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1. Introduction

1.1. Review

Fractal dimension (FD) was proved to be a useful quan-
tifier for the structure of a wide range of idealized and nat-
ural occurring objects, from pure mathematics, through
physics and chemistry, to biology and medicine [1,2].

The fundamental characteristic of fractal objects is that
their measured metric properties (such as length, area or
volume) depend on the scale of measurement. A great
number of physical, biological, even economical systems
tend to present similar behaviors on different scales of
observation. This phenomenon is often expressed by statis-
tical scaling laws in time domain or spatial domain, such as
the power-law behavior of real-world physical systems [3].

FD is a quantifier that measures the rate of addition of
structural details with increasing magnification, scale or
resolution. The fractal dimension works therefore as a
quantifier of complexity [1,2].

Espinoza-Valdez et al. [2] built and validated a fractal
model of the renal arterial tree, for which they used the
box counting method to compute FD and correlated the
fractal dimension of the biological structure to its physio-
logical functionality. In other words, fractal dimension
might determine whether a renal vascular structure is
capable of performing physiological functions [2].

Since many signals produced by biological systems, first
of all the human body, shows complex chaotic patterns
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and irregular behaviors, exactly as the stock exchange time
series, it is interesting to study these signals in terms of
complexity using FD.

Analysis of complexity of such a signal helps to study
the system itself, in particular dynamics of transitions
between discrete system’s states [4]. The FD, that is charac-
teristic of the complexity of the curve, can be computed
directly in the time domain by using some algorithms
specifically developed [1,3,4].

Some of these algorithms are explained in detail by
Lopes and Betrouni in their review [3].

For planar curves and one dimensional signals, the frac-
tal dimension ranges between 1.0 (straight lines) and
about 1.5 (highly spiked waves) [5,6]. The more complex
the curve, the higher the FD.

It should be kept in mind that FD is not interesting as an
absolute measure, but as a relative measure. This means
that to identify events in the signal, we shall look to time
variations of the FD value [1,4,7,8].

Fractal dimension has been widely used as a nonlinear
technique to study different biological signals, such as
Electroencephalography (EEG), Electromyography (EMG),
Surface Electromyography (sEMG), heart rate, etc. that
are well known to exhibit an irregular and chaotic behav-
ior. Some examples can be found in the work of Accardo
et al. [7] who studied the FD of EEG time series by applying
the time-domain algorithm proposed by Higuchi in 1988
[9]. Accardo found that the FD approach allowed to identify
EEG events. Some easily detectable events through FD
were: epileptic seizures, identified by a lower FD of the
EEG signal, eyes opening and closing and speech, charac-
terized by a higher FD of the respective EEG signal. Accardo
[7] found that FD variations corresponded to power spec-
trum variations. I.e. in case of epileptic seizures, the lower
FD of EEG signal corresponded to an increase in alpha band
power of the same EEG signal.

A similar work on EEG was performed by Klonowski [4].
He showed that the events of eye opening and eye closing
produced variations in the FD of the respective EEG signal
(channel P4-O2). Klonowski found also that FD was able to
detect EEG events in case of application of magnetic fields
to the brain or while performing phototherapy [4].

As the EEG signal is well known to have a complex cha-
otic behavior, detecting events into the signal is extremely
useful for medical purposes. Events may be macroscopic
changes of the signal pattern associated to transitions such
as changing of the state of consciousness, epileptic sei-
zures, etc. Recent studies showed that an event can also
be identified by a sequence of short time transitions, or
intermittency, in the EEG pattern [10–12]. Also intermit-
tency patterns can be associated to the level of cooperation
of different areas of the brain [11]. Allegrini et al. [11,12]
adopted a fractal model to describe intermittency and pat-
tern change in EEG signal. Paradisi et al. [10] found that
intermittency is connected to changes in the state of con-
sciousness and reflected to the computed value of FD.
Therefore changes in the FD correlate with changes in the
state of consciousness and FD is extremely useful for pat-
tern recognition and clinical interpretation of EEG [8,10].

Tagliazucchi et al. [13] computed FD on 2D images of
the brain obtained by functional magnetic resonance
(fMRI). They used box counting method to compute FD
and found that FD may help to identify active areas of
the brain and cooperation between neurons. Another study
was conducted by Fingelkurts et al. [14] that studied brain
mechanisms of perception and consciousness in terms of
behavior of local neuronal assemblies. They adopted a
chaotic-fractal approach to study the structure of EEG
signal, for which the construction of a dynamical model
is not easy [14].

Another interesting work is the one made by Cimolin
et al. [15]. They used the box counting method [3] to com-
pute FD of Center of Pressure (CoP) trajectory and showed
that the FD approach provided useful information in addi-
tion to the traditional analysis of CoP trajectory. CoP is the
projection to the ground of the Center of Mass of the body,
and its trajectory can be obtained by a static posturogra-
phy analysis. CoP trajectory is a measure of the whole body
dynamics and represents various neuro-musculoskeletal
components acting at different joints level [15]. CoP trajec-
tory is difficult to interpret clinically and there is need of
reliable approaches to extract useful information [15].
The study [15] was based on the comparison between
pathological subject and control group and the FD was
proved to be able to discriminate between the two groups.
In fact, the pathological subjects were characterized by
higher values of FD than the control group and the FD
was indicative of the complexity of the stabilometric track
during postural maintenance.

Analysis and interpretation of EMG signals are interest-
ing as today this kind of signals are widely used in the clin-
ical practice for diagnosis of neuromotor disorders and to
study muscular condition, neuromuscular lesions and
reflex responses [16]. In other words, EMG allows to deter-
mine ON–OFF activation status of a muscle and timings.
Actual research is studying methods to extract more infor-
mation from this complex signal. EMG is also used for
other engineering applications such as the feedback con-
trol of prosthetic devices and control of rehabilitative
robotics [16].

EMG is a voltage signal that represents the electrical
activity of muscles. The signal is produced by the mem-
brane of the motor units during muscular contractions.
The electrical signal is generally collected by needle elec-
trodes inserted directly into the muscle while the patient
is asked to perform a contraction. This highly invasive
method allows to collect electrical charge directly from
the membrane of the motor unit and allows a detailed
study of motor units recruitment [16]. A less invasive
method consists in the use of disposable surface elec-
trodes, based on Ag/AgCl conductive gel, applied directly
on the skin over the muscle and fixed by adhesive tape.
The gel allows electrical coupling between the anatomical
tissues and the metal electrode. The surface electrode is
placed on a specific position over the muscle, as defined
by SENIAM recommendations [17] and allows to collect
the overall electrical signal produced by the contraction
of the muscle. This technique is named surface EMG
(sEMG). It is obviously less accurate than standard EMG
but it is non-invasive and can be used in studies involving
motion of the subject, heavy physical activity and it can be
easily synchronized with motion capture instrumentation



[18–21]. E.g. the sEMG was used to study gait patterns of
subjects with spastic paraparesis and diplegia [22].

The sEMG generally requires a complex post-processing
due to noise superimposed to the signal. Rectification, inte-
gration and power spectrum computing are required to
extract information about activation and timings [20,21].
Alternative processing algorithms, based on fractal dimen-
sion, were developed. These algorithms work on the raw
signal and do not require pre-filtering [1,3,5,7].

Gupta et al. [23] studied the fractal dimension of sEMG
signal from the biceps during isokinetic flexion–extension
of the arm and different loading conditions. They used
Katz’s algorithm [5] to compute fractal dimension of the
signal obtained from electrodes placed over the biceps.
The subjects were keeping different loads in the hand
and were asked to flex–extend the arm at different speed.
Gupta et al. [23] found that FD increased with increasing
load and increasing flexion–extension speed. The FD was
the lowest when the subject had no load placed on the
hand and the flexion–extension time was the highest,
while FD was the highest when the subject had the highest
load in the hand and the flexion–extension time was the
lowest. The correlation between FD and hand load was
linear. Gupta et al. [23] concluded that the increase in
EMG signal irregularity, measured by fractal dimension,
indicated an increase in activation level of the muscle.

Liu et al. [6] also studied fractal dimension of EEG sig-
nals. They acquired human EEG signals while the subjects
were holding a force measurement device. Each subject
exerted handgrip at different force levels. The study
resulted in the finding that computed FD of EEG had a lin-
ear correlation with the measured force exerted. Liu et al.
[6] also tested different computation algorithm for FD
and they concluded that Katz’s algorithm was the most
sensitive to signal variations and the most able to quantify
motor-related signals.

Other studies showed that fractal dimension of EMG is
sensitive to magnitude and rate of muscle force generated
and also fractal dimension correlates to the muscle’s
potential in athletics. The better the athlete the higher
the fractal dimension. The fractal dimension is representa-
tive of the training level [24].
1.2. Aim of the study

The purpose of this work is to study, in terms of Fractal
Dimension, the surface EMG (sEMG) produced by the Rec-
tus Femoris during a vertical jump. As the Rectus Femoris
is the main erector muscle of the leg, it plays a relevant role
in vertical jump and we expect to find a correlation
between the FD of the sEMG from Rectus Femoris and
the height of the jump.
2. Materials and methods

2.1. Subjects

The subjects included in this study were 20 healthy
subjects, 8 males and 12 females, without any motor skills
disorders or dyspraxia. The inclusion criteria were: male or
female subject, aged above 10 years old, without any
neuro-motor related disorder and without any postural
problem. The subject should not have undergone any kind
of musculoskeletal surgery.

Every subject was evaluated by a physiatrist and by a
physiotherapist right before the trials.

The mean age of subjects was 22 years with st. dev of
6.2 and range from 11 to 28. The mean height was
160 cm with st. dev of 15 cm. The mean weight was
57 kg with st. dev of 18 kg.
2.2. Equipment and data acquisition

Motion and biomechanics data were acquired in the
GaitLab of IRCCS San Raffaele Pisana, Roma, Italy. The lab
was a gym of about 100 m2 designed for rehabilitation pur-
poses and supervised by a physiotherapist. Kinematic data
was recorded by and an optoelectronic motion capture sys-
tem, composed of 12 TVC and synchronized video record-
ing system (BTS ELITE, by BTS Italy). sEMG was recorded
by a wireless 8 channel surface EMG recorder (BTS Pocket
EMG, BTS Italy). EMG and kinematics data recordings were
time-synchronized.

EMG was recorded through pre-gelled electrodes
(Ag/AgCI gel, Kendall Disposable Surface EMG/ECG/EKG
Electrodes) applied on the skin of the subject and
connected to the EMG recorder through electrical probes.
The electrodes and electrical probes were securely
fastened to the skin by using adhesive tape, in order to
reduce noise due to motion of the cables and in order to
do not interfere with subject’s motion. sEMG electrodes
were positioned on the Rectus Femoris of both legs,
according to SENIAM directions [17]. The sampling
frequency was 1000 Hz.

Kinematic data was acquired by an IR-reflecting spher-
ical marker (diameter 10 mm) applied on the skin of the
subject, over the sacrum bone. The optoelectronic system
recorded the motion of the subject by reconstructing the
3D coordinates (x, y, z) of the marker in a 3D virtual space.
Kinematics data was recorded at a sampling frequency of
100 Hz with a calibrated volume of about 8 m3.

In every session of data acquisition, the subject was
asked to stand still in the center of the calibrate volume
for a few seconds, in order to record the reference position.
Then the subject was asked perform sequentially three ver-
tical jumps at three different heights (a small jump, a med-
ium jump and the highest they could). During the whole
trial, the subjects were asked to keep their hands fixed
on the sides of the pelvis, in order to inhibit the effect of
the arm motion on the jump [25].

For each subject, from 5 to 7 sessions were recorded,
with a resting time of about 3 min between consecutive
sessions, in order to avoid fatigue effects. We therefore
had at least 15 jumps for each subject.
2.3. Data processing

Data was processed by using BTS ELITE and BTS Track-
lab (BTS, Italy) software in order to reconstruct and track
the absolute 3D coordinates of each marker.



The marker on the sacrum was rigidly coupled with the
pelvis so it allowed an approximate reconstruction of the
center of mass (COM) trajectory during the jump [26].
The height of the jump was computed as the difference
between the maximum value reached by the vertical com-
ponent of the sacrum marker, and the value found during
rest (standing) conditions. Track of the sacrum was then
imported in MATLAB and processed by ad-hoc built scripts.

The raw sEMG signal was also imported in MATLAB and
fractal dimension was computed directly on the raw signal
as directed by Katz’s algorithm. The Katz’s algorithm [5]
was chosen because it was demonstrated to be the most
sensitive and most appropriate to identify and quantify
complexity variations in biomedical signals, especially for
signals related to motion analysis [6,27].

Katz’s algorithm was implemented as directed by [5]
and is briefly explained in the following:

The general definition of the fractal dimension, FD, of a
planar curve is:

FD ¼ log ðLÞ
log ðdÞ ð1Þ

where L is the total length of the curve, and d is the diam-
eter (the planar extent) of the curve.

For waveforms, which are ordered sets of (x, y) point
pairs, the total length L is the sum of the distances between
successive points:

L ¼
X

distði; iþ 1Þ ð2Þ

where dist(a, b) means the distance between two point
pairs a = (x, y) and b = (u, v).

As waveforms have a natural starting point, the planar
extent can be considered to be the farthest distance
between the starting point (point 1) and any other point
(point i) of the waveform:

d ¼max ðdistð1; iÞÞ ð3Þ

For discrete domain waveforms, fractal dimension com-
putation needs to be normalized to the average step or the
average distance (a) between successive data points. With
the previous considerations the formula (1) can be adapted
to discrete domain one dimensional waveforms as follows:

FD ¼
log L

a

� �

log d
a

� � ¼ log ðnÞ
log ðnÞ þ log d

L

� �� � ð4Þ

where n = L/a is the number of steps in the curve.
Processing algorithm was implemented according to

formulas (2)–(4).
For the planar curves (waveforms) that proceeds ‘‘for-

wards’’ monotonically, the fractal dimension ranges
between 1.0 (straight lines) and about 1.5 (highly spiked
waves). True waveforms can never become sufficiently
convoluted to fill a plane, thus waveform will never have
a fractal dimension approaching the dimensionality of a
plane (2.0) [5].

To compute FD changes over the time, the signal was
segmented into windows composed of 250 samples, corre-
sponding to a time window of about 250 ms at a sampling
frequency of 1000 Hz, as suggested by Accardo et al. [7].
Katz’s algorithm was then applied to the window. The
window was moved along the signal with an overlapping
of 50% and a new FD vs time signal was composed.

The FD was computed for both left and right Rectus
Femoris sEMGs. Peak values of FD were detected for each
jump and then averaged between left and right.
2.4. Statistical analysis

For each subject the maximum height reached in each
jump and the maximum value of respective fractal dimen-
sion were collected and tabled. This was repeated for every
jump made by each subject. Statistical analysis was con-
ducted by using MS Excel data analysis tools. A scatter plot
was obtained for each subject by plotting fractal dimension
versus height of the respective jump. Least squares linear
regression and its relative R2 coefficient was computed
for each plot by using Excel functions in order to study cor-
relation between FD and height of the jump. The R2 coeffi-
cient is a measure of the strength of the linear relationship
and correlation between two variables. R2 ranges from 0 to
1. As R2 approaches 1, it means that there is a strong corre-
lation between the variables. On the contrary, if R2

approaches 0, it means that there is no correlation between
variables.

Analysis was repeated for each subject and results were
reported into a table.
2.5. Study approval

This study was approved by the Institutional Review
Board at the IRCCS San Raffaele Pisana, Roma, Italy. All sub-
jects (and/or their parents for underage children) were
informed and signed consent prior to the participation.
3. Results

Fig. 1 shows signals acquired and processed for a sub-
ject. On the 1st row the vertical component of sacrum is
plotted against time. The three jumps can be observed:
they begin with a loading phase, followed by a rising phase
where the maximum height is reached, then the descend-
ing phase and stabilization phase. On the 2nd and 3rd rows
are shown the sEMG signals recorded from left Rectus
Femoris and right Rectus Femoris. The bursts represent
the contraction of the muscles. On the last row is shown
the average fractal dimension obtained by averaging the
fractal dimensions of the left channel and right channel
EMG. The maximum value of FD corresponds to the maxi-
mum eccentric contraction of the muscle that corresponds
to the end of loading phase and the beginning of upwards
movement. These results are similar for every subject.

Maximum value of fractal dimension and maximum
height reached in each jump were compared for correla-
tion. A sample result (subject 1 in Table 1) is shown in
Fig. 2. On the vertical axis the fractal dimension is
represented, on the horizontal axis the height of the jump
is represented. Each dot represents a different jump
recorded for the same subject.



Fig. 1. Example of a trial recording. On the 1st row: the vertical displacement of sacrum. On 2nd and 3rd rows: sEMG signal from left and right Rectus
Femoris. On 4th row: average fractal dimension of both sEMGs.

Table 1
Average height and fractal dimension for low, medium and maximum jumps. Mean values were obtained by averaging values of the same level of jump in
different trials. R2 correlation coefficient for each subject is also shown.

Subject Low jump Medium jump Maximum jump R2

Mean height (cm) SD (cm) FD Mean height (cm) SD (cm) FD Mean height (cm) SD (cm) FD

1 18.6 1.7 1.0841 22.1 2.7 1.1176 29.9 1.3 1.1741 0.9406
2 15.6 1.3 1.0619 20.0 3.1 1.1059 26.9 1.7 1.1969 0.8887
3 16.6 1.5 1.0934 23.1 1.2 1.1717 27.5 1.1 1.1997 0.8964
4 25.2 2.4 1.0345 31.8 2.9 1.0833 37.4 3.4 1.1251 0.9214
5 16.4 3.7 1.0795 27.0 2.8 1.1614 33.5 1.7 1.1701 0.8769
6 14.3 1.3 1.0268 19.6 1.1 1.0645 26.4 1.0 1.1087 0.9265
7 11.9 2.4 1.0448 18.7 3.0 1.0911 24.9 2.8 1.1349 0.8548
8 18.5 1.4 1.0285 25.3 0.6 1.0686 32.0 0.2 1.1358 0.936
9 11.0 4.6 1.0470 19.0 4.6 1.0925 28.3 3.2 1.1518 0.9276
10 12.4 2.5 1.0968 13.3 2.3 1.1043 15.9 2.6 1.1578 0.6053
11 16.2 1.0 1.0305 22.2 2.6 1.0885 28.6 1.0 1.1825 0.9436
12 14.8 1.4 1.0870 21.0 2.4 1.1597 25.6 1.0 1.2290 0.8965
13 20.0 0.7 1.0476 28.7 1.9 1.0796 35.4 0.5 1.1020 0.8482
14 17.9 1.7 1.0482 32.5 2.1 1.1031 50.1 3.1 1.1998 0.9116
15 18.6 0.6 1.0288 25.4 0.2 1.0706 31.9 0.1 1.1377 0.9669
16 16.7 1.5 1.0321 22.3 1.6 1.0394 28.1 1.5 1.0503 0.8349
17 19.8 1.8 1.1259 26.9 2.1 1.1846 37.1 3.8 1.2851 0.7751
18 19.8 2.7 1.0632 24.5 1.9 1.0994 26.2 0.9 1.1250 0.8651
19 16.8 2.0 1.0607 22.6 2.0 1.1576 28.8 2.3 1.2697 0.8079
20 13.1 2.5 1.0342 19.7 2.1 1.0837 26.4 0.3 1.1295 0.9353
In Table 1 detailed results are reported for each subject
with the respective value of R2. Overall average of R2s is
0.8779.

4. Discussion and conclusion

The fractal dimension of sEMG, acquired from Rectus
Femoris, was determined while the subject was perform-
ing different jumps at different heights.
By examining Fig. 1 we can observe that the maximum
muscle contraction, represented by the maximum sEMG
burst, was time-located at the beginning of the upwards
rising phase of the jump.

The fractal dimension, computed over the whole sEMG
signal, and then averaged between left and right channels,
reached its maximum at the beginning of the rising phase,
when the maximum muscle contraction is expected. Also
we can observe that the fractal dimension adjusted with



Fig. 2. Example of a data plot for a studied subjects. Each dot represents a jump for a total count of 21 jumps. Black line represents the correlation between
fractal dimension and height of the jump.
the increase of the height of the jump. The higher the jump,
the higher the force exerted by the muscle, the higher the
fractal dimension of sEMG.

Repeating the jumping task within the same subject
allowed to record data from many jumps. Fractal dimen-
sion and height of each jump showed a very high linear
correlation (see Fig. 2 and Table 1). The correlation was
very high for subjects of both sexes as shown by the
correlation coefficients reported in Table 1.

These results are compatible with the results of Gupta
et al. [23] that measured the fractal dimension of sEMG
from the biceps under different loading conditions and
found linearity between the fractal dimension and the load
applied.

Despite the fact that there was a high correlation within
the same subject, results were not comparable between
different subjects. This may be due to differences in EMG
signal and differences in jump performance due to differ-
ent body mass, height and jump strategy of the subjects.
Surface EMG power may also be affected by fat surround-
ing the muscle. Anyway other studies [1,4,7] advise to
use fractal dimension only as a relative measure to make
comparison within the same subject.

Fractal dimension of EMG can therefore be used
together with the temporal and frequency domain analysis
to characterize the EMG signal and can be considered to be
representative of muscular activation. In fact, the sEMG
signal can be considered the result of superimposition of
many pulse trains produced by the asynchronous firing
of motor units. The more motor units are engaged, the
more complex is the resulting sEMG trace. Since more
pulse trains are produced when the muscle is activated
and exerts force, the resulting sEMG complexity increases
as the muscle contracts, and the FD increases as well. In
other words, sEMG complexity can be seen as the level of
cooperation and synchronous activation/deactivation of
motor units. The fractal dimension analysis applied to
physiological signals can therefore be interpreted as an
index of the self-organization abilities of the system under
study, and it could be seen as the emergence of a strong
cooperation.

Thus fractal dimension may be an useful indicator of a
subject training and increasing in performance (e.g. ath-
letes) or indicator of muscle recovery after surgery or other
treatments or, more in general, an indicator of motor units
recruitment.

The main limitation of this study is the use of surface
EMG that is affected by noise, cross-talk and is not able
to discriminate the signal produced by the single motor
units. Further study should involve the use of invasive
EMG to study the possibility of a correlation between the
FD value and the number of motor units involved and
cooperating. Further studies may also involve testing sEMG
and EMG fractal dimension variations in subjects affected
by neuromotor pathologies or patients undergoing recov-
ery or rehabilitation.

Acknowledgments

The authors wish to acknowledge all the subjects that
took part in this study and the clinical staff of IRCCS
San Raffaele Pisana of Rome, in particular MD Claudia



Condoluci, TdR Nunzio Tenore and TdR Federica Alberici
who helped in subjects recruitment and data acquisition.

References

[1] Klonowski W. Signal and image analysis using chaos theory and
fractal geometry. Mach Graph Vis 2000;9:403–31.

[2] Espinoza-Valdez A, Ordaz-Salazar FC, Ugalde E, Femat R. Analysis of a
model for the morphological structure of renal arterial tree: fractal
structure. J Appl Math 2013;2013:1–6.

[3] Lopes R, Betrouni N. Fractal and multifractal analysis: a review. Med
Image Anal 2009;13:634–49.

[4] Klonowski W. Chaotic dynamics applied to signal complexity in
phase space and in time domain. Chaos, Solitons Fractals 2002;14:
1379–87.

[5] Katz MJ. Fractals and the analysis of waveforms. Comput Biol Med
1988;18:145–56.

[6] Liu JZ, Yang Q, Yao B, Brown RW, Yue GH. Linear correlation between
fractal dimension of EEG signal and handgrip force. Biol Cybern
2005;93:131–40.

[7] Accardo A, Affinito M, Carrozzi M, Bouquet F. Use of the fractal
dimension for the analysis of electroencephalographic time series.
Biol Cybern 1997;77:339–50.

[8] Colangeli M, Rugiano F, Pasero E. Pattern recognition at different
scales: a statistical perspective. Chaos, Solitons Fractals 2014;64:
48–66.

[9] Higuchi T. Approach to an irregular time series on the basis of the
fractal theory. Phys D Nonlinear Phenom 1988;31:277–83.

[10] Paradisi P, Allegrini P, Gemignani A, Laurino M, Menicucci D, Piarulli
A. Scaling and intermittency of brain events as a manifestation of
consciousness. AIP Conf Proc 2013;151:151–61.

[11] Allegrini P, Paradisi P, Menicucci D, Laurino M, Bedini R, Piarulli A,
et al. Sleep unconsciousness and breakdown of serial critical
intermittency: new vistas on the global workspace. Chaos, Solitons
Fractals 2013;55:32–43.

[12] Allegrini P, Menicucci D, Bedini R, Gemignani A, Paradisi P. Complex
intermittency blurred by noise: theory and application to neural
dynamics. Phys Rev E 2010;82:1–4.

[13] Tagliazucchi E, Balenzuela P, Fraiman D, Chialvo DR. Criticality in
large-scale brain FMRI dynamics unveiled by a novel point process
analysis. Front Physiol 2012;3:15.
[14] Fingelkurts A. Brain-mind operational architectonics imaging:
technical and methodological aspects. Open Neuroimag J 2008;2:
73–93.

[15] Cimolin V, Galli M, Rigoldi C, Grugni G, Vismara L, Mainardi L, et al.
Fractal dimension approach in postural control of subjects with
Prader–Willi syndrome. J Neuroeng Rehabil 2011;8:45.

[16] Khandpur RS. Handbook of biomedical instrumentation. 2nd ed.
McGraw-Hill Professional; 2003.

[17] Stegeman D, Hermens H. Standards for surface electromyography:
the European project surface EMG for non-invasive assessment of
muscles (SENIAM). Roessingh Res Dev 2007;1:108–12.

[18] Ancillao A, Galli M, Vimercati SL, Albertini G. An optoelectronic
based approach for handwriting capture. Comput Methods Programs
Biomed 2013;111:357–65.

[19] Vimercati SL, Galli M, Rigoldi C, Ancillao A, Albertini G. Feedback
reliance during an arm-tapping task with obstacle avoidance in
adults with down syndrome. Exp Brain Res 2013;226:631–8.

[20] Yao B, Salenius S, Yue GH, Brown RW, Liu JZ. Effects of surface EMG
rectification on power and coherence analyses: an EEG and MEG
study. J Neurosci Methods 2007;159:215–23.

[21] Granata KP, Padua DA, Abel MF. Repeatability of surface EMG during
gait in children. Gait Posture 2005;22:346–50.

[22] Piccinini L, Cimolin V, D’Angelo MG, Turconi AC, Crivellini M, Galli M.
3D gait analysis in patients with hereditary spastic paraparesis and
spastic diplegia: a kinematic, kinetic and EMG comparison. Eur J
Paediatr Neurol 2011;15:138–45.

[23] Gupta V, Suryanarayanan S, Reddy NP. Fractal analysis of surface
EMG signals from the biceps. Int J Med Informatics 1997;45:
185–92.

[24] Chen B, Wang N. Determining EMG embedding and fractal
dimensions and its application. In: Eng Med Biol Soc 2000 Proc
22nd Annu Int Conf IEEE 2000;2:1341–4.

[25] Ashby BM, Heegaard JH. Role of arm motion in the standing long
jump. J Biomech 2002;35:1631–7.

[26] Saini M, Kerrigan D, Thirunarayan M, Duff-Raffaele M. The
vertical displacement of the center of mass during walking: a
comparison of four measurement methods. J Biomech Eng 1998;120:
133–9.

[27] Esteller R. A comparison of fractal dimension algorithms using
synthetic and experimental data. In: Circuits Syst 1999 ISCAS ’99
Proc 1999 IEEE Int Symp 1999;3:199–202.

http://refhub.elsevier.com/S0960-0779(14)00099-X/h0005
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0005
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0010
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0010
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0010
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0015
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0015
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0020
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0020
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0020
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0025
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0025
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0030
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0030
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0030
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0035
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0035
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0035
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0040
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0040
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0040
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0045
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0045
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0050
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0050
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0050
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0055
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0055
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0055
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0055
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0060
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0060
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0060
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0065
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0065
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0065
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0070
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0070
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0070
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0075
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0075
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0075
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0085
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0085
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0085
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0090
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0090
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0090
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0095
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0095
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0095
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0100
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0100
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0100
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0105
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0105
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0110
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0110
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0110
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0110
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0115
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0115
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0115
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0125
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0125
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0130
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0130
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0130
http://refhub.elsevier.com/S0960-0779(14)00099-X/h0130

	Linear correlation between fractal dimension of surface EMG  signal from Rectus Femoris and height of vertical jump
	1 Introduction
	1.1 Review
	1.2 Aim of the study

	2 Materials and methods
	2.1 Subjects
	2.2 Equipment and data acquisition
	2.3 Data processing
	2.4 Statistical analysis
	2.5 Study approval

	3 Results
	4 Discussion and conclusion
	Acknowledgments
	References


