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Abstract - Expressing whole numbers as sums of figurate numbers, including tetrahedral
numbers, is a longstanding problem in number theory. Pollock’s tetrahedral number conjec-
ture states that every positive integer can be expressed as the sum of at most five tetrahedral
numbers. Here we explore a generalization of this conjecture to negative indices. We provide
a method for computing sums of two generalized tetrahedral numbers up to a given bound,
and explore which families of perfect powers can be expressed as sums of two generalized
tetrahedral numbers.
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1 Introduction

A historically important problem in number theory, known as Waring’s problem, is to
represent whole numbers as sums of perfect powers, and in particular to find the minimum
amount of such powers required to sum to any given whole number. For instance, it is
known that every positive integer is the sum of at most 9 positive cubes ([4]). However,
if we allow some of the cubes to be negative, this bound is considerably decreased, and it
is conjectured that every integer is the sum of at most 4 integer cubes ([5]).

Similar problems to Waring’s problem have been posed for other types of figurate
numbers, including tetrahedral numbers. In 1850, Frederick Pollock conjectured that
every positive integer can be expressed as the sum of at most five tetrahedral numbers
([6]), and the problem is still open. Recently, progress has been made on a generalization
of this problem which allows negative indices for the tetrahedral numbers. If we let Ten
represent the nth tetrahedral number, Ten = n(n+1)(n+2)

6
, then for integer n, we call Ten a

“generalized tetrahedral number”, or GTN. Note that Te0 = Te−1 = Te−2 = 0, and that
for all n ∈ Z, Te−n = −Ten−2. So we see that the nonzero GTNs with negative indices
are the opposites of the positive GTNs. Thus an equivalent generalization of the problem
would be one allowing signed sums of tetrahedral numbers. Here we will instead use the
negative index representation.

We say that an integer n is a sum of k GTNs if there exist integers t1, t2 · · · tk such
that

∑k
i=1 Teti = n. Note that if n is a sum of k GTNs with indices t1, · · · tk, then −n is

also a sum of k GTNs with indices si = −ti−2. In [1] and [2] it was found that 2 < k ≤ 4
for all n ∈ N. In this paper, we will prove two central theorems about sums of two GTNs.
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The first allows us to readily compute sums of two GTNs below a given bound, while the
second involves representing perfect powers as sums of two GTNs.

To motivate our first result, let us imagine that we are trying to determine if a given
whole number n is a sum of two GTNs. Our first step may be to determine whether n is
a sum of two positive tetrahedral numbers. To do this, we can sum all pairs of positive
tetrahedral numbers less than or equal to n and check if any of the sums are equal to
n. We do not need to include tetrahedral numbers greater than n in this computation,
because adding positive tetrahedral numbers to them will only increase the sum further
beyond n. In other words, we have an upper bound on which tetrahedral numbers to
include in our sums. The following theorem provides a similar bound on the sizes of two
generalized tetrahedral numbers required to sum to a given whole number n.

Theorem 1.1 Let n ∈ N such that n = Tea + Te−b with a, b > 0. Then a and b− 1 are

at most
⌊√

1+8n−1
2

⌋
.

Proof.
Let n = Tea + Te−b with a, b > 0. Note that b ≤ a + 1, or else n would be zero or

negative. Hence for a given a, the smallest possible positive value of Tea +Te−b is a(a+1)
2

,
which occurs when b has its maximum value a + 1.

Let m be the largest positive integer such that Tem + Te−m−1 ≤ n. Then we have

m(m + 1)

2
≤ n <

(m + 1)(m + 2)

2
.

The left-hand side becomes

m2 + m− 2n ≤ 0

m ≤
√

1 + 8n− 1

2
,

while the right-hand side becomes

m2 + 3m + 2− 2n > 0

m >

√
1 + 8n− 3

2
.

Let s =
√

1 + 8n. Then m ∈ ( s−1
2
− 1, s−1

2
]. Since m is an integer, we get

m =
⌊s− 1

2

⌋
.

Hence a ≤
⌊
s−1
2

⌋
. Since b ≤ a + 1, we also have b− 1 ≤ a ≤

⌊
s−1
2

⌋
.

�
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Corollary 1.2 Let

Am = {k ∈ N : ∃a, b ∈ N, (k = Tea + Te−b) ∧ (b− 1 ≤ a ≤ m)}.

Then n ∈ N is not a sum of two GTNs if both n /∈ Am and n < (m+1)(m+2)
2

.

The above theorem allows us to easily conduct computer searches for sums of two
GTNs, because it gives a limit on how far we need to search. For instance, if n ≤ 100 is a
sum of two GTNs, we see that the largest possible index for the GTNs is

⌊√
801−1
2

⌋
= 13.

By summing all pairs of GTNs with indices between -14 and 13 and choosing those sums
which are in the interval [1, 100], we get all the sums of two GTNs below 100, shown
below. The numbers which are sums of two positive tetrahedral numbers ([3]) form a
subsequence, and are shown in bold.

1 2 3 4 5 6 8 9 10 11 14 15
16 19 20 21 24 25 28 30 31 34 35 36
39 40 45 46 49 52 55 56 57 60 64 66
70 74 76 78 80 81 83 84 85 88 91 94

Of these 48 sums of two GTNs, 29 of them, or 60.4%, are also sums of two positive
tetrahedral numbers. The following table shows the values of this proportion when the
sums of two GTNs have indices in the interval [−m − 1,m] for various values of m. For
instance, we have just seen that when m = 13, this value is 60.4%. The value seems to
decrease as m increases.

m Proportion
100 44.4%
200 41.6%
300 40.0%
400 39.3%
500 38.7%

One may wonder whether there is a result analogous to Theorem 1.1 which would
provide a bound on the indices when n is a sum of three GTNs. While such a result
would undoubtedly be useful in future analysis, it is possible that no such bound exists.
In the problem of sums of three integer cubes, it is often possible to add two large positive
cubes and one large negative cube, or two large negative cubes and one large positive cube
(where the indices are on the order of 1020), to achieve sums as small as 3 ([7]). A similar
situation may occur with tetrahedral numbers, so we will not attempt to find a bound on
sums of three GTNs here.

2 Modular Analysis

It was shown in [2] that no prime numbers congruent to 2 (mod 5) apart from 2 are sums
of two GTNs. Here we will analyze whether this result has an effect on the distribution
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of sums of two GTNs within each equivalence class modulo 5. We first notice that the
index of a tetrahedral number modulo 5 determines its modulo 5 value according to the
following table:

a mod 5 Tea mod 5
0 0
1 1
2 4
3 0
4 0

We now let n be a sum of two GTNs, n = Tea + Teb. We wish to determine the
probability of n to be in each equivalence class modulo 5. To that end, we assume that
each of the indices a and b are chosen independently and uniformly from the modulo 5
equivalence classes. Under this assumption, there are 25 equally likely choices for the
pair (a, b). We can then compute the values of n modulo 5 in each of these 25 cases and
calculate the proportions which fall into each equivalence class. The resulting distribution,
which we will refer to as the “theoretical distribution”, is shown below. We see that we
should expect 4% of sums of two GTNs to be congruent to 2 (mod 5).

n mod 5 Proportion
0 44%
1 24%
2 4%
3 4%
4 24%

The following tables show the counts and proportions of sums of two GTNs between
0 and m which are in each equivalence class modulo 5, for various values of m. They also
show the difference (in percentage points) between the theoretical distribution and the
actual distributions up to m. We see that 2 (mod 5) is indeed slightly less common than
3 (mod 5), possibly due to the lack of primes in this equivalence class. Also of note is the
fact that multiples of 5 are considerably less common than expected.

m = 10, 000:

n mod 5 Count Proportion Difference
0 599 39.18% −4.82%
1 394 25.77% +1.77%
2 69 4.51% +0.51%
3 92 6.02% +2.02%
4 375 24.53% +0.53%

m = 100, 000:
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n mod 5 Count Proportion Difference
0 3239 41.17% −2.83%
1 1982 25.19% +1.19%
2 336 4.27% +0.27%
3 401 5.1% +1.1%
4 1910 24.28% +0.28%

The accompanying Figure 1 shows the relative proportion of sums of two GTNs in
each equivalence class with respect to m. Together with the above data tables, this
suggests that the proportion of sums of two GTNs in each equivalence class will eventually
approach a limit as m increases. Assuming the limiting values are close to the values when
m = 100, 000, they are likely within 1.5 percentage points of the theoretical distribution,
except in the 0 (mod 5) equivalence class.

0%

25%

50%

75%

100%

20000 40000 60000 80000

4 mod 5 3 mod 5 2 mod 5 1 mod 5 0 mod 5

Figure 1: Stacked area chart showing the distribution of sums of two GTNs among the
modulo 5 equivalence classes.

We will now conduct a similar analysis modulo 7. The theoretical distribution modulo
7 is as follows:

n mod 7 Proportion
0 26.53%
1 14.29%
2 6.12%
3 16.33%
4 16.33%
5 6.12%
6 14.29%
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The following tables show the counts, proportions, and differences for sums of two
GTNs between 0 and m which are in each equivalence class modulo 7, for various values
of m, similar to the modulo 5 tables above.

m = 10, 000:

n mod 7 Count Proportion Difference
0 354 23.15% −3.38%
1 242 15.83% +1.54%
2 114 7.46% +1.34%
3 259 16.94% +0.61%
4 248 16.22% −0.11%
5 102 6.67% +0.55%
6 210 13.73% −0.56%

m = 100, 000:

n mod 7 Count Proportion Difference
0 1920 24.40% −2.13%
1 1195 15.19% +0.9%
2 545 6.93% +0.81%
3 1317 16.74% +0.41%
4 1263 16.05% −0.28%
5 504 6.41% +0.29%
6 1124 14.29% ±0.0%

As in the modulo 5 case, we see that multiples of 7 are less common than expected.
We conjecture that this will occur for any prime modulus p.

3 Perfect Powers

We now turn our attention to perfect powers which are sums of two GTNs. To begin,
we prove that all squares are representable in this way. Since all even powers are also
squares, this result shows that any even power is a sum of two GTNs.

Theorem 3.1 For all n ∈ N, n2 is a sum of two GTNs.

Proof. For any n ∈ N, we have

Ten + Te−n =
1

6

(
n(n + 1)(n + 2) + (−n)(−n + 1)(−n + 2)

)
=

1

6
(n3 + 3n2 + 2n− n3 + 3n2 − 2n) = n2

Hence n2 is a sum of two GTNs. �
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We now move on to perfect cubes. We first conduct a computer search over all perfect
cubes below 1203 and find that the cubes of the following integers are sums of two GTNs:

1, 2, 4, 9, 11, 16, 25, 36, 49, 64, 81, 100, 109, 110

The majority of these cubes are also squares, i.e. they are sixth powers. Since we already
know that all squares are sums of two GTNs, we wish instead to focus on non-square
cubes. To this end, we introduce the following definition:

Definition 3.2 We say that an integer p is a pure nth power iff n ∈ N \ {1} is minimal
such that p = an for some a ∈ Z.

We see that only 4 of the 14 cubes in the above list are pure, namely:

• 23 = Te2 + Te2

• 113 = Te19 + Te1

• 1093 = Te197 + Te19

• 1103 = Te199 + Te−25

Based on the data above, it seems that it is relatively rare for a pure perfect cube to
be a sum of two GTNs. In fact, we will now show that there are infinitely many pure
perfect cubes which are not a sum of two GTNs. The proof references the following two
lemmas, which will be proven shortly.

Lemma 3.3 Let n ∈ R and a ∈ {1, 2, 3, 6}. Let p ≥ 3. Then the equation

3n2 + 6n + 2 =
6p

a
− a2p4 + 3ap2(n + 1) (1)

does not hold.

Lemma 3.4 Let n ∈ N and a ∈ {1, 2, 3, 6}. Let p ∈ N be congruent to 3 or 18 (mod 35).
Then the equation

3n2 + 6n + 2 =
6p2

a
− a2p2 + 3ap(n + 1) (2)

does not hold.

We are now ready to prove the main theorem.

Theorem 3.5 If p is prime and p ≡ 3 or p ≡ 18 (mod 35), then p3 is not a sum of two
generalized tetrahedral numbers.
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Proof. Suppose that p is prime and p ≡ 3 or p ≡ 18 (mod 35). By way of contradiction,
suppose also that p3 is a sum of two generalized tetrahedral numbers. Then either both
GTNs have positive indices, or exactly one GTN has a negative index. We consider each
of these cases in turn.

Suppose p3 can be written as a sum of two GTNs with positive indices. Then there
exist integers n ≥ k ≥ 0 such that

p3 = Ten + Ten−k.

From here we get

6p3 = (2n− k + 2)(k2 − kn− k + n2 + 2n).

Let A = 2n− k + 2, B = k2 − kn− k + n2 + 2n. Since p is prime, one of the following
cases holds:

1. p3 | A

2. p3 | B

3. p2 | A and p | B

4. p | A and p2 | B

Case 1: p3 | A and B | 6. Note that B = n(n− k) + k(k− 1) + 2n ≥ 2n, so n ≤ 3. We
then get A = 2n− k + 2 ≤ 8, so we must have p = 2. Since 2 is not congruent to 3 or 18
(mod 35), we may disregard it here.

Case 2: p3 | B and A | 6. Then (n, k) ∈ {(0, 0), (1, 1), (2, 0), (3, 2), (4, 4)}. The only
pair that gives a perfect-cube value for p3 is (2,0), giving p = 2, which we may disregard.

Case 3: p2 | A and p | B. Then A = 2n− k + 2 = ap2 for some a | 6. Substituting into
the expression for B gives

3n2 − 3ap2(n + 1) + 6n + a2p4 + 2 =
6p

a

3n2 + 6n + 2 =
6p

a
− a2p4 + 3ap2(n + 1)

By Lemma 3.3, p < 3, but then p cannot be congruent to 3 or 18 (mod 35).
Case 4: p | A and p2 | B. Then A = 2n− k + 2 = ap for some a | 6. Substituting into

the expression for B gives

3n2 − 3anp + 6n + a2p2 − 3ap + 2 =
6p2

a

3n2 + 6n + 2 =
6p2

a
− a2p2 + 3ap(n + 1)

By Lemma 3.4, this case is impossible. Hence p3 is not a sum of two positive GTNs.

the pump journal of undergraduate research 5 (2022), 206–217 213



Now suppose that p3 is a sum of two GTNs with exactly one of the indices negative.
Then there exist integers n ≥ 0 and −1 ≤ k ≤ n such that

p3 = Ten + Te−(n−k).

From here we get

6p3 = (k + 2)(3n2 − 3kn + k2 + k).

Let A = k + 2, B = 3n2 − 3kn + k2 + k. Since p is prime, one of the following cases
holds:

1. p3 | A

2. p3 | B

3. p2 | A and p | B

4. p | A and p2 | B

Case 1: p3 | A and B | 6. Note that B = 3n(n− k) + k(k + 1) ≥ k(k + 1). So k ≤ 2,
and A = k + 2 ≤ 4. Since p ≥ 2, this contradicts p3 | A.

Case 2: p3 | B and A | 6. Here we follow an argument similar to the one used in [2].
Note that because p ≡ 3 (mod 5), we have p3 ≡ 2 (mod 5). Now A = k + 2 ∈ {1, 2, 3, 6}.
If k = 0 then we get p3 = n2, impossible because p is prime. If k = 1 then we get

3n2 − 3n + 2 = 2p3 ≡5 4

3n2 − 3n + 3 = 3(n2 − n + 1) ≡5 0

n2 + 4n + 4 = (n + 2)2 ≡5 3,

which is impossible. If k = 4 then we get

3n2 − 12n + 20 = p3 ≡5 2

3n2 − 12n + 12 = 3(n2 − 4n + 4) ≡5 4

n2 − 4n + 4 = (n− 2)2 ≡5 3,

which is also impossible. If k = −1 then we get

p3 = Ten + Te−n−1 =
1

6
(n3 + 3n2 + 2n− n3 + n) =

n2 + n

2

8p3 = (2p)3 = 4n2 + 4n = (2n + 1)2 − 1

(2n + 1)2 − (2p)3 = 1.
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By Catalan’s conjecture (proven in [8]), the only solution to the above occurs when
p = 1, which we are not considering here.

Case 3: p2 | A and p | B. Hence A = k + 2 = ap2 for some a | 6. Substituting into
the expression for B gives

B = 3n2 − 3n(ap2 − 2) + (ap2 − 2)2 + ap2 − 2 =
6p

a

3n2 + 6n + a2p4 + 2− 3ap2(n + 1) =
6p

a

3n2 + 6n + 2 = p(
6

a
− a2p3 + 3ap(n + 1))

By Lemma 3.3, p < 3, but then p cannot be congruent to 3 or 18 (mod 35).
Case 4: p | A and p2 | B. Hence k = ap − 2 for some a | 6. Substituting into the

expression for B gives

3n2 − 3anp + 6n + a2p2 − 3ap + 2 =
6p2

a

3n2 + 6n + 2 =
6p2

a
− a2p2 + 3ap(n + 1)

By Lemma 3.4, this case is impossible. Hence p3 is not a sum of two GTNs.
�

Proof. [Proof of Lemma 3.3]
Suppose that equation (1) holds under these conditions. We first rearrange it as

follows:

3n2 + (6− 3ap2)n + 2 =
6p

a
− a2p4 + 3ap2

The left-hand side is a quadratic in n; its minimum value is obtained when n = 1
2
ap2−1.

So we get

3
(1

2
ap2 − 1

)2
+ (6− 3ap2)

(1

2
ap2 − 1

)
+ 2 ≤ 6p

a
− a2p4 + 3ap2

−3

4
a2p4 + 3ap2 − 1 ≤ 6p

a
− a2p4 + 3ap2

6p

a
+ 1 ≥ 1

4
a2p4

Since p ≥ 3 and a ≥ 1, we get

6p + 1 ≥ 6p

a
+ 1 ≥ 1

4
a2p4 ≥ 1

4
p4 ≥ 27

4
p

So 1 ≥ 3
4
p or p ≤ 4

3
. By contradiction, equation (1) does not hold.

�
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Proof. [Proof of Lemma 3.4]
Note that p ≡ 3 (mod 5). Reducing equation (2) modulo 5 gives

3n2 + n + 2 ≡5 3(
3

a
− 3a2 + 3an + 3a) ≡5

−1

a
+ a2 − an− a

If a ≡5 1, then this becomes 3n2 +n+ 2 ≡5 −1−n⇒ 3n2−3n+ 3 ≡5 n
2−n+ 1 ≡5 0,

which is impossible. If a ≡5 2, then we get 3n2 + n + 2 ≡5 4 − 2n ⇒ 3n2 + 3n + 3 ≡5

n2 + n + 1 ≡5 0, which is also impossible. So we see that a /∈ {1, 2, 6}.
If a = 3, then equation (2) becomes

3n2 + 6n + 2 = p(−7p + 9n + 9)

Reducing modulo 7 gives

3n2 + 6n + 2 ≡7 p(2n + 2)

5n2 + 3n + 1 ≡7 p(n + 1)

Note that either p ≡ 3 (mod 7) or p ≡ 4 (mod 7). If p ≡ 3 (mod 7), then we get

5n2 + 3n + 1 ≡7 3n + 3

5n2 + 5 ≡7 0

n2 ≡7 6,

which is impossible. If p ≡ 4 (mod 7), then we get

5n2 + 3n + 1 ≡7 4n + 4

5n2 + 6n ≡7 3

n2 + 4n + 4 = (n + 2)2 ≡7 6,

which, again, is impossible. So we see that a /∈ {1, 2, 3, 6}, and equation (2) does not
hold.

�
Theorem 3.5 provides two infinite families of pure cubes which are never sums of two

GTNs. However, it does not cover all the pure cubes that are not sums of two GTNs. For
instance, Theorem 3.5 alone does not prevent 53 from being a sum of two GTNs, but we
have seen that it is not. There are likely many more families of pure cubes that are never
sums of two GTNs, which would help to explain the observed scarcity of such cubes.

We conclude with a brief discussion of fifth powers. A computer search showed that
there are no pure fifth powers less than or equal to 305 which are sums of two GTNs.
However, as we have seen in the case of cubes, the pure perfect powers which are sums
of two GTNs are relatively sparse. As such, we are not prepared to conjecture that no
pure fifth powers are sums of two GTNs. We have also not managed to prove a result
analogous to Theorem 3.5 for fifth powers; it is still an open question whether there are
infinitely many fifth powers which are not sums of two GTNs.
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