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Abstract

As awareness towards the problem is growing, eco-friendliness is today a

paramount requirement for all space activities and in particular for the

ground segment, fully comparable to other industrial sectors. The present

work focuses on the assessment and the sustainable development enhance-

ment of a ground-based space facility, the European Astronaut Centre (EAC),

located in Germany. The project is framed within the European Space

Agency development of an environmental outlook, which aims not only at the

full compliance with the legislation and at assessing the impact of its activi-

ties, but also at laying the foundation for future evolution through innovation.

Indeed, ESA promotes the sustainable use of space as a necessity and duty

for Europe. As history teaches us, technical knowledge emerged within the

space sector serves as innovation driver in other industrial branches: the goal
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of the project is to transform the EAC building into a spaceship integrated

with the territory through the conscious management of this spontaneous

process, fostering the combination between the space sector and the archi-

tecture and civil engineering fields. The work explores the potential of space

technologies, processes and systems applied on ground and presents a range

of space-driven innovative concepts which may improve the sustainability

of the EAC building, focusing on different aspects of its resource demand

- energy, water and waste management - and defining the integration with

the pre-existing compound, the limitation of the impact on the surround-

ing landscape and the participation of the local community as additional

fundamental requirements. Indeed, the project embraces the full concept of

sustainability, which considers not only eco-friendliness but also its balance

with economic and social aspects. Two factors - a certain urgency for ac-

tion, which leaves little space for research and experimentation, and a call for

ground-breaking solutions- guided the design activity: taking advantage of

these conflicting requirements, a comparison between standard technologies

and innovative space-related concepts was performed. When dealing with

complex and uncertain scenarios, decision among the possible solutions is not

straightforward and needs to be supported by appropriate methodologies: a

multi-criteria and quantitative decision-making tool, able to concentrate on

the main goal while considering all other relevant aspects - environmental,

economic, social sustainability - was therefore developed. Furthermore, the

project promotes local community participation in the decisional process, as

a way to enhance knowledge, generate understanding and promote towards

the EAC redesign, space activities and their potential innovative impact on
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sustainability.

Keywords: Sustainability, Innovation, Green space, Decision making,

Design methods, Multidisciplinary design

1. Introduction

Nowadays sustainability is an essential requirement for all industrial ac-

tivities, both from a social corporate responsibility and from a regulatory

compliance point of view. The space sector in the past has shown a lack

of commitment in this sense, both in terms of environmental footprint re-

duction and in impact monitoring. Up to now, the space industry is still

implementing insufficient analysis on the environmental impact of its activi-

ties. This project aims at filling this gap towards the current perspective of

sustainability by focusing on the space activities on ground.

This main challenge is framed within the European Space Agency (ESA)

development of an environmental outlook, aimed at the full compliance with

the legislation and at the assessment of the impact of its activities. ESA

commits to become an exemplary space agency by promoting the sustain-

able use of space as a necessity and a duty for Europe. Action is necessary

to turn a threat into an opportunity. Keeping in mind the peculiarities of

space operations - the only anthropogenic activities which cross all layers

of the atmosphere we concentrate on the definition and implementation of

design procedures suitable to minimize the environmental impact of space

assets on ground. Furthermore, in order to enhance its innovative poten-

tial, the project fosters a contamination between the space sector and other

industrial areas as a starting point for the design activity. Even focusing
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on different design targets, outer space assets and on-ground activities, a

common goal may exist: the development of resource efficient processes and

technologies which might reduce raw material inputs, energy consumption,

waste and costs.

Within this framework, our work focuses on the assessment and the sustain-

able development enhancement of a ground-based space facility. In particular

it has been decided to use as a case study the European Astronaut Centre

(EAC) in Köln, Germany. The EAC has been approached as a spaceship on

Earth, requiring at the same time innovative and sustainable technologies.

This definition covers both cardinal aspects of our design activity: the defi-

nition of space-driven concepts for the EAC redesign and the environmental

advancement goal of the project.

1.1. Requirements definition

The EAC buildings provide training facilities to the astronauts and in-

clude offices, meeting rooms, training areas and a swimming pool as well.

All these elements require a high energy and water demand and produce a

large amount of waste. Their management acquires high importance from

an environmental perspective, and becomes the key for sustainability im-

provement. EAC, unlike many ground-based space sites, is not located in a

deserted area but near a city: accordingly we identified the integration with

the pre-existing compound and the attenuation of the impact on landscape

and local community as additional fundamental requirements.

Indeed, our design activity began with the broadening of the environmental

advancement objective in order to fully embrace the concept of sustainability,

considering not only eco-friendliness but also its balance with economic and
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social aspects.

In collaboration with ESA partners we structured our tasks as follows:

• The sustainability assessment of the EAC by the ecology point of view;

• The undertaking of a design process within a technical context, namely

the exploration of the potential of space technologies applied in the

architecture and civil engineering fields;

• The generation of space-driven innovative concepts which may turn

the EAC into an Environmental Advancement Centre, namely a first

attempt to enhance sustainability through space technologies, processes

and systems. The extreme performances, limited resources and strong

constraints that characterize the outer space environment are regarded

as design opportunities, inspiration and sources of innovation for the

ground segment;

• The definition of a decision-making process for the evaluation and com-

parison of the concepts developed. The tool requires flexibility in the

criteria definition and needs to consider technological, economic and

social aspects.

1.2. Exploring the opportunities

As a second step, we tried to identify the most relevant limitations and

constraints of the project. This process allowed us to highlight several oppor-

tunities for innovation. Taking on this perspective, we pinpointed the most

relevant ones:
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• The EAC building, far from being space-specific, supports the devel-

opment and testing of concepts that are potentially applicable to the

standard construction industry;

• The EAC location enables the experimentation of the integration be-

tween its facilities and the local community, as an opportunity to en-

hance the perception of space activities, their role in innovation and

their potential positive impact on sustainability;

• The complex decision-making process, which requires an ad-hoc tool

and includes sustainability as a crucial criteria, may foster a paradigm

shift in assessment procedures. In addition, experimenting openness

and community involvement may enhance consensus towards space ac-

tivities, a critical resource for ESA [1–3];

• The support from ESA allows a potential implementation of the con-

cepts, thanks to the agency ownership of technologies, expertise in the

field and budget management experience, which may control the high

costs of such an investment and drive the competitiveness of Europe

through sustainability.

1.3. Decision-making process

At the end of the project we obtained a range of feasible solutions to im-

prove the EAC sustainability, each of them displaying some pros and cons.

We had to choose the best option available but this decisional process was

not straightforward without a clearly dominant technology. We consequently

thought important to define an ad-hoc assessment tool for our design pro-

posals: we relied on the Analytical Hierarchy Process (AHP), developed by
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Thomas Saaty in 1980 [4–6].

The peculiarities of our project fulfill the AHP application requirements

which are basically the availability of alternatives and the absence of a clear

criterion for their evaluation. As concerns the selective criteria we decided

for a compromise between complexity and completeness, identifying the most

relevant as follows:

• The degree of sustainability (S), which refers to the technology over-

all contribution to sustainability and represents a necessary but not

sufficient index in relation to requirements;

• The maturity of the technology (M), a parameter in open contrast with

S if we consider that innovative solutions are often experimental and yet

not suitable for large scale applications. The importance of balancing

the oppositions through the AHP method is evident;

• The economic feasibility (E), in opposition to S but concordant with

M, since mature technologies are likely to be economically competitive.

The AHP process outcome is a quantitative assessment and a mathematical

rigorous ranking of our design alternatives. The ESA approved this approach

as the AHP is considered a valuable tool for decision making practices in

complex and uncertain contexts.

2. Solutions development

In accordance with the project requirements we identified the following

areas of intervention:
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• Energy solutions;

• Water management;

• Waste management;

• Preservation of local area.

2.1. Energy solutions

The analysis of the above-mentioned fields considered the technology state

of the art and its current application at the EAC. We also studied the related

space technologies, as groundwork for the generation of innovative concepts.

Finally we performed a comparison between standard technologies and inno-

vative space-related concepts.

As regards the energy field, we began with the data provided by ESA in the

EAC building map, as well as its fossil fuels consumption in the last few

years. From this information, we found that about 10% of the total electric-

ity consumption and 100% of the heat demand was supplied by the power

plant of German Aerospace Centre, located close to EAC. Hence, still 90%

of the total electricity is supplied from the external grid.

Based on this data we were able to perform a state of the art analysis and

derive the energy consumption levels of the base, both in terms of final en-

ergy uses and of primary sources. In 2011, the EAC electricity consumption

was about 1270 MWh, while the energy consumption for heating was about

1900 MWh.

According to such impressive figures we can expect that investments devoted

to the local energy production and energy efficiency will be very profitable,
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not only because of the high return in terms of energy savings, but also be-

cause such an implementation can meet economies of scale in the costs of the

plants. From a qualitative perspective, we can see that the EAC energy is

not based on renewable or sustainable resources, since almost all the internal

demand for heat and power was satisfied externally by purchasing the ener-

getic vectors from the electrical and gas grids. Accordingly, we decided that

the best way to intervene was to develop solutions for the sustainable supply

of electric energy and heat. Sustainability in this sense may be obtained by

following two different design trends: energy efficiency and renewable energy

production. We developed solutions based on renewable plants for the power

production, i.e. photovoltaic (PV) plants and wind turbines. Besides we also

proposed cogenerative heat and power systems, such as Internal Combustion

Engines (ICE), Micro Gas Turbine (MGT) and fuel cells (FC), for a more ra-

tional energy use. In both cases we proposed also ”space inspired” solutions,

namely the innovative photovoltaic technology (IPV) and the fuel cells, un-

derlying their pros and cons with respect to the other ”standard solutions”.

It is worth to note that ICE and MGT technologies make use of fossil fuels to

produce electricity and accordingly cannot be classified as ”green” in strict

terms. However, a smart cogenerative application of these solutions, with the

production of both heat and power, permits to reduce the overall primary

energy consumption and improves sustainability in wider terms.

In summary, for the design and installation of wind turbines we performed

a technical analysis to calculate the yearly electrical productivity. We found

that there exists a model of turbine that can produce around 5,22 GWh per

year, considering that the Köln area is interested by a medium-strong wind
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with an average speed between 3,5-5 m/s and a nominal power of 50-150

W/m2 [7]. Being the EAC consumption of 1270 MWh in 2011, the plant will

definitely provide all the needed energy, which is the 24% of the total pro-

duction. The remaining 76% of the production could potentially satisfy the

German Aerospace Centre need for energy, besides being sold to the external

grid.

As regards the PV plants and the possible benefits from solar energy, the

global horizontal irradiation map of the area near Köln was checked [8].

According to this map, the energy productivity is quite low, with a value

around 1100 kWh/m2 per year. Since the electricity demand of EAC is of

1270 MWh, considering an average efficiency of the plant (solar to electric-

ity) around the 15% and a value for the irradiance of 1100 kWh/m2 per year,

we can estimate that the solar field must have an area of about 7700 m2 for

standard PV technologies (SPV) like thin film or crystalline Si.

For innovative PV technologies (IPV), the most promising and practical solu-

tions are the multi-junction and the thin film cells, which work with different

semi-conducting materials [9, 10]. PV innovative solutions have higher en-

ergy production efficiency of about 30% compared with that of standard ones

with 15%. Hence, they can be adopted to improve the EAC sustainability:

their environmental impact is comparable to the standard PV solutions in

terms of space use and aesthetic impact.

The other main aspects to be considered are the cost, the maturity of the

technology and the energetic sustainability improvement. Certainly, these

new technologies are more costly and less reliable. On the contrary they

permit a greater contribution to the sustainability thanks to their superior
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performances.

Cogeneration is the combined production of heat and power from the same

primary energy input. In this sense any power device can turn into a cogener-

ative machine provided that heat is not discharged into the environment and

is used to satisfy a thermal demand from a user. The interesting aspect is

that heat recovery generally implies a reduction in the use of primary energy,

which grows as the total efficiency of the cogenerator rises. For this reason

cogeneration is considered an efficient and sustainable practice.

The internal combustion engine (ICE) is the most used technology for small

cogenerative plants. Being derived from the automotive industry without

major changes it offers high levels of reliability and durability [11]. To give

an example of sizing and choosing of an ICE suitable for the EAC base, we

can assume reasonably 8000 equivalent working hours for the device, given its

high reliability. To satisfy the electric energy demand of 1270 MWh in 2011,

we require an engine of 160 kWel; whereas considering the thermal loads of

1900 MWh we find 237,5 kWth. According to the ICE solutions available

on the market the specific cost is about 1000 AC/kW in the range 100-300

kW, while the electric efficiency is about 33-34%. Moreover the O&M costs

decrease significantly with the size of the machine [12]. Finally we can expect

a thermal efficiency up to 55% since the thermal loads of EAC are below 100

◦C (typical service building demand) and therefore it is possible to recover

heat both from flue gases and from the inter cooler, oil and cooling systems.

The Micro Gas Turbine (MGT) constitutes a valid alternative to the ICE

technology as the required size of the prime mover grows. The micro-turbine

is sensibly different from the standard gas-turbine, which is not generally
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used below the threshold of 3 MW of electric power. The reason is that the

specific cost in AC/kW tends to grow, while the efficiency diminishes as the

nominal electric power decreases. As a consequence in the small size plants

the whole design of the system is changed when adopting micro-turbines [13].

As we did for the ICE, we can assume reasonably 8000 hours equivalent per

year. So again the nominal electric power of the MGT is in the range 150-250

kW. We studied commercial solutions by the most important manufacturers

of micro turbines and observed that the electrical efficiency is stable around

33% in the range of interest for EAC, while the total efficiency is above 80%

because of the low temperature heat recovery from the exhaust gases [14, 15].

The specific cost can be estimated starting from 1100 AC/kW, down to 900

AC/kW for the biggest sizes. Finally we can assume a maintenance cost of

about 0,015 AC/kWh.

The fuel cell (FC) is a device which permits the oxidation of gaseous reac-

tants, producing electrical power and discharging heat power. This conver-

sion happens without direct combustion, but through electrochemical reac-

tions of oxidation and reduction. As a result the ideal efficiency of the fuel

cell can be higher than any other power device based on the conversion of

the fuel into heat through common combustion.

There are different models of FC, depending on the electrolyte adopted and

consequently on the reactions, reactants, ions and performances. FCs are

available in different types, such as SOFC, PEMFC, PAFC, and MCFC [16].

In this context SOFC stands for ”Solid Oxides” electrolyte, PEM for ”Poly-

meric Membrane”, PA for ”Phosphoric Acid” and finally MC for ”Molten

Carbonates”. Given the high electrical efficiency, heat recovery, modularity,

12



compactness and absence of pollutants, the FC would be a perfect device

for a generated distribution application alike the EAC. Actually its diffusion

is being prevented by strong limitations in terms of investment costs and

maintenance, life expectancy and reliability [17]. Each model has different

performances and works at a different level of temperature. Anyway a com-

mon trait between them is the necessity to feed the anode with pure hydrogen

or a syngas, and the cathode with a mixture of oxygen and carbon dioxide.

2.2. Water management

Considering the water management of EAC, the preliminary phases of

research and the analysis of water consumption data pointed out the im-

portance of water management techniques in proposing sustainable solutions

with the aim of greening a building.

After performing an in-depth analysis of the water management system of

EAC, as in Table 1, we found that noticeable amount of water is consumed

by toilet and urinal flushes. Hence, we decided to develop standard solutions

to save water consumed for flushing and we found that, by introducing two

different types of water efficient toilets (namely composting toilet [18] and

No-Mix vacuum toilet (NMV)[19, 20]) it is possible to reduce about 40%

of the yearly global water consumption in EAC.For instance normal toilets

require 6 liters of water per flush, while with composting and NMV solutions

the amount of consumed water is estimated to be less than 1 liter per use [18,

20]. In addition, it is viable to use the generated biogas in molten carbonate

fuel cells (MCFCs) resulting in a sustainable energy production process.

Subsequently, we proposed fuel cells as a new water source; the concept is

inspired by their use in space shuttles for simultaneous water and energy pro-
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duction [21, 22]. Various types of fuel cells were analyzed: PEMFC, MCFC,

SOFC, regenerative fuel cells and finally microbial fuel cells. In summary,

by installing a 150 kW PEM fuel cell it is possible to provide EAC with a

part of its required energy and at the same time to generate about 394 m3

of water in a year, which is 38% of the EACs yearly water consumption.

We also realized that there is a type of molten carbonate fuel cells, DCF300

[23], which can fully satisfy the electricity and heat needs of EAC. It is also

mentionable that this type of fuel cell is able to be fueled with renewable bio-

gas that could be obtained from waste water recovery process in composting

toilets and even from the nearby farms activities. Moreover, we introduced

microbial fuel cells (MRCs) [24, 25] as an innovative solution which allows us

to treat water and generate energy at the same time. In future, they can help

to reduce the costs due to waste water treatment by producing electricity on

site to power the plants operating equipment. However, the time required to

fully develop these relatively new technologies depends on the investment at

stake and on the quality of research.

2.3. Waste management

Identified as a fundamental requirement for sustainability improvement,

the waste management area of intervention presents peculiar characteristics

in comparison with energy and water fields.In order to develop relevant sus-

tainable solutions, it was necessary to carry out an in-depth analysis of the

German and space contexts with respect to waste management. Only in this

way we were able to identify the peculiarities of the topic and accordingly

adapt our design concept and project perspective.

Based on the data available for recycling of municipal waste [26], Germany
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is a highly efficient country in terms of waste management. Indeed, in the

2008-2009 period 50-100% of the municipal solid waste was recycled, an im-

pressive figure if we consider the impact this achievement has on the economy

and the environment. These figures are likely to increase in the future. In

addition, waste management improvement strongly enhances sustainability.

For instance, in Germany, it resulted in a relevant decrease in Greenhouse

gases (GHG) emissions related to municipal solid waste production [26].

Hence, we can conclude that the EAC building, being interconnected with

this highly efficient and historically innovative system, should not concentrate

on the development of its own technologies for waste management. Instead,

a more advisable strategy may be to improve the quality and decrease the

quantity of the waste that is inserted in this network. As a consequence,

we did not aim to develop technological concepts, but to provide simple and

space-inspired guidelines. Actually the high constraints of the space environ-

ment enhanced sustainable practices and behaviors that may also become

relevant on ground. These guidelines may be employed by EAC workers and

visitors without excessive effort.

In accordance with our research and analysis about the German and space

contexts, we defined the following guidelines for the EAC building waste

management improvement:

• Reuse available material and resources: in a building like the EAC, in

particular in the office area, there are many mistakes such as redundant

printing, waste of paper sheets for notes and so on and so forth;

• Reduce waste sources: as an example for the development of this con-

cept, ESA may provide every employee with a personal completely
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recyclable aluminum bottle and/or ceramic mug;

• Recover resources to maximize their efficiency: for instance, EAC could

collect waste water from sanitary systems (e.g. basin, shower, kitchen

sink) and use it for water lower quality final uses, such as toilet flushing

or irrigation;

• Recycle products at the end of the cycle: in favor of recyclable materi-

als.

2.4. Preservation of local area

Preservation of local area was considered mainly for the energy solu-

tions as they can drastically change the surrounding environment. Hence,

we evaluated the potential impacts that each solution may have on the local

environment.

Regarding wind turbine, its visual impact, noise and the effect on birds and

other species were investigated. It was noted that all these problems mainly

depend on the size of the wind farm. As in our case the impact concerns just

one wind turbine the negative effects are negligible.

Unlike the wind turbine, the environmental impact due to the PV technology

is not concerning in terms of noise and biodiversity. On the contrary, the

impact should be quantified in a LCA (”Life Cycle Assessment”) framework

considering different factors: land use, energy use and greenhouse gases emis-

sions. Nevertheless, this study takes into consideration only the first factor

because considering the small extent of the solar field, the greenhouse gases

and the energy use are less important if compared to the visual and aesthetic

impact of the panels.
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The use of land depends on the panels location and on the dimensions of the

entire photovoltaic plant. Usually large scale facilities have a great visual

impact on the environment and raise concerns about land degradation and

habitat loss. However in our project, thanks to the small scale of the solar

park, we will be using only a portion of the land (considering that part of the

panels would be placed on the walkable roof). Actually we noticed that al-

most half of the panels can be installed on the roofs, significantly decreasing

the visual impact.

3. Decision making: AHP

When dealing with complex and uncertain scenarios, decision among the

possible solutions is not straightforward and needs to be supported by appro-

priate methodologies. Accordingly we adopted a multi-criteria and quanti-

tative decision-making tool, able to focus on the main goal while considering

all other relevant aspects: environmental, economic and social sustainabil-

ity. If the concepts development phase represents a first guideline for space

activities’ sustainable development on ground, this second project output

provides a conceptual methodology that may be applied also within different

decisional context.

In the previous sections we proposed a range of solutions, some of them

intended as ”standard” (based on mature technologies), while others consid-

ered innovative (as applications from the space sector). Each of those many

alternatives at disposal displays some pros and cons with respect to the oth-

ers. In the end, tough, we have to propose just one or two solutions, at most,

for each field of interest. To do so, we need to select the ”best” solutions be-
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tween the ones found. This decision process is not straightforward, because

there is not a clearly dominant solution and even the selective criterion to be

used is unclear. We need a method which could help us to find both the most

suitable solutions and the proper selection method to apply for the decision

process.

We decided to use the Analytic Hierarchy Process (AHP), developed by

Thomas Saaty in 1980 [5, 6]. At the end of the selection process we will

be able to rank the alternatives in a quantitative way.

3.1. Decision making tool description

The AHP is a quantitative method which uses numbers to make com-

parisons between alternatives to be ranked and criteria to be used for the

ranking. Let’s suppose having some solutions for a given problem, while we

do not know which is the best to select. To make this choice we consider

different selective criteria: such as Cost (C), Reliability (R) and durability

(D). The first problem is that we do not know the relative importance of

these criteria: which is the dominant aspect to be considered? The AHP

solves this problem by building a matrix of pair-wise comparisons between

the alternatives. To do so, we can use values like in Table 2 with their rela-

tive meaning [4].

For instance if C is much more important than R, we will put the value 5 in

the cell on the row of C and the column of R (see Fig. 1). At the same time

we must put the value 1/5 for the opposite comparison R vs. C. Of course

on the diagonal of the matrix there are all ”1” because any option has the

equal importance towards itself.

In this way we obtain a matrix called ”Overall Preference Matrix” as shown
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in Fig. 1. By calculating the normalized eigenvector of the Overall Preference

Matrix we retrieve the Relative Value Vector (RVV), whose values express

the relative importance of the selective criteria [6]. For instance, in this case

the RVV is (0,36 0,1 0,54). By looking at the vector we can conclude that

durability is the most important criterion (0,54), while Reliability (0,1) the

less relevant one.

After that, we build new matrices applying the same method already de-

scribed but using the alternative solutions instead of the criteria. For exam-

ple, if we have three available solutions X,Y and Z we will build third order

matrices. We need to produce each matrix by referring to one of the criteria.

In this case the matrices obtained are classified as ”Option Performance Ma-

trix”. So, in the first matrix we shall compare the relative dominance of the

alternatives with respect to their cost (C), in the second to R and in the last

one to D. We report the resulting three matrices in Fig.2. For each matrix

we find the eigenvectors, whose values give a ranking between X, Y and Z

with respect to the criterion used for the comparisons. Then the vectors are

put together as columns of a new matrix called ”Option Performance Ma-

trix” (OPM). This simple procedure is shown in Fig.3. Basically the first

column of the OPM matrix is given by the eigenvector of the first matrix in

Fig.2, and so on. In practice each column of the OPM shows the hierarchy

of the solutions for each criterion: for example we can see that X is the best

alternative for durability (0,41), while the worst for reliability (0,2).

Subsequently, it is required to combine the ranking given to the solutions

(OPM) with the one given to the criteria (RVV). To do this the AHP re-

quires a simple product between the OPM and the RVV, which gives a final
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vector called Value For Money (VFM): OPM*RVV=VFM (see Fig.4). The

VFM represents the final evaluation of the alternatives: we found that Z is

the best (0,48) and X the worst (0,31).

Finally, we need to verify that the results obtained are valid. To do this we

must compute for each matrix an indicator called Consistency Ratio (CR).

The CR is a number which measures the consistency of the judgments made

for each class of comparisons. A matrix is acceptable only if its CR value

is below 0,1. For instance if the CR of the Overall Preference Matrix is 0,2

(then above 0,1) the matrix is not acceptable and it must be modified. In

other terms the judgments made to build that matrix are not coherent and

therefore the results given by the AHP would be pointless. For the sake of

brevity we do not explain in detail the procedure to follow to retrieve the

CR [4].

3.2. AHP in practice

3.2.1. Criteria selection

The first step required by the AHP method involves the choice of the

selective criteria to be adopted in the decision making process. We decided

to choose three main criteria, as a compromise between complexity and com-

pleteness. The first criterion chosen is the ”degree of sustainability” (S): it

indicates the overall contribute to sustainability given by the technology. For

example, in the energy field the criterion ”S” regards the lowering of emis-

sions, the production of clean energy and the reduction of primary energy

use (i.e. Kyoto targets). We can expect that the ”degree of sustainability”

will be the most important criterion as it includes the main targets of the

project. Anyway ”S” is not exhaustive for a proper selection of the best ideas:
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a second criterion to be considered is the ”maturity” of the technology (M).

Actually ”M” is in open contrast with ”S”, because innovative technologies

are developed to provide improvements in terms of sustainability but often

they are just experimental and not ready for large scale application. This

statement underlines the importance of the AHP method which helps us in

balancing the oppositions and in finding the best alternative.

The maturity of a technology is a key issue in the space sector where it af-

fects feasibility, cost and the success of a mission. For this reason an indicator

called ”Technology Readiness Level (TRL)” has been developed: it measures

the maturity of each technology on the basis of a quantitative scale from 1

to 9. We decided to make use of the TRL developed by ESA [27]. Table 3

shows the ESA scale adopted.

The third aspect we considered is the ”economic feasibility” of a solution (E).

Also in this case there is an evident contrast with the first criterion, in fact

the most innovative technologies (namely good ”S”) are also the most costly

(poor ”E”) because of research costs and absence of economies of scale. On

the contrary, criteria ”M” and ”E” are concordant since a mature technology

(namely high ”M”) is likely to be cheap as well, because of economies of scale

and learning. We expect that the last criterion proposed will be slightly less

important than the others, since the final goal of the project is the improve-

ment of sustainability even without a clear profitability. At any rate cost

controlling is very relevant in the space sector and therefore even a single

expensive technology could raise some concern. Accordingly we decided to

include the criterion ”E” to AHP in order to avoid choosing good solutions

in terms of ”S” and ”M” but requiring unaffordable expenditures.
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Fig.5 shows the OPM obtained by the pair-wise comparison of the defined

criteria ”S”, ”M” and ”E”: the assessment of their relative intensity of im-

portance resulted in the values of the matrix. For instance we observe that S

is much more important than R, since we find the value 5 in the correspond-

ing cell. The RVV obtained proves that S is the most important criterion

(0,73), followed by M (0,19) and E (0,08).

In particular E has a very low weight value, as expected. The Consistency

Ratio obtained is 0,06 and then the results are acceptable.

3.2.2. Solutions selection

This second step of the AHP will enable us to select and assess all the

options available, finally finding the best ones. In order to apply the method,

first we need to classify all the solutions into main groups according to the

technology. For instance we will divide all the solutions based on the use

of solar energy into ”standard photovoltaic” (SPV) and ”innovative photo-

voltaic” (IPV). This preliminary clustering is needed as a trade-off between

complexity and precision of AHP: the number of alternatives taken into ac-

count is equal to the order of the matrices obtained. So if we used all the

solutions the method would be rather complex to manage (even if more pre-

cise), because we would have to handle too big matrices.

As a consequence we decided to use six categories in total. Besides SPV

and IPV already mentioned, we introduced the ”wind power” (W), ”internal

combustion engine” (ICE), ”micro gas-turbine” (MGT) and finally the ”fuel

cell” (FC). Accordingly we will build 6th order square matrices, one for each

criterion (S, M and E) for a total of three. Fig.6 shows these matrices dis-

playing all the judgments used for the comparisons between the alternatives.
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In all cases the Consistency Ratio is below 0,1, meaning that the results ob-

tained are reasonable. With the eigenvectors of each matrix we can build

the OPM matrix reported in the following figure. We notice that the most

mature technologies are also the less expensive, while the most ”sustainable”

options are also the less mature and cheap. These results are coherent with

the premises of the judgment.

3.2.3. Final ranking

Finally we can calculate the ”Value For Money” vector by multiplying

OPM and RVV. This vector represents the final result of AHP, weighting the

judgments in the OPM with respect to the criteria in the RVV (see Fig.7).

By looking at the figures in the VFM we conclude that the best solution

would be the wind turbine ”W”, followed by solar energy ”IPV” and ”SPV”.

On the other hand the worst option is the fuel cell ”FC”, along with the

other technologies namely ”MGT” and ”ICE”.

4. Conclusions and final remarks

Taking into account both the main project goal (the development of a sus-

tainability model for ESA) and the self-defined requirements (the generation

of a range of concepts) we adopted a flexible approach towards the problem,

providing useful guidelines for EAC redesign and sustainability level improve-

ment. As a result this model may also be applied to other case studies or

similar projects, thanks to the flexibility of the ”space-driven” concept and

of the decisional tool.

To sum up, the project followed the typical steps of a design process:
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• State of the art analysis. The data and information researched and

provided by the ESA were used to assess the EAC in qualitative and

quantitative terms. Thanks to the preliminary study we were able to

define energy, water and waste management as relevant fields of inter-

vention: we needed to study and develop effective innovative solutions

within these three main topics. During the process it became apparent

that there was a different aspect of sustainability to consider, namely

the social impact of the EAC in respect of local inhabitants;

• Development of the solutions. The preliminary state of the art analysis

allowed us to build a common knowledge base and to understand con-

straints and opportunities as regards space technologies, users, stake-

holders, environment and EAC pre-existing facilities. Accordingly, we

developed a range of solutions targeted to some specific aspects of the

sustainability for the EAC, within our identified areas of intervention.

This work involved both a theoretical analysis and a contextualiza-

tion in respect to the state of the art. Afterwards, we designed and

sized each solution, taking care of the particular requirements of the

building. Where relevant, we assessed the environmental impact of our

interventions on the Astronaut Centre and on the near city of Köln;

• Selection of the solutions. In this step of the project we addressed

the need of assessment and choice among the developed range of so-

lutions. Firstly, it was necessary to understand upon which criteria

we should consider a given solution ”better” (as in more respondent

to the requirements) than another. We therefore defined the relevant
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criteria to be applied in order to compare the pros and cons, and to

carry out a comparison among the concepts. In each field we found a

meaningful trade-off between the cost of the solution, its maturity level

and the contribution to sustainability. In particular, it emerged that

the so called standard solutions are cheaper and more reliable, while

the innovative ones can be considered more sustainable. We solved

the conflict between the requirements through the AHP. This tool in-

volves the adoption of a mathematical approach, allowing a ranking

of the criteria by their importance. The output is the classification of

the alternative solutions, with respect to each of the three considered

criteria. As a final result we obtained a ranking of the sustainability

concepts, weighted on the relative importance of the criteria. In this

way we managed to highlight the best technologies to be applied within

each field of interest.

According to the results obtained, we believe that the overall goal of the

project has been fulfilled: ESA now appears to be capable of improving the

EAC sustainability by applying the selected solutions. In this perspective,

we reckon that our careful design and environmental impact assessments will

provide useful guidelines to make the process easier. The ESA approved the

usefulness of AHP as regards the decision-making tool, which was considered

to be useful as a decisional device also in other contexts. In addition, we

fulfilled another strong requirement set by ESA: the high innovative level

of the proposed solutions. This goal has been achieved by choosing space

technologies as a source of inspiration, in addition to standard ones.

The technical solutions developed within the energy, water and waste man-
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agement sections can be considered as practical output, whilst the decisional

methodology represents the theoretical aspect of the project. We believe this

approach is a valuable reference for further projects involving the adoption

of space technologies on Earth. The reason is, whenever we want to apply in-

novative space-driven technologies on-ground, a competition with commonly

applied technologies will raise. In order to define the winning alternatives,

the criteria that we proposed might be applied. This dilemma could be solved

through our approach, which fosters a shift in the common industrial prac-

tices. Actually, we do not only consider economic aspects, as we may have

done by applying a purely market-based approach. Since our main goal is

environmental impact reduction, we cannot define the cheapest option as the

best one: the cost of technology becomes less relevant than its reliability and

efficacy in reducing pollution and resources consumption.

This revolution in the decisional process could also have a positive outcome

in many other industrial fields. Bestowing value to both environment and

profit may stimulate the adoption of innovative and efficient technologies,

otherwise too expensive. As a consequence, space technologies and concepts

might be more intensively applied, fostering R&D processes and enhancing

costs abatement through economies of scale.
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Nomenclature

Acronyms

AHP Analytical Hierarchy Process

EAC European Astronaut Center

ESA European Space Agency

FC Fuel cells

GHG Greenhouse gas

ICE Internal Combustion Engines

IPV Innovative Photovoltaic

LCA Life Cycle Assessment

MCFC Molten carbonate fuel cell

MGT Micro Gas Turbine

MRC Microbial fuel cell

NMV No-Mix vacuum toilet

O&M Operations and Maintenance

PAFC Phosphoric acid fuel cell

PEMFC Proton exchange membrane fuel cell
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PV Photovoltaic

R&D Research and Development

SOFC Solid oxide fuel cell

SPV Standard Photovoltaic

TRL Technology Readiness Level

Symbols

C Cost

CR Consistency ratio

D Durability

E Economic feasibility

M Maturity of the technology

OPM Option Performance Matrix

R Reliability

RVV Relative Value Vector

S Degree of sustainability

VFM Value for money
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6. Figures

Figure 1: Overall Preference Matrix derived for the ranking of the selective criteria

Figure 2: Matrix for the ranking of the alternative solutions

Figure 3: Eigenvectors for the alternatives and the Option Performance Matrix
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Figure 4: Example of multiplication between OPM and RVV to obtain VFM

Figure 5: OPM matrix and relative RVV vector
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Figure 6: Matrices and eigenvectors for the solutions selection (criteria ”S”, ”M” and ”E”

respectively).
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Figure 7: OPM matrix and RVV vector multiplied to obtain the VFM vector.
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7. Tables

Equipment

Water

consumption

per use (l)

Frequency per

day

Total m3

per year
Share%

Toilet Flush 9 160 374.4 36%

Urinal Flush 6 140 218.4 21%

Shower 100 9 234 23%

Kitchen Taps 4 100 104 10%

Hand

Washing
1 300 78 8%

Dishwasher 50 2 26 3%

Drinking

Fountains
0.5 100 13 1%

Laundry

Machine
60 0.2 3.12 0.3%

Total 1037.92 100%

Table 1: EAC equipment estimation of water consumption
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Intensity of

importance
Definition Explanation

1
Equal

importance

Two factors contribute equally to the

objective.

3
Somewhat more

important

Experience and judgment slightly favour

one over the other.

5
Much more

important

Experience and judgment slightly favour

one over the other.

7
Very much more

important

Experience and judgment very strongly

favour one over the other. Its importance is

demonstrated in practice.

9
Absolutely more

important

The evidence favouring one over the other is

of the highest possible validity.

2,4,6,8
Intermediate

values
When compromise is needed

Table 2: Definition of the values to be used for the comparisons in the AHP

technique.
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ESA Technology Readiness Level (TRL) summary

TRL Level description

1 Basic principles observed and reported

2
Technology concept and/or application

formulated

3
Analytical & experimental critical function

and/or characteristic proof-of-concept

4
Component and/or breadboard validation

in laboratory environment

5
Component and/or breadboard validation

in relevant environment

6

System/subsystem model or prototype

demonstration in a relevant environment

(ground or space)

7
System prototype demonstration in a space

environment

8

Actual system completed and ”Flight

qualified” through test and demonstration

(ground or space)

9
Actual system ”Flight proven” through

successful mission operations

Table 3: Technology Readiness Levels in the European Space Agency (ESA)
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