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Abstract. Most research on machine learning tasks relies on the availability of
true labels immediately after making a prediction. However, in many cases, the
ground truth labels become available with a non-negligible delay. In general, de-
layed labels create two problems. First, labelled data is insufficient because the
label for each data chunk will be obtained multiple times. Second, there remains
a problem of concept drift due to the long period of data. In this work, we propose
a novel incremental ensemble learning when delayed labels occur. First, we build
a sliding time window to preserve the historical data. Then we train an adaptive
classifier by labelled data in the sliding time window. It is worth noting that we
improve the TrAdaBoost to expand the data of the latest moment when build-
ing an adaptive classifier. It can correctly distinguish the wrong types of source
domain sample classification. Finally, we integrate the various classifiers to make
predictions. We apply our algorithms to synthetic and real credit scoring datasets.
The experiment results indicate our algorithms have superiority in delayed labelling
setting.
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1 INTRODUCTION

With the rapid development of cloud computing, big data, and the Internet of
Things, an increasing amount of data has been produced in the past few years in
more and more industries. In the field of industry, data is often generated continu-
ously with the development of business. Therefore, we often use machine learning to
make analyses and predictions about the future using example data or experience.
In many cases, a large portion of the research on machine learning tasks relies on the
availability of true labels immediately. However, there are many real applications in
which the labels are available with some delay. At time step t, the data denotes as
dt = (xt, yt), where xt is the feature vector, yt is the label. Assuming that at time t
only the feature vector xt arrives, then the label yt will arrive at time t+∆t. This
phenomenon is called delayed labels [1, 2]. For example, in credit scoring [3], the
objective is to predict whether a customer will default. But the true labels can be
available within a few months or a few years after making a prediction. In fraud
detection [4], the actual labels of the predicted examples are not available imme-
diately. Therefore, delayed labels have emerged as one of the key concerns among
researchers.

Assuming that there is a time delay varying from 0 to ∆t for each sample. The
model needs to predict the incoming data chunk of the next time. If we solve the
problem of delayed labels with some of the existing algorithms, two problems will
inevitably be encountered. First, each sample has a time delay varying from 0 to
∆t at the same time. There remains a problem of concept drift due to the long
period of data [5]. Second, the label for each data chunk will be obtained multiple
times. Therefore, whether historical moment or the latest moment, labelled data is
insufficient. The current study has tried to address these problems.

Kuncheva and Sanchez [6] explored whether the classifier should employ the un-
labelled data to solve the problem of insufficient labelled data when the true labels
come with a delay. This work chose to study IB2 and IB3 algorithms, which are
the online nearest neighbour classifiers. Experiments show that IB2 benefits from
unlabelled data, but IB3 does not. Therefore, this article did not make a conclusion
about whether the classifier should employ the unlabelled data in delayed labelling
setting. Krempl and Hofer [7] proposed drift models and discussed an exemplary
adaptive learning algorithm. This work learned a mixture of labelled Gaussian as an
adaptive learning strategy. But this approach required assumptions about the type
of drift and formalized these assumptions. It is difficult to know about the type of
drift in real situations. Dyer et al. [8] proposed the COMPacted Object Sample Ex-
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traction (COMPOSE) framework. This approach combined initial labels with new
unlabelled data to train a semi-supervised classifier and maintained a compacted
geometric center of each class distribution and adapt these centers by using new
unlabelled data. Further, Frederickson and Polikar [9] proposed a variant extension
of COMPOSE for handling scenarios with class-imbalance. But these articles pro-
posed a framework in such an environment, where no labelled data are ever received
after initialization. It does not match the most cases of delayed labels. Plasse and
Adams [3] presented a classifier in delayed labelling setting to solve the long period
of labelled data. This work introduced forgetting factors to reduce the weight of
historical data to optimize streaming linear discriminant analysis (LDA). But this
article did not explore whether concept drift occurs. If concept drift does not occur,
the historical data can be valuable potentially. Therefore, reducing the weight of
historical data blindly may harm the model performance. Grzenda et al. [2] pro-
posed a novel evaluation method when delayed labels take place. This article refined
model evaluation before the corresponding label arrived. The time of waiting for
the labels is decomposed into subperiods. The evaluation of performance measures
for every subperiod is made to analyze the changes in the performance measures
between the initial predictions and when the labels are received. Further, Grzenda
et al. [10] proposed the intermediate performance measures which extend the initial
and the test-then-train performance. However, these works did not propose a novel
classification when delayed labels take place. Pham et al. [11] examined the influence
of delayed labels for Active Learning algorithms and proposed strategies to solve the
problems. This work forgot outdated information and simulated the delayed labels
to get more utility estimates. However, this article did not consider the influence of
concept drift.

In conclusion, it is necessary to solve the two problems with the delayed labels.
In this paper, we propose a novel incremental ensemble learning when delayed labels
take place. When a new data chunk arrives, data of which true label is available,
which means the labelled data, is used to train a classifier as a part of the ensemble
model. In order to solve the problem of insufficient data, we need to integrate the
historical labelled data with the latest labelled data when building a classifier. For
this purpose, we build a sliding time window to preserve the historical data. Let
T denote the length of the sliding time window. Data will be added to the sliding
time window when their true labels become available. When the data chunk of the
next time arrives, we need to train a classifier using labelled samples in the sliding
time window for classification. On the other hand, delayed labels cause a problem
of concept drift due to the long time intervals of data. Therefore, we need to use
a drift detection algorithm to confirm if concept drift occurs in the sliding time
window. If concept drift does not occur in the sliding time window, all data in
the sliding time window will be directly used to build the classifier. Otherwise, all
data in the sliding time window will be divided into two parts. One is the target
domain where data keeps the latest distribution; the other is the source domain.
Considering that the latest labelled data is insufficient and concept drift could only
occur within some specific regions, we proposed an improved TrAdaBoost based
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on KNN to reuse the source domain data. Compared with the TrAdaBoost [12],
our model can distinguish the error types of source data classification by judging
whether the distribution of source domain changed. Some data in the source domain
can be reused to expand the latest data to improve the performance of classification.
In summary, the specific contributions of this work are as follows:

1. We propose a novel incremental ensemble learning when delayed labels take
place. Our algorithms can minimize the impact of insufficient data and concept
drift in delayed labelling setting by building a sliding time window, constructing
adaptive classifiers and integrating the various classifiers.

2. We propose an improved TrAdaBoost based on KNN, which fully distinguishes
the error types of source data classification. In this way, the problem of insuffi-
cient data at the latest moment is reduced in delayed labelling setting.

3. We apply our algorithms in credit scoring. The experiments indicate our algo-
rithms have superiority.

2 PROPOSED METHOD

In this section, we first give the problem statement of delayed labels in Section 2.1.
Then, in Section 2.2, the overall model framework is introduced. Finally, we will
introduce building the sliding time window, constructing adaptive classifiers and
integrating the classifiers in Sections 2.3, 2.4 and 2.5.

2.1 The Problem Statement of Delayed Labels

Firstly, we define the incremental data problem in delayed labels. The whole data
comes into the system as a series of data chunks D = {D1, D2, . . . , Dt, . . . }, where
Dt is the data chunk at time t. Dt can be expressed as Dt = {d(t,j)}Nt

j=1 with Nt

samples. Hence, d(t,j) = (x(t,j), y(t,j)) is the jth sample in Dt, where x(t,j) ∈ X is an
input sample feature vector in the feature space X and y(t,j) is the label associated
with x(t,j).

In order to reflect that different samples have different delayed times, we denote
∆t̃(t,j) as a delayed period about the label for d(t,j). It indicates that the label for d(t,j)
will arrive at time t+∆t̃(t,j). Let [0,∆t̃max) be the value range of the delayed period,
where 0 means that the label is available immediately after prediction and ∆t̃max−1
is the maximum delayed time. The most commonly used symbols, notations and
variables in the paper are summarized in Table 1.

2.2 Model Framework

This paper aims to solve the problem of concept drift in delayed label scenarios and
the insufficient data caused by delayed labels. Therefore, we offer a novel incremental
ensemble learning. We build a sliding time window to preserve the historical data
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Symbol Description

Dt the data chunk at time t
Nt the number of samples in Dt

d(t,j) the jth sample in Dt

x(t,j), y(t,j) an input sample feature vector and the label for d(t,j)
X feature space
∆t̃(t,j) a delayed period about the label for d(t,j)
∆t̃max the supremum of a delayed period about the label
Lt the labelled data chunk which arrives at time t
Ct
(t−k) the labelled data in data chunk Dt−k which arrives at time t

W t the sliding time window at time t
Dt

t−k the labelled data in Dt−k before time t− 1
T the length of the sliding time window
µt the average value of the sample features in Dt

σt the standard deviation of the sample features in Dt

Xs source domain
Xe target domain
accsource the final average accuracy in the source domain samples
acctarget the final average accuracy in the target domain samples
(xsb, y

s
b) the bth sample of Xs

(xel , y
e
l ) the lth sample of Xe

knns(xsb) the number of sample labels among K nearest samples in source domain
knne(xsb) the number of sample labels among K nearest samples in target domain
sim(xsb) the sample distribution similarity of xsb
η the threshold of sample distribution similarity
K the number of nearest neighbour

wf
b the weight of source domain sample(xsb, y

s
b)

lr1 the learning rate of weight updating formula when distribution is different
lr2 the learning rate of weight updating formula when distribution is the same
hf (x

s
b) the classification result of xsb by the classifier built in the f th iteration

εf the error rate of the classifier built in the f th iteration on Xe

f̄ number of classifiers we selected
F maximum iteration

H(t) the classifier set at time t

WE(t) the classifier weight set at time t
γ the weight adjustment coefficient
Hq the qth classifier in classifier set
wetq the weight of Hq at time t

θtq the evaluation performance of the classifier Hq on Xe

θ the threshold of classifier weight

Table 1. The summary of used symbols, notations and variables in this paper
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firstly. Then we create an adaptive classifier by the labelled data in the sliding
time window. And we integrate the classifiers finally. The whole structure of the
proposed model is shown in Figure 1. The overall model framework can be divided
into three stages.

Figure 1. The overall model framework

• The first stage is to build a sliding time window to keep the historical data of
the past T times. If new labelled data arrives, we will add it to the sliding time
window.

• The second stage is to construct an adaptive classifier. First, we need to use
a drift detection algorithm to confirm whether concept drift occurs between two
adjacent data chunks in a sliding time window. If concept drift does not take
place, all data in the sliding time window will be directly used to construct
a classifier. Otherwise, we can build a classifier by transfer learning.

• The third stage is to build an ensemble classifier. First, we choose a diverse set
of classifiers to integrate. Then, the ensemble classifier will predict the incoming
data when we receive a new data chunk.

2.3 Building Sliding Time Window

In order to solve the problem of insufficient data in delayed label scenarios, we build
a sliding time window to preserve historical data. When true labels of data arrive,
they will be added to the sliding time window according to the arrival time of the
feature. It can minimize the problem of insufficient data at each moment.

We denote Lt = {Ct
t−∆tmax+1, . . . , C

t
t−2, C

t
t−1, C

t
t} as the labelled data chunks

which arrive at time t, where Ct
(t−k) is labelled data in data chunk Dt−k which
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arrives at time t. Considering that the incoming labelled data is insufficient at the
latest time, we need to integrate the historical labelled samples and the latest time
labelled samples. To this end, we build a sliding time window of length T to preserve
the historical labelled data of the past T time.

We denote W t−1 = {Dt−1
t−T , . . . , D

t−1
t−2, D

t−1
t−1} as the sliding time window which

constructs at time t− 1, where Dt−1
t−k represents the labelled data in Dt−k before

time t− 1. When Lt arrives, we need to integrate it with W t−1. Specifically, some
new labelled data Ct

t−k arrives at time t. For each Dt−1
t−k in sliding time window, both

Dt−1
t−k and Ct

t−k are subsets of Dt−k. The arrival time of the feature coincides between
the two data chunks. BothDt−1

t−k and Ct
t−k have the same concept. Therefore, we need

to combine Dt−1
t−k with Ct

t−k to form Dt
t−k. D

t
t−k can be expressed as Equation (1).

Dt
t−k = Dt−1

t−k ∪ Ct
t−k. (1)

After integrating Lt with W t−1, we need to delete Dt−1
t−T to ensure that the

length of the sliding time window is T . Finally, the sliding time window W t which
constructed at time t is formed. The construction of our proposed sliding time
window is shown in Figure 2.

In addition, considering that the order of magnitude of different dimensions in
data is quite different, we need to standardize the data in the sliding time window
according to the data chunk. The data standardization formula is as follows:

x(t,j) =
x(t,j) − µt

σt

(2)

where x(t,j) is the jth sample feature in Dt, µt is the average value of the sample
features in Dt and σt is the standard deviation of the sample features in Dt.

2.4 Constructing Adaptive Classifier

At time t, the time window maintains data chunks from time t− T + 1 to time t. We
need to build a new classifier from the labelled data in the time window. Assuming
that W t is the sliding time window at time t, denoted as W t. The time window at
time t contains T data chunks with labelled samples {Dt

(t−T+1), D
t
(t−T+2), . . . , D

t
t}.

Concept drift might take place in these data chunks due to the long period of data.
Therefore, we should use a drift detection algorithm to judge if concept drift occurs
in the sliding time window. If concept drift does not take place, all data in the
sliding time window will be directly used to construct a classifier. Otherwise, the
labelled data which retains the latest concept in the time window W t is denoted
as Xe as the target domain and the remaining data is denoted as Xs as the source
domain. Then we use the improved TrAdaBoost based on KNN to build a classifier.
Therefore, constructing an adaptive classifier can be divided into two stages. The
overall classifier construction is shown in Algorithm 1.

• The first stage is to use a drift detection algorithm to judge if concept drift
occurs between two adjacent data chunks in a sliding time window.
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Figure 2. Building sliding time window

• The second stage is to build a new classifier. If concept drift occurs, we can
build a classifier by transfer learning. Otherwise, all data in the sliding time
window will be directly used to construct a classifier.

2.4.1 Detecting Concept Drift

We need to detect whether concept drift occurs between two adjacent data chunks
in a sliding time window. Most concept drift detection methods first estimate the
probability density functions of historical data and the latest data. Then, it eval-
uates their distance. The key is how to estimate the probability density functions.
There have been related work using histograms density estimator to estimate the
probability density functions. These algorithms adopt kdqtree [13], QuantTree [14]
and EI-Kmeans [15] to build a histogram that partitions the feature space and eval-
uate the probability density function by estimating the number of samples in each
feature partition. The robustness of the related algorithm has been verified. In
this paper, we use EI-Kmeans for concept drift detection. EI-Kmeans is a novel
space partitioning algorithm to address the problems caused by irregular partitions.
Compared with Kmeans algorithm, EI-Kmeans begins by initializing the cluster cen-
troids with a greedy equal intensity k-means initialization algorithm. It can search
for the best centroids to reduce the randomness of algorithm. Second, in order to en-
sure that each cluster has enough samples for Pearson’s chi-square test, EI-Kmeans
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Algorithm 1 Building Adaptive Classifier

Input: W t: sliding time window at time t; t: time
Output: Ht(x): building model at time t; Xe: the labelled data which retains the
latest concept

1: Initialize Xe = [], flag = 0
2: Set Xe = Dt

t

3: for i← 0 to len(W t)− 2 do
4: Detect concept drift between Dt

(t−i−1) and Dt
(t−i)

5: if concept drift does not occur then
6: Xe = Xe ∪Dt

(t−i−1)

7: else
8: Xs = W t −Xe

9: Ht(x) = TrAdaBoost based on KNN(Xs, Xe)
10: flag = 1
11: break
12: end if
13: end for
14: if flag == 0 then
15: Ht(x) = Create Classifier(Xe)
16: end if
17: return Ht(x) and Xe.

uses an intensity-based amplify-shrink algorithm to unify the number of samples
in the cluster. Compared with the kdqtree and QuantTree algorithms, EI-Kmeans
builds a histogram by the clustering algorithm. It can reduce the randomness of
partition results. The algorithm first adopts the EI-Kmeans clustering algorithm
to partition the feature space. Then we apply Pearson’s chi-square test to confirm
if the number of data between the old feature partition and new feature partition
has changed. If there is a significant change, concept drift has occurred. In our
article, we separate the observations based on their labels and detect concept drift
individually.

2.4.2 Building Classifier by Transfer Learning

When concept drift does not take place, all data in the sliding time window will be
directly used to construct a classifier. When concept drift takes place, we divide the
data in a sliding time window into two parts. Specifically, if concept drift occurs
between Dt

(t−a) and Dt
(t−a+1) in W t, we can divide W t into two sets. We regard

the labelled data which retains the latest concept in the time window as the target
domain samples, denoted as Xe = {Dt

(t−a+1) ∪Dt
(t−a+2) ∪ · · · ∪Dt

t}. In this sample

set, all the data chunks have the same distribution as Dt
t. It can be considered

that these data chunks keep the latest distribution. Other data can be regarded as
the source domain samples, denoted as Xs = {Dt

(t−T+1) ∪Dt
(t−T+2) ∪ · · · ∪Dt

(t−a)}.
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In some cases, the target domain samples may be scarce. If the target domain
samples are used to build a classifier, the classifier causes an overfitting result.
Moreover, concept drift might only take place in specific areas, some source do-
main samples can still be reused. Therefore, we use transfer learning to reuse
the source domain sample, which has the same distributions as the target do-
main.

Transfer AdaBoost, which is named TrAdaBoost [12], extends AdaBoost for
transfer learning. For each weak learner, if source domain samples are wrongly
classified, these samples will be dissimilar to the target domain sample. There-
fore, we will decrease the weights of these source domain samples to weaken their
impacts; if target domain samples are wrongly classified, we will gain the weight
of these target domain samples to reduce the error of learner. However, there are
two situations when source domain samples are wrongly classified. One is that
the source domain samples have different distributions with target domain sam-
ples; the other is that the source domain samples have a similar distribution with
target domain samples, but the classifier does not learn the feature of the sample.
However, TradaBoost ignores the second case. Obviously, in the first situation,
the source domain samples’ weight should be reduced. But in the second situa-
tion, we need to increase its weight. Therefore, we proposed a TrAdaBoost based
on KNN, which fully distinguishes the error types of source data classification and
uses it in incremental models. Compared with traditional TrAdaBoost, our algo-
rithm can more accurately determine the error types of the source domain sample.
Compared with other classification algorithms, our algorithm can make use of the
source domain sample and better extend the target domain sample by source domain
sample.

We denote Xs = {(xs
b, y

s
b)} as source domain samples, where b = 1, . . . ,m.

Target domain samples is denoted by Xe = {(xe
l , y

e
l )}, where l = 1, . . . , n. We need

to build an ensemble classifier H (x) : x→ y to optimize its performance.
First of all, we need to initialize the weights of the source domain samples and

the target domain samples. TrAdaBoost allows users to define the initial weights of
the samples. Some papers [16] believe that the source domain samples and the target
domain samples need to set the same initial weights. We consider that when the
distribution of source domain samples and target domain samples is quite different
and the number of source domain samples is greater than the number of target
domain samples, the classifier may wrongly bias towards source domain samples at
first. In this case, we want to set lower initial weights for source domain samples.
Therefore, we first divide the source domain sample set into z sub-sample sets on
average. Each time we take z − 1 sub-sample sets separately to train the classifier
and the remaining one sub-sample set to evaluate the accuracy. After z repetitions,
the final average accuracy in the source domain samples will be denoted as accsource.
Similarly, the classifier is used to evaluate the samples in the target domain. The
final average accuracy in the target domain samples will be denoted as acctarget.
If there is a large gap between accsource and acctarget, we should set a lower initial
weight to the source domain samples. Therefore, the initial weight vector is denoted
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by w1 = (w1
1, . . . , w

1
n+m), and w1

i can be acquired by Equation (3).

w1
i =

{
log(acctarget/(1−acctarget))

log(accsource/(1−accsource))
, i = 1, . . . ,m,

1, i = m+ 1, . . . ,m+ n.
(3)

Since original TrAdaBoost cannot determine the cause of the wrong classifica-
tion of the source domain samples, we need to determine whether the source domain
sample’s distribution is different from the samples in target domain before updating
the weights of samples. For a sample in the source domain, if its nearest neighbor’s
label in source domain is quite different from its nearest neighbor’s label in target
domain, it is believed that the distribution of the sample has been changed. Obvi-
ously, we can use KNN model. The main idea of KNN is that given a sample, we can
use certain neighbor measure to calculate the neighbor degrees to find the K nearest
neighbor. Given a sample in the source domain, if the majority labels of its K clos-
est samples change between the source domain and target domain, the distribution
of the samples could be considered to change. Specifically, we first build two KNN
models on the source and target domains. Given the source domain sample (xs

b, y
s
b),

we calculate the number of sample label ysb among the K nearest samples in the
source domain, denoted as knns(xs

b). We also calculate the number of sample label
ysb among the K nearest samples in the target domain, denoted as knne(xs

b). Finally,
the sample distribution similarity of source domain can be denoted by Equation (4).

sim(xs
b) =

knne(xs
b)

knns(xs
b)
. (4)

Obviously, if sim(xs
b) < η, it will be considered that the distribution of samples

has changed greatly between the source domain and target domain. During updating
the weights of samples, it is necessary to reduce the weight of the sample when
source domain samples are wrongly classified. If sim(xs

b) ≥ η, it means that the
source domain samples and the target domain samples have the same distribution.
We need to increase the weight of the sample in this case.

After computing the similarity of source domain samples, we should improve
the mechanism of updating the weights of samples. In the (f + 1)th iteration, the
weight of the source domain sample can be expressed by Equation (5).

wf+1
b =

 wf
b × lr1 × β|hf (x

s
b)−ysb |, sim(xs

b) < η,

wf
b × lr2 × β−|hf (x

s
b)−ysb |, sim(xs

b) ≥ η,
(5)

where β =
εf

1−εf
, lr1 represents the learning rate of weight updating formula when the

distribution is different, lr2 represents the learning rate of weight updating formula
when the distribution is the same, wf

b is the weight of source domain sample (xs
b, y

s
b)

in f th iteration, hf (x
s
b) is the classification result of xs

b by the classifier constructed
in the f th iteration. The error rate of the classifier constructed in the f th iteration
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on Xe can be expressed by Equation (6).

εf =
n∑

l=1

wf
l |hf (x

e
l )− yel |∑n

l=1 w
f
l

(6)

where wf
l is the weight of the target domain sample (xe

l , y
e
l ) in the f th iteration.

In the (f + 1)th iteration, the weight of the target domain sample (xe
l , y

e
l ) can

be expressed by Equation (7).

wf+1
l = wf

l × lr2 × β−|hf (x
e
l )−yel |. (7)

To sum up, when the source domain sample is misclassified, we should judge
whether its distribution is different. The sample distribution similarity of source
domain is calculated by Equation (4). If the similarity of a certain sample is less
than the threshold η, it could be considered that the distribution of sample in the
source domain is different from the distribution of sample in the target domain.
We reduce the weight of this sample by Equation (5). Similarly, if they are sim-
ilar, we will increase the weight of sample by Equation (5). When the samples
in target domain are wrongly classified, we will increase the weight of sample by
Equation (7).

Finally, we need to integrate the weak classifiers. We assume that a total of F
weak classifiers are generated. The original paper of TrAdaBoost requires the last F

2

weak classifiers for integration. However, in our test, it does not always achieve the
best results. The reason is probably that the later weak classifiers are given too much
weight to the misclassified samples in the target domain. It causes that the classifier
has a harmful effect by noise or outliers. Therefore, we set a hyperparameter f̄ , and
it means that we select the last f̄ classifiers for ensemble. The hyperparameter f̄ can
be adjusted according to the performance of the model. We use the weighted voting
method for ensemble. The number of votes of each weak classifier is multiplied by
the weight, and the weighted number of votes of each category is summed up. The
category corresponding to the maximum value is the final category. The final robust
classifier is as follows:

H(x) = sign

 F∑
f=F−f̄

αfhf (x)

 (8)

where sign() is sign function, if z > 0, sign(z) = 1; otherwise, sign(z) = 0; and αf

represents the weight of the weak classifier generated by the f th iteration, αf can
be expressed as:

αf =
1

2
log

1− εf
εf

. (9)

Adaptive classifier construction is shown in Algorithm 2.
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Algorithm 2 TrAdaBoost based on KNN

Input: Xs: source domain samples; Xe: target domain samples; F: maximum
iteration; f̄ : number of classifiers we selected; K: the number of nearest neighbors
Output: H (x): the final classifier

1: The initial weight vector w1 = (w1
1, . . . , w

1
n+m) and w1

i can be acquired by Equa-
tion (3)

2: Construct two KNN model on source domain and target domain, calculate the
sample distribution similarity of source domain by Equation (4)

3: while f ≤ F do
4: Set pf = wf/

∑n+m
i=1 wf

i

5: Train a classifier by Xs and Xe: hf (x) : X → Y
6: Calculate the error rate of the classifier hf (x) on Xe by Equation (6)
7: Calculate the weight of the weak classifier hf (x) by Equation (9)
8: Set β = εf/ (1− εf )
9: if x ∈ Xs then

10: Update the weight by Equation (5)
11: else
12: Update the weight by Equation (7)
13: end if
14: end while
15: return classifier H(x) by Equation (8)

2.5 Building Ensemble Classifier

At time t− 1, we maintain p classifiers trained on the data chunks from 1 to t− 1 to
form a classifier set, denoted as H(t−1) = {H1, H2, . . . , Hp}. The classifier weight set
is denoted as WE(t−1) = {we(t−1)

1 , we
(t−1)
2 , . . . , we

(t−1)
p }, where we

(t−1)
q is the weight

of Hq at time t− 1. After learning a new classifier H on W t, we need to adjust
the weights of the p classifiers in H(t−1). The adjustment strategy is based on the
evaluation performance of each base classifier on the target domain samples Xe.
Xe is the labelled data that retains the latest concept in the time window. Since
concept drift does not occur in Xe, it can be considered that it represents the latest
concept. We denote θtq as the evaluation performance of the classifier Hq on Xe at
time t. Evaluation performance can be calculated by any error function according to
the dataset, such as error rate. The weight of Hq can be expressed by Equation (10)
at time t.

wetq = (1− θtq)we
(t−1)
q

γ (10)

where γ is the weight adjustment coefficient, γ ∈ [0, 1]. When γ is 0, the weight
of the classifier is only related to the evaluation performance. When γ is 1, the
weight of the classifier at time t is related to the evaluation and the weight at time
t− 1. In addition, in order to avoid the unlimited addition of base classifiers, the
classifiers with weight less than threshold θ are removed. After adjusting the weight,
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we should merge the newly trained classifier H with H(t−1) to form H t and set the
weight of the classifier H to 1. Finally, the new ensemble model H t predicts the
incoming data chunk Dt+1.

Algorithm 3 Incremental Ensemble Learning

Input: D = {D1, D2, . . . , Dt, . . . }: a series of data chunks; H t: a classifier set
at time t; θ: threshold; WEt: the classifier weight set at time t; γ: the weight
adjustment coefficient
Output: prediction results

1: Initialize t = 1; H0 = []; WE0 = []; W 0 = [];
2: for t = 1, 2, . . . do
3: Normalize Dt by Equation (11)
4: Predict Dt by H(t−1)

5: Normalize Dt by Equation (2)
6: for k ← 0 to len(W t−1)− 1 do
7: Update sliding time window by Equation (1)
8: end for
9: if len(W t) > T then

10: delete(W t,D
(t−1)
(t−T ))

11: end if
12: if len(W t) > 0 then
13: Ht, X

e = building adaptive classifier(W t, t)
14: if len(H(t−1)) > 0 then
15: for q ← 1 to len(H(t−1)) do
16: Update the weight of base classifier by Equation (10)
17: if wetq < θ then
18: Remove classifiers with weights less than θ
19: end if
20: end for
21: end if
22: H t = H(t−1) ∪Ht; we

t
t = 1; WEt = WE(t−1) ∪ wett

23: end if
24: end for
25: return prediction results

When we make a prediction to the data chunk Dt+1 at time t+ 1, we need to
standardize samples in Dt+1 to eliminate the influence of different orders of magni-
tude of different dimensions in data. Considering that we cannot get the whole data
chunk Dt+1 immediately at time t+ 1, we need to retain the mean and standard
deviation in the data chunk Dt to standardize. The standardization formula is as
follows:

x(t+1,j) =
x(t+1,j) − µt

σt

(11)
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where x(t+1,j) is the j
th sample feature in Dt+1, µt is the average value of the sample

features in Dt and σt is the standard deviation of the sample features in Dt.
After making a prediction on Dt+1, we standardize Dt+1 with the mean and

standard deviation in Dt+1 and update the time window through the sliding time
window updating mechanism proposed in Section 2.3. The framework of the entire
model is shown in Algorithm 3.

3 EXPERIMENT

In this section, we first introduce experiments on synthetic datasets in Section 3.1.
In Section 3.2, experiments on real credit scoring datasets are introduced.

3.1 Experiments on Synthetic Datasets

3.1.1 Synthetic Datasets

In order to evaluate the effectiveness of the algorithm in this paper, six synthetic
datasets are used to evaluate the performance at first. The samples of these six
datasets are marked with the generation time of the sample features, but the delay
time of the label is not given. So we manually construct the delay time of label on
these six datasets. Specifically, for each synthetic dataset, we assume that the label
delay time of each sample in [0,∆t̃max) is randomly generated. The six datasets are
described as follows:

SEA [17]: This dataset contains 50 000 samples. It is generated using three
attributes, which only the two first attributes are relevant. The classification is
done using α1 + α2 = β, where β is a threshold value. In this paper, each data
chunk is set to contain 1 000 samples. We set ∆t̃max = 10 and ∆t̃max = 5.

Hyperplane [18]: This dataset contains 50 000 samples. It is a two-dimensional
dataset which simulates concept drift by changing the rotation angle of the decision
hyperplane. In this paper, each data chunk is set to contain 1 000 samples. We set
∆t̃max = 10 and ∆t̃max = 5.

Agrawal [19]: This dataset contains 50 000 samples. It is generated using nine
attributes, six numeric and three categorical. These attributes describe hypothetical
loan applications to simulate whether a loan should be approved. In this paper, each
data chunk is set to contain 1 000 samples. We set ∆t̃max = 10 and ∆t̃max = 5.

RBF: This dataset contains 50 000 samples. It is generated using ten numerical
attributes. It contains two classes. Each class has a different class center. Every
sample has a certain offset from the category center, which gradually shifts over time.
In this paper, each data chunk is set to contain 1 000 samples. We set ∆t̃max = 10
and ∆t̃max = 5.

CSDS3 [20]: This dataset is a credit scoring dataset provided by anonymous
companies. It contains information about 97 thousand loans that were analyzed,
approved and conceded by a large bank in Brazil. It includes loan requests from
October 2013 to January 2015. In this dataset, we divide it into 16 data chunks at
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one-month intervals. Since the credit scoring dataset requires determining whether
the user defaults within three months, we set ∆t̃max = 4.

Fraud: This dataset which is provided by the Kaggle platform requires deter-
mining whether fraudulent transactions have occurred in transactions. It includes
transaction information from January 2019 to December 2020. In this dataset, we
divide it into 24 data chunks at one-month intervals. We set ∆t̃max = 5.

Dataset Samples Features Chunks

SEA 50 000 3 50
Hyperplane 50 000 2 50
Agrawal 50 000 9 50
RBF 50 000 10 50
CSDS3 97 226 152 16
Fraud 1 852 394 22 24

Table 2. Information of six datasets

3.1.2 Experiment Settings

First of all, this paper selects three classical chunk-based methods for solving the
concept drift problem to compare with our model. The compared methods are as
follows.

1. Learn++ [21]: This method first divides the data into multiple data chunks
{D1, D2, . . . , Dt, . . . }. Each chunk is built with a classifier. When the latest
data chunk Dt arrives, it trains a base classifier by Dt−1 and adjusts the weights
of each previous base classifier according to their performance and a time-decay
function. Then it forms an ensemble classifier.

2. REA [22]: It is an earlier method to solve the concept drift of unbalanced data.
When the latest chunk Dt arrives, this method adaptively pushes into Dt−1 part
of minority class examples received within [1, t− 2] to balance its skewed class
distribution. These samples are merged with Dt−1 for training.

3. DWMIL [23]: This method adopts incremental learning to solve the problem of
concept drift. Its basic idea is similar to Learn++. However, the formula for
adjusting the weight of the base classifier in DWMIL is different from Learn++.
In addition, DWMIL deletes premature classifiers to avoid excessive model com-
plexity.

The above three classical methods for solving the concept drift problem are
applied to the situation without delayed labels. When Dt−1 is predicted, the true
label of Dt−1 can be obtained immediately. Therefore, these methods use Dt−1 to
build classifiers to predict Dt. However, in the case of delayed labels, the true label
of the data chunk cannot be obtained after making predictions. Therefore, it is
necessary to improve the above three comparative methods. We build a classifier
using Lt−1 which is the labelled data chunk arriving at time t− 1 to predict Dt.
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Secondly, we use Accuracy and Area Under Curve (AUC) as the evaluation
metrics. Specifically, we calculate the average Accuracy of each data chunk on the
SEA, Hyperplane, RBF and Agrawal datasets. Accuracy is expressed as the ratio of
the number of samples correctly classified to the total number of samples for a given
dataset, and the formula is as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

where TP is true positives, FP is false positives, FN is false negatives, and TN is
true negatives.

For CSDS3 and Fraud datasets, we use AUC as the evaluation metric. Because
these datasets are unbalanced, if we use Accuracy as the evaluation metric on these
datasets, the test results might be inaccurate. AUC represents the area under the
ROC curve. AUC has been widely used for measuring classification performance
with imbalanced data distributions. Therefore, we calculate the average AUC of
each data chunk. The formula of AUC is as follows:

AUC =

∑
positives r − npos(npos+1)

2

nposnneg

(13)

where r is the probability, which the data is predicted to be a positive sample, npos

is the number of positive samples in the dataset, and nneg is the number of negative
samples in the dataset.

Finally, for the sliding time window module, we set the length of the sliding time
window T = ∆t̃max. In the adaptive classifier module, for the TrAdaBoost based on
KNN, we set decision tree as the base classifier, the threshold η = 0.7, the maximum
number of iterations F = 50, learning rate for weight update when the distribution
is different lr1 = 0.5, learning rate for weight update when the distribution is the
same lr2 = 0.3, the number of nearest neighbors K = 20 in KNN. For different
datasets, due to different degrees of concept drift, there will be some differences
in performance when the number of retained base classifiers is different. We set
the number of base classifiers f̄ from 26 to 50 with a steps size of 5 and select the
optimal parameters. If concept drift does not occur, we use AdaBoost as a classifier
and use decision tree as a base classifier. For the ensemble classifier module, we
set the weight adjustment factor γ = 0.5, the detection threshold θ = 0.6. We use
AdaBoost as a classifier for comparative experiments.

3.1.3 Experiment Results on Synthetic Datasets

We first conduct comparative experiments on the SEA, Hyperplane, Agrawal, and
RBF datasets. Table 3 shows the comparison between our method and the other
three methods on these datasets. It can be seen from the experiment results that our
method can more effectively solve the problems of insufficient samples and concept
drift caused by delayed labels. In addition, we also conduct ablation experiments
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Dataset Delayed Time Our Method DWMIL Learn++ REA

SEA
∆t̃max = 10 86.41% 84.25% 83.55% 83.33%
∆t̃max = 5 86.98% 85.94% 84.54% 84.03%

Hyperplane
∆t̃max = 10 96.77% 96.18% 94.48% 91.49%
∆t̃max = 5 97.16% 97.03% 95.58% 93.94%

Agrawal
∆t̃max = 10 89.47% 86.22% 83.24% 73.27%
∆t̃max = 5 91.07% 89.35% 87.93% 78.30%

RBF
∆t̃max = 10 91.58% 89.31% 85.29% 79.70%
∆t̃max = 5 92.53% 90.94% 88.06% 81.70%

Table 3. Accuracy performance on the SEA, Hyperplane, Agrawal and RBF datasets in
the comparison experiment

Without
Dataset Delayed Time Our Method Transfer TrAdaBoost

Learning

SEA
∆t̃max = 10 86.41% 85.79% 85.88%
∆t̃max = 5 86.98% 86.33% 86.48%

Hyperplane
∆t̃max = 10 96.77% 96.07% 96.07%
∆t̃max = 5 97.16% 97.08% 97.16%

Agrawal
∆t̃max = 10 89.47% 89.20% 88.36%
∆t̃max = 5 91.07% 89.81% 90.91%

RBF
∆t̃max = 10 91.58% 90.92% 91.20%
∆t̃max = 5 92.53% 92.02% 92.15%

Table 4. Accuracy performance on the SEA, Hyperplane, Agrawal and RBF datasets in
the ablation experiment

to verify the effectiveness of TrAdaBoost based on KNN. The ablation experiment
includes two methods to compare with our model. Only target domain data was
used to construct classifiers without transfer learning, and the TrAdaBoost method
was used to construct classifiers. The experiment results on the SEA, Hyperplane,
Agrawal and RBF datasets are shown in Table 4. From Table 4, we can see that
transfer learning can achieve better results compared with the method which con-
structs classifiers without transfer learning due to insufficient sample. Compared
with TrAdaBoost, the transfer learning proposed in this paper can correctly dis-
tinguish the types of classification errors and achieve better results. It shows that
our method can better handle the problem of insufficient samples and concept drift
caused by delayed labels.

Then we conduct comparative experiments on CSDS3 and Fraud datasets. The
comparison results on AUC are shown in Table 5. Meanwhile, ablation experiments
on CSDS3 and Fraud datasets are also conducted. The comparison results on AUC
are shown in Table 6. It shows that our method is better than other methods on
AUC in CSDS3 dataset, but DWMIL is better than other methods in Fraud. In
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the ablation experiment, the method which constructs classifiers without transfer
learning is better than other methods. The possible reason is that the concept drift
in Fraud dataset is weak or does not occur, so the method we proposed in this paper
is not significantly different from other methods. Our method is generally superior
to other comparative experimental methods on six synthetic datasets.

Dataset Delayed Time Our Method DWMIL Learn++ REA

CSDS3 ∆t̃max = 4 82.35% 81.79% 81.86% 81.89%

Fraud ∆t̃max = 5 98.11% 98.29% 98.12% 97.83%

Table 5. AUC performance on the CSDS3 and Fraud datasets in the comparison experi-
ment

Without
Dataset Delayed Time Our Method Transfer TrAdaBoost

Learning

CSDS3 ∆t̃max = 4 82.35% 80.29% 81.69%

Fraud ∆t̃max = 5 98.11% 98.37% 97.48%

Table 6. AUC performance on the CSDS3 and Fraud datasets in the ablation experiment

3.2 Experiments on Real Credit Scoring Datasets

3.2.1 Real Datasets

In this section, we choose two real credit scoring datasets for experiments. These
datasets give the generation time of sample features and give the real delay time
of each sample label. Specifically, the delay time of each sample label can be ob-
tained by subtracting the time of the loan application from the time of the last loan
submission. The two datasets are described as follows.

PPDAI: PPDAI is a very representative enterprise among Chinese Internet fi-
nance companies. This dataset, which includes 10% sampling data of all credit
targets from January 2015 to January 2017, is the real business data provided by
PPDAI online lending platform. This dataset needs to determine whether the user
is default. We divide it into a total of 24 data chunks at one-month intervals. We
select the data in this dataset with a loan period of less than or equal to 18 months
for testing. We set ∆t̃max = 19 in PPDAI dataset.

LendingClub: LendingClub is the world’s largest P2P Internet lending platform.
This platform updates the lending data in real time. Therefore, in order to ensure
that the data which is being repaid is not included in the dataset, we use the data
in LendingClub from June 2007 to December 2016 and select the data with the
loan period of 3 years. The total number of data in this dataset is 944 664. It is
generated by 149 dimensions. Each sample represents the information of a customer.
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We mark users who fully repay their loans as customers with good credit and those
who default as customers with bad credit. In this dataset, we divide it into 115 data
chunks at one-month intervals. We set ∆t̃max = 37.

Dataset Samples Features Chunks

PPDAI 113 594 20 24
LendingClub 944 664 149 115

Table 7. Information of credit scoring datasets

3.2.2 Experiment Settings

The compared method we selected in this section is the same as the compared
method in Section 3.1. For LendingClub and PPDAI real dataset, we select AUC as
the evaluation metric since these datasets are imbalanced. We evaluate the dataset
by calculating the average AUC on each data chunk. In addition, for PPDAI,
the last six data chunks contain too much unlabelled data which are being repaid
and do not know the true label. The evaluation results will be biased on the last
six data chunks. So we adopt PPDAI data from the first 18 months to evaluate.
For LendingClub, a qualified classifier cannot be built for evaluation due to the
insufficient amount of data at the beginning, and we evaluate the LendingClub data
of the last 36 months.

Finally, for the sliding time window module, we set the length of the sliding
time window T = ∆t̃max. In the adaptive classifier module, for the TrAdaBoost
based on KNN, we set decision tree as the base classifier, the threshold η = 0.6,
the maximum number of iterations F = 50, learning rate for weight update when
the distribution is different lr1 = 0.5, learning rate for weight update when the
distribution is the same lr2 = 0.3, the number of nearest neighbors K = 20 in KNN.
For different datasets, due to different degrees of concept drift, there will be some
differences in performance when the number of retained base classifiers is different.
We set the number of base classifiers f̄ from 26 to 50 with a steps size of 5 and
select the optimal parameters. If concept drift does not occur, we use AdaBoost
as a classifier and use decision tree as a base classifier. For the ensemble classifier
module, we set the weight adjustment factor γ = 0, the detection threshold θ = 0.5.
We use AdaBoost as a classifier for comparative experiments.

3.2.3 Experiment Results on Real Datasets

We conduct comparative experiments on LendingClub and PPDAI datasets. Table 8
shows the comparison between our method and the other three methods on these
datasets. Meanwhile, we conduct ablation experiments on LendingClub and PPDAI
datasets. The results are shown in Table 9. It can be seen from the experimental
results that our method is superior to the other three methods. It shows that there
are two advantages to our method.
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1. The method in this paper solves the problem of insufficient samples in delayed
labelling setting by expanding the number of samples. The experimental results
show that it can achieve better results.

2. Our method can better solve the problem of concept drift in delayed labelling
setting. When concept drift occurs, our method is adopted to reuse the data in
the source domain.

Similarly, the ablation results demonstrate the effectiveness of the TrAdaBoost based
on KNN.

Dataset Delayed Time Our Method DWMIL Learn++ REA

LendingClub ∆t̃max = 37 67.70% 65.76% 66.97% 67.10%

PPDAI ∆t̃max = 19 64.30% 62.47% 63.45% 61.59%

Table 8. AUC performance on the LendingClub and PPDAI datasets in the comparison
experiment

Without
Dataset Delayed Time Our Method Transfer TrAdaBoost

Learning

LendingClub ∆t̃max = 37 67.70% 66.60% 66.04%

PPDAI ∆t̃max = 19 64.30% 62.02% 63.55%

Table 9. AUC performance on the LendingClub and PPDAI datasets in the ablation ex-
periment

4 CONCLUSION

In this paper, we propose an incremental ensemble learning model when delayed
labels take place. Our algorithms can minimize the impact of insufficient data
and concept drift in delayed labels by building a sliding time window, constructing
adaptive classifiers and integrating the various classifiers. In addition, we propose
an improved TrAdaBoost based on KNN, which can more effectively determine the
error type in the source domain. Our results show that our method can significantly
improve the performance of the classifier. In summary, our method can better adapt
to the scenario of delayed label.

There are also some shortcomings in our paper. First of all, some historical
samples are stored when the classifier is built in this paper. It will lead to an increase
the time complexity and space complexity. Therefore, ensuring performance while
reducing time and space complexity is the key to our next research. Secondly, we
do not take advantage of the unlabelled data generated at every moment. Applying
the unlabelled data in our model is the key to our next research. We believe that
such work can solve the delayed labelling problem more effectively.
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