
Exploiting Outer Loops Vectorization in High

Level Synthesis

Marco Lattuada and Fabrizio Ferrandi

Politecnico di Milano - Dipartimento di Elettronica, Informazione e Bioingegneria
marco.lattuada@polimi.it fabrizio.ferrandi@polimi.it

Abstract. Synthesis of DoAll loops is a key aspect of High Level Syn-
thesis since they allow to easily exploit the potential parallelism provided
by programmable devices. This type of parallelism can be implemented
in several ways: by duplicating the implementation of body loop, by ex-
ploiting loop pipelining or by applying vectorization.
In this paper a methodology for the synthesis of complex DoAll loops
based on outer vectorization is proposed. Vectorization is not limited to
the innermost loops: complex constructs such as nested loops, conditional
constructs and function calls are supported. Experimental results on par-
allel benchmarks show up to 7.35x speed-up and up to 40% reduction of
area-delay product.

1 Introduction

Heterogeneous multiprocessor systems are becoming very common in a large
group of embedded system application fields because of their computational
power and their power efficiency. This type of architecture requires that the dif-
ferent tasks in which an application is decomposed are assigned to the most suit-
able processing element. The parts of the application which are characterized by
high degree of parallelism are good candidates to be mapped on programmable
hardware devices since their hardware implementation can potentially have very
significant speed-up with respect to software implementation. Design by hand
efficient hardware implementations can be a hard task since requires the knowl-
edge of hardware description languages which is typically a rare expertise. To
overcome or at least to mitigate this issue, High Level Synthesis [4] has been in-
troduced: it consists of a (semi)-automatic design flow, potentially composed of
several methodologies, that starting from a high level representation of a spec-
ification (e.g., a C/C++ source code implementation) produces its hardware
implementation.

Loop parallelization is one of the most used techniques exploited by High
Level Synthesis to take advantage of the parallelism provided by hardware plat-
forms. An important class of loops which are good candidates to be parallelized
are DoAll loops [19]. These loops are characterized by the absence of inter-
iteration dependences which allows completely independent execution of differ-
ent iterations. A parallel hardware implementation of this type of loop can be

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55251933?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


obtained by replicating multiple times the module implementing its body. This
type of approach potentially provides good results in terms of performance, but
it can significantly increase the resources usage. Moreover, the obtained speed-
up can be partially reduced by the concurrent accesses to shared resources (e.g.,
shared memory) performed by the different module replicas. The contention res-
olutions can indeed introduce overhead both in terms of delay in critical path
(e.g., for the presence of the arbiter) and of cycles (e.g., because of the stalls
introduced during resources acquisition).

This paper proposes a methodology for High Level Synthesis of DoAll loops
based on vectorization [13] (i.e., introduction of functional units processing vec-
tors of data) to mitigate these problems. The methodology does not introduce
any significant change to the structure of the Finite State Machine nor to the
hardware accelerator interface, so it can be easily integrated in existing High
Level Synthesis design flows provided that they already support synthesis of
vector operations. Its main contributions are the following:

– It extends the applicability of vectorization in High Level Synthesis by al-
lowing vectorization of complex loops (i.e., loops that contain nested loops,
conditional constructs and function calls).

– It allows to selectively combine vectorization with local pipelined computa-
tion potentially exploiting benefits of both the approaches.

The rest of the paper is organized as follows. Section 2 presents related work
while Section 3 presents a motivational example. Section 4 describes the proposed
methodology whose experimental results are presented in Section 5. Finally Sec-
tion 6 presents the conclusions of the paper.

2 Related Work

Synthesis of DoAll loops is a very well studied topic of High Level Synthesis so
that many approaches have been proposed to address this problem. Identification
of this type of loops can be performed by means of Polyhedral methodologies,
which allow to analyze and transform source code specifications exposing the
different possibilities of parallelizing a loop. An example of framework aiming
at performing such type of transformations is presented in [19]: this framework
is able to systematically identify effective access patterns and to apply both
inter- and intra- block optimizations, exposing several types of possible paral-
lelization. The framework then evaluates each of them, and when estimated it
as profitable, applies it to the specification source code. Despite completeness
of existing frameworks and methodologies for polyhedral analysis, this type of
techniques is still limited to loops with limited irregularity in their structure.
For this reason, most of the recent synthesis techniques for DoAll loops start
from applications where parallelism has already been identified. Papakonstanti-
nou et al. [15] proposed the automatic synthesis of applications written with
CUDA programming model. The proposed approach adopts FCUDA, a design
flow which translates the CUDA code into task-level parallel C code. This code



is then provided as input to AutoPilot which performs the actual synthesis pro-
ducing a multi accelerators system. In a similar way, Choi et al. [2] proposed
the automatic synthesis of applications already parallelized, but they start from
applications exploiting pthreads and OpenMP API. In this case, the methodol-
ogy directly produces parallel hardware implementations of the loops which have
been annotated with #pragma omp for (they are DoAll loops with compile time
known number of iterations). The parallel architecture is obtained by replicating
multiple times the hardware accelerator which implements the body loop. This
approach does not have any applicability limitation, but implies to replicate
multiple times the whole implementation of the loop and requires a processor
to synchronize the execution of the accelerators, with a significant increase of
resources usage. A similar approach (i.e., the automatic synthesis of OpenMP
annotated applications) was proposed in [3] but targeting heterogeneous systems
implemented onto FPGAs. All these approaches, since the different accelerator
replicas potentially access at the same time to external data, require to add logic
to control resources contention, potentially delaying requests performed by the
single accelerators.

Parallelization of complex DoAll loops (i.e., outer loops) by means of vec-
torization was proposed for SIMD processors [13]: loops are vectorized during
compilation for SIMD architectures, even if they contain other loops or condi-
tional constructs, provided that some conditions are met. In particular the outer
and the inner loops must be countable and all the conditional constructs must
be removable by means of if-conversion. Moreover, ad-hoc analyses and trans-
formations are applied trying to maximize the number of aligned accesses. A
similar approach is proposed in this paper, but it is adopted during the synthe-
sis of hardware accelerators. Finally, the effects of using vector functional units
in High Level Synthesis have already been evaluated in [17]. The authors pro-
posed the adoption of configurable vector functional units which can implement
at the same time both scalar operations and vector operations. This approach
produces better solutions both in terms of performances and power consump-
tion, showing the effectiveness of using parallel functional units, but it is limited
to the parallelization of some operations of the specification.

3 Motivational Example

In this section a small motivational example is presented showing the potential
advantages of the outer loop vectorization with respect to other loop optimiza-
tion techniques when applied in High Level Synthesis. The example, presented in
the left part of Fig. 1, consists of a brief fragment of code containing two nested
loops. The outer loop is characterized by a fixed number of iterations (16) while
the number (k) of iterations of inner loop cannot be computed at compile time.
Moreover, the iterations of the outer loop can be parallelized while the iterations
of the inner loop have to be executed in sequence. To allow the application of
the most common types of loop parallelization techniques, the source code in
the left part of Fig. 1 has been transformed by means of if-conversion removing



Initial Code Pre-Processed Code Transformed Code

A for(i=0; i<16; i++) { for(i=0; i<16; i++) { for(i={0,1}; i[0]<16; i = i+{2,2}) {

B sum = 0; sum = 0; sum = {0,0};

C for(j=0; j<k; j++) { for(j=0; j<k; j++) { for(j=0; j<k; j++) {

D if(sum < 10) { c = sum < 10; c = sum < 10

E temp = in[i][j];
temp[0] = in[i[0]][j];

temp[1] = in[i[1]][j];

F sum = sum + in[i][j]; sumS = sum + temp; sumS = sum + temp;

G } sum = c ? sumS : sum;
sum[0] = c[0] ? sumS[0] : sum[0];
sum[1] = c[1] ? sumS[1] : sum[1];

} } }

H res[i] = sum/k; res[i] = sum/k;
res[i[0]] = sum[0]/k;
res[i[1]] = sum[1]/k;

} } }

Fig. 1. Example of application of the proposed methodology.

1 A(0,-)
i={0,1};A(1,-)

2 B(0,-)
sum={0,0};

B(1,-)
C(0,0)

j=0;
C(1,0)

3 D(0,0)
c=sum<10;

D(1,0)
E(0,0) temp[0]=in[i[0]][j];

E(1,0) temp[1]=in[i[1]][j];

4 F(0,0)
sumS=sum+temp;

F(1,0)
C(0,1)

j++;
C(1,1)

5 G(0,0) sum[0] = c[0] ? sumS[0] : sum[0];

G(1,0) sum[1] = c[1] ? sumS[1] : sum[1];

6 D(0,1)
c=sum<10;

D(1,1)
E(0,1) temp[0]=in[i[0]][j];

E(1,1) temp[1]=in[i[1]][j];

7 F(0,1)
sumS=sum+temp;

F(1,1)
C(0,2)

j++;
C(1,2)

5 G(0,1) sum[0] = c[0] ? sumS[0] : sum[0];

G(1,1) sum[1] = c[1] ? sumS[1] : sum[1];

9 H(0,-) res[i[0]]=sum[0]/k;

H(1,-) res[i[1]]=sum[1]/k;

Fig. 2. Execution trace of the first two iterations of outer loop when outer loop vec-
torization is applied.

the conditional construct instruction D. Moreover, the complex instruction F
has been decomposed into two simpler instructions (the reading from the matrix
and the sum). The result of these transformations is shown in the central part of
Fig. 1 where instructions E and G have been added. Nevertheless, the presence
of a nested and non parallelizable loop with an unknown number of iterations
prevents the application of some loop optimization techniques, but not of the
proposed.

The only other loop parallelization technique which can be applied to the
loops of Fig. 1 without any further change is the Unrolling of inner loop [6].
However, the instructions belonging to consecutive iterations of the loop cannot
be executed in parallel because of data dependence between G and D, limit-
ing the benefit of adopting this optimization. The Unrolling of outer loop [6],
the Pipelining of inner loop [6], the Pipelining of outer loop [11] and the Vec-

torization of inner loop [12] cannot be applied to the example because of the
variable number of iterations of inner loop and because of inter-iterations data
dependence.

On the contrary, outer loop vectorization can be applied to the considered
example: the right part of Fig. 1 shows the results of the optimization, while
Fig. 2 reports which are the operations executed by an accelerator synthesized



with the proposed methodology in each control step during first iteration of outer
loop. For the sake of brevity and simplicity, it is assumed that the execution time
of each synthesized instruction is one clock cycle, that chaining is not exploited
and that k=2. A pair of indices has been associated to each instruction: the first
index is the relative iteration number of the outer loop to which the instruction
belongs while the second index is the relative iteration number of the inner
loop. The effects of the outer vectorization are that the first iteration of nested
loop executed during first iteration of DoAll loop is executed in parallel with
first iteration of nested loop executed during second iteration of DoAll loop and
so on. The details about the proposed solution and about how this can been
obtained will be presented in the following section.

4 Proposed Methodology Flow

The proposed methodology is integrated in a High Level Synthesis flow and
aims at synthesizing a parallel hardware accelerator by means of outer loop
vectorization. A fixed number P of iterations of the loop is coupled and merged
so that the execution of an iteration of the transformed loop corresponds to
the execution of P iterations of the original loop. P identifies the degree of
introduced parallelism: different loops can be parallelized with different degrees
of parallelism and different implementations of the same loop can be obtained
by varying its degree of parallelism.

The significant part of the proposed methodology flow consists of the trans-
formations applied to the loop to be synthesized. These transformations can be
applied with similar results to the source code or to the high level intermediate
representations adopted in the first phases of a High Level Synthesis design flow.
The direct manipulation of high level representations allows to easily integrate
the proposed methodology in existing High Level Synthesis flows, provided that
they support vector functional units. The methodology assumes that vector vari-
ables are synthesized as registers: if vector variables were mapped on BRAM,
the methodology is still applicable, but the memory accesses overhead would
completely nullify the benefits of the vectorization.

A loop can be synthesized with the proposed methodology if:

1. it is a DoAll loop, i.e., all iterations can be executed in parallel;
2. the number n of its iterations is multiple of the degree of parallelism P :

n%P = 0;
3. nested loops are not controlled by conditional constructs (i.e., nested loops

are not contained in a then or in a else block; polyhedral transformations
can help to remove violations to this constraint;

4. the number of iterations of nested loops does not depend on a value computed
in the outer loop.

Note that the loop to be parallelized and the nested loops can contain con-
ditional constructs which will be removed by if-conversion. Moreover, it is not
required that nested loops are DoAll loops nor countable loops, but only that



their iterations number does not depend on a value computed in the outer loop
since they will be not internally parallelized nor unrolled. Indeed, the vectoriza-
tion of the outer loop implicitly creates multiple copies of the inner loops. Each
copy will be executed sequentially, but the different copies will be executed in
parallel and in a completely synchronized way. The synchronization is implicit
and it is guaranteed by the fourth precondition. Second constraint can poten-
tially be removed by adding the possibility to execute in an ad-hoc way the last
n%P iterations of the loop. In a similar way, also the constraint on the number
of iterations of nested loops can be removed.

The proposed methodology flow is composed of several steps:

1. Loops Analysis : the specification is analyzed to identify DoAll loops.

2. PreProcessing transformation: conditional constructs in the loops are re-
moved by transforming instructions controlled by them in speculated or
predicated instructions; complex instructions are decomposed in simpler in-
structions.

3. Instructions classification: each instruction of the loops is analyzed to iden-
tify if it controls the execution of a loop and, if not, if it has to be transformed
in a vector instruction or in a set of scalar instructions.

4. Instructions transformation: instructions which control execution of loops
are transformed to support parallel execution of iterations; other instruc-
tions are transformed in vector instructions or in sets of scalar instructions
according to how they have been classified.

5. Synthesis : the transformed loops are synthesized by means of High Level
Synthesis flow.

In the following each of these steps will be detailed and its application to the
example of Fig. 1 will be shown.

Loops Analysis. The source code or its high level intermediate representation
is analyzed to identify DoAll loops. How this analysis is performed is out of the
scope of this paper: all state of the art techniques such as polyhedral analyses can
be exploited. However, since not all the DoAll loops can be actually identified
by static analyses, loops which have to be parallelized by means of vectorization
can be directly annotated by the designer with annotations like OpenMP pragma
simd [14].

The outmost loop of Fig. 1 has been annotated with OpenMP pragma simd

to be synthesized with the proposed methodology.

Preprocessing transformation. In this step the original specification is mod-
ified to remove complex instructions and conditional constructs (i.e., if). First
objective is achieved by replacing complex operations (i.e., operations which re-
quire more than one functional unit to be synthesized) with simpler operations.
Second objective is obtained by applying if-conversion by means of speculation
[7] and predication [10]. The recursive application of these transformations to the
body of the DoAll loop and to its nested loops removes all the conditional con-
structs allowing to apply the following steps of the methodology. Note that, since



this transformation is required to apply the loop vectorization, it always has to
be performed, even when it is not profitable because of possible mispeculations.

The result of applying these transformations to the example is shown in the
centre part of Fig. 1. Instruction F has been decomposed into two operations E
and F (a read from a matrix and a sum), then instruction D has been trans-
formed in a boolean assignment, while instruction E and instruction F have been
speculated.

Instructions classification. During this phase of the methodology each in-
struction which is part of the analyzed loop or of a nested loop is classified into
four different classes:

– Vector instructions : they will be transformed into vector instructions; in the
presented example they are B, D, and F.

– MultiScalar instructions : they will be transformed into P scalar instructions;
in the presented example they are E, G and H.

– DoAll loop instructions : they are the instructions controlling the execution
of the DoAll loop; in the presented example A is the only one;

– Nested loop instructions : they are the instructions controlling the execution
of nested loops; in the presented example C is the only one.

The reason for which the second class has been introduced depends on how
a vector instruction can be implemented:

1 Single scalar unit, i.e., a single scalar functional unit which executes P scalar
operations in sequence; this is the worst solution in terms of clock cycles,
but the best in terms of area.

2 Single pipeline unit, i.e., a single pipeline functional unit which executes P

scalar operations in pipelined way; for complex operations (i.e., operations
which require more than one cycle) it provides good performances (better
than 1 ) with a slight area increment.

3 Multiple scalar units, i.e., P scalar functional units which execute P scalar
operations in parallel; this is the best solution in terms of clock cycles, but
the worst in terms of area.

4 Vector parallel unit, i.e., a single vector functional unit; it provides the same
performances of 3 but better area savings because of better resource sharing
[8] [5] and smaller controller complexity [9].

If the second class of instructions was not introduced, all operations would be
synthesized as 4 , producing the best solution in terms of performance, but the
increment of area with respect to the non parallelized solution would be too
large. Moreover some operations cannot be implemented in this way (e.g., non
aligned memory accesses).

On the contrary, the introduction of the second class of instructions provides
more flexibility to the High Level Synthesis design flow because allows to per-
form outer loop vectorization of loops containing instructions which cannot be
vectorized. Moreover the choice between 1 , 2 and 3 allows to explore different
possible trade-offs between area and performance in the produced solutions.



Note that classifying an instruction as Vector or MultiScalar determines only
if an instruction will be synthesized as 4 or not. Since the choice between 1 ,
2 and 3 does not concern vector functional units, this can be demanded to the
rest of the High Level Synthesis design flow. The proposed methodology classi-
fies as MultiScalar all the instructions which cannot be implemented by vector
functional units (e.g., non-contiguous memory accesses) and all the instructions
that require more than one clock cycle to be executed.

In the analyzed example, instructions E and G have been classified as Multi-

Scalar instructions since vector functional units which implement these types of
operations (non-contiguous load and conditional assignment) are not available.
Finally, since the division requires more than one cycle, instruction H has been
classified as MultiScalar instruction. In this way the 2 divisions can be synthe-
sized as 1 (1 divisor), 2 (1 divisor which executes the two divisions in pipeline)
or 3 (2 different divisors) according to the choices taken by the rest of the High
Level Synthesis design flow.

Instructions Transformation. Different types of transformations are applied
in this step. For the sake of brevity, it will be presented only how to transform
simple for loops, but the proposed methodology can be applied even with dif-
ferent patterns (e.g., while loops). All the scalar variables defined inside the
DoAll loop (with the exception of the induction variables of the nested loops)
are transformed in vector variables, while the variables defined outside the DoAll
loop are not modified. In the considered example i, res, sum, sumS, and temp

are vectorized while j, and k are not.
DoAll loop instructions are transformed to support simultaneous execution

of multiple iterations of the parallelized loop. The transformations to be applied
are the following:

– primary induction variable is initialized with the values it would assume
during first P iterations of the loop; in the presented example it is initialized
to {0,1}.

– increment instruction is transformed in a vector instruction; the added con-
stant is the increment of the sequential loop multiplied by P ; in the presented
example i++ is transformed in i = i + {2,2} since P = 2.

– guard instruction is not transformed in a vector instruction; changes to
operands can be necessary to extract the scalar variables from the vector
variables and to fix the loop termination; in the presented example i<16 is
transformed in i[0]<16.

If secondary induction variables are present, further changes can be necessary.
Nested loop instructions have to be transformed to support simultaneous

execution of implicit multiple copies of the nested loops. The transformations
to be applied in case of for instructions are limited to their operands. In the
presented example, operands of for(j=0; j<k; j++) have not to be changed
since j is defined in this instruction and k is not defined inside the DoAll loop.

Each Vector instruction is transformed in a single vector instruction which
directly writes a whole vector variable. Finally, each MultiScalar instruction is



transformed in P scalar instructions, each of which writes a different element of a
vector variable. The input variables of each instruction are opportunely modified
to correctly manage scalar/vector data. The instructions to extract scalar values
from vector variables (e.g., var_0 = var[0]) and to compose vector variables
starting from scalar variables (e.g., var = {var_0, var_1}) may need to be
added.

Synthesis. After that the previous steps of the proposed methodology flow have
been applied, state-of-the-art High Level Synthesis flows can be applied. Since
the transformed intermediate representation contains vector instructions, the
design flows have to support synthesis of vector functional units.

5 Experimental Results

To evaluate the proposed methodology, this has been implemented in Bambu [16],
a modular framework for High Level Synthesis developed at Politecnico di Mi-
lano. Since the identification of the DoAll loops is out of the scope of this paper,
this type of analysis has not been implemented: benchmarks have to be anno-
tated by hand with a #pragma omp simd [14] to be vectorized. The degree of
parallelism of each loop can be specified by the designer by means of the safelen
clause associated with each #pragma omp simd.

The proposed methodology has been verified on a set of parallel benchmarks
distributed with Legup [2]. In OpenMP benchmarks each #pragma omp for has
been replaced with #pragma omp simd, while pthread benchmarks have to be re-
factorized to replace pthread parallelism with #pragma omp simd. The proposed
methodology cannot be applied to all the distributed benchmarks: some of them
do not contain DoAll loops or contain DoAll loops which do not satisfy the
constraints listed in Section 4.

Different degrees of parallelism have been considered: 1 (absence of paral-
lelism), 2, 4 and 8. For each degree and for each benchmark a different hardware
accelerator is produced by Bambu. The tool has been configured with maxi-
mum level optimization (-O3), to store input and output data on a dual port
pipelined memory external to the hardware accelerator and to target 100MHz
frequency. Two target platforms have been considered: the Xilinx Zynq-7000
xc7z020 and the Altera Cyclone II EP2C70F896C6. The solutions produced by
High Level Synthesis have been finally synthesized with Xilinx Vivado [18] and
Altera Quartus II [1]. The synthesis results obtained after place and route on dif-
ferent benchmarks with different degrees of parallelism are presented in Table 1.
The area results refer only to the synthesized accelerator since the produced par-
allel hardware architectures, differently from the ones presented in [2], do not
require any external processor nor external controller to be integrated in the sys-
tem. Memory utilization has not been reported since all the benchmarks have
been synthesized assuming that input and output data are stored in external
memories. The results obtained on the different platforms are similar, so that
the proposed methodology can actually be considered as appliable to different
families of FPGAs. Moreover the results show how it is effectively able to save



Benchmark Par. Degree Xilinx Zynq-7000 xc7z020
Area(Ratio) Cycles(Speedup) FMax (Ratio) Product Ratio

LUT FF Pairs DSPs
Add 1 344 (1) 0 20018 (1) 165.21 (1) 1

2 573 (1.67) 0 10014 (2.00) 171.73 (1.03) 0.80
4 1245 (3.61) 0 7512 (2.66) 157.98 (0.95) 1.42
8 2571 (7.47) 0 6261 (3.19) 135.34 (0.81) 2.85

Boxfilter 1 3880 (1) 0 492910 (1) 95.43 (1) 1
2 7100 (1.83) 0 176024 (2.80) 102.57 (1.07) 0.60
4 14803 (3.81) 0 104022 (4.73) 103.19 (1.08) 0.74
8 27966 (7.20) 0 70021 (7.03) 100.35 (1.05) 0.97

Dotproduct 1 567 (1) 3(1) 30024 (1) 131.03 (1) 1
2 917 (1.61) 6 (2) 18020 (1.66) 107.50 (0.82) 1.18
4 1700 (3.00) 12(4) 12018 (2.49) 116.69 (0.89) 1.34
8 3332 (5.87) 24 (8) 9017 (3.32) 110.75 (0.84) 2.08

Hash 1 722 (1) 0 192041 (1) 121.64 (1) 1
2 1442 (1.99) 0 108029 (1.77) 118.19 (0.97) 1.08
4 2318 (3.21) 0 78025 (2.46) 109.69 (0.90) 1.35
8 4570 (6.32) 0 63023 (3.08) 101.38 (0.83) 2.33

Histogram 1 2655 (1) 0 202101 (1) 129.99 (1) 1
2 3751 (1.41) 6 (-) 72100 (2.80) 102.79 (0.79) 0.63
4 6620 (2.49) 12 (-) 45094 (4.48) 116.65 (0.89) 0.62
8 12158 (4.57) 24 (-) 31591 (5.74) 107.34 (0.82) 0.86

Benchmark Par. Degree Altera Cyclone II EP2C70F896C6
Area(Ratio) Cycles(Speedup) FMax Product Ratio

Logic Elements DSPs
Add 1 360 (1) 0 40018 (1) 166.39 (1) 1

2 649 (1.80) 0 20014 (2) 161.32 (0.96) 0.92
4 1495 (4.15) 0 12512 (3.19) 147.23 (0.88) 1.46
8 2599 (7.21) 0 8671 (4.61) 139.02 (0.83) 1.87

Boxfilter 1 4643 (1) 529905 (1) 117.03 1
2 8291 (1.78) 184028 (2.87) 102.87 (0.87) 0.70
4 17924 (3.86) 108024 (4.90) 89.93 (0.76) 1.02
8 Not Available

Dotproduct 1 668 (1) 6 (1) 36025(1) 141.58 (1) 1
2 1238 (1.85) 12 (2) 21021 (1.71) 123.43 (0.87) 1.24
4 2101 (3.14) 24 (4) 13519 (2.66) 124.08 (0.87) 1.34
8 3604 (5.39) 48 (8) 9768 (3.68) 128.25 (0.90) 1.61

Hash 1 850 (1) 0 288050 (1) 121.15 (1) 1
2 1413 (1.66) 0 144034 (1.99) 103.91 (0.85) 0.97
4 3000 (3.52) 0 96028 (2.99) 91.16 (0.75) 1.56
8 4885 (5.74) 0 72025 (3.99) 95.50 (0.78) 1.82

Histogram 1 3161 (1) 0 238011 (1) 132.14 (1) 1
2 4965 (1.57) 8 (-) 90114 (2.64) 112.57 (0.85) 0.69
4 8191 (2.59) 16 (-) 54108 (4.39) 105.45 (0.79) 0.73
8 15421 (4.87) 32 (-) 36103 (6.59) 107.35 (0.81) 0.91

Table 1. Experimental Results of applying the proposed methodology.

resources with respect to the complete duplication of loop implementation: the
area of the produced solutions indeed growths less that the parallel degree. The
maximum resource saving has been obtained for Histogram benchmark when
targeting both platforms with parallel degree of 8: more than 40%. The resource
saving however is not effective on the usage of DSPs: their number growths lin-
early in Dotproduct benchmark while in case of Histogram benchmark they have
been introduced only in vectorized implementation. On Boxfilter (when P=2
and P=4) and on Histogram (when P=2) the obtained speed-up is more than
linear (i.e., it is larger than parallel degree). Further gain with respect to the



linear speed-up is due to the if-conversion preprocessing phase which allows to
improve the performances of the circuit implementation even when vectoriza-
tion is not applied. However, for all the benchmarks the real speed-up grows
less than parallel degree. The main cause of this reduction in speed-up growing
is the considered memory architecture which has only two ports. The number
of ports limits the exploitation of parallelism since limits to two the number of
simultaneous memory accesses. Even if memory accesses are pipelined, solutions
where degree of parallelism is larger than 2 are slowed and cannot achieve max-
imum performances. Memory partitioning, by increasing the number of possible
concurrent accesses, can solve this problem, but it is not supported by Bambu.

The introduction of vector functional units does not decrease very much the
maximum frequency of the circuits. In the worst case (Hash benchmark imple-
mented on Altera board with P = 4) the maximum frequency is reduced of 25%.
Note that the increasing of the parallel degree does not always imply a decreas-
ing in the maximum frequency. There are specifications (e.g., Boxfilter when
implemented on Zynq) for which the introduction of vectorization increases the
maximum frequency. The gain in terms of area-delay product for most complex
benchmarks (e.g., Boxfilter and Histogram) is quite significant (up to 40% ob-
tained on Boxfilter on Zynq with P=2) since the performances grow faster than
resource utilization thanks to the if-conversion and to the local pipelined com-
putation. However, there is a general gain in terms of area-delay product also
for most of the other benchmarks when the considered parallel degree is 2. On
the contrary, because of the performances limitations due to memory accesses,
the solutions with higher parallel degree present worse results.

Finally, it has to be highlighted that direct comparison of the results of the
proposed methodology and the results presented in [2] is not possible, not only
for the different analyzed benchmarks but also for the different types of built
architectures. Differently from [2] indeed, the parallel accelerators built with the
proposed methodology do not require to be coupled with a controller processor.
For this reason, this has not been included in the resource utilization statistics
in non-vectorized architecture nor in the vectorized, resulting in smaller area
occupations and in smaller area-delay savings.

6 Conclusions

In this paper a methodology for the synthesis of parallel accelerators based on
vectorization has been presented. This methodology is able to synthesize by
means of outer loop vectorization also irregular loops: nested loops, conditional
constructs and operations which cannot be vectorized are supported. Since it
transforms high level specifications, it can be easily integrated in existing design
flows if they support synthesis of vector functional units. Experimental results
show the effectiveness of the proposed methodology: the parallel produced solu-
tions present a significant speed-up with a limited resource usage growth with
respect to non vectorized solutions.



References

1. Altera: Quartus II. http://www.altera.com (2013)
2. Choi, J., Brown, S., Anderson, J.: From software threads to parallel hardware in

high-level synthesis for fpgas. pp. 270–277. FPT ’13 (Dec 2013)
3. Cilardo, A., Gallo, L., Mazzocca, N.: Design space exploration for high-level syn-

thesis of multi-threaded applications. Journal of Systems Architecture 59(10, Part
D), 1171 – 1183 (2013)

4. Cong, J., Liu, B., Neuendorffer, S., Noguera, J., Vissers, K., Zhang, Z.: High-level
synthesis for fpgas: From prototyping to deployment. IEEE TCAD 30(4), 473–491
(April 2011)

5. Cong, J., Jiang, W.: Pattern-based behavior synthesis for fpga resource reduction.
pp. 107–116. FPGA ’08, ACM, New York, NY, USA (2008)

6. Fingeroff, M.: High-Level Synthesis Blue Book. Xlibris Corporation (2010)
7. Gupta, S., Savoiu, N., Kim, S., Dutt, N., Gupta, R., Nicolau, A.: Speculation

techniques for high level synthesis of control intensive designs. pp. 269–272. DAC
’01, ACM, New York, NY, USA (2001)

8. Hadjis, S., Canis, A., Anderson, J.H., Choi, J., Nam, K., Brown, S., Czajkowski,
T.: Impact of fpga architecture on resource sharing in high-level synthesis. pp.
111–114. FPGA ’12, ACM, New York, NY, USA (2012)

9. Kurra, S., Singh, N.K., Panda, P.R.: The impact of loop unrolling on controller
delay in high level synthesis. pp. 391–396. DATE ’07 (2007)

10. Mahlke, S.A., Lin, D.C., Chen, W.Y., Hank, R.E., Bringmann, R.A.: Effective com-
piler support for predicated execution using the hyperblock. SIGMICRO Newsl.
23(1-2), 45–54 (Dec 1992)

11. Morvan, A., Derrien, S., Quinton, P.: Polyhedral bubble insertion: A method to
improve nested loop pipelining for high-level synthesis. IEEE TCAD 32(3), 339–352
(March 2013)

12. Naishlos, D.: Autovectorization in GCC. In: GCC Developers Summit 2004. pp.
105–118

13. Nuzman, D., Zaks, A.: Outer-loop vectorization: Revisited for short simd
architectures. pp. 2–11. PACT ’08, ACM, New York, NY, USA (2008),
http://doi.acm.org/10.1145/1454115.1454119

14. OpenMP: Application Program Interface, version 4.0 (July 2013)
15. Papakonstantinou, A., Gururaj, K., Stratton, J.A., Chen, D., Cong, J., Hwu,

W.M.W.: Efficient compilation of cuda kernels for high-performance computing
on fpgas. ACM TECS 13(2), 25:1–25:26 (Sep 2013)

16. Pilato, C., Ferrandi, F.: Bambu: A modular framework for the high level synthesis
of memory-intensive applications. pp. 1–4. FPL ’13 (Sept 2013)

17. Raghunathan, V., Raghunathan, A., Srivastava, M., Ercegovac, M.: High-level syn-
thesis with simd units. pp. 407–413. ASP-DAC ’02 (2002)

18. Xilinx: Vivado Design Suite. http://www.xilinx.com (2013)
19. Zuo, W., Liang, Y., Li, P., Rupnow, K., Chen, D., Cong, J.: Improving high level

synthesis optimization opportunity through polyhedral transformations. pp. 9–18.
FPGA ’13, ACM, New York, NY, USA (2013)


