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ABSTRACT   

Silicon Photomultipliers (SiPMs) are emerging single photon detectors used in many applications requiring large active 

area, photon-number resolving capability and immunity to magnetic fields. We present three families of analog SiPM 

fabricated in a reliable and cost-effective fully standard planar CMOS technology with a total photosensitive area of 1x1 
mm2. These three families have different active areas with fill-factors (21%, 58.3%, 73.7%) comparable to those of 

commercial SiPM, which are developed in vertical (current flow) custom technologies. The peak photon detection 

efficiency in the near-UV tops at 38% (fill-factor included) comparable to commercial custom-process ones and dark 

count rate density is just a little higher than the best-in-class commercial analog SiPMs. Thanks to the CMOS processing, 

these new SiPMs can be integrated together with active components and electronics both within the microcell and on-

chip, in order to act at the microcell level or to perform global pre-processing. We also report CMOS digital SiPMs in 

the same standard CMOS technology, based on microcells with digitalized processing, all integrated on-chip. This 

CMOS digital SiPMs has four 32x1 cells (128 microcells), each consisting of SPAD, active quenching circuit with 

adjustable dead time, digital control (to switch off noisy SPADs and readout position of detected photons), and fast 

trigger output signal. The achieved 20% fill-factor is still very good.   

Keywords: CMOS analog SiPMs, Single photon avalanche diode (SPAD), digital SiPMs, single photon counting, 

photon number resolved, photon position resolved. 
 

1. INTRODUCTION  

In order to detect extremely faint signals, some single-photon detectors have been developed: Photomultiplier Tube 

(PMT), Microchannel Plate (MCP), Hybrid Photo-Detector (HPD), Superconducting Single-Photon Detector (SSPD), 

Quantum Dots Single Photon Detector (QDFET), Single-Photon Avalanche Diode (SPAD) and Silicon Photomultiplier 

(SiPM). Among these, semiconductor devices are strongly preferred for their relatively low bias voltage, insensitive to 

external magnetic fields, miniature size, rugged, reliable and easy-to-use. SPAD detectors are reverse-biased p-n 

junction, designed to work above its breakdown voltage in order to exploit the fast and intense avalanche build-up 

triggered by the absorption of a single optical photon. For single photon detection applications, large area of SPADs have 
been developed [1], but due to their relatively high Dark Count Rate (DCR) the device is easily saturated by noise.  

Arrays of SPADs are developed also to provided timing information [2] or for acquisition of very fast 2D imaging with 

faint signal [3], however, they could not provide the number of simultaneously arriving photons.  

SiPMs are large area photodetectors consisting of an array of Single-Photon Avalanche Diodes (SPADs) with passive 

quenching resistors (analog SiPMs) or active quenching circuits (digital SiPMs), different from SPADs, they provide an 

analog output which is proportional to firing cells, allowing to discriminate the number of simultaneously arriving 

photons. High Photon Detection Efficiency (PDE), combined with large collection area, low DCR, SiPMs become 

extremely useful detectors for many applications, in particular for single photon counting [4][5] and in photon-number 

resolved [6][7] and multi-photons applications [8]-[10].  

The analog SiPMs, each SPAD is connected in series with a quenching resistor that can quench the avalanche by limiting 

the diode current to a sufficiently low level. All microcells (SPAD and quenching resistor) are connected in parallel,    
providing an analog output signal by summing the individual currents of all microcells [11]. Instead in digital SiPM 

SPADs are integrated with conventional CMOS circuits on the same substrate. Each SPAD has its own readout circuit, 

active quenching and recharging of the SPAD. A one-bit memory cell integrated next to the SPAD can be used to 

selectively enable or disable the corresponding diode in order to switch off ‘hot’ (high DCR) SPADs. Each cell is 

composed by the SPAD itself and by the corresponding electronics blocks [12].  
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Figure 1. Left: Structure of the SiPM with 16x16 microcells divided into 4 macro-pixels. Right: example of  two 
microcells. 

With only passive quenching elements inside each microcell, analog SiPMs provide  higher fill-factor with respect to 

digital SiPMs and special integrated quenching resistors in custom technologies have been designed to further improve 

fill-factor [13][14]. The exploitation of custom technologies allows optimization the performance of SiPMs, in terms of 

DCR and PDE; however, it does not allow the integration of complex electronics. To this aim, we designed and 

fabricated CMOS analog SiPMs based on a standard 0.35 µm technology. 

However, analog SiPMs do not fully exploit the excellent intrinsic performance of SPAD. The parasitic capacitances of 
the on chip interconnect, the bond wires and the external load, degrade the performance of analog SiPMs. A dedicated 

readout circuit is needed. Furthermore, we need to digitize the analog SiPM signals, as the single photon response is still 

in the mV range, the signals can be easily affected by electronic noise or unstable baseline due to high DC levels, thus 

making single photon detection difficult. For these reasons, we designed also an array of digital SiPMs. In digital SiPMs, 

photons are detected directly by sensing the voltage at the SPAD anode using active quenching circuits. The photons are 

detected and counts as digital signals, making the sensor less susceptible to noises. In the our designed digital SiPMs, we 

could selectively enable and disable each microcell and at the end of acquisition, we could also readout the states of each 

SPAD, thus providing the 2D position information of photons.  

This paper is organized as follows: Section 2, we will describe the design of three families of analog SiPMs with 

different sizes and shapes of SPADs, the characterization of our CMOS analog SiPMs and the comparison with the 

commercial SiPMs; Section 3, we will present the design of our digital SiPMs; finally, in Section 4, we will make the 

conclusion of the work.   

2. ANALOG SIPMS 

2.1 Structure of analog SiPMs 

We developed three families of analog SiPMs with different sizes of SPADs in standard 0.35 µm CMOS technology. 

Each SiPM consists of four macro-pixels with 8x8 microcells each. Inside each macro-pixel, the SPADs’ cathodes of 

each microcells are connected together while the anode of each SPAD is connected to its individual integrated 

polysilicon quenching resistor, shown in Figure1. The polysilicon quenching resistors (260 kΩ) have been integrated 

along the four sides of the array, in order to achieve higher FF, with the drawback of limiting the scalability of the 

device. A unique n-well forms the common cathode for all microcells, as shown in the cross-section of Figure 2.  

The three SiPM families have the same structure, the same pitch (58 µm) between adjacent microcells and the same total 
active area of 928 x 928 µm2. Three different sizes and shapes of SPADs are designed for each SiPM family: S30 (30 µm 

round SPADs, FF = 21.0%), S50 (50 µm round SPADs, FF = 58.3%) and S50q (50 µm square SPADs with rounded 

corners of 5 µm radius, FF = 73.7%). These values of fill-factor are comparable to those of commercial SiPM, which 

range from 30% (Hamamatsu S12571-010) to 70% (Ketek Standard Technology). 
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Figure 3. Photoelectron spectrum of a S50q SiPM measured with two different optical power.  

2.2 Characterization of analog SiPMs 

We used a transimpedance amplifier connected to the SiPM cathode terminal (Figure 2) to characterize and measure the 

important SiPM parameters: breakdown voltage, gain, PDE, DCR and crosstalk probability [15]. During the 

measurements, the four macro-pixels are connected in parallel forming an equivalent 16x16 microcell SiPM. The 

feedback resistance (Rf=2.2 kΩ) and the feedback capacitance (Cf=2.5 pF) are chosen to obtain proper gain and 

compensate the stage. The bandwidth of the detector is limited by the stray capacitance of the p-n junction instead of the 
readout circuit. The total capacitance at the SiPM cathode is tens of pF.  

 

Figure 2. Cross-section of the CMOS SiPM with parasitic capacitances and transimpedance readout circuitry. 

The breakdown voltage (VBD) of our SiPMs is about 25 V and we operate the SiPMs at 4V to 6V excess bias voltage 

(VEX). The gain of SiPM is defined as the intrinsic charge gain of the single microcell and can be computed as: 

 ( )EX AC AS QEX tot
V C C CV C

G
q q

  
   (1) 

where VEX is the excess voltage, CAC is the junction capacitance, CAS is the capacitance between anode and substrate, CQ 

is the capacitance in parallel to the quenching resistor and q is the electron charge. All capacitors refer to one single 

microcell. The gains of three SiPMs families are measured and calculated at 5V excess voltage: 8.8·106 (S30), 13.2·106 

(S50) and 15.0·106 (S50q). The higher capacitances value of our SiPMs brings a slightly higher gain with respect to 

commercial SiPMs (1·105 - 5·106). In photon number resolved applications, gain and photoelectron spectrum are key 

Proc. of SPIE Vol. 9359  93591B-3

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 09/11/2015 Terms of Use: http://spiedigitallibrary.org/ss/TermsOfUse.aspx



30-

.8e. 20

L11

a

10

-S50q
-S50
-S30

R00 400 500 600 700
Wavelength (nm)

800 900

0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
Ñ

 C
O

N
 O

 C
O

C
O

N

(zuaw
/sd3N

) (paie anipe)/bD
C

l

isuas

bO
SS -5

O
sS - SC

0£S - SC

piSuenT

N
alam

nneuaei

 

 
 

 

 

Figure 4. PDE of  three developed SiPM with peak values of 10% (S30), 18% (S50) and 38% (S50q). 

 

Figure 5. DCR density comparison between commercial custom SiPMs and our CMOS SiPM. 

parameters. Figure 3 shows the photoelectron spectrum of the S50q SiPM measured by multichannel analyzer with two 

different optical powers and the distinguishable simultaneous photon number is 15. The PDE of our SiPM is calculated 

by multiplying the measured PDE of single SPAD by the SiPM fill-factor. The SPAD used to measure the PDE has the 

same size and shape as the SPAD in each microcell, and in fact, these single SPAD and SiPMs are fabricated on the 

same wafer. The peaks of PDE are located at near UV-region with values of 10%, 18% and 38% shown in Figure 4. 

 

The DCR of SiPMs is the noise contribution of all the microcells and is measured by connecting the output of the 

transimpedance amplifier to a counter with one-photon level threshold voltage (50 mV) at 5 V of excess voltage.  The 

measured DCR of three SiPMs are 116 kcps (S30), 334 kcps (S50) and 503 kcps (S50q). To compare with commercial 
SiPMs, the DCR is normalized to the total active area shown in Figure 5. The DCR density of our CMOS SiPM is 

slightly higher than the best-in-class SiPMs in custom technologies.  
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Figure 6. Structure of one macro-pixel (32x1 microcells) of the digital SiPMs and the layout of the SiPM (32x4 

microcells). 

The crosstalk of SiPM is computed as: 

     2

1


p

p

DCR
Xtalk

DCR
                    (2) 

where DCR2p and DCR1p are the DCRs measured with the threshold at two photons and one photon level respectively. 
The obtained crosstalk probabilities are 18.6% (S30), 23.0% (S50) and 33.5% (S50q), comparable with the no trench 

isolations custom SiPMs. The crosstalk could be reduced by adding trenches as reported in the literature.   

3. DIGITAL SIPMS 

We also designed a 32x4 microcells digital SiPMs and these microcells are split into four identical macro-pixels. Figure 

6 shows the structure of one macro-pixel and the layout of the whole digital SiPM. Inside each microcell, the anode of 

SPAD is connected to a variable-load quenching circuit [16] to active quench and recharge the SPAD. Each microcell 

provides three outputs: one digital voltage output connected in parallel to other microcells, that could go to external TDC 

[17] for photon arrival time resolving applications or to external counter for photon counting applications; one analog 

output provides current signal, that gives directly information on simultaneously firing microcells inside each macro-
pixel; one digital output to provide the state of one single microcell, which will be registered by a one-bit memory for 

photon position resolving applications. The one-bit memory is associated to each microcell that could be used to enable 

and disable the microcell in the configuration phase, and load the state of each microcell at the end of acquisition. The 

fill-factor of our digital SiPMs is 20% which is still good and by adding the complex electronics elements we could 

decrease the DCR of the whole SiPMs by switch-off the noisy microcell. At the same time, we exploited the intrinsic 

properties of SPAD while keep the photon number resolved and photon position resolved capabilities.  

4. CONCLUSION 

SiPMs are emerging single photon detectors used in many applications requiring large active area and photon number 

resolving capability. We developed, studied and characterized three families of analog SiPM fabricated in a reliable and 
cost-effective standard 0.35 µm CMOS technology. These three families have different diameters and shapes of SPAD 

and with high performance in terms of PDE, DCR and fill-factor comparable to the best commercial analog SiPMs. In 

order to exploit the intrinsic performance of SPAD, we designed also digital SiPMs with selectable cells, digitalized 

output, photon number and position resolved capabilities.  
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