
Computing and Informatics, Vol. 41, 2022, 1337–1357, doi: 10.31577/cai 2022 5 1337

CHARACTER AND WORD EMBEDDINGS
FOR PHISHING EMAIL DETECTION

Nikola Stevanović

Faculty of Sciences and Mathematics, University of Nǐs
Vǐsegradska 33, 18000 Nǐs, Serbia
e-mail: nikola.stevanovic@pmf.edu.rs

Abstract. Phishing attacks are among the most common malicious activities on the
Internet. During a phishing attack, cybercriminals present themselves as a trusted
organization or individual. Their goal is to lure people to enter their private in-
formation, such as passwords and bank card numbers, while believing that nothing
malicious is happening. The attack often starts with a phishing email, which is
an email that is very similar to a legitimate email, but usually contains links to
malicious websites or uses some other techniques to mislead victims. To prevent
phishing attacks, it is crucial to detect phishing emails and remove them from email
inbox folders. In this paper, a neural network based phishing email detection model
is proposed. In comparison to some earlier approaches, our model does not use man-
ually engineered input features. It learns character and word embeddings directly
from email texts, and uses them to extract local and global features using convolu-
tional and recurrent layers, respectively. Our model is tested on the two commonly
used datasets for phishing email detection, the SpamAssassin Public Corpus and
Nazario Phishing Corpus, and it achieves an accuracy of 99.81% and F1-score of
99.74%, which is on par or better than the current state-of-the-art approaches.

Keywords: Cybersecurity, deep learning, phishing attack, phishing email detec-
tion, word embedding

Mathematics Subject Classification 2010: 68-T99

https://doi.org/10.31577/cai_2022_5_1337


1338 N. Stevanović

1 INTRODUCTION

Nowadays, online services play a crucial role in our everyday lives. Whether we want
to order some goods, entertain ourselves or communicate with our friends and co-
workers, we do so over the Internet. Electronic mail (email) is a frequently used way
of communication over the Internet, especially in professional settings. According
to the Radicati Group1, the total number of business and consumer emails sent and
received per day is expected to reach 319.6 billion by the end of 2021. They predict
that the number of worldwide email users will be over 4.3 billion by that time. It is
essential to have safe and reliable email communication.

One of the main threats in contemporary cybersecurity are phishing attacks.
An attack often starts with a phishing email, which looks like a legitimate email
(ham email), but usually contains links to phishing websites. The goal of the at-
tackers is to establish trust from the people who receive the email, and for them to
believe that nothing malicious is happening and to click on malicious links. When
a person arrives on a phishing website, the person is asked to enter some sensitive
information. It can be anything which can later generate some profit to the attack-
ers, including passwords, bank card numbers, confidential information and similar.
Phishing websites look like websites of trusted organizations, and victims enter their
information believing that they are using original websites of those trusted organi-
zations. Sometimes, attackers impersonate a trusted friend or a co-worker, and
directly send emails asking victims for some benefits.

According to the Anti-Phishing Working Group2, the number of phishing attacks
doubled over the course of the year. The same report also states that the number
of phishing websites which use SSL/TLS increased to 84%. As phishing attacks
have become more frequent, research in the field of their detection has become
increasingly important. Depending on the content that is being analyzed, there are
several subfields in the domain. Some authors try to prevent phishing attacks by
detecting phishing URLs (Uniform Resource Locator) [3, 4, 5]. In addition to the
URL, Feng et al. [6] also used the content of a page and its DOM to predict if it
is a phishing webpage. Mehanović et al. [7] applied feature selection on manually
engineered website features and used some classical machine learning algorithms
for classification. As detecting phishing attacks from the moment people receive
phishing emails can drastically mitigate the danger, the focus of this paper is on
preventing phishing attacks by detecting phishing emails.

Most of the current literature focuses on selecting the most useful input features
from emails, and then applying some classical machine learning algorithms. There

1 The Radicati Group Inc. Email Statistics Report, 2017-2021. Avail-
able at: https://www.radicati.com/wp/wp-content/uploads/2017/01/

Email-Statistics-Report-2017-2021-Executive-Summary.pdf, 2017.
2 The Anti-Phishing Working Group. Phishing Activity Trends Report, 4th Quarter

2020. Available at: https://docs.apwg.org/reports/apwg_trends_report_q4_2020.

pdf, 2021.

https://www.radicati.com/wp/wp-content/uploads/2017/01/Email-Statistics-Report-2017-2021-Executive-Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2017/01/Email-Statistics-Report-2017-2021-Executive-Summary.pdf
https://docs.apwg.org/reports/apwg_trends_report_q4_2020.pdf
https://docs.apwg.org/reports/apwg_trends_report_q4_2020.pdf


Embeddings for Phishing Email Detection 1339

is a lack of approaches which learn features directly from phishing emails. In this
paper, an approach which learns input features automatically by learning character
and word embeddings from email texts is presented. This approach is more general,
and it is easier to later update the model with new types of emails.

We propose a neural network classifier, which simultaneously uses character
and word embeddings. It combines several convolutional and recurrent layers to
extract both local and global features. To evaluate our approach, we downloaded
two commonly used datasets in this field, the SpamAssassin Public Corpus [1] and
the Nazario Phishing Corpus [2]. The datasets contain emails which are in raw
format, so we first created a script to extract only their textual content. To prove
the effectiveness of our classifier, we conducted a detailed testing and analysis using
the extracted data from those datasets. Experimental results show that our approach
is as good or better than the best available approaches.

Traditionally, blacklists were used to detect phishing attacks. This approach
was not able to detect modifications of existing phishing attacks and newly created
phishing attacks. To overcome this problem, researchers started applying machine
learning algorithms. Shaukat et al. [8] presented a survey on application of machine
learning algorithms for cybersecurity in the last decade.

In [9] Islam and Abawajy presented a 3-tier model for classification between
phishing and legitimate emails. They used 21 features extracted from the email
body and header, and a different well-known machine learning algorithm in each
tier. If the first two tier algorithms predict the same label, that label is the final
prediction of the model. Otherwise, the third tier algorithm decides the model
prediction. They achieved an accuracy rate of 97%. Fette et al. [10] used only
10 input features, 7 binary and 3 continuous features. The continuous features
are the number of links and domains, and the maximum number of dots in any
of the links present in the email. The binary features include the presence of IP-
based links, recently registered domain names, HTML elements and similar. The
method uses a random forest classifier with 10 decision trees, and detects over 96%
of the phishing emails. Gualberto et al. [11] first created a Document-Term Matrix,
which represents each email in a row, and each term in a column. Then they
used Latent Dirichlet Allocation to reduce dimensionality, and employed Extreme
Gradient Boosting (XGBoost) classifier. They obtained accuracies of 99.95% and
99.58% with and without using knowledge from the Wordnet [12] for lemmatization,
respectively.

Gangavarapu and Jaidhar [13] proposed a bio-inspired hybrid metaheuristic to
obtain an informative feature subset from 40 content- and behavior-based features
and 200 Doc2Vec features. They used a multi-layer perceptron for classification of
unsolicited bulk emails (UBEs), and achieved an accuracy of 99.4% when classifying
between phishing and legitimate emails. By utilizing fastText3 to represent texts as
vectors, Ganesh et al. [14] created a phishing email classifier which obtained an F1-
score of 99%. Yasin and Abuhasan [15] used an intelligent preprocessing phase

3 FastText. Available at: https://fasttext.cc/, accessed on 18. 12. 2021.

https://fasttext.cc/


1340 N. Stevanović

to extract a set of 16 features suitable for the phishing detection problem. After
evaluating their approach using a 10-fold cross-validation technique, they achieved
an accuracy rate of 99.1% with a random forest classifier. Gangavarapu et al. [16]
performed an extensive analysis in which they compared several different feature
extraction and machine learning methods for classifying unsolicited bulk emails. By
selecting only 21 features from the original set of 40 features, and using a random for-
est classifier, they achieved an accuracy rate of 99.4%. Akinyelu and Adewumi [17]
extracted a set of 15 phishing features and employed a random forest classifier. They
attained an accuracy rate of 99.7% on a dataset which contains phishing and ham
emails in the ratio of 1:9.

By using the skip-gram architecture for Word2Vec to learn word embeddings,
Vinayakumar et al. [18] utilized LSTM to obtain an accuracy rate of 99.1% in
a 10-fold cross-validation evaluation. Fang et al. [19] proposed a neural network
approach to phishing email detection, based on a recurrent convolutional neural
network [20]. They also used Word2Vec to learn character and word embeddings.
They attained an accuracy rate of 99.848% and an F1-score of 99.331%. Moradpoor
et al. [21] used Word2Vec embeddings and 4 additional features as input to their
neural network classifier. They achieved an accuracy rate of 91.5% on the testing
dataset.

Halgaš et al. [22] proposed a recurrent neural network based approach to phish-
ing email detection. They selected 5000 tokens (including special tokens) from email
texts, gave each token a unique ID, and presented each email as a sequence of token
IDs. Each token ID is being substituted with its embedding vector of size 200 before
being used as the input of the recurrent neural network. All the embedding vectors
are learned together with other parameters of the model. This method achieved an
accuracy rate of 98.91% and F1-score of 98.63%. By learning word embeddings to-
gether with other parameter of a convolutional neural network, Hiransha et al. [23]
obtained accuracies of 94.2% and 96.8% when classifying emails with and without
their headers, respectively. Papers [22] and [23] are the most similar to our ap-
proach, as they both learn embeddings simultaneously with other neural network
parameters.

The remainder of the paper is organized as follows. Theoretical background of all
the building blocks used in our model is given in Section 2. In Section 3, our proposed
architecture for phishing email detection is described, as well as the datasets that
are used for evaluation. Explanation of the evaluation procedure, implementation
details and evaluation results are also given in that section. Section 4 contains final
comments and some ideas for further improvements.

2 THEORETICAL BACKGROUND

Our approach is a neural network based classifier, which contains multiple building
blocks. In this section, we give a theoretical background of different types of building
blocks that are used. We also explain what is the function of each of them in our



Embeddings for Phishing Email Detection 1341

architecture. A description of how they are interconnected is given in Sections 3.2
and 3.3.

2.1 Embeddings

Embedding layers are used when there is a dictionary of tokens, and there is a need
for each token to have its vector representation. Each token has its unique ID in
the dictionary (an integer in the range between 0 and N − 1, where N is the size
of the dictionary). An embedding layer has a single matrix of weights E ∈ RN×d,
where d represents the embedding size. Let us label with ei the i

th row of the matrix
E = [e0, . . . , eN−1]

⊺. Vector ei is a vector representation of the token whose ID in
the dictionary is i.

On its input, the layer receives a list of L integers i0, . . . , iL−1, which represent
IDs of the tokens from an input sequence. We denote with L the input sequence
length. The layer then selects appropriate rows from the embedding matrix E, and
ends up with a matrix [ei0 , . . . , eiL−1

]⊺, which is the output of the embedding layer.

In our work, input samples are emails which are in textual format. As neural
networks expect numerical input, we use embedding layers to transform email texts
to sequences of token embeddings. We learn embeddings of two types of tokens:
characters and words. For each type of token, we learn two embedding layers, one
for recurrent and one for convolutional processing. We decided to use separate
embedding layers for recurrent and convolutional processing to give the model more
flexibility. There are a total of 4 embedding layers in our architecture.

One important advantage of using embedding layers is that they can be learned
together with all other parameters of a model, by using gradient based optimization
strategies. In our architecture, when a token appears in an email, its two embedding
vectors (for recurrent and convolutional processing) are selected and used in the for-
ward pass (together with embedding vectors of all the other tokens from the email).
The backpropagation technique is then used to calculate the gradients of the binary
cross-entropy loss function with respect to all the network parameters, including
the selected embedding vectors. Those gradients are then used by a gradient based
optimization algorithm to adjust the selected embedding vectors (as well as all the
other network parameters).

2.2 Linear Layer and Nonlinearities

The linear layer is one of the most used layers in neural network architectures, and
has two parameters: a matrix W ∈ Rd2×d1 and a vector b ∈ Rd2 . The input is
a d1-dimensional vector x, and the output of the layer is a d2-dimensional vector
v = Wx+ b.

Nonlinearities are essential to make more complex representations from the in-
put data. In this paper, three of the standard nonlinearities are used: sigmoid
(σ), hyperbolic tangent (tanh) and rectified linear unit (ReLU). Their formulas are



1342 N. Stevanović

given in Equations (1), (2) and (3). All the nonlinearities are applied element-wise,
regardless of the input shape.

σ(x) =
1

1 + e−x
, (1)

tanh(x) =
ex − e−x

ex + e−x
, (2)

ReLU(x) = max(0, x). (3)

2.3 Long Short-Term Memory

Long short-term memory [24], or LSTM in short, is a recurrent cell architecture
which does not have as much problem with vanishing gradients as some traditional
recurrent cells. Recurrent cells are used for processing sequential data. Let us
assume that there is a sequence of L d-dimensional input vectors x0, . . . , xL−1.
An LSTM cell sequentially receives input vectors xt one by one (from x0 to xL−1),
and uses them to update its two d-dimensional state vectors: a cell state ct and
a hidden state ht. The initial cell and hidden states are usually initialized to zero
vectors. The formulas for updating are given in Equations (4), (5), (6), (7), (8)
and (9).

it = σ(Wiixt + bii +Whiht−1 + bhi), (4)

ft = σ(Wifxt + bif +Whfht−1 + bhf ), (5)

ot = σ(Wioxt + bio +Whoht−1 + bho), (6)

gt = tanh(Wigxt + big +Whght−1 + bhg), (7)

ct = ft ⊙ ct−1 + it ⊙ gt, (8)

ht = ot ⊙ tanh(ct). (9)

Symbol ⊙ represents element-wise multiplication. The cell uses gating mecha-
nisms to control information flow. The input gate it controls the amount of infor-
mation that the cell receives from its input. The forget gate ft is responsible for
resetting the knowledge that is already present in the cell state. The output gate ot
controls how much of the information that exists in the cell should be forwarded to
the cell output. A graphical illustration of an LSTM cell is given in Figure 1.

The cell has eight matrix parameters (Wii,Wif ,Wio,Wig,Whi,Whf ,Who,Whg ∈
Rd×d), and eight vector parameters (bii, bif , bio, big, bhi, bhf , bho, bhg ∈ Rd). These
parameters are being adjusted during the training phase, using a gradient based
optimization strategy. The last hidden state of the cell, hL−1, is often used as
a representation of the whole input sequence.

There is also a bidirectional variant of the LSTM architecture. It uses two
separate LSTM cells. One cell processes input vectors xt in the correct order (from x0



Embeddings for Phishing Email Detection 1343

⊙ +

⊙ ⊙

tanh

tanh

ct-1 ct

ht

htht-1

xt

Figure 1. LSTM cell

to xL−1), and the other processes them in the opposite order (from xL−1 to x0). The
last hidden states of both directions are then concatenated, and it is a representation
of the whole input sequence.

In our architecture, we use two bidirectional LSTM cells, one for processing
a sequence of characters and one for processing a sequence of words from each
email. Those cells process whole email sequences, and extract global features. Those
features are later combined with local features extracted by convolutional layers.

2.4 1-Dimensional Convolution

In the last few decades, convolutional layers have been successfully applied in various
fields [25, 26, 27, 28]. For extraction of features in textual data, the most used
convolutional layer is the 1-dimensional convolutional layer. Let us assume that
there is a matrix U ∈ RL×d formed from a sequence of L d-dimensional vectors
on the input of the layer. The layer has multiple kernels, and each of them has
a separate matrix of weights W ∈ RS×d and bias parameter b ∈ R. Hyperparameter
S is called the kernel size. Output of the convolution using this kernel is a vector
v ∈ RL−S+1, whose values can be calculated using the formula in Equation (10).
The calculation is visually illustrated in Figure 2.

vi = b+
S−1∑
j=0

d−1∑
k=0

Wj,kUi+j,k. (10)

If the convolutional layer has N kernels, each of them will produce a separate
(L − S + 1)-dimensional vector on its output. By concatenating them, we get the
output of the convolutional layer, which is a (L−S+1)×N matrix. The number of
rows in the output matrix can additionally be increased by using padding. A certain



1344 N. Stevanović

∗

5

5

5

5

5

3

3

3

-2

-2

-2

-2

-1

-1

-1

-4

-4

-4

-4

2

2

2

2

-3

-3

1

1

1

-1

-42

2

-3

-3-1

1

1 -2

-2

3 + =2

2

-13

32

5

3

Figure 2. 1-dimensional convolution

number of rows (usually filled with zeros) is added to the input matrix U at its
beginning and end, and consequently the size of the output matrix increases for the
same number of rows.

Convolutional layers extract local features, with kernel size S determining how
many consecutive input sequence elements should be used for feature extraction.
For extraction of more diverse local features, we apply multiple convolutional layers
with different kernel sizes on sequences of both character and word embeddings in
our architecture.

2.5 Global Max-Pooling

The global max-pooling layer is used to calculate strongest activations of the input
along its temporal dimension (sequence length). The input is a matrix U ∈ RL×d,
and the output of the layer is a d-dimensional vector v whose elements can be
calculated as

vj = max
i

Ui,j. (11)

In phishing email detection, finding a malicious part of text somewhere in
an email is a good indicator of it being a phishing email. Since a convolutional
layer extracts features from local parts of email texts, applying the global max-
pooling layer on its output can help us to find places in text where the strongest
activations of malicious patterns occur. That makes this method of aggregation over
temporal dimension particularly useful in this domain.

2.6 Layer Normalization

By normalizing activities of neurons, it is possible to have faster and more efficient
training. Contrary to some earlier normalization techniques, like batch normaliza-
tion [29], layer normalization [30] calculates the mean and variance values used for
normalization on each training sample individually. It performs exactly the same



Embeddings for Phishing Email Detection 1345

computation during training and testing, which is not the case with batch normal-
ization.

Let us assume that there is an input vector x ∈ Rd, which is a representation of
a single training sample. The layer has two learnable parameters, γ, β ∈ Rd. Before
starting the training phase, γ is initialized to a vector of ones, and β to a vector of
zeros. Output of the layer is a d-dimensional vector v, which can be calculated as

v =
x− E[x]√
Var[x] + ϵ

⊙ γ + β. (12)

Since x is a vector, and E[x] is a scalar, E[x] is subtracted from each element of x.
The mean and variance values are calculated as shown in Equations (13) and (14),
respectively. The variance is calculated using the biased estimator. Hyperparame-
ter ϵ is a small constant (e.g. 10−5), which is used to prevent potential division by
zero.

E[x] =
1

d

d−1∑
i=0

xi, (13)

Var[x] =
1

d

d−1∑
i=0

(xi − E[x])2. (14)

In addition to making the training process more efficient, this layer also has
a positive influence on model generalization. In our architecture, we apply this
layer before concatenating representations created using recurrent and convolutional
processing, and also before concatenating representations created using characters
and words.

3 PROPOSED APPROACH

3.1 Dataset

All the emails used in this research are collected from two datasets, the SpamAs-
sassin Public Corpus [1] and the Nazario Phishing Corpus [2]. The former contains
legitimate emails, and the latter contains phishing emails.

From the SpamAssassin Public Corpus emails contained in files whose names
end with “ham” are collected. There are three files from the corpus that are
used in our analysis: “20030228 easy ham.tar.bz2”, “20030228 hard ham.tar.bz2”
and “20030228 easy ham 2.tar.bz2”. The first file (“easy ham”) comprises legit-
imate emails which do not contain HTML elements and are relatively easy to
classify. The “hard ham” file contains much trickier legitimate emails, which in-
corporate HTML elements, spam sounding sentences and similar. The third file
comprises legitimate emails which were subsequently added to the dataset. Other
files include different or obsolete versions of the same files, or spam emails. Those



1346 N. Stevanović

files are not included in our analysis. Our final dataset contains 4 150 legitimate
emails.

We collected phishing emails from the file “phishing3.mbox” from the Nazario
Phishing Corpus. Those are the same emails which were used in [11]. There is
a total of 2 279 phishing emails in our final dataset.

Both phishing and legitimate emails are in a raw format in the original datasets.
We extract the subject and textual content of the body of each email. Some emails
are multipart, and we concatenate the subject and texts from all those parts with
new line characters in between. Texts from the files attached to emails are not
used. Some parts are in the HTML format, and only textual content and links are
extracted from them. From each link, we extract both the displayed text of the link
and the URL address that the link directs to. The html2text4 library is utilized to
perform the extraction.

3.2 Character and Word Dictionaries

To analyze emails with our model, we first extract tokens from each email. Two
different groups of tokens are used, characters and words. We define a word as
a consecutive sequence of letters from an email text that is not part of a larger
consecutive sequence of letters. For example, if an email contains text “Hello, Mark”,
two words will be extracted, “Hello” and “Mark”. The same text contains eleven
characters: “H”, “e”, “l”, “l”, “o”, “,”, “ ”, “M”, “a”, “r” and “k”.

We create a dictionary of all tokens for each of the two groups of tokens sepa-
rately. Only tokens from the training set are used to create the dictionaries. Since
token embeddings learned just from a few appearances of a token can be misleading,
only tokens which appear in at least ten emails are included. By reducing the total
number of observed tokens, we consequently reduce the total number of learnable
parameters of the model, making its representation more compact. We found ten
to be a good balance between removing rare tokens which can represent noise and
be misleading, and keeping other tokens which contain useful information for the
classifier.

Both dictionaries contain two additional tokens, one which represents unknown
tokens, and one for padding. We classify as unknown all the tokens which appear
in less than 10 emails in the training set, including all the tokens which do not
appear in the training set (those tokens that the model encounters for the first
time during testing). Treating rare tokens as unknown during training improves
generalization of the model, because it prepares the model to deal with new rare
tokens that can appear during testing. Since a 10-fold cross-validation is used to
evaluate our approach, and each of the 10 phases of evaluation has a different training
set, different dictionaries are created in each phase.

4 Html2text. Available at: https://pypi.org/project/html2text/, accessed on
18. 12. 2021.

https://pypi.org/project/html2text/


Embeddings for Phishing Email Detection 1347

Each token from a dictionary has a unique ID. ID of 0 is reserved for padding
tokens, and ID of 1 for unknown tokens. When an email needs to be processed, two
sequences of tokens are first extracted, a sequence of characters and a sequence of
words. After that, those two sequences are transformed by swapping all the tokens
that have their own IDs with those IDs, and all other tokens with 1s. Because our
model processes emails in mini-batches, shorter sequences are padded with zeros, so
that all the sequences of the same type (characters or words) in one mini-batch have
equal length. The result of this process are two 2-dimensional tensors of IDs. The
first dimension in each of them represents the batch size, and the second dimension
has the size of the sequence of tokens in the mini-batch with the maximal length (in
one case the tokens are characters, and in the other words).

3.3 Model Architecture

Our architecture begins processing each of the two tensors of IDs with a block of the
same structure but with separate parameters. Each block has 2 embedding layers,
one for recurrent and one for convolutional processing (there are 4 embedding layers
in the whole architecture). All the embedding matrices have the same number of
columns (embedding size). The number of rows is equal to the number of elements in
the dictionary (the size depends whether it is an embedding for characters or words).
In each of the two blocks, we swap IDs from the tensor with appropriate embedding
rows from those matrices, and end up with two new tensors, one for recurrent and
one for convolutional processing. Those two tensors are then processed with the
remainder of the block. The tensors are 3-dimensional, with the first dimension
being the mini-batch size, the second dimension being the maximal token sequence
length of all the emails from the mini-batch (depends whether the embeddings layers
are from the block that tokenizes based on characters or based on words), and the
third dimension being the embedding size (40).

A bidirectional LSTM is used for recurrent processing. The LSTM cell is chosen
because it does not have as much problem with vanishing gradients as some tradi-
tional recurrent cells. The bidirectional variant of the model gives us an even richer
representation of the input sequence. The last hidden states in both directions are
concatenated, and that represents a recurrent representation of the block. Since the
hidden state size is 40 in our architecture, the recurrent representation of the block
is 2-dimensional, with the first dimension being the mini-batch size and the second
dimension being of size 80 (two times the size of the hidden state).

Convolutional processing is based on Kim’s paper [26]. It starts with four
1-dimensional convolutional layers with different kernel sizes (1, 3, 5 and 7). Each
of them has 20 kernels, and we apply padding on both sides of the input for
the same amount as the size of the kernels (we increase the second dimension
of the 3-dimensional input with padding). The kernel sizes and number of ker-
nels are empirically determined to maximize classification performance. Convo-
lution is applied on the temporal dimension (along the sequence length). After
that, we apply rectified linear unit (ReLU) nonlinearity and global max-pooling



1348 N. Stevanović

Input Email Text

ConcatenationConcatenation

Linear layer (80 units) Linear layer (80 units)

Layer normalization Layer normalization

Concatenation

Linear layer (80 units)

Linear layer (1 unit)

Sigmoid function

20 S-length
convolutional

filters
S = 1, 3, 5, 7 

Bidirectional 
LSTM

hid_size = 40

Layer
normalization

Layer
normalization

Concatenate
final outputs

of both
directions

ReLU

Global
max-pooling

Concatenation

20 S-length
convolutional

filters
S = 1, 3, 5, 7 

Bidirectional 
LSTM

hid_size = 40

Layer
normalization

Layer
normalization

Concatenate
final outputs

of both
directions

ReLU

Global
max-pooling

Concatenation

Character
Embedding 2
emb_size = 40

Character
Embedding 1
emb_size = 40

Word
Embedding 1
emb_size = 40

Word
Embedding 2
emb_size = 40

Character tokenization Word tokenization

Figure 3. Our proposed architecture



Embeddings for Phishing Email Detection 1349

on the output of each of the four convolutional layers. Since shorter token se-
quences in a mini-batch are padded with zeros, by applying padding in convolu-
tional layers we ensure that the output of global max-pooling for an email is al-
ways the same, regardless of the lengths of the token sequences of other emails
from the mini-batch. Global max-pooling is used to calculate strongest activa-
tions along the temporal dimension (sequence length). Since global max-pooling
reduces the temporal dimension, each of the four outputs is 2-dimensional, with
the first dimension being the mini-batch size, and the second dimension being the
number of kernels (20). To create a convolutional representation of the block,
all of them are concatenated in the second dimension (which now has a size of
4 · 20 = 80).

We apply layer normalization on both representations (recurrent and convolu-
tional) from each of the two blocks (one which analyzes characters and one which an-
alyzes words). Layer normalization is used to improve training efficiency and speed,
but also to improve model generalization. To create a representation of a block, we
first concatenate its two normalized representations, recurrent and convolutional,
and then apply a fully connected linear layer. The linear layer has 160 input neu-
rons and 80 output neurons.

Representations of both blocks, one which processes characters and one which
processes words, are normalized with layer normalization and then concatenated.
After that, one additional fully connected linear layer is applied, which combines
representations of both blocks in a single representation. The layer has 160 input
and 80 output neurons. Finally, one final linear layer with a single output node
is used. That node uses a sigmoid activation function, and its output represents
the probability that it is a phishing email. The whole architecture is depicted in
Figure 3.

3.4 Evaluation

To implement our model, we have used the PyTorch [31] library for machine learning.
All experiments were carried out on Google Colab5, using a graphics processing unit
(GPU).

Configuration details of our proposed model and training procedure are given in
Table 1. A binary cross-entropy loss function is used to train the model. The model
parameters are updated by the Adam [32] optimizer, with a learning rate of 0.001.
The model is trained for 4 epochs, using a mini-batch size of 32. Mini-batches are
created by sorting all emails by their text length, and then putting adjacent emails
in the same mini-batch. Putting emails of similar lengths, and consequently of sim-
ilar number of tokens, in the same mini-batch can drastically speed up the model.
Before each epoch, the order in which the model receives mini-batches is randomly
changed. It is common in the literature to discard very small or large emails from
the dataset, or to cut or extend them to a certain length. While it can be ben-

5 Google Colab. Available at: https://colab.research.google.com/

https://colab.research.google.com/


1350 N. Stevanović

Layer Count Details

Embedding 4 embeddings size: 40
Bidirectional LSTM 2 hidden size: 40

1d convolution 2

20 kernels of size 1
20 kernels of size 3
20 kernels of size 5
20 kernels of size 7

Layer normalization 6 ϵ = 10−5

Linear layer
3 input size: 160, output size: 80
1 input size: 80, output size: 1

Global max-pooling 2

Optimization details

optimizer Adam
epochs 4
learning rate 10−3

batch size 32

Table 1. Configuration details of our model

eficial while testing on the dataset, these classifiers can easily be deceived in real
application. We use all emails in their full length.

Fold No. Ham Phishing Fold No. Ham Phishing

1 415 227 7 415 228
2 415 228 8 415 228
3 415 228 9 415 228
4 415 228 10 415 228
5 415 228
6 415 228 Total 4 150 2 279

Table 2. Number of legitimate and phishing emails in each fold

To evaluate our approach, we collected phishing emails from the Nazario Phish-
ing Corpus and legitimate emails from the SpamAssassin Public Corpus, and ex-
tracted texts from their subjects and bodies. Because the sizes of those two datasets
are relatively small, the often used train-validation-test split could produce un-
stable results. That is why we decided to use a 10-fold cross-validation to eval-
uate our model. All emails are randomly divided in 10 groups, maintaining in
each group approximately the same ratio between phishing and legitimate emails
as the ratio between the sizes of the two original datasets. Table 2 shows the
exact number of legitimate and phishing emails in each group. In each of the
10 experiments, emails from one group are used for testing, and emails from the
remaining 9 groups are used for training. As a result, each email is used ex-
actly once for testing, and those results are used to calculate all evaluation met-
rics.

In order to evaluate our proposed phishing email detection model, we applied
the following evaluation metrics: accuracy, precision, recall (true positive rate), F1-



Embeddings for Phishing Email Detection 1351

score and false positive rate (FPR). Their formulas are given in Equations (15),
(16), (17), (18) and (19), in function of the number of true positive (tp), false
negative (fn), false positive (fp) and true negative (tn) samples. Additionally,
confusion matrices are used to compare different variations of our approach. We
also show a receiver operating characteristic (ROC) curve of our model. The ROC
curve plots true positive rate against false positive rate at various threshold values.
The whole training and evaluation procedure are summarized by the pseudo-code
in Algorithm 1.

Accuracy =
tp+ tn

tp+ fn+ fp+ tn
, (15)

Precision =
tp

tp+ fp
, (16)

Recall =
tp

tp+ fn
, (17)

F1-score =
2 · Precision · Recall
Precision + Recall

, (18)

FPR =
fp

fp+ tn
. (19)

Model Accuracy Precision Recall F1-score FPR

Full 0.99813 0.99824 0.99649 0.99736 0.00096
Only characters 0.99564 0.99429 0.99342 0.99385 0.00313
Only words 0.99362 0.99513 0.98684 0.99097 0.00265

Table 3. Results of our proposed model

Table 3 depicts classification results of our model. The results of the full
model are presented, as well as the results of the models which use only charac-
ters or only words (containing left or right side of the architecture in Figure 3
up to the concatenation layer which merges the normalized recurrent and convo-
lutional representations, and everything after the last concatenation layer). The
table shows that the full model which uses both characters and words achieved
better results than the models which use only one type of token. Our full model
achieved an accuracy rate of 99.81% and F1-score of 99.74%. The model which
works only with characters has shown greater results than the model that uses
only words. They achieved accuracy rates of 99.56% and 99.36%, respectively.
The model which extracts only words has a slightly better precision and false
positive rate. The real difference is in the recall scores, which is considerably
higher for the model that uses only characters. Our full model achieved bet-
ter results than the other two variants of the model on all five evaluation met-
rics.



1352 N. Stevanović

Algorithm 1: Training and evaluation procedure

Data: F1 = (X1, Y1), . . . , F10 = (X10, Y10); // dataset folds

for testInd ← 1 to 10 do
model = initializeModel();
optimizer = initializeAdamOptimizer(model.weights);

Dtrain =
⋃10

i=1,i ̸=testInd Fi;

Dtest = FtestInd;
Dict char,Dictword = createDictionaries(Dtrain);
miniBatches = chunked(sort(Dtrain)); // sort by email text length

and divide in chunks of size 32

for epoch ← 1 to 4 do
shuffle(miniBatches);
foreach miniBatch=(Xmb,Ymb) of miniBatches do

charTokens = tokenize(Xmb,Dict char);
wordTokens = tokenize(Xmb,Dictword);
out = forwardPass(model , charTokens ,wordTokens);
loss = binaryCrossEntropyLoss(out , Ymb);

grads = ∂loss
∂model .weights

; // calculated using backpropagation

optimizer .updateModelWeights(grads);

end

end
PtestInd = makePredictions(model , XtestInd)

end
calculateEvaluationMetrics(Y1, . . . , Y10;P1, . . . , P10);

Table 4 shows confusion matrices of our full model and the models that use only
one type of tokens. Our full model misclassified only 4 legitimate and 8 phishing
emails. This is the variant of our model with the lowest number of both false
positives and false negatives. The variant which uses only words has a slightly lower
number of false positives than the variant that uses only characters, but the latter
has two times less false negatives than the former. Figure 4 shows the ROC curve
of our full model. Since it is hard to visually distinguish between the ROC curves of
the three variants of the model, we only show the ROC curve of the full variant in
the figure. It is clear from the figure that the model successfully separates between
phishing and legitimate emails.

In Table 5 our approach is compared with the state-of-the-art models in the
phishing email detection literature. Two of the models [10, 11] have variants that
additionally extract knowledge from external sources, such as classification results
from an external spam filter or the WordNet library. To make a fair comparison, we
show in the table results of the variants of those models which do not use external
knowledge. Since the accuracy and F1-score were not given in [10], we calculated
them from the false positive rate and false negative rate values given in the paper.



Embeddings for Phishing Email Detection 1353

(a) Full model

Predicted
A
ct
u
al

Ham Phishing
Ham 4 146 4
Phishing 8 2 271

(b) Only characters

Predicted

A
ct
u
al

Ham Phishing
Ham 4 137 13
Phishing 15 2 264

(c) Only words

Predicted
A
ct
u
al

Ham Phishing
Ham 4 139 11
Phishing 30 2 249

Table 4. Confusion matrices of different variations of our proposed model

0.00 0.25 0.50 0.75 1.00
False Positive Rate

0.00

0.25

0.50

0.75

1.00

Tr
ue

 P
os

iti
ve

 R
at
e

Figure 4. ROC curve of our model

Accuracies and F1-scores of all the other models that are used for comparison are
in the table, except for the F1-scores of the models [9] and [13], which we could not
find.

As can be seen from the table, no model has a higher F1-score than our model.
The second best F1-score of 99.58% was achieved by Gualberto et al. [11]. They also
have a lower accuracy than our approach. Fang et al. [19] is the only approach that
obtained a slightly higher accuracy, but they tested on a very imbalanced dataset,
which shows in the F1-score that they obtained, which is considerably lower than
ours. All the other approaches have lower both accuracy and F1-score than our
model.

The two approaches which are the most similar to ours are Halgaš et al. [22] and
Hiransha et al. [23]. They are both neural network based approaches which learn
their embeddings together with all the other parameters (weights). These two mod-



1354 N. Stevanović

Reference Accuracy (%) F1-score (%)

Our approach 99.81 99.74
Fang et al. [19] 99.85 99.33
Akinyelu et al. [17] 99.7 98.45
Gualberto et al. [11] 99.58 99.58
Gangavarapu et al. [13] 99.4 N/A
Gangavarapu et al. [16] 99.4 99.4
Yasin et al. [15] 99.1 99.1
Halgaš et al. [22] 98.91 98.63
Fette et al. [10] 98.87 94.68
Islam et al. [9] 97 N/A
Moradpoor et al. [21] 91.5 92.06

Table 5. Comparison with other approaches

els obtained accuracies of 98.91% and 96.8%, respectively. With an accuracy rate
of 99.81%, our model represents a considerable improvement over their approaches.

4 CONCLUSION AND FUTURE WORK

In this paper, the problem of phishing email detection has been considered. We first
extracted textual content from legitimate and phishing emails. We then utilized
character and word embeddings to learn vectorized representations from textual
inputs, and proposed a neural network based classifier. We conducted an extensive
evaluation of our approach, and confirmed its efficiency.

Instead of manually engineering input features, we extract characters and words
from emails. This approach is more general, and it will be much easier to apply it on
new types of phishing emails which may appear in the future. We learn character
and word embeddings together with other parameters of the model, and achieve
better results than other similar approaches. Our model has also shown similar
or better performance than the current state-of-the-art models for phishing email
detection.

In the future, collecting a larger dataset for phishing email detection would
be of great importance to the field. Our model is a neural network with a lot of
parameters. As neural networks usually work better with larger datasets, we expect
that our model would be able to learn successfully from such datasets.

It is also important to establish a consensus on what parts of a raw email should
be used as input features. Including features such as date when the email was sent
or the email address of the person who received the email could work better on
the dataset than in real application, if the legitimate and phishing emails from the
dataset were collected in different time periods or from different groups of people.
In this study, only textual data from email subjects and bodies was used.

As the number of phishing attacks constantly increases, more attention should
be focused on them. Phishing emails are often the first step in phishing attacks, and



Embeddings for Phishing Email Detection 1355

their detection could prevent future harm. We have shown the usefulness of char-
acter and word embeddings as input features of neural network based classification
models for phishing email detection, and we expect to see more papers with similar
approaches in the future.

REFERENCES

[1] Mason, J.: The Apache SpamAssassin Public Corpus. Available at: https:

//spamassassin.apache.org/old/publiccorpus/, 2005.

[2] Nazario, J.: Phishing Corpus. Available at: https://monkey.org/~jose/

phishing/, 2007.

[3] Christou, O.—Pitropakis, N.—Papadopoulos, P.—McKeown, S.—
Buchanan, W.: Phishing URL Detection Through Top-Level Domain Analy-
sis: A Descriptive Approach. Proceedings of the 6th International Conference
on Information Systems Security and Privacy – ICISSP, 2020, pp. 289–298, doi:
10.5220/0008902202890298.

[4] Sahingoz, O. K.—Buber, E.—Demir, O.—Diri, B.: Machine Learning Based
Phishing Detection from URLs. Expert Systems with Applications, Vol. 117, 2019,
pp. 345–357, doi: 10.1016/j.eswa.2018.09.029.

[5] Marchal, S.—Francois, J.—State, R.—Engel, T.: PhishStorm: Detecting
Phishing with Streaming Analytics. IEEE Transactions on Network and Service Man-
agement, Vol. 11, 2014, No. 4, pp. 458–471, doi: 10.1109/TNSM.2014.2377295.

[6] Feng, J.—Zou, L.—Ye, O.—Han, J.: Web2Vec: Phishing Webpage Detection
Method Based on Multidimensional Features Driven by Deep Learning. IEEE Access,
Vol. 8, 2020, pp. 221214–221224, doi: 10.1109/ACCESS.2020.3043188.

[7] Mehanović, D.—Kevrić, J.: Phishing Website Detection Using Machine Learning
Classifiers Optimized by Feature Selection. Traitement du Signal, Vol. 37, 2020, No. 4,
pp. 563–569, doi: 10.18280/ts.370403.

[8] Shaukat, K.—Luo, S.—Varadharajan, V.—Hameed, I. A.—Xu, M.: A Sur-
vey on Machine Learning Techniques for Cyber Security in the Last Decade. IEEE
Access, Vol. 8, 2020, pp. 222310–222354, doi: 10.1109/ACCESS.2020.3041951.

[9] Islam, R.—Abawajy, J.: A Multi-Tier Phishing Detection and Filtering Approach.
Journal of Network and Computer Applications, Vol. 36, 2013, No. 1, pp. 324–335,
doi: 10.1016/j.jnca.2012.05.009.

[10] Fette, I.—Sadeh, N.—Tomasic, A.: Learning to Detect Phishing Emails. Pro-
ceedings of the 16th International Conference on World Wide Web (WWW’07), 2007,
pp. 649–656, doi: 10.1145/1242572.1242660.

[11] Gualberto, E. S.—De Sousa, R.T.—De B. Vieira, T. P.—Da Costa,
J. P.C. L.—Duque, C.G.: From Feature Engineering and Topics Models to
Enhanced Prediction Rates in Phishing Detection. IEEE Access, Vol. 8, 2020,
pp. 76368–76385, doi: 10.1109/ACCESS.2020.2989126.

[12] Miller, G.A.: WordNet: A Lexical Database for English. Communications of the
ACM, Vol. 38, 1995, No. 11, pp. 39–41, doi: 10.1145/219717.219748.

https://spamassassin.apache.org/old/publiccorpus/
https://spamassassin.apache.org/old/publiccorpus/
https://monkey.org/~jose/phishing/
https://monkey.org/~jose/phishing/
https://doi.org/10.5220/0008902202890298
https://doi.org/10.1016/j.eswa.2018.09.029
https://doi.org/10.1109/TNSM.2014.2377295
https://doi.org/10.1109/ACCESS.2020.3043188
https://doi.org/10.18280/ts.370403
https://doi.org/10.1109/ACCESS.2020.3041951
https://doi.org/10.1016/j.jnca.2012.05.009
https://doi.org/10.1145/1242572.1242660
https://doi.org/10.1109/ACCESS.2020.2989126
https://doi.org/10.1145/219717.219748


1356 N. Stevanović

[13] Gangavarapu, T.—Jaidhar, C.D.: A Novel Bio-Inspired Hybrid Metaheuristic
for Unsolicited Bulk Email Detection. In: Krzhizhanovskaya, V.V. et al. (Eds.):
Computational Science – ICCS 2020. Springer, Cham, Lecture Notes in Computer
Science, Vol. 12139, 2020, pp. 240–254, doi: 10.1007/978-3-030-50420-5 18.

[14] Ganesh, H.B.B.—Vinayakumar, R.—Kumar, M.A.—Soman, K.P.: Dis-
tributed Representation Using Target Classes: Bag of Tricks for Security and Privacy
Analytics. In: Verma, R.M., Das, A. (Eds.): Anti-Phishing Shared Task Pilot at the
4th ACM IWSPA (IWSPA-AP 2018). CEUR Workshop Proceedings, Vol. 2124, 2018,
pp. 10–15.

[15] Yasin, A.—Abuhasan, A.: An Intelligent Classification Model for Phishing Email
Detection. International Journal of Network Security and Its Applications, Vol. 8,
2016, No. 4, pp. 55–72, doi: 10.5121/ijnsa.2016.8405.

[16] Gangavarapu, T.—Jaidhar, C. D.—Chanduka, B.: Applicability of Machine
Learning in Spam and Phishing Email Filtering: Review and Approaches. Artificial
Intelligence Review, Vol. 53, 2020, No. 7, pp. 5019–5081, doi: 10.1007/s10462-020-
09814-9.

[17] Akinyelu, A.A.—Adewumi, A.O.: Classification of Phishing Email Using Ran-
dom Forest Machine Learning Technique. Journal of Applied Mathematics, Vol. 2014,
2014, Art. No. 425731, doi: 10.1155/2014/425731.

[18] Vinayakumar, R.—Ganesh, H.B.B.—Kumar, M.A.—Soman, K.P.—
Poornachandran, P.: DeepAnti-PhishNet: Applying Deep Neural Networks for
Phishing Email Detection. In: Verma, R.M., Das, A. (Eds.): Anti-Phishing Shared
Task Pilot at the 4th ACM IWSPA (IWSPA-AP 2018). CEURWorkshop Proceedings,
Vol. 2124, 2018, pp. 39–49.

[19] Fang, Y.—Zhang, C.—Huang, C.—Liu, L.—Yang, Y.: Phishing Email Detec-
tion Using Improved RCNNModel with Multilevel Vectors and Attention Mechanism.
IEEE Access, Vol. 7, 2019, pp. 56329–56340, doi: 10.1109/access.2019.2913705.

[20] Lai, S.—Xu, L.—Liu, K.—Zhao, J.: Recurrent Convolutional Neural Networks
for Text Classification. Proceedings of the Twenty-Ninth AAAI Conference on Arti-
ficial Intelligence, 2015, pp. 2267–2273, doi: 10.1609/aaai.v29i1.9513.

[21] Moradpoor, N.—Clavie, B.—Buchanan, B.: Employing Machine Learning
Techniques for Detection and Classification of Phishing Emails. IEEE 2017 Com-
puting Conference, 2017, pp. 149–156, doi: 10.1109/SAI.2017.8252096.

[22] Halgaš, L.—Agrafiotis, I.—Nurse, J. R.C.: Catching the Phish: Detecting
Phishing Attacks Using Recurrent Neural Networks (RNNs). In: You, I. (Ed.): Infor-
mation Security Applications (WISA 2019). Springer, Cham, Lecture Notes in Com-
puter Science, Vol. 11897, 2019, pp. 219–233, doi: 10.1007/978-3-030-39303-8 17.

[23] Hiransha, M.—Unnithan, N.A.—Vinayakumar, R.—Soman, K. P.: Deep
Learning Based Phishing E-Mail Detection. In: Verma, R.M., Das, A. (Eds.): Anti-
Phishing Shared Task Pilot at the 4th ACM IWSPA (IWSPA-AP 2018). CEURWork-
shop Proceedings, Vol. 2124, 2018, pp. 16–20.

[24] Hochreiter, S.—Schmidhuber, J.: Long Short-Term Memory. Neural Computa-
tion, Vol. 9, 1997, No. 8, pp. 1735–1780, doi: 10.1162/neco.1997.9.8.1735.

[25] Krizhevsky, A.—Sutskever, I.—Hinton, G. E.: Imagenet Classification with

https://doi.org/10.1007/978-3-030-50420-5_18
https://doi.org/10.5121/ijnsa.2016.8405
https://doi.org/10.1007/s10462-020-09814-9
https://doi.org/10.1007/s10462-020-09814-9
https://doi.org/10.1155/2014/425731
https://doi.org/10.1109/access.2019.2913705
https://doi.org/10.1609/aaai.v29i1.9513
https://doi.org/10.1109/SAI.2017.8252096
https://doi.org/10.1007/978-3-030-39303-8_17
https://doi.org/10.1162/neco.1997.9.8.1735


Embeddings for Phishing Email Detection 1357

Deep Convolutional Neural Networks. In: Pereira, F., Burges, C. J., Bottou, L., Wein-
berger, K.Q. (Eds.): Advances in Neural Information Processing Systems 25 (NIPS
2012). Curran Associates, Inc., 2012, pp. 1097–1105.

[26] Kim, Y.: Convolutional Neural Networks for Sentence Classification. Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), ACL, 2014, pp. 1746–1751, doi: 10.3115/v1/d14-1181.

[27] Acharya, U.R.—Oh, S. L.—Hagiwara, Y.—Tan, J.H.—Adam, M.—
Gertych, A.—Tan, R. S.: A Deep Convolutional Neural Network Model to Clas-
sify Heartbeats. Computers in Biology and Medicine, Vol. 89, 2017, pp. 389–396, doi:
10.1016/j.compbiomed.2017.08.022.

[28] Gatys, L.A.—Ecker, A. S.—Bethge, M.: Image Style Transfer Using Convo-
lutional Neural Networks. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 2414–2423, doi: 10.1109/CVPR.2016.265.

[29] Ioffe, S.—Szegedy, C.: Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In: Zhao, P., Blei, D. (Eds.): Proceedings
of the 32nd International Conference on Machine Learning (ICML 2015). Proceedings
of Machine Learning Research (PMLR), Vol. 37, 2015, pp. 448–456.

[30] Ba, J. L.—Kiros, J. R.—Hinton, G.E.: Layer Normalization. 2016, doi:
10.48550/arXiv.1607.06450.

[31] Paszke, A.—Gross, S.—Massa, F.—Lerer, A.—Bradbury, J. et al.: Py-
Torch: An Imperative Style, High-Performance Deep Learning Library. In: Wal-
lach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (Eds.):
Advances in Neural Information Processing Systems 32 (NeurIPS 2019). Curran As-
sociates, Inc., 2019, pp. 8026–8037.

[32] Kingma, D. P.—Ba, J. L.: Adam: A Method for Stochastic Optimization. 3rd

International Conference on Learning Representations (ICLR 2015), 2015, pp. 1–15,
doi: 10.48550/arXiv.1412.6980.

Nikola Stevanovi�c received his B.Sc. degrees in both com-
puter science and mathematics from the University of Nǐs, Fac-
ulty of Sciences and Mathematics, Serbia in 2014. He received
his M.Sc. degree in computer science from the same university
in 2016, where he is currently pursuing the Ph.D. degree in com-
puter science. His research interests include deep learning and
its application in cybersecurity.

https://doi.org/10.3115/v1/d14-1181
https://doi.org/10.1016/j.compbiomed.2017.08.022
https://doi.org/10.1109/CVPR.2016.265
https://doi.org/10.48550/arXiv.1607.06450
https://doi.org/10.48550/arXiv.1412.6980

