi-
mental successes and are designed, mostly via simulation,
for single-purpose reservoirs (Lund and Guzman, 1999).
In a multi-objective context similar rules can not easily
inferred from the experience and the use of universal
function approximators (Tikk et al., 2003) is generally
preferred. In principle, universal approximators should be
capable of accurately estimating any unknown continuous
function under very mild assumptions. In practice, the
optimal training of the approximator, and thus its accu-
racy, strongly depends on the parameters domain, on the
dimensions of the input (state) and output (control) sets,
and on the size of the training dataset available (Kurková
and Sanguineti, 2001).
In this paper, we comparatively analyze two among the
most commons universal approximators: Artificial Neural
Networks (Hornik et al., 1989) and Radial Basis Func-
tions (Liao et al., 2003). In particular, we assess their
e↵ectiveness under di↵erent sets of input to estimate their
scalability to high-dimensional state space problems. The
multi-objective optimization of the policy parameters is
performed using the self-adaptive Borg MOEA (Hadka
and Reed, 2013), which has been shown to be highly
robust across a diverse suite of challenging multi-objective
problems, where it met or exceeded the performance of
other state-of-the-art MOEAs (Hadka and Reed, 2012). As
a study site for the analysis we used the HoaBinh water
reservoir system, a multi-purpose regulated reservoir in the
Red River basin (Vietnam). The Red River Basin is the
second largest basin of Vietnam and the HoaBinh reservoir
is regulated to maximize hydropower production and flood
control in Hanoi.

2. DIRECT POLICY SEARCH

Water reservoir operation problems generally require to
take sequential decisions ut at discrete time instants (t =
1, 2, . . .) on the basis of the current system conditions
described by the state vector xt 2 Rn

x . The controls
ut 2 Ut(xt) ✓ Rn

u are determined by a control policy ⇡
and alter the state of the system according to a probabilis-
tic transition function p(xt+1|xt,ut). The combination of
states and controls defines a trajectory ⌧ over the horizon
H, which allows the evaluation of the policy ⇡ as follows:

J⇡ = E[R(⌧)|⇡] =
Z

R(⌧)p⇡(⌧)d⌧ (1)

where R(⌧) defines the objective function of the problem
and p⇡(⌧) is the distribution over trajectories ⌧ . DP family
methods estimate the expected long-term cost of a policy
for each state xt at time t by means of the value function
V ⇡
t (xt), which is defined over a discrete grid of time and

state variables. The optimal policy ⇡⇤ is then derived as
the one maximizing the value function.
Direct policy search (DPS, see Rosenstein and Barto
(2001)) directly operates in the policy space and avoids the
computation of the value function. DPS is based on the pa-
rameterization of the policies ⇡✓ and the exploration of the
parameter space ⇥ with the aim to find a parameterized
policy that optimizes the expected long-term performance
(assumed to be a cost), i.e.

⇡⇤
✓ = argmin

⇡
✓

J✓ (2)

where the policy ⇡✓ is parameterized by parameters ✓ 2
⇥. Finding ⇡⇤

✓ is equivalent to find the corresponding
optimal policy parameters ✓⇤. Problem (2) is dynami-
cally constrained by the transition function of the sys-
tem p(xt+1|xt,ut). However, DPS does not provide any
theoretical guarantee on the optimality of the resulting
operating policies, which are strongly dependent on the
choice of the class of functions to which they belong (Sec-
tion 2.1) and on the ability of the optimization algorithm
to deal with non-linear models and objectives functions,
complex and highly constrained decision spaces, and many
conflicting objectives (Section 2.2).
Di↵erent DPS approaches have been proposed in the last
decades and they di↵er in the methods used for the gen-
eration of the trajectories as well as for the update and
evaluation of the policies (for a review, see Deisenroth
et al., 2011, and references therein). In this paper we use
a DPS method with the following features:

• Model-based approach: dealing with natural systems,
learning a policy through experiments on the real
system is not possible, as it is time consuming and
might require to acquire experience in dangerous
states of the system. A dynamic model replaces the
real system to perform simulations, based on which
the policy is determined.

• Stochastic trajectory generation: the dynamic model
of the system is used as simulator for sampling the
trajectories ⌧ . The system evolves according to the
probabilistic transition function p(xt+1|xt,ut) due to
the presence of stochastic disturbances (e.g., reservoir
inflow). In particular, we assume the average value
over the time series is equivalent to the expected value
over the probability distribution of the disturbances
(Pianosi et al., 2011). The value of the objective
function is approximated via simulation over a suf-
ficiently long historical or synthetically generated re-
alization of the disturbances. Deterministic trajectory
prediction, instead, does not sample the simulated
trajectories but analytically predicts the trajectories
distribution p✓(⌧).

• Episode-based exploration and evaluation: the quality
of a parameter vector ✓ is evaluated as the expected
return computed on the whole episode, with the
parameter vector ✓ that changes at the start of
the episode. Conversely, step-based exploration and
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Algorithm 1 Stochastic model-based, episode-based,
multi-objective DPS.

Initialization:
Random generation of a population {✓1, . . . , ✓P }
Iterations: repeat until stopping conditions are met
- generation of the trajectory ⌧ i via model simulation
according to the probabilistic transition function
p(xt+1|xt,ut) and following the policy ⇡✓i (with
i = 1, . . . , P )
- compute J1

✓i

, . . . , Jq
✓i

, with i = 1, . . . , P
- generation of a new population by selection, crossover
and mutation with respect to the best individuals (i.e.,
the solutions non Pareto-dominated)

evaluation assesses the quality of single state-control
pairs changing the parameters at each time step,
but it requires the evaluation of the value function.
Moreover, episode-based methods are not restricted
to time-separable cost functions, which can depend
on the entire trajectory ⌧ .

• Multi-objective: although most of DPS approaches
relies on gradient-based single-objective optimiza-
tion (e.g., Peters and Schaal, 2008), water reser-
voir problems are generally framed in complex socio-
economic contexts requiring to consider multiple,
non-commensurable operating objectives. The single-
objective formulation (eqs. 1-2) is replaced by a vec-
tor of q objective functions J = [J1, . . . , Jq]. Multi-
objective evolutionary algorithms (MOEAs) can be
adopted in DPS problems to obtain an approximation
of the Pareto front in a single run of the algorithm.

A tabular version of the stochastic, model-based, episode-
based, multi-objective DPS approach is reported in Algo-
rithm 1. In the next two sections the universal approxi-
mators and the MOEA algorithm considered in this study
are described.

2.1 Universals approximators

In the literature, a number of parameterizations of water
reservoir operating rules have been proposed. However,
most of them are based on empirical or experimental
successes and were designed, mostly via simulation, for
single-purpose reservoirs (Lund and Guzman, 1999). In
complex multi-objective problems, the adoption of univer-
sal approximators is generally preferred as it provides more
flexibility to the shape of the control policy. In this paper,
we define the parameterized policy ⇡✓ using Artificial
Neural Networks (e.g., Hornik et al., 1989) and gaussian
Radial Basis Functions (e.g., Liao et al., 2003). The policy
input vector �t includes the system state xt, with the
resulting policy characterized by a closed feedback loop.
Moreover, �t includes a time index to identify the day of
the year. Additional variables might be considered, such
as past observations of the stochastic disturbances.

Artificial Neural Networks

Using ANN to parameterize the policy, the k-th compo-
nent in the control vector ut (with k = 1, . . . , nu) is defined
as:

uk
t = ak +

NX

i=1

bi,k i(�t · ci,k + di,k) (3)

where N is the number of neurons  (·) (i.e., hyperbolic
tangent sigmoid function, which ensures universal approx-
imation properties (Hornik et al., 1989)), �t 2 RM the
policy input vector, ak, bi,k, di,k 2 R, ci,k 2 RM the
ANN parameters. The parameter vector ✓ is therefore
defined as ✓ = [ak, bi,k, ci,k, di,k], with i = 1, . . . , N and
k = 1, . . . , nu, and belongs to Rn

✓ , where n✓ = nu(N(M +
2) + 1).

Radial Basis Functions

In the case of RBF policy, the k-th release decision in the
vector ut (with k = 1, . . . , nu) is defined as:

uk
t =

NX

i=1

wi,k'i(�t) (4)

where N is the number of RBFs '(·) and wi,k the weight of
the i-th RBF. The weights are formulated such that they
sum to one (i.e.,

PN
i=1 wi,k = 1) and are non-negative (i.e.,

wi,k � 0 8i, k). The single RBF is defined as follows:

'i(�t) = exp

2

4�
MX

j=1

((�t)j � cj,i)2

b2j,i

3

5 (5)

where M is the number of input variables �t and ci,bi are
the M -dimensional center and radius vectors of the i-th
RBF, respectively. The centers of the RBF must lie within
the bounded input space and the radii must strictly be
positive (i.e., using normalized variables, ci 2 [�1, 1] and
bi 2 (0, 1]). The parameter vector ✓ is therefore defined
as ✓ = [ci,j , bi,j , wi,k], with i = 1, . . . , N , j = 1, . . . ,M ,
k = 1, . . . , nu, and belongs to Rn

✓ , where n✓ = N(2M +
nu).

2.2 Multi-objective evolutionary algorithms

Multi-objective evolutionary algorithms (MOEAs) are it-
erative search algorithms that evolve a Pareto-approximate
set of solutions by mimicking the randomized mating,
selection, and mutation operations that occur in nature
(Coello Coello et al., 2007). These mechanisms allow
MOEAs to deal with challenging multi-objective prob-
lems characterized by multi-modality, nonlinearity, and
discreteness (see Nicklow et al. (2010) for an extensive
review of MOEAs applications in water resources).
In this paper, we use the self-adaptive Borg MOEA (Hadka
and Reed, 2013), which employs multiple search operators
that are adaptively selected during the optimization, based
on their demonstrated probability of generating quality
solutions. In addition to adaptive operator selection, the
Borg MOEA assimilates several other recent advances in
the field of MOEAs, including an "-dominance archiving
with internal algorithmic operators to detect search stag-
nation, and randomized restarts to escape local optima.
The flexibility of the Borg MOEA to adapt to challenging,
diverse problems makes it particularly useful for address-
ing DPS problems, where the shape of the operating rule
and its parameter values are problem-specific and com-
pletely unknown a priori.
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3. CASE STUDY DESCRIPTION

The Red River Basin (Figure 1) is the second largest
basin of Vietnam, with a total area of about 169,000 km2,
of which 48% in China, 51% in Vietnam, and the rest
in Laos. Of three main tributaries, the Da River is the
most important water source, contributing for 42% of the
total discharge at SonTay. Since 1989, the discharge from
the Da River has been regulated by the operation of the
HoaBinh reservoir. With a storage capacity of 9.8 billion
m3, the HoaBinh reservoir is the largest reservoir in use in
Vietnam and accounts for 15% of the national electricity
production. The dam operation also contributes to flood
control, especially to protect the densely populated city
of Hanoi. Two operating objectives are formulated: i)
hydropower Jhyd, defined in eq. (6a) as the daily average
energy production (kWh/day) at the HoaBinh hydropower
plant, which depends on the reservoir level hHB

t and the
turbined flow qTurb

t+1 ; ii) flooding Jflo, defined in eq. (6b)
as the daily average excess level (cm2/day) in Hanoi with
respect to the flooding threshold h̄ = 950 cm.

Jhyd =
1

H

H�1X

t=0

Gt+1(h
HB
t , qTurb

t+1 ) (6a)

Jflo =
1

H

H�1X

t=0

max(hHanoi
t+1 � h̄, 0)2 (6b)

The reservoir is modeled by a conceptual water-balance
equation, the hydropower plant by a physically-based
model, and flow routing from the reservoir to the city of
Hanoi by a lumped, data-driven model. The constraints
of the problem are embedded in the model (Piccardi
and Soncini-Sessa, 1991), thus guaranteeing the feasibility
of the designed solutions. The state variable xt is the
reservoir storage and the control ut is the release decision.
The system is a↵ected by a stochastic disturbance vector
qt+1, comprising the inflow to the reservoir qt+1 and
the lateral flows in the Thao and Lo Rivers qlatt+1 =
qThao
t+1 + qLo

t+1 which contribute to the flow in Hanoi. The
modeling time step is 24 hours. In the adopted notation,
the time subscript of a variable indicates the instant
when its value is deterministically known. A data-driven
feedforward neural network provides the level in Hanoi
given the HoaBinh release and the tributaries’ discharges.
Further details about the model of the HoaBinh system
can be found in Castelletti et al. (2012).

3.1 Experiment Setting

The operating policy of the HoaBinh reservoir is param-
eterized using ANN and RBF with di↵erent settings in
terms of policy input and number of neurons/basis, as
follows:

A) 3 inputs (i.e., sin(2⇡t/365), cos(2⇡t/365) and xt) with
4 neurons/basis, n✓ = 21 and 28 for ANN and RBF,
respectively;

B) 4 inputs (i.e., sin(2⇡t/365), cos(2⇡t/365), xt and qt)
with 6 neurons/basis, n✓ = 37 and 54 for ANN and
RBF, respectively;

C) 5 input (i.e., sin(2⇡t/365), cos(2⇡t/365), xt, qt and
qlatt ) with 8 neurons/basis, n✓ = 57 and 88 for ANN
and RBF, respectively;
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Fig. 1. The Red River basin with the HoaBinh reservoir
considered in this study.

We include time t among the policy inputs by means of the
terms sin(2⇡t/365) and cos(2⇡t/365), to take into account
the time-dependency and cyclostationarity of the system
and, consequently, of the control policy (Pianosi et al.,
2011). Moreover, the past observations of the inflows qt
and qlatt allows to improve the control ability of the policy
enlarging the information on the system condition. The
number of neurons/basis increases with the number of
policy inputs and was fixed via trial-and-error. The di-
mensionality of the problem increases moving from setting
A to settings B and C, where DP family methods cannot
be applied as the state vector comprises the time index,
the reservoir storage, and the additional states required to
model the inflows qt and qlatt .
Since the Borg MOEA has been demonstrated to be rela-
tively insensitive to the choice of parameters, we use the
default algorithm parameterization suggested by Hadka
and Reed (2013). Each optimization was run for 200,000
function evaluations. To improve solution diversity and
avoid dependence on randomness, the solution set from
each formulation is the result of 10 random optimization
trials. In total, each optimization comprises 2 million sim-
ulations over the horizon 1962-1969 and requires approxi-
mately 5 hours on a 2 processors Intel Xeon E5-2660 2.20
GHz with 96 GB Ram. The performance of the resulting
policies is then computed over the validation horizon 1995-
2004, with the final set of Pareto-optimal policies for
each input settings defined as the set of non-dominated
solutions from the results of all the optimization trials.

4. APPLICATION RESULTS

Figure 2 reports the approximated Pareto front obtained
with the two universal approximators (i.e., ANN and RBF)
for the three input settings simulated over the validation
horizon (1995-2004). The arrows show the direction of
preference for each objective, with the ideal solution in the
top-left corner of each panel. The approximated Pareto
front obtained with RBF policies outperforms the one
obtained with ANN policies over all the input sets. In
general, RBF policies allow a better exploration of the
tradeo↵ between Jflo and Jhyd, with the RBF compro-
mise solutions Pareto-dominating the corresponding ANN
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Fig. 3. Yearly patterns of the HoaBinh storage and release
over the validation horizon (1995-2004) under the best
ANN (red) and RBF (blue) policy for hydropower
production (panel (a)) and flood control (panel (b))
for input setting C.

solutions. At the two extremes of the Pareto front, the
performance of ANN and RBF is similar. ANN policies
indeed attain the same maximum of hydropower produc-
tion of RBF policies (see the top-right part of each panel),
with a limited improvement in experiment setting A. This
is confirmed in Figure 3a, which shows that the yearly
patterns of the reservoir storage and release under the
ANN and RBF policies attaining the maximum of Jhyd are
rather similar (input setting C). Conversely, although both
ANN and RBF attain approximately the same minimum
value of the flooding objective of Jflo (see the bottom-
left part of each panel in Figure 2), RBF policies are able
to obtain this performance at higher levels of hydropower
production. The reason can be inferred from Figure 3b,
which shows that the best RBF policy for flood control
(blue) stores more water in the summer period than the

Table 1. Metrics values of the approximated
Pareto front shown in Figure 2.

Gen. Distance "-indicator Hypervolume

A) ANN 0.0824 0.476 0.199
RBF 0.0207 0.183 0.491

B) ANN 0.0952 0.533 0.0921
RBF 0.0113 0.0998 0.579

C) ANN 0.0787 0.531 0.110
RBF 0.000713 0.0797 0.658

best ANN policy (red) and therefore can continuously
guarantee some hydropower release, while the ANN policy
often generates very low releases in this period.
The quality of the two approximate Pareto fronts in Figure
2 is further analyzed by means of three formal metrics,
namely generational distance, additive "-indicator, and
hypervolume, which respectively account for convergence,
consistency, and diversity (Knowles and Corne, 2002; Zit-
zler et al., 2003). In principle, these metrics should be
computed with respect to the optimal Pareto front. In
practice, since the computation of the optimal Pareto front
via DP might be impracticable due to the dimensional-
ity of the state and objective function vectors, its best
approximation (also called reference set) is considered.
This latter is constructed by selecting all the solutions
non Pareto dominated obtained in any optimization tri-
als. Table 1 reports the three metrics evaluated for the
di↵erent approximated Pareto front shown in Figure 2.
The values of the metrics confirm the superiority of the
RBF parametrization of the control policies over the ANN
one. Hypervolume values of RBF approximations are three
to six times greater than the ones obtained by ANN.
Similarly, the "-indicator values for RBF are significantly
lower than the ones for ANN, due to multiple gaps in some
tradeo↵ regions. Finally, also the generational distance
confirms that RBF solutions outperform the ANN ones.
The superiority of RBF over ANN policies may be ex-
plained by the di↵erent definition of the parameter space
in which the solutions are searched for. In the case of RBF,
the parameter space is the Cartesian product of the subsets
[�1, 1] for each center cj,i and (0, 1] for each radius bj,i and
weight wi,k. In the case of ANN, instead, parameters have
no direct relationship with the policy inputs. In this work,
the domain �10000 < ak, bi,k, ci,k, di,k < 10000 has been
used as in Castelletti et al. (2013b). Although this large
domain should guarantee flexibility to the ANN structure
and prevents that any Pareto-optimal solution be excluded
a priori, it makes the search more di�cult and slow down
convergence. It is worth noting that the di↵erence in the
number of parameters (i.e., 21 for ANN and 28 for RBF
with setting A, which increases to 57 for ANN and 88 for
RBF with setting C) seems instead to play a minor role.

5. CONCLUSIONS

The paper presents a comparative analysis of two uni-
versal approximators, namely Artificial Neural Networks
and Radial Basis Functions, in multi-objective Direct Pol-
icy Search problems. The regulation of the multi-purpose
HoaBinh water reservoir in Vietnam is used as a case
study. The combination of DPS with the Borg MOEA
shows the potential to overcome the limitation of dynamic
programming family methods. The proposed method suc-
cessfully solves high-dimensional state and control space
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problems and finds an approximation of the entire Pareto
front, and the associated control policies, in a single opti-
mization run. The comparison of ANN and RBF control
policy parameterizations suggests the superiority of RBF,
which successfully explores the full tradeo↵ space between
the two conflicting objectives. This result can be probably
explained by the smaller parameters space of RBF with
respect to the one of ANN. Although accurate tuning and
preconditioning of ANN policies improve the performance
(Castelletti et al., 2013b), they require a priori information
about the shape of the optimal policy. RBF policies attain
good results without any preconditioning, thus represent-
ing a potentially e↵ective, case-independent option.
Future research will focus on estimating the sensitivity of
each parameterization to the underlying architecture (e.g.,
comparison of ANN and RBF with equal number of pa-
rameters and varying number and type of neurons/basis).
Moreover, we will extend the comparative analysis by
including other approximators, such as fuzzy systems or
support vector machine, and by testing the scalability of
each control policy approximation also with respect to the
dimension of the output (control) vector.
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