
Volume 17, Number 2, Pages 150–171
ISSN 1715-0868

HEESCH NUMBERS OF UNMARKED POLYFORMS

CRAIG S. KAPLAN

Abstract. A shape’s Heesch number is the number of layers of copies
of the shape that can be placed around it without gaps or overlaps.
Experimentation and exhaustive searching have turned up examples of
shapes with finite Heesch numbers up to six, but nothing higher. The
computational problem of classifying simple families of shapes by Heesch
number can provide more experimental data to fuel our understanding
of this topic. I present a technique for computing Heesch numbers of
nontiling polyforms using a SAT solver, and the results of exhaustive
computation of Heesch numbers up to 19-ominoes, 17-hexes, and 24-
iamonds.

1. Introduction

Tiling theory is the branch of mathematics concerned with the properties
of shapes that can cover the plane with no gaps or overlaps. It is a topic
rich with deep results and open problems. Of course, tiling theory must
occasionally venture into the study of shapes that do not tile the plane so
that we might understand those that do more completely.

If a shape tiles the plane, then it must be possible to surround the shape
with congruent copies of itself, leaving no part of its boundary exposed. A
circle clearly cannot tile the plane, because neighbouring circles can cover
at most a finite number of points on its boundary. A regular pentagon also
cannot be surrounded by copies of itself: its vertices will always remain
exposed.

However, the converse is not true: there exist shapes that can be fully
surrounded by copies of themselves, but for which no such surround can
be extended to a tiling. For example, there are 108 heptominoes (shapes
formed by gluing together seven squares), of which four, shown in Figure 1,
are known not to tile the plane. One of them contains an internal hole and
can be discarded immediately. As it happens, the other three can all be
surrounded. In the middle two cases, the shape and its surrounding copies
are simply connected. On the right, the surrounding tiles leave behind an
internal hole, and no alternative surround can eliminate that hole.

Received by the editors June 23, 2021, and in revised form July 29, 2021.

This work is licensed under a Creative Commons “Attribution-
NoDerivatives 4.0 International” license.

150

https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nd/4.0/deed.en


HEESCH NUMBERS OF UNMARKED POLYFORMS 151

Figure 1. The four nontiling heptominoes. The shape on
the left has a hole and cannot be surrounded. The other
three can be fully surrounded by copies, but in the rightmost
shape the copies will necessarily enclose a hole.

Figure 2. A 23-omino that can be surrounded by two layers
of copies of itself, but not more.

There is no a priori reason why a given nontiling shape might not be
surroundable by two, three, or more layers of copies of itself. The illustra-
tions in Figure 1 provide lower bounds for the number of layers for these
shapes; that they also represent upper bounds must be proven by enumer-
ating all possible surrounds, and showing that none of them may be further



152 CRAIG S. KAPLAN

surrounded. Other shapes might permit more layers. For example, the 23-
omino shown in Figure 2, due to Fontaine [4], can be surrounded by two
layers but not more. How far can this process be extended?

A shape’s Heesch number is the number of times it can be surrounded with
complete layers of congruent copies of itself (I will offer a precise definition in
the next section). If the shape tiles the plane, its Heesch number is defined
to be infinity. Heesch’s problem asks which positive integers are Heesch
numbers; that is, for which n > 0 does there exist a shape with Heesch
number n?

Very little is known about the solution to Heesch’s problem. Writing in
1987, Grünbaum and Shephard were not aware of any examples with finite
Heesch number greater than 1 [6, section 3.8]. After that, a few isolated
examples were found with Heesch numbers up to 4 [9]. Mann and Thomas
performed a systematic computer search of marked polyforms (polyominoes,
polyhexes, and polyiamonds, with edges decorated by geometric matching
conditions), yielding new examples and pushing the record to 5 [10]. In 2021
Bašić finally broke this record, demonstrating a figure with Heesch number
6 [2].

The study of Heesch numbers can shed light on some of the deepest prob-
lems in tiling theory. In particular, the tiling problem asks, for a given set
of shapes, whether they admit at least one tiling of the plane. The tiling
problem is known to be undecidable for general sets of shapes [3], but its
status is open for a set consisting of a single shape S. If there were an
upper bound N on finite Heesch numbers, then the tiling problem would be
decidable, at least when there are only finitely many ways that two copies
of S may be adjacent [5]. The algorithm would involve trying the finitely
many ways of surrounding S with N + 1 layers of copies of itself. If you
succeed, then you have exceeded the maximum finite Heesch number and S
must tile the plane. If you fail, then S evidently does not tile. To that end,
more experimental data revealing which Heesch numbers are possible, even
for limited classes of shapes, could be useful in understanding whether such
an upper bound might exist.

In this article, I report on a complete enumeration of Heesch numbers
of unmarked polyforms, up to 19-ominoes, 17-hexes, and 24-iamonds. This
enumeration comprises approximately 4.16 billion nontilers, extracted from
enumerations of all free polyforms of those sizes. Respecting a slight dif-
ference of opinion among researchers, I compute two variations of Heesch
numbers: one where tiles may form holes in the outermost layer, and one
where a shape and all its surrounding layers must be simply connected. This
enumeration does not shatter the existing records for Heesch numbers, but
it does provide a store of new examples of shapes with nontrivial Heesch
numbers. Some, like a 9-omino with Heesch number 2 (Figure 7) and a
7-hex with Heesch number 3 (Figure 8), are interesting because of the com-
plex behaviour exhibited by relatively simple shapes. The enumeration also
uncovered seven new examples with Heesch number 4.



HEESCH NUMBERS OF UNMARKED POLYFORMS 153

Apart from the tabulation and specific examples, the other main contribu-
tion of this work lies in the use of a SAT solver to compute Heesch numbers.
Because polyominoes, polyhexes, and polyiamonds are subsets of ambient
regular tilings of the plane, it is possible to reduce the geometric problem of
surroundability to the logical problem of satisfiability of Boolean formulas.
A SAT solver can optimize its search of the exponential space of possible
solutions, avoiding the risk of “backtracking hell”. This formulation leads
to a very reliable algorithm, whose performance degrades only on the rare
shapes that actually have high Heesch numbers.

2. Mathematical background

Although Heesch’s problem grew out of tiling theory, most of the lan-
guage, techniques, and results of tiling theory are not needed within the
scope of this article and will be omitted. Readers interested in the topic
should consult Grünbaum and Shephard’s book [6], which remains the stan-
dard reference. In this section, I will formalize the definition of a shape’s
Heesch number and review marked and unmarked polyforms.

2.1. Heesch numbers. Let C and S be simple shapes in the plane, i.e.,
topological discs. We say that C can be surrounded by S if there exists a
set of shapes {S1, . . . , Sn} with the following properties:

(1) Each Si is congruent to S via a rigid motion in the plane;
(2) The shapes in the set {C, S1, . . . , Sn} have pairwise disjoint interiors;
(3) The boundary of each Si shares at least one point with the boundary

of C.
(4) The boundary of C lies entirely within the interior of the union of

C and all the Si.

The second condition forces the shapes not to overlap, except on their
boundaries. The third condition forces every Si to be useful in covering
the boundary of C. The fourth condition ensures that C is completely
surrounded.

If, furthermore, the union of C and the Si is simply connected, we say
that C can be surrounded by S without holes. In tiling theory, a finite union
of nonoverlapping shapes whose union is a topological disc is also known as a
patch, a term I will use here. On the other hand, I will use the more general
term packing when shapes are known to be nonoverlapping but when their
union may or may not contain holes.

We formalize the notion of layers by defining the coronas of S. We define
the 0-corona of S to be the singleton set {S}. Setting C = S above, if S can
be surrounded by itself then the tiles that make up that surround are one
possible 1-corona of S. In general, if we have a nested sequence of k-coronas
for k = 0, . . . , n−1, all without holes, and the patch created from the union
of all of these coronas can itself be surrounded by S, then the copies of S
making up the surround constitute an n-corona.



154 CRAIG S. KAPLAN

The Heesch number of a shape S is the largest n for which S has an
n-corona. If S tiles the plane, then by definition it is possible to build an
n-corona for every positive integer n, and we define its Heesch number to
be infinity. If we wish to be concise, we will simply say that S has H = n.

The definitions above require that for a shape to have Heesch number n,
each k-corona for k = 1, . . . , n − 1 surround its predecessor without holes.
But it leaves the status of the outermost corona ambiguous. Most researchers
require that a shape’s n-corona be hole-free in order to regard the shape as
having H = n, but some permit the n-corona to have holes. In this article,
I will remain neutral on this point, and report separate results with and
without holes in the outer corona. To that end, I will say that a shape
has Hc = n1 and Hh = n2 to distinguish its Heesch numbers when holes
are forbidden or permitted in the outer corona, respectively. In any case,
we must always have either Hc = Hh or Hc = Hh − 1, so this difference
of opinion cannot affect results too dramatically. Note that permitting a
hole in the outermost corona raises the alarming possibility that the hole
could be filled with additional shapes, forcing us to consider the validity of
a subsequent corona made from multiple disjoint pieces!

2.2. Polyforms. A polyform is a shape constructed by gluing together mul-
tiple copies of some simple polygonal building block along their edges. Usu-
ally, we require that the assembly be edge-to-edge: no vertex of one copy
of the building block may lie in the middle of the edge of another copy.
The most famous polyforms are the polyominoes, constructed from glued-
together squares. We speak more specifically of n-ominoes as unions of n
squares, so that, for example, the 4-ominoes (or tetrominoes) are the familiar
Tetris pieces. In this article, I will also consider polyhexes and polyiamonds,
formed from unions of regular hexagons and unions of equilateral triangles,
respectively, and refer more precisely to n-hexes and n-iamonds as needed.

Simple polyforms are an attractive domain in which to compute Heesch
numbers. They can be explored exhaustively by enumerating the finite num-
ber of distinct n-forms for each successive n. The edge-to-edge constraint
often reduces a continuous geometric problem to a combinatorial one, and
in the technique presented here, even the combinatorial structure will be
distilled into a problem in Boolean satisfiability. Still, polyforms can expose
many of the core behaviours of shapes more generally. Conceivably one
could establish an upper bound on Heesch numbers of, say, polyominoes,
while leaving Heesch’s problem open more generally; but in the meantime,
these calculations can yield a trove of interesting data.

In a marked polyform, the edges of a polyform are assigned symbolic
labels, and a binary relation over labels determines which pairs of edges
may be placed side-by-side in neighbouring copies of the polyform. A simple
system of labels involves marking some edges with a “bump”, some with
a corresponding “nick”, and leaving all others flat. Flat edges can only
meet other flat edges, and bumps must be adjacent to nicks. Mann and



HEESCH NUMBERS OF UNMARKED POLYFORMS 155

Thomas computed Heesch numbers of simple polyforms with markings of
this form [10]. They began with a small family of low-order polyominoes,
polyhexes, and polyiamonds, enumerated all possible assignments of bumps
and nicks to their edges, and computed the Heesch numbers of the resulting
shapes using a recursive search with backtracking. Their search yielded a
number of examples with Heesch numbers up to 5. However, the majority
of their efforts produced inconclusive results: they either failed to produce
a finite Heesch number in the time allotted to each shape or terminated the
computation at five coronas. The main reason for this deficiency is that they
did not have an effective procedure for first computing whether a marked
polyform tiles the plane. Most of their inconclusive results are likely to be
shapes with Heesch numbers that are infinite, rather than high-but-finite.

To my knowledge, no previous work has sought to compute Heesch num-
bers of unmarked polyforms. Myers tabulated information about polyomi-
noes, polyhexes, and polyiamonds that tile the plane [11]. He determined
whether polyforms tiled in progressively more intricate ways, measuring the
isohedral number of tilers (roughly speaking, the number of copies of the
tile that must be glued together to produce a patch that tiles in a relatively
simple way). Each of his tables includes a single column labelled “nontilers”.
This article sorts that column into multiple bins organized by Heesch num-
ber, effectively tabulating the progressively more intricate ways in which
polyforms do not tile. Myers’s software is remarkably efficient, requiring on
average a fraction of a millisecond on modern hardware to classify a given
polyform. I use his software to produce initial lists of nontilers for Heesch
number computation, thereby avoiding the needless construction of coronas
for shapes that have infinitely many of them.

3. Computing Heesch numbers with a SAT solver

In this section, I show how to reduce the problem of computing a poly-
form’s Heesch number to evaluating the satisfiability of a sequence of Boolean
formulas. At a high level, each formula encodes whether a given polyform has
a Heesch number of at least n (with slight variations depending on whether
to allow holes). I check the satisfiability of these formulas for increasing
values of n until I find one that is unsatisfiable, indicating the nonexistence
of a corona of a given level.

Every formula will be expressed in conjunctive normal form (CNF) as a
conjunction of clauses, each of which is a disjunction of variables or their
negations. That is, each clause ORs together any number of Boolean vari-
ables or their negations, and the entire formula is an AND of clauses. I
use the standard operators ∨ for OR, ∧ for AND, and ¬ for NOT. I will
also allow clauses to be written using an implication operator with a single
variable on the left, converting x → Q to ¬x ∨Q as needed.



156 CRAIG S. KAPLAN

To simplify the exposition, I will limit the development here exclusively
to polyominoes. In the next section, I will describe the modifications that
are necessary to support polyhexes and polyiamonds.

3.1. Developing the base formula. Because shapes always meet edge-
to-edge, we can assume that they occupy cells in a conceptually infinite grid
of squares, indexed by (x, y) pairs of integer coordinates. For a given cell
p = (x, y), define N8(p), the 8-neighbourhood of p, to be the set of cells
horizontally, vertically, or diagonally adjacent to p. Now let S be an m-
omino whose Heesch number we wish to compute. We describe S as a set
of cells {(x1, y1), . . . , (xm, ym)}, translated so that (0, 0) ∈ S. We will also
make use of the halo of S, written Halo(S), the set of grid cells p for which
p /∈ S but N8(p)∩S ̸= ∅. That is, Halo(S) consists of a ring of cells around
the boundary of S.

Ignoring symmetry, a polyomino has eight distinct rotated and reflected
orientations, which can be represented by 2 × 2 matrices with entries in
{−1, 0, 1}. We must also track translations of polyominoes by integer vec-
tors (∆x,∆y). Any possible transformed copy of S can therefore be iden-
tified with six (usually small) integers that define an affine transformation
T . Two transformed shapes T1(S) and T2(S) are adjacent if they occupy
neighbouring cells but do not overlap; that is, T1(S) ∩ T2(S) = ∅, but
T1(S) ∩Halo(T2(S)) ̸= ∅. For a fixed S, I will also refer to T1 and T2 as
adjacent in this context.

We are particularly interested in finite sets of transformations Tk, con-
taining every possible T for which T (S) might be part of a k-corona of
S. We can define these sets recursively by setting T0 to be a singleton set
containing the identity transformation, and each subsequent Tk to be every
transformation T adjacent to some T ′ ∈ Tk−1. Every k-corona of S, if one
exists, must consist of copies of S transformed by a subset of Tk.

We are now ready to define two classes of Boolean variables: cell variables
and shape variables. These will encode whether a given cell or a given
transformation is actually used as part of a set of coronas. For every p =
(x, y) in the grid, the cell variable cp is true if and only if p is covered by
some transformed copy of S. For every affine transformation T and every
integer k ≥ 0, the shape variable sT,k is true if and only if the transformed
shape T (S) is used as part of the k-corona in a packing of copies of S.

Conceptually, the clauses in a CNF formula are a tool for coupling to-
gether the behaviours of individual variables. For example, if we know that
T1(S) ∩ T2(S) ̸= ∅, then these transformed shapes can never be used to-
gether in a patch. We can force them to be mutually exclusive with clauses
of the form ¬sT1,i ∨¬sT2,j for all coronas i and j. These clauses ensure that
at least one of T1(S) and T2(S) is left out of any satisfying assignments.
In the formulation presented here, cell variables act as mediators, allowing
shape variables to exchange information with each other without having to
refer to each other directly. For example, a clause of the form sT,k → cj



HEESCH NUMBERS OF UNMARKED POLYFORMS 157

(or equivalently, ¬sT,k ∨ cj) allows a transformed shape to demand that a
particular cell—say, one of its halo cells—be occupied. With a second clause
of the form cj → sT1,i1 ∨sT2,i2 ∨· · ·∨sTn,in , that cell can then offer a menu of
possible occupants. Clauses like these are the key to reducing the geometric
problem of Heesch number computation to Boolean logic.

Given an integer n > 0, we can, at last, write down a Boolean formula Fn

whose satisfiability implies that S has an n-corona. Fn is the conjunction of
a large number of clauses, belonging to seven distinct classes. The clauses
are listed in full in Figure 3, along with intuitive explanations of their mean-
ings. Informally, we see that the 0-corona is activated by fiat, which in turn
demands that its halo cells all be occupied by adjacent shapes. Additional
clauses force those adjacent shapes to belong to the 1-corona and to be pair-
wise disjoint. A similar process plays out in each subsequent corona before
the last one: shapes in the corona tag their halo cells, thereby recruiting
new neighbours to surround them. The shapes in the outermost corona are
left partially exposed to empty space.

The formula Fn can be given to a SAT solver, a program that consumes a
Boolean formula and determines whether any assignment of true or false to
its variables makes the entire formula true. If the solver reports that Fn is
satisfiable, then the coronas of S can be read directly from the true variables
sT,k in the satisfying assignment. I iteratively construct and check Fn for
each n ≥ 1 in turn; an unsatisfiable Fn implies that S has Heesch number
n− 1. Unfortunately, Fn does not contain a strict superset of the clauses of
Fn−1 and must be constructed starting from scratch.

3.2. Suppressing holes. If Fn is satisfiable, then the subset of shapes out
to the (n − 1)-corona will be a simply connected patch: every shape’s halo
must be filled, and so no pockets of empty space can be left behind. However,
there is nothing to prohibit holes from forming between shapes in the n-
corona. Thus the algorithm above can compute only whether S has Hh =
n. If we wish to compute the hole-free Heesch number Hc, then we must
suppress all holes in the outermost corona.

Most such holes that might arise are relatively simple and can be sup-
pressed easily. These are holes that are completely enclosed by a pair of
adjacent shapes in the n-corona (Figure 4, centre). I precompute all pairs
of transforms T1, T2 ∈ Tn for which T1 is adjacent to T2 but T1 ∪ T2 is not
simply connected. When constructing Fn, I treat such adjacencies as illegal,
and add clauses of the form sT1,n → ¬sT2,n to prevent them.

However, it is also possible for the n-corona to contain a hole enclosed by
three or more different copies of S (Figure 4, right). It would be prohibi-
tive to precompute and suppress all possible holes formed by subsets of Tn.
Fortunately, such holes are exceedingly rare and can be eliminated one at a
time as they arise, using a standard trick from discrete optimization. If I am
trying to compute a shape’s hole-free Heesch number, and Fn is reported as
satisfiable, I “draw” the implied packing by assigning symbolic colours to



158 CRAIG S. KAPLAN

Clause and quantifiers Explanation
sI,0 The 0-corona is always used.

sT,k → cp
For all 0 ≤ k ≤ n
For all T ∈ Tk
For all p ∈ T (S)

If a copy of S is used, then its cells
are used.

cp → sT1,k1 ∨ . . . ∨ sTm,km

For all 0 ≤ ki ≤ n
For all Ti ∈ Tki
Where p ∈ Ti(S)

If a cell is used, then some copy of S
must use it.

sT,k → cq
For all 0 ≤ k ≤ n− 1
For all T ∈ Tk
For all q ∈ Halo(T (S))

If a copy of S is used in an interior
corona (a k-corona for k < n), then
that copy’s halo cells must be used.

sT1,k1 → ¬sT2,k2

For all 0 ≤ k1, k2 ≤ n
For all T1 ∈ Tk1 and T2 ∈ Tk2
Where (T1, k1) ̸= (T2, k2)
And T1(S) ∩ T2(S) ̸= ∅

Used copies of S cannot overlap.

sT,k → sT1,k−1 ∨ . . . ∨ sTm,k−1

For all 1 ≤ k ≤ n
For all Ti ∈ Tk−1

Where Ti is adjacent to T

If a copy of S is used in a k-corona,
it must be adjacent to a copy in a
(k − 1)-corona.

sT1,k → ¬sT2,m

For all 2 ≤ k ≤ n
Where T1 ∈ Tk
For all 0 ≤ m ≤ k − 2
For all T2 ∈ Tm
Where T2 is adjacent to T1

If a copy of S is used in a k-corona,
it cannot be adjacent to a copy in an
m-corona for m < k − 1.

Figure 3. The clauses that make up the Boolean formula
Fn, which is satisfiable if a shape S has an n-corona.

the grid cells in a 2D image, with colours that index the transformed copies
of S. A simple algorithm such as flood filling can then search the packing
for holes. If none are found, then S has Hc ≥ n and the algorithm proceeds
to testing Fn+1. If a hole is found, its boundary will be made up of cells
belonging to shapes transformed by some set {T1, . . . , Tm} ⊂ Tn. I add a
clause ¬sT1,n∨· · ·∨¬sTm,n, designed to prevent this precise hole, and re-run



HEESCH NUMBERS OF UNMARKED POLYFORMS 159

Figure 4. A nontiling 13-omino (left) that demonstrates the
problem of detecting holes in the outermost corona. The mid-
dle illustration shows a 1-corona where two adjacent shapes
enclose holes (one is indicated by an arrow). These holes can
be suppressed by including a clause forbidding the two shapes
from both being used. On the right, the 2-corona includes a
hole bounded by three copies of the shape. Such holes are
difficult to prevent and are explicitly forbidden after the fact
if they are found.

the SAT solver. By repeating his process, eventually we will either find a
hole-free solution, or the solver will report the enriched Fn as unsatisfiable,
implying that S has Hc < n. Unfortunately, verifying that a patch is simply
connected is necessary and potentially expensive; after initial preprocessing,
it is the only part of the process that relies on the actual geometry of the
problem rather than its reduction to Boolean logic. I am not aware of an
effective way to design Fn to force the n-corona to be simply connected at
the outset.

As mentioned in section 2.1, it is theoretically possible for a hole to arise
in a k-corona, which can then be perfectly filled by additional shapes. This
possibility cannot be explicitly forbidden by the Boolean formulas developed
in this work, and would not be detected by the hole suppression techniques
(it would be necessary to check that every corona is connected, in addition
to their union). If we can surround the outer boundary of this k-corona, we
could think of the union of the surround and the hole fillers as a (k+1)-corona
split into two disconnected pieces. That expanded view would open the door
to highly disorderly coronas, though the circumstances that produce them
must be vanishingly rare. In practice, I ignore this possibility and assume
that holes are unfillable.

4. General polyforms

The geometry of polyominoes makes them easy to work with computa-
tionally and simplifies the development of the previous section. All the



160 CRAIG S. KAPLAN

Figure 5. The basis on the left allows every cell in an infi-
nite hexagonal tiling to be assigned a unique pair of integer
coordinates.

geometric computations above can be represented quite compactly in soft-
ware. If we assume that we will not enumerate beyond 23-ominoes (already
an ambitious goal!), and that Heesch numbers will not exceed 5, then any
conceivable set of coronas will fit inside a 256×256 grid, meaning that a cell
coordinate can fit in a single signed byte. By the same token, a transforma-
tion can easily fit in 32 bits: at a minimum, we require eight bits each for
the coordinates of the translation, and three more to select a combination
of rotation and reflection. Furthermore, any copy of a shape S can be rep-
resented implicitly via its transformation, meaning that construction of Fn

can be carried out entirely with 32-bit integers, regardless of the size of S.
It is only when checking whether a patch is simply connected that I resort
to instantiating a large grid and drawing copies of S in it.

The SAT reduction above can be adapted to other classes of polyforms,
provided that they are expressible as subsets of a fixed ambient tiling. That
easily encompasses the regular tilings by hexagons and equilateral triangles,
giving us polyhexes and polyiamonds. It rules out, for example, shapes
formed from edge-to-edge assemblies of isosceles right triangles, sometimes
known as polyabolos or polytans. Of course, even with polyhexes and polyi-
amonds, we would like to keep the representation of shapes and transfor-
mations simple, compact, and discrete. The solution is to express all coor-
dinates relative to nonstandard basis vectors. This trick is fairly common
when working with hexagonal grids in software, but I will summarize the
approach here.

4.1. Polyhexes. The cells in a hexagonal grid can be assigned integer co-
ordinates in a basis with vectors v⃗ = (1, 0) and w⃗ = (1/2,

√
3/2), connecting

a hexagon centre to the centres of two of its neighbours. The basis is illus-
trated in Figure 5, together with a portion of a grid labelled with coordinate
pairs.



HEESCH NUMBERS OF UNMARKED POLYFORMS 161

A hexomino has a maximum of 12 distinct orientations, six direct and
six reflected. They are generated by a transformation A that rotates by 60◦

about the origin, and a transformation B that reflects across the v⃗ axis.
Working in the basis {v⃗, w⃗}, these transformations have simple representa-
tions as matrices with integer entries:

A =

[
0 −1
1 1

]
, B =

[
1 1
0 −1

]
.

The products AiBj for i = 0, . . . , 5 and j = 0, 1 yield matrices for all
12 orientations which, like their square counterparts, all have entries in
{−1, 0, 1}. These can be combined with translations by vectors with integer
coordinates to represent all possible transformations of a polyhex.

To construct the halo of a polyhex S, we must consider every cell in the
6-neighbourhood (and not the 8-neighbourhood) of a given cell. These six
neighbours can easily be found by offsetting the coordinates of a cell by the
six coordinate pairs in the ring around (0, 0) in Figure 5. The revised defi-
nition of Halo(S) also affects the definition of adjacency and by extension
a number of the clauses that make up Fn.

When suppressing holes, verifying that a packing of polyhexes is simply
connected also depends on the distinct topology of the hexagonal grid. It
is still possible to draw the packing directly into a square image using the
cells’ integer coordinates and to use a flood fill to detect holes. But unlike
the square case, after filling an empty grid cell the algorithm must walk
recursively to the empty cells in its 6-neighbourhood.

4.2. Polyiamonds. Polyiamonds are slightly more complicated than poly-
ominoes or polyhexes, in that there are two possible orientations for cells
in the infinite tiling by equilateral triangles. So, for example, translations
cannot simply bring any triangle into correspondence with any other—they
must respect orientation. I build a somewhat exotic sparse integer repre-
sentation of the triangular grid that harnesses the hexagonal representation
described above.

Figure 6 shows part of a triangular grid on the left, with upward-pointing
black triangles and downward-pointing grey triangles. The illustration on
the right shows how triangles are assigned coordinates in the hexagonal
grid. Every black triangle has coordinates that are divisible by 3; every grey
triangle has coordinates that are congruent to 1 modulo 3. Other hexagonal
cells are simply left unused.

Like a polyhex, a polyiamond has a maximum of twelve orientations.
Six of these correspond to automorphisms of the black triangle at (0, 0) in
Figure 6, and can be found among the orientation matrices for hexominoes.
The other six combine one of these six transformations with a transformation
that swaps black and grey triangles, for example, an application of B above
followed by a translation by (1,−2). Any transformation of a polyiamond



162 CRAIG S. KAPLAN

Figure 6. Polyiamonds can be represented efficiently using
a sparse subset of the hexagonal grid. The conceptual tiling
on the left is spread out to the shaded cells in the hexagonal
tiling on the right.

can be represented by a choice of orientation together with a translation by
a vector whose coordinates are divisible by 3.

Neighbourhoods must also be reconsidered in this model. When comput-
ing haloes we must take into account the 12-neighbourhood of each cell in
a polyiamond S, consisting of all cells that share an edge or a vertex with
the given cell. In Figure 6, the 12-neighbourhood of (0, 0) consists of ev-
ery other black and grey triangle shown, together with one more at (−2, 4).
The 12-neighbourhood is fine when computing haloes and determining ad-
jacency, but not when checking a packing for holes. In that case, a flood fill
algorithm should move from a given cell only to the three neighbours with
which it shares an edge.

5. Implementation and results

I have implemented the data structures and algorithms described here as
a C++ program. The geometry and topology of the underlying grid (square,
hexagonal, or triangular) is abstracted into a Grid class that can be used as
a template parameter when launching the algorithm. The core computation
of Heesch numbers can then be written once relative to a wide range of
possible polyform types. The program reads a sequence of polyforms in
plain text format and produces a text report with the values of Hc and Hh

for the input shapes. A command line option causes the program to include,
for each shape, the set of transformations that make up the coronas in the
packings found by the SAT solver. A separate Python script can read the
shape description and transformations and draw the coronas that realize the
shape’s computed Heesch number.

The program is unable to determine whether a shape tiles the plane, and
must be given known nontilers as input. I use software written by Joseph



HEESCH NUMBERS OF UNMARKED POLYFORMS 163

n nontilers Hc = 0 Hc = 1 Hc = 2 Hc = 3
7 3 1 2
8 20 6 14
9 198 75 122 1
10 1390 747 642 1
11 9474 5807 3628 39
12 35488 28572 6906 10
13 178448 149687 28694 67
14 696371 635951 60362 58
15 2721544 2598257 123262 25
16 10683110 10397466 285578 66
17 41334494 40695200 639162 130 2
18 155723774 154744331 979375 68
19 596182769 593856697 2325874 198

Table 1. Heesch numbers of n-ominoes with no holes in the
outer corona.

Myers [11] to enumerate free polyforms (which are unique up to rotation and
reflection) and discard the shapes that tile. I then use a separate program to
convert from the representation Myers uses in his output (a boundary word
made up of unit steps from an alphabet of evenly spaced directions) to an
area-based representation (coordinates of cells that make up a polyform).

I use the open-source CryptoMiniSat library [12] as my SAT solver. The
library is easy to configure, has a simple C++ API, and performs well in
practice. It may be worthwhile to investigate the merits of other SAT solvers,
such as Glucose [1], which may contain heuristics that are better tuned to
the Boolean formulas used in Heesch number computation.

In this work, we are evaluating billions of SAT instances, each of which
is relatively modest in size by modern standards. Therefore, while different
SAT libraries support varying amounts of parallelization, it is far more ex-
pedient in this case simply to distribute the individual shapes over multiple
CPU cores and allow the SAT solver to use a single thread on each one. I
divide nontiling polyforms into batches of thousands or tens of thousands,
and hand off batches to processes running on different cores.

A SAT solver imposes a small amount of overhead on running time, be-
cause of the need to translate problems from their geometric origins into
Boolean formulas. However, the benefits of the solver more than compen-
sate for this added cost. Human intuition is easily seduced by the structure
of a geometric problem, and that intuition colours the choice of the algo-
rithm used in solving the problem. Sometimes the resulting algorithms are
perfectly fine. But here, a “natural” approach—walking around the bound-
ary of a shape, gluing on neighbours, and backtracking when no legal option
exists for continuing—can get stuck in “backtracking hell”. An unavoidable
dead end may lurk far out along the boundary of a shape, with exponentially



164 CRAIG S. KAPLAN

n nontilers Hh = 0 Hh = 1 Hh = 2 Hh = 3
7 3 0 3
8 20 0 19 1
9 198 36 157 5
10 1390 355 1020 15
11 9474 2820 6544 109 1
12 35488 17409 18038 41
13 178448 100180 78048 219 1
14 696371 485807 210362 202
15 2721544 2185656 535724 164
16 10683110 9300840 1381965 305
17 41334494 37932265 3401701 525 3
18 155723774 148955184 6768266 324
19 596182769 580412188 15769814 767

Table 2. Heesch numbers of n-ominoes with holes permit-
ted in the outer corona.

n nontilers Hc = 0 Hc = 1 Hc = 2 Hc = 3 Hc = 4
6 4 3 1
7 37 5 25 6 1
8 381 70 264 44 3
9 2717 825 1822 67 3
10 18760 8248 10234 265 13
11 116439 67644 47940 817 37 1
12 565943 431882 133484 567 10
13 3033697 2565727 466159 1783 27 1
14 14835067 13676416 1156793 1836 22
15 72633658 69871458 2758485 3534 179 2
16 356923880 350337478 6581529 4818 54 1
17 1746833634 1731652467 15167876 13129 161 1

Table 3. Heesch numbers of n-hexes with no holes in the
outer corona.

many (or more!) configurations of neighbours to be explored along the way,
all of which will be rejected. The earlier work of Mann and Thomas [10]
attempts to surround in a fixed order, and they report a number of cases
where their algorithm times out. A SAT solver has no particular opinion on
the geometric structure of the problem domain. Its input is an undifferen-
tiated collection of clauses, and it will take advantage of any opportunity it
can find to narrow the search space, regardless of order or locality.

I have not attempted to gather full information about the running times
of these programs. On a single core of a 40-CPU cluster node with 2.2
GHz Intel Xeon processors, I can compute the Heesch numbers of all 1390



HEESCH NUMBERS OF UNMARKED POLYFORMS 165

n nontilers Hh = 0 Hh = 1 Hh = 2 Hh = 3 Hh = 4
6 4 3 1
7 37 4 19 12 2
8 381 37 253 84 7
9 2717 434 2091 185 7
10 18760 4332 13766 632 29 1
11 116439 38621 75783 1956 73 6
12 565943 286656 277601 1652 32 2
13 3033697 1895666 1132994 4985 50 2
14 14835067 11201813 3627594 5614 46
15 72633658 61761205 10862327 9802 322 2
16 356923880 325357916 31551809 13997 156 2
17 1746833634 1660634503 86167750 30811 569 1

Table 4. Heesch numbers of n-hexes with holes permitted
in the outer corona.

n nontilers Hc = 0 Hc = 1 Hc = 2 Hc = 3 Hc = 4
7 1 1
8 0
9 20 11 9
10 103 44 55 3 1
11 594 236 346 11 1
12 1192 826 364 1 1
13 6290 4360 1884 24 2
14 18099 14949 3141 8
15 54808 48108 6661 39
16 159048 148881 10153 13 1
17 502366 474738 27544 83 1
18 1374593 1341460 33100 33
19 4076218 4001470 74689 57 2
20 11378831 11282686 96091 51 2 1
21 32674779 32505745 168959 73 2
22 93006494 92740453 265977 62 2
23 264720498 264216706 503651 140 1
24 748062099 747476118 585571 384 26

Table 5. Heesch numbers of n-iamonds with no holes in the
outer corona.

nontiling 10-ominoes in about 220 seconds, on average about 0.16 seconds
per shape. I have also sampled the running times on batches of the much
larger 17-hexes, and the average per-shape computation time is compara-
ble. Unsurprisingly, the computation time appears to increase exponentially
for shapes with higher Heesch numbers. For example, shapes with Heesch



166 CRAIG S. KAPLAN

n nontilers Hh = 0 Hh = 1 Hh = 2 Hh = 3 Hh = 4
7 1 1
8 0
9 20 7 13
10 103 33 59 10 1
11 594 117 446 30 1
12 1192 495 692 4 1
13 6290 2639 3598 51 2
14 18099 10328 7745 25
15 54808 36965 17748 91 4
16 159048 124954 34058 35 1
17 502366 414119 88072 173 2
18 1374593 1239971 134541 80 1
19 4076218 3776105 299954 157 2
20 11378831 10921532 457157 139 2 1
21 32674779 31831654 842947 174 4
22 93006494 91551851 1454494 147 2
23 264720498 262051399 2668753 343 3
24 748062099 744472222 3589353 425 99

Table 6. Heesch numbers of n-iamonds with holes permit-
ted in the outer corona.

number 4 might require 30 seconds to a minute of computation time. But
because such shapes become progressively more rare as the Heesch number
increases, the overall effect on computation time is negligible.

Tables 1–6 list Heesch numbers for all the nontiling polyforms I tested, up
to 19-ominoes, 17-hexes, and 24-iamonds. For values of n smaller than those
shown in the tables, no nontilers exist. Permitting holes in the outermost
corona offers shapes more freedom to form coronas. As a result, the rows of
the Hh tables are weighted slightly more to the right than the corresponding
rows of the Hc tables.

Of course, a few highlights deserve to be shared. I am particularly inter-
ested in the smallest polyforms that exhibit each successive Heesch number.
Figure 1 already shows the smallest polyominoes with Hc = 1 and Hh = 1.
Figure 7 shows the smallest polyominoes with Heesch numbers 2 and 3, both
with and without holes. In Figures 8 and 9, I show the smallest polyhexes
and polyiamonds with hole-free Heesch numbers 1 through 4. In all cases,
my search did not produce any shapes with Heesch numbers higher than the
ones shown.

A larger dataset, containing text descriptions and drawings of shapes
with high Heesch numbers, can be found at www.cs.uwaterloo.ca/~csk/
heesch/.

www.cs.uwaterloo.ca/~csk/heesch/
www.cs.uwaterloo.ca/~csk/heesch/


HEESCH NUMBERS OF UNMARKED POLYFORMS 167

Figure 7. The smallest polyominoes with Heesch numbers 2
and 3, with and without holes in the outermost corona. The
11-omino has a single square hole on the right side of the
packing.

6. Conclusions

In this article, I have demonstrated the effectiveness of recasting the com-
putation of Heesch numbers within the framework of Boolean satisfiability.
I used a software implementation of this idea to compute Heesch numbers
for a few billion unmarked polyominoes, polyhexes, and polyiamonds. The
search did not yield any shapes that break previous records for Heesch num-
bers but provides a lot of data that can be used to deepen our understanding
of this intriguing open problem in tiling theory.



168 CRAIG S. KAPLAN

Figure 8. The smallest polyhexes with Hc = 1, 2, 3, 4.

The most obvious avenue for future work is to continue the enumeration
to larger polyforms. However, I am reluctant to do so without significant
performance improvements or insights on narrowing the set of polyforms to
process. For example, there are more than twice as many nontiling 18-hexes
as all the Heesch numbers I have computed so far: over 8.5 billion of them.
If they require an average of 0.15 seconds each to process, I estimate that a
120-core cluster would have to run full-tilt for four months to compute them
all.

It would be interesting to reformulate the approach presented here us-
ing binary integer programming [7] instead of Boolean satisfiability. Some
families of clauses might be expressed much more compactly this way. With
satisfiability, if transformed shapes T1(S), . . . , Tm(S) all overlap at some cell,



HEESCH NUMBERS OF UNMARKED POLYFORMS 169

Figure 9. The smallest polyiamonds with Hc = 1, 2, 3, 4.

then
(
m
2

)
clauses of the form sTi,ki → ¬sTj ,kj are required to rule out all pos-

sible overlaps. In binary integer programming, the shape variables would be
assigned the integers 0 or 1, and all overlaps at this cell could be prevented
with the single inequality sT1,k1 + · · ·+sTm,km ≤ 1. (Some SAT solvers allow
XOR-style clauses that might be able to achieve a similar effect.) However,
it is unclear whether this change would boost performance.

Part of the goal of assembling a large corpus of data is to mine it for
patterns. I do not believe that the tables in this article betray any obvious
patterns in the sizes of polyforms that produce certain Heesch numbers. The
general upward trend in each column could be a simple consequence of the
exponential growth in the number of shapes being classified, and even then
the numbers jump around erratically. But there may be some insight to be
gleaned from examinations of the shapes themselves. Mann and Thomas



170 CRAIG S. KAPLAN

refer to “forced grouping”, in which tiles in a patch tend to cluster together
into larger units [10]. I have observed this phenomenon in many of my results
as well—see for example the 11-hex patch in Figure 8. Forced grouping may
inspire strategies for “amplifying” the Heesch number of a large shape by
finding a way to decompose it into smaller congruent pieces.

Perhaps the most promising way forward is to consider other families of
shapes. The techniques in this article could easily be extended to handle
marked polyforms, simply by prohibiting adjacencies that are not compati-
ble with the markings. However, it would be crucial to apply markings to
polyforms that tile the plane. Markings can only lower an unmarked shape’s
Heesch number, making it pointless to add markings to any of the polyforms
presented here. It would therefore become necessary to check explicitly that
a set of markings prevents a polyform from tiling, whether based on combi-
natorial imbalance or a more complex computation. Of course, it would be
interesting to explore the use of a SAT solver (or integer programming) to
check whether a shape tiles the plane.

It may also be possible to extend this work to polyforms built from other
ambient grids, such as unions of squares and octagons, or triangles and
hexagons. We might also consider more flexible polyforms that do not use a
fixed grid, like the polyabolos mentioned previously, or shapes constructed
from unions of Penrose rhombs. In that case, we would likely have to do
away with haloes and cell variables, and use techniques from computational
geometry to test whether two copies of a shape are disconnected, adjacent,
or overlapping. The lack of a grid to organize the plane would incur a heavy
cost, but the greater potential for disorder may pack higher Heesch numbers
into smaller shapes.

Acknowledgments

I am deeply grateful to Bram Cohen, who first proposed using a SAT
solver to compute Heesch numbers, suggested a lot of the Boolean logic, and
acted as a sounding board throughout the work. Many thanks also to Joseph
Myers, who shared his code for checking the tiling properties of polyforms
and helped me use it to good effect. Erik Demaine, Alex Kontorovich, and
Casey Mann all provided valuable feedback during the preparation of this
manuscript, helping to steer it towards publication in a research area outside
my normal expertise. Thanks to Lori Paniak for assistance running some
processes on an in-house compute cluster. This work was made possible
by the facilities of the Shared Hierarchical Academic Research Computing
Network (SHARCNET) and Compute/Calcul Canada.

References

1. G. Audemard and L. Simon, Predicting learnt clauses quality in modern SAT solvers,
Twenty-first International Joint Conference on Artificial Intelligence, 2009.

2. B. Bašić, A figure with Heesch number 6: Pushing a two-decade-old boundary, The
Mathematical Intelligencer (2021), 1–4.



HEESCH NUMBERS OF UNMARKED POLYFORMS 171

3. R. Berger, The undecidability of the domino problem, Memoirs of the American Math-
ematical Society, no. 66, American Mathematical Soc., 1966.

4. A. Fontaine, An infinite number of plane figures with Heesch number two, Journal of
Combinatorial Theory, Series A 57 (1991), no. 1, 151–156.

5. C. Goodman-Strauss, Open questions in tiling, https://strauss.hosted.uark.edu/
papers/survey.pdf, 2000, Accessed: May 14th, 2021.

6. B. Grünbaum and G. C. Shephard, Tilings and patterns, second ed., Dover, 2016.
7. LLC Gurobi Optimization, Gurobi optimizer reference manual, 2021.
8. C. S. Kaplan, Introductory tiling theory for computer graphics, Morgan & Claypool,

2009.
9. C. Mann, Heesch’s tiling problem, The American Mathematical Monthly 111 (2004),

no. 6, 509–517.
10. C. Mann and B. C. Thomas, Heesch numbers of edge-marked polyforms, Experimental

Mathematics 25 (2016), no. 3, 281–294.
11. J. Myers, Polyomino, polyhex and polyiamond tiling, https://www.polyomino.org.

uk/mathematics/polyform-tiling/, 2019, Accessed: May 14th, 2021.
12. M. Soos, K. Nohl, and C. Castelluccia, Extending SAT solvers to cryptographic prob-

lems, Theory and Applications of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings (Oliver Kull-
mann, ed.), Lecture Notes in Computer Science, vol. 5584, Springer, 2009, pp. 244–257.

School of Computer Science, University of Waterloo
E-mail address: csk@uwaterloo.ca

https://strauss.hosted.uark.edu/papers/survey.pdf
https://strauss.hosted.uark.edu/papers/survey.pdf
https://www.polyomino.org.uk/mathematics/polyform-tiling/
https://www.polyomino.org.uk/mathematics/polyform-tiling/

	1. Introduction
	2. Mathematical background
	2.1. Heesch numbers
	2.2. Polyforms

	3. Computing Heesch numbers with a SAT solver
	3.1. Developing the base formula
	3.2. Suppressing holes

	4. General polyforms
	4.1. Polyhexes
	4.2. Polyiamonds

	5. Implementation and results
	6. Conclusions
	Acknowledgments
	References

