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ABSTRACT
Exploration of unknown environments is relevant for many
robotics applications, like map building and coverage. Sev-
eral works in the literature have proposed exploration strate-
gies that drive a mobile robot to greedily choose where to
go next in order to incrementally map an initially unknown
environment. In this paper, we theoretically study the worst
and average traveled distance required to explore graph-
based environments by some exploration strategies that con-
sider distance and information gain in selecting the next
destination location.
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1. INTRODUCTION
The mainstream approach to robot exploration of initially

unknown environments is greedy [6], where candidate des-
tination locations are usually selected on the frontiers be-
tween the known and the unknown portions of the environ-
ment [7], according to an exploration strategy that considers
different criteria, like distance from the current position of
the robot [7] and expected information gain of the candidate
locations (e.g., [5]), in a utility function.

The assessment of such exploration strategies performed
in the field of robotics is mainly empirical (e.g., [1, 2]). The
computational geometry and the theoretical computer sci-
ence communities have studied the exploration problem, but
the derived bounds are often relative to specific, and some-
times not fully realistic, contexts (e.g., closed tours for graph
exploration [3]).
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To the best of our knowledge, very few works have consid-
ered more practical settings for deriving bounds on the qual-
ity of solutions produced by exploration strategies, promi-
nently the work in [4] and [6]. In that approach, a single
robot should explore all the vertices of an undirected graph,
whose edges have unitary cost, with a sensor that allows the
perception of the current vertex and of an arbitrary num-
ber of other vertices. Worst-case lower and upper bounds
independent of the sensor range are given for the number
of edges that a robot has to traverse to explore the whole
graph.

In this paper, we first refine and complement the anal-
ysis of [4] and [6] by deriving some worst-case bounds on
the number of edge traversals for some exploration strate-
gies that use distance, information gain, and a combination
of them as criteria. Our bounds explicitly embed the sensor
range r and a termination criterion that prescribes the per-
ception of a fraction p ∈ (0, 1] of the vertices, as common in
some robotics applications, such as search and rescue. Sec-
ond, we address an average-case analysis on the performance
of some exploration strategies in a class of graphs that model
indoor environments, which, to the best of our knowledge,
has never appeared in the literature.

2. EXPLORATION PROCESS MODEL
The environment is represented by an undirected, con-

nected, unweighted, and finite graph G = (V,E), where the
vertices V correspond to the locations where an autonomous
mobile robot can move and the edges E represent the direct
connections between these locations (as in [6]).

The robot operates according to the following steps: (0)
starting from an initial vertex v0 having no a priori knowl-
edge about the graph G; at a generic time step i, while
being in vi, (1) it perceives the surrounding environment
generating Pi, that is the set of vertices within a finite range
r ∈ R>0 from vi; (2) it integrates the perceived data within
the current knowledge about the environment obtaining the
set of vertices Vi; (3) it reaches a vertex in Fi (which are
the vertices still not perceived and neighbors of at least one
vertex in Vi), chosen according to an exploration strategy
S , and starts again from (1). This process continues until
a percentage p ∈ (0, 1] of the vertices of G are perceived by

the robot, namely until |Vi|
|V | ≥ p. So, in the end, the robot

follows a sequence of vertices P = 〈v0, v1, · · · , vk〉, called
the exploration path, composed of selected frontier vertices
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vi+1 ∈ Fi, with 0 ≤ i < k. Our perception model allows
the robot to acquire knowledge about the incident edges of
vertices v ∈ Pi and to recognize whether there is an edge be-
tween two known vertices v′, v′′ ∈ Vi. We assume that the
perceptions and the movements of the robot are error-free
(i.e., deterministic). As a consequence, the robot perfectly
knows its position in the environment.

We consider exploration strategies S that evaluate a can-
didate vertex v ∈ Fi from the current position vi adopting
the following criteria:

• di(vi, v) is the geodesic distance between vi and v in
the graph induced by Vi on G, augmented with v and
with the edges (in E) between v and vertices in Vi,

• g(v, Vi) is the expected information gain at v, and is
equal to the number of vertices the robot could per-
ceive in v minus those already known.

We consider three exploration strategies:

• Sd, which selects locations by simply minimizing the
distance d() (as for example in [6]),

• Sg, which chooses candidate locations maximizing the
information gain g() (as, for example, in [1]),

• Sdg, based on Sd but breaking ties favoring vertices
with larger information gain g().

In all the three cases, further ties are broken randomly with
uniform probability.

3. WORST- AND AVERAGE-CASE RESULTS
Table 1 summarizes the worst-case bounds we derived for

the three exploration strategies (due to space constraints,
proofs are not reported).
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Table 1: Worst-case upper (left) and lower (right) bounds on
the number of edge traversals for Sd, Sg, and Sdg, on any
undirected, connected, unweighted, and finite graph G =
(V,E), given p = 1 and r ∈ R≥1.

Sg is the exploration strategy with the highest worst-case
upper bound, while Sd and Sdg have the same worst-case
upper bounds, namely, there is no gain in the worst case
using, besides distance, information gain as evaluation cri-
terion. This is in line, for example, with some results ob-
tained in real (or realistically simulated) environments that
suggest that sometimes using information gain in the explo-
ration strategies does not shorten the paths for completely
exploring the environments [2, 5].

Since our bounds, differently of those of [4] and [6]. ex-
plicitly consider the range r, it is possible to observe that
the impact of increasing perception range r on the worst-
case length of exploration is significant for small values of
r, becoming less significant for large values of r. This holds
for all exploration strategies. Despite the fact that they
have the same asymptotic complexity of those of [4] and [6]
that do not explicitly embed p and r, the bounds we found
have lower actual values. More generally, our analysis shows
that with increasing r, the exploration process is shortened,
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Figure 1: Example of graph that belongs to G , vertices are
labeled as C=corridor, R=room, and E=entrance.

which is an intuitively evident result consistent with several
experimental findings (e.g., [1]).

Another insight is that, in the worst case, considering a
percentage p of vertices to perceive has the same effect of
scaling (by p) the number of vertices of the graph repre-
senting the environment. Given the worst-case bounds, an
exploration strategy that considers only distance as criterion
scales with p better than one that just considers information
gain.

To distinguish the performance between Sd or Sdg, we
performed an average-case analysis and we obtained an es-
timate on the difference between the numbers of edges tra-
versed by the robot using Sd or Sdg in a specific class G
of graphs that model indoor environments (such as the one
depicted in Figure 1). The result (not reported due to space
limit) shows that, differently from the worst case, consider-
ing expected information gain in exploration strategies pro-
vides an advantage for graphs in G . This can be intuitively
explained as the robot visits all rooms encountered without
the need to go back to visit some rooms left behind while
traversing the corridor (see, e.g., Figure 1). This result is
also supported by simulated experiments that we conducted
in randomly generated environments that belongs to G .

Our long-term goal is to aid the design of efficient explo-
ration strategies from the insights provided by our analysis.
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