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Laboratory experiments suggest that rapid cycling of antibiotics during the
course of treatment could successfully counter resistance evolution. Drugs
involving collateral sensitivity could be particularly suitable for such thera-
pies. However, the environmental conditions in vivo differ from those
in vitro. One key difference is that drugs can be switched abruptly in the lab-
oratory, while in the patient, pharmacokinetic processes lead to changing
antibiotic concentrations including periods of dose overlaps from consecu-
tive administrations. During such overlap phases, drug-drug interactions
may affect the evolutionary dynamics. To address the gap between the lab-
oratory and potential clinical applications, we set up two models for
comparison—a ‘laboratory model’ and a pharmacokinetic-pharmaco-
dynamic ‘patient model’. The analysis shows that in the laboratory, the
most rapid cycling suppresses the bacterial population always at least as
well as other regimens. For patient treatment, however, a little slower cycling
can sometimes be preferable if the pharmacodynamic curve is steep or if
drugs interact antagonistically. When resistance is absent prior to treatment,
collateral sensitivity brings no substantial benefit unless the cell division rate
is low and drug cycling slow. By contrast, drug—drug interactions strongly
influence the treatment efficiency of rapid regimens, demonstrating their
importance for the optimal choice of drug pairs.

1. Introduction

Resistance of bacteria to antibiotic treatment is a tremendous problem for
healthcare worldwide, caused by the fact that bacteria, as all organisms,
evolve and adapt to their environments. Such an evolution-caused problem
calls for a solution based on evolutionary principles. Evolution-informed medi-
cine aims to develop sustainable treatment strategies that prevent the selection
of resistance during treatment [1-3]. One such strategy is sequential therapy, a
multi-drug regimen in which two or more drugs are alternated frequently
during the treatment of a patient. The idea is that a rapidly changing environ-
ment impedes the adaptation of the bacteria to the antibiotics and consequently
reduces the fraction of treatment failures due to resistance evolution [1].

The idea of alternating drugs was first studied as a strategy to prevent the
spread of resistance across patients within a hospital (see Uecker & Bonhoeffer
[4] for a review of modelling studies). As such, it is implemented on a popu-
lation level: the default drug used for empirical therapy—i.e. before
identifying the specific disease-causing bacterium—in a hospital is cycled in
time, but any single patient (ideally) receives just one drug throughout their
treatment. While this hospital-wide cycling of drugs aims to reduce the
spread of resistance between patients, sequential therapy during treatment of
individual patients aims to minimize the probability of within-host resistance
evolution. Usually, bacteria would be exposed to much more rapidly changing
environments during sequential therapy than during hospital-wide drug
rotations.
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Laboratory experiments have demonstrated the superior-
ity of fast sequential therapy over mono-therapy [5-8]. These
studies showed that the treatment minimizes the rate of adap-
tation and constrains the evolution of multi-drug resistance. It
was further found that fast sequential therapy can lead to the
clearance of bacterial populations under antibiotic concen-
trations for which the simultaneous administration of two
drugs would fail [9], and that for certain drug pairs, a high
switching rate correlates with a high extinction rate [8,10].

Recent studies suggest that the efficiency of sequential
therapy could potentially be further increased through the
exploitation of evolutionary trade-offs such as collateral sen-
sitivity [11,12]. With collateral sensitivity, resistance to one
drug increases the susceptibility to another one, which was
first described by Szybalski & Bryson [13]. This trade-off
has been observed in different bacterial species, for instance
in Escherichia coli [11,13-16], Pseudomonas aeruginosa [17,18],
Streptococcus faecalis [12] and Staphylococcus aureus [5,19].
Identification of collateral sensitivity profiles for different
drugs has indeed been successfully used to inform optimal
treatment strategies, which outperform other sequential
regimens and mono-therapy, in the laboratory [12].

In a laboratory setting, it is possible to switch abruptly
from one drug to another. In a patient, by contrast, the
antibiotic concentration decreases gradually due to pharma-
cokinetic processes such as metabolization or secretion of
the drug. Doses of different drugs might then overlap such
that drug-drug interactions can influence the dynamics. To
be able to transfer results from the laboratory to the clinic,
it is important to understand how pharmacokinetic processes
influence the outcome of sequential therapy and the optimal
treatment settings.

Mathematical models that take the pharmacokinetic and
pharmacodynamic properties of drugs into account can
simulate a patient-like environment and can help to close
the gap between laboratory experiments and clinical appli-
cations. Such models have recently been applied to assess
the benefits of collateral sensitivity for cycling strategies,
showing that the benefits depend on the pharmacodynamic
properties of the drugs and the drug dosing [20,21]. How-
ever, these studies only compare a few cycling regimens
and drug doses and, more importantly, do not include
drug—drug interactions, which are one of the greatest differ-
ences between the laboratory and the patient. Moreover,
they do not provide an explicit comparison with a ‘laboratory
model” with alternating constant drug concentrations.

In this article, we set up a laboratory model and a patient
model. Our goal is twofold—to compare sequential therapy
in the laboratory and in the patient and identify the optimal
settings for patient treatment, depending on drug dosing,
the pharmacodynamic drug characteristics, drug—drug inter-
actions and collateral sensitivity. This requires choosing a
measure for the assessment of treatment strategies. We focus
on dosing regimens in which the evolution of resistance
slows down the decline of the bacterial population but ulti-
mately does not prevent its extinction. We, therefore, choose
the time until the sub-population sizes of all types have
dropped below a given threshold as our primary measure.
The analysis shows that the optimal frequency may indeed
differ between sequential therapy in the laboratory and in
the patient and that drug-drug interactions can have a
strong effect on the treatment efficiency and should thus be
taken into account when choosing drug pairs for therapy.

2. Methods
2.1. General model

We consider a bacterial population of initial size Nj that under-
goes antibiotic treatment following a certain regimen, which
includes at most two drugs—drug A and drug B. The parameter
T defines the time between two administrations. At each admin-
istration, either drug A or drug B is given at a dose D 4 or Dg, and
the drug sequence defines the treatment regimen (figure 1a).

We consider four different types of cells: wild-type cells that
are susceptible to both drugs, single mutants resistant to drug A
or drug B, and double mutants that are resistant to both drugs.
With probabilities u4 or up, a bacterium acquires a resistance
mutation to the respective drug during replication.

We assume that the drugs are strictly bactericidal, i.e. they
increase the death rate of bacteria but do not affect replication.
Replication of wild-type cells occurs with the density-dependent
rate ro(1 — (N(t)/K)), where rj is the intrinsic replication rate, N(t)
the total population size at time t and K the carrying capacity.
Resistance entails a cost, reducing the maximum replication
rates by factors (1 —y4), (1 —yp) and (1 — y4p) for bacteria that are
resistant to drug A, drug B, or to both drugs, respectively. The
death rates are given by the sums of the intrinsic death rate y
and the antibiotic-induced kill rates ux (X € {W, A, B, AB}), which
are type-specific and concentration-dependent and explained in
detail in the next sections. The antibiotic concentrations of the
two drugs, c4(t) and cg(t), change with time according to the treat-
ment schedule and—for the patient—the pharmacokinetics of the
drugs. We discuss the time course of c4(t) and c(t) further below.

In serial transfer experiments, the bacterial population size under-
goes a bottleneck before every drug administration. In the main text,
we do not incorporate this dilution step into the laboratory model.
The comparison between the patient and the laboratory thus reduces
to a comparison between models with and without pharmacokinetics.
Results for a more realistic laboratory model with bottlenecks are
discussed in the electronic supplementary material, S3.

Putting everything together, the following ODE system
describes the dynamics for each type, where W denotes the
number of wild-type cells and M,, Mg and Mg the numbers
of cells that are resistant to drug A, drug B, or to both drugs:

ddtv {(l 1) (1—ug)ro ( 7%) *MO*Mw(CA(t)/CB(t))}
x W(t), (2.1a)
d%:m(l —up)ro (1 —y) W)
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Figure 1. lllustration of the components of the pharmacokinetic-pharmacodynamic (PKPD) model. (a) Example treatment schedule, in which the drug is switched after
three administrations. (b,¢) Drug concentration and growth rate of wild-type bacteria over time in the laboratory (b) and in the patient (c). (¢) Dynamics of the bacterial
strains for the treatment schedule displayed in (a). The y-axis starts at one cell. (e—h) Pharmacodynamic curves, illustrating several features. Panel (e) compares the
curves for two different Hill coefficients «; panel () compares the curves for the wild-type and the single resistant strain at different cell densities; (g,h) the influence of
collateral sensitivity and drug—drug interactions, respectively. (Parameter values differing from those in table 1: yl}r"n/ax =0.88, Bes=2, Ya=vs=yss=04)

For most of our analysis, we assume that the population
initially consists only of wild-type bacteria and consider the de
novo evolution of resistance during treatment. We later test
how the pre-existence of resistance affects our results.

2.2. The pharmacodynamics of the drugs

We next describe how we model antibiotic-induced killing. For nota-
tional simplicity, we drop the subscripts indicating the cell type and
the drug for the moment. We start by describing the effect of a single

drug that is present at concentration c. We denote by i/, the growth
rates of the respective type in the absence of antibiotics at low
bacterial densities (e.g. ¢/ =1y — p, for the wild-type and
W = (1= ya)ro — g for the type resistant to drug A).

Following Regoes et al. [22], we describe the antibiotic-
induced killing by the term

(lr[/max — 'J/min) ) (C/ZMIC)K
(C/ZMIC)K - (‘l’min/l//max) '

wle) = (2.2)
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Antibiotic killing is thus independent of the bacterial density
and the actual density-dependent replication rate of cells.
The meaning of the parameters i,,;,, zZMIC and « is best seen
by considering the growth rate of bacteria in the absence of
other cells

(/}(C, N= 0) = Pmax — /‘L(C)/ (23)

which is shown in figure le: the parameter iy, is the growth rate
in the limit of very high antibiotic concentrations ¢ (lim,_, . (c) =
Ymin)- The parameter zMIC is the minimal inhibitory concen-
tration (i (zMIC) =0). The so-called Hill coefficient x regulates
the steepness of the sigmoidal curve (compare the two curves
in figure 1le). Figure 1f shows the bacterial growth rate at non-
zero population densities, where the parameters zMIC and
Ymin lose this simple interpretation.

The pharmacodynamic parameters .., zMIC and x gener-
ally differ between the two drugs. Since we measure drug
concentrations in multiples of the minimal inhibitory concen-
tration of the wild-type, the absolute minimal inhibitory
concentrations with respect to the drugs do not matter, and we
can choose the same for both without loss of generality; hence
we set ZMIC(A ZMIC ) — zMICy. For simplicity, we also
assume that ¢,,;,, is the same for both drugs.

We assume that—besides i,,,,—only the minimal inhibitory
concentration zMIC differs between the four cell types, while
Ymin and « are the same for all of them. This assumption con-
forms with experimental measurements of mutant dose-
response curves [23,24], which, however, does not mean that it
is universally true. Bacteria that are resistant to a given drug
can tolerate higher concentrations than the drug-sensitive wild-
type, i.e. their minimal inhibitory concentration with respect to
that drug is higher. We model resistance by multiplying the
wild-type parameter ZMIC ) (where the o denotes the drug)
by a factor frs>1 for the respective single mutant and the
double mutant (figure 1f). For example, the minimal inhibitory
concentration of the mutant resistant to drug A with respect to
drug A is BreSZMIC%‘VA). We also allow for collateral sensitivity.
A single mutant displaying collateral sensitivity has a lower mini-
mal inhibitory concentration than the wild-type in the presence
of the antibiotic to which it is susceptible. Similarly as for resist-
ance, we model this by a factor B.,; <1 (figure 1g). For example,
the minimal inhibitory concentration of the mutant resistant to
drug A with respect to drug B is BcoleIC . We assume that
the double mutant is not affected by collateral sensitivity.

2.3. Combined effect of two drugs and drug—drug

interactions
If drugs are cycled rapidly, both drugs may be simultaneously
present in the body. Interactions between the drugs can alter
the individual effects of each drug. To account for this, we mul-
tiply the minimal inhibitory concentration of a drug with an
interaction term I that depends on the concentration of the
other drug [25]; see electronic supplementary material, S1.1.
E.g. the wild-t (yg)e MIC of drug A in the presence of drug B

is I(cp) -zMIC})’. Following Wicha et al. [25], we model the
interaction term by
Imax ° CH
Ic)=1(1 . 2.4
@ (1+35) 24)

The variable I,,,,, describes the maximal effect (lim._,, I(c) =
1+ Imax)- The sign of I« determines whether the interaction is
enhancing or inhibiting the effect of the focal drug. At concen-
tration c=1I5p, we have I=0.5 Iy, The steepness of the
sigmoidal curve is given by the parameter H. For simplicity,
we assume that effects are reciprocal (this holds for some
interactions, but others are directional; for a review see [26]).

Finally, to obtain the combined effects of both drugs, we sum
their individual kill rates. In the absence of drug-drug inter-
actions, this corresponds to Bliss independence [27,28]. For
clarity, we explicitly give the full expression for the antibiotic-
induced death rate of the wild-type

(Yimax = Yimin) - (ca(£) /(I (cp())zMICw))"
(ca(t)/(I(ea())ZMICW))™ — (Yimin/ Yimax)

+ (Ymax = Ymin) - (cB(£)/(I(ca(t))zMICw))**
(ea(t)/(I(ca(t))ZMICW))"* = (Yimin/ Vi)
(2.5)

pw(ca(t), ca(t)) =

The growth rate is given by

N = (1-57) <
= pwlea(t), cs(t)) (2.6)

and illustrated in the presence and absence of drug-drug inter-
actions in figure 1h. The death and growth rates of the other
types are obtained accordingly, using the respective maximal
growth rates and minimal inhibitory concentrations.

With this choice of modelling drug-drug interactions,
antagonistic interactions are hyper-antagonistic—also termed ‘sup-
pressive’—in some concentration range. l.e. wild-type bacteria
grow better if the second drug is added than they would if the
second drug were absent (upf(ca, cg) <uwnlca, 0) for certain concen-
trations c,, cp; see electronic supplementary material, figure S1A,E
in S1.2). However, they always grow worse than the mutant types
(electronic supplementary material, figure S1B-D,G-H).

w(ca(t), ca(t),

2.4, The pharmacokinetics of the drugs

We assume that in the laboratory, the antibiotic concentration
stays constant at the applied dose D4 or Dy between adminis-
trations. This means that c,(f) is equal to D4 whenever the
schedule indicates a cycle of drug A, but is zero for the cycles
of drug B (figure 1b).

In the patient, by contrast, the drug concentration at the site
of infection changes over time due to the pharmacokinetic pro-
cesses of drug absorption, distribution, elimination and
metabolization [29]. To derive the functions c4(t) and cg(t),
models in which the body is divided into different compartments
can be used [30]. We here simply consider a one-compartment
model. In the one-compartment model, the entire dose D, (or
Dp) is fully available after administration and eliminated from
the body at rates K4 (or KB). The rates K4 and K5 can be esti-
mated from the drug s half-lives 1> and 8 12+ Let us denote by
cl(t) the exponential decline in the concentration of drug A
after one administration at time f =0 (equivalent for drug B)

ch(t) = D4 - exp(—K4 - t). (2.7)

During the time course of the treatment, both drugs are
administered multiple times. c4(t) and cg(t) are then given by
the sum of time-shifted functions c}(#) and c}(t) based on the
defined treatment regimen and the pharmacokinetic parameters
for each drug (figure 1c, upper graph). Together with the phar-
macodynamics described in the previous section, this leads to
time-dependent growth rates (figure 1c, lower graph). For all
numerical results, we assume that the administered doses and
the decay rates of the drugs are the same for both drugs (D4 =
Dp=D, K4 = KE).

2.5. Implementation
We solved the deterministic ODE system equation (2.1) numeri-
cally in Matlab (v. 2020a/2020b) using ode45 [31]. Table 1
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provides a list of all parameter values. Example dynamics are
shown in figure 1d.

Stochastic effects can become important when the population
size gets small. Therefore, we additionally set up a hybrid model
that accounts for stochasticity when the sub-population size for a
type drops below a certain threshold (see electronic supplementary
material, S1.3). Below this threshold (here set to 1000), we simulate
the cell division and death by the respective rates, applying the
thinning algorithm introduced by Lewis & Shedler [40]. This algor-
ithm is based on the Gillespie algorithm [41,42] but accounts for
time-dependent rates. When a type exceeds the threshold, the cell
numbers are calculated with the deterministic model described
above; the only exception are mutations, which are always simu-
lated as stochastic events. Simulations with this hybrid approach
(described in Kiehl et al. [43]) are faster than fully stochastic simu-
lations. However, they are not fast enough to conduct the same
analysis we are able to do with the deterministic model. In elec-
tronic supplementary material, S1.4, we compare results of the
two model implementations for a small set of treatments. Overall,
the results align well. However, with increasing concentrations,
the agreement gets less good. We therefore support all results
from the deterministic model with semi-stochastic simulations
throughout the main text. The hybrid model moreover allows
assessing how robust the performance of a treatment regimen is
with respect to stochastic effects, which is discussed in the elec-
tronic supplementary material, S1.5.

2.6. Assessing the performance of a treatment regimen
To compare different treatment regimens with each other, we need
to define a measure for the performance of a treatment. We focus on
concentrations at which, for a given treatment, the appearance of
resistant strains does not completely prevent suppression of the
bacterial population but may slow down its decline. Importantly,
as we will see, this does not imply that we apply concentrations
above the MIC of the single resistant strains. As the main model
implementation is deterministic, eradication of the bacteria is not
possible. We therefore use the time until each sub-population size
has been reduced to a threshold N, which we set to one, as a
measure of treatment efficiency. As a second proxy for treatment
efficiency, we consider the minimal concentration for which each
sub-population drops below N, within the considered time frame
of 80 drug administrations (40 days). We call this concentration
the first effective concentration. For the semi-stochastic simulations,
we only show results in a range of doses in which treatment is suc-
cessful in all replicate runs; the lowest concentration, for which
results are shown, is further limited by the run time of the semi-sto-
chastic simulations and can thus not be interpreted as the first
effective concentration.

3. Results

To identify potential differences between the laboratory and the
patient model and to determine the optimal settings for sequen-
tial therapy, we will compare in this section the efficiency of
different treatments, varying in cycling frequency and drug
characteristics. We consider a broad range of drug concen-
trations so that we are able to determine the effect of the
treatment settings for low and high drug concentrations.

In laboratory experiments, bacteria are usually provided
with optimal growth conditions and replicate quickly. In vivo,
in some infections, replication is fast as well, while in others
bacteria replicate very slowly (see [34] or [44] for studies in
mice). We therefore study the treatment of both slowly and
rapidly replicating bacteria. It turns out that some results are
sensitive to the rate of cell division and that pharmacokinetic

processes alter conclusions for slowly replicating but not for [ 5 |

rapidly replicating bacteria. In the main text, we focus on results
for slowly replicating bacteria (¥, = 0.088 ') and point out

max

differences to rapidly replicating bacteria (. =0.88h™")
throughout. We additionally summarize all results in table 2.
The full analysis for rapidly dividing cells, including a detailed
comparison of the dynamics, can be found in electronic
supplementary material, S3.

In the first part of the analysis, we evaluate the efficiency
of the sequential regimens in comparison with mono-therapy.

We then explore in the second part the influence of
the pharmacodynamics of the drugs. Our focus lies on the
Hill coefficient x. We briefly discuss the effect of the pharmaco-
dynamic parameter ;. in electronic supplementary
material, S2.1.

In the third part, we analyse the effect of collateral sensi-
tivity and drug-drug interactions on the treatment efficiency.
For the latter, we assume either synergism, in which both
drugs potentiate each other’s effect, or antagonism, in
which both drugs inhibit each other’s effect.

In the last part, we briefly discuss results for a hetero-
geneous initial population, where resistance pre-exists prior
to treatment.

In all figures, discrete data points are connected by lines
for easier readability.

3.1. Sequential therapy performs better than

mono-therapy

Figure 2 shows the first effective concentration for a large
range of treatments, highlighting the need for a higher
concentration to achieve a treatment success under mono-
therapy than under sequential therapy (blue lines). Impor-
tantly, sequential therapy is effective well below the MIC of
the single mutants (dashed grey line). The reason for the
reduced first effective concentration under sequential therapy
could, in principle, either be a more efficient clearance of the
wild-type or a better suppression of resistant strains under
drug cycling. To disentangle the two, we also considered
the first effective concentration if resistance evolution were
impossible, i.e. 1y =ug=0 (yellow lines).

In that case, the first effective concentration is virtually the
same for mono-therapy and for all sequential regimens,
showing that sequential therapy is more efficient than
mono-therapy through more effectively controlling the
growth of the resistant types (but we will see further below
that the cycling frequency can also have an effect on the
decline of the wild-type population). To give an upper
bound for the concentration needed for successful treatment,
we furthermore included the results for a population that is
entirely composed of double mutants (lilac lines). A compari-
son of panels 2 and b shows that successful treatment requires
lower concentrations in the laboratory than in the patient,
which is expected given that the concentration decreases
over time in the patient but not in the laboratory.

3.2. The optimal cycling frequency for patient
treatment depends on the Hill coefficients of the
drugs and the antibiotic dose

In this section, we focus on the effect of the drugs’ Hill
coefficients x4 and xp, which reflect the steepness of the
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Table 1. Table of all parameters and their values used to generate the results. When multiple values are given, these were varied during the analysis to  [Jj}

observe the effect of a certain parameter on the treatment efficiency.

parameter description

No initial bacterial population size

Uy, Ug mutatron fate

K aarrying capacrty

Iy intrinsic replrcatron rate

Uo intrinsic death rate

Y Ve Vag cost of mutation

T erd type growth rate in the absence of antrbrotrcs
nin growth rate at very high concentrations

ZMICW  wild- type MIC

Pres beneﬁt of mutatron in terms of resrstance
ﬂm”zMICW MIC of srngle mutants affected by coIIateraI sensrtrvrty
K H||I coefﬁcrent

lnax maxrmum effect of drug drug mteractrons

Iso concentratron to reach 50% of lmax

H srgmordrcrty parameter of the |nteract|on term

T time between admrnrstratrons

Dy, Dg drug concentratrons at admrnrstratron

f/z, f/z half- Irves of the drugs in the body

Kg‘l, Kfl decay rates of the drugs in the body

value reference
1010 .
l//max+/10 (347"
B .v[34]
...yA_yB_m .....[35 37].
1— V= (1 - 7A)(1 - 73)
o [34]1
V(S|088h) T
N '(SI —88h ) S
P 10 mI e ....[22]2
e B .v...[3537]..
e 0012pg ml"strongz Vo ug L ..[” e S
. .[22]2’3 .
...Synerglsm _._09 e [25] R
N ”antagonrsm 5 O ”[2'5]
- 355><le( B o

B

1Our value for the growth rate (i) corresponds to the mean of the rates estlmated for the exponentral growth of bacteria in two drfferent organs in the

early phase of the infection. The death (0.009 h=" and 0.017 h™") and replication rates (0.097 h™!

the values assumed in our study.
23Estimates for the drugs “Ciprofloxacin and *Streptomycin.

dose-response curves on the treatment. For simplicity, we
consider treatments with two drugs that have the same Hill
coefficient (either x4 =xp=1 or x4 = kp=2). Example simu-
lations for drug pairs with different Hill coefficients (x4 =1
and «p =2 or the other way round) can be found in electronic
supplementary material, 52.2.

Figure 3 compares the different treatment regimens for
the two different drug pairs (ka=xg=1 and x4 =kp=2) in
the laboratory and in the patient. Considering the semi-
stochastic simulations, we see that differences between the
strategies are more pronounced in the laboratory than in
the patient over most of the parameter range. In most cases,
the treatment efficiency decreases with the time between
drug switches, with several rapid regimens performing
equally well. In particular, in the laboratory model, rapid
cycling minimizes the time to extinction across the entire con-
centration gradient for both drug pairs. In the patient, the
picture is more nuanced. For the drug pair with Hill coeffi-
cients k4 = kg =2, the optimal cycling frequency depends on
the drug concentration. At low drug concentrations, a little
bit slower cycling frequencies are slightly better than very
high cycling frequencies (figure 3g,1). Why could this be

and 0.107 h™") that were separately estimated are similar to

the case? When a new dose is administered, there is still
some residual antibiotic present in the body from the pre-
vious administration. One of the differences between the
various cycling regimens lies in the number of overlaps
between doses of different drugs and doses of the same
drug. For the fastest cycling regimen, overlaps occur only
between doses from different drugs. In electronic supplemen-
tary material, S2.3, we argue that for drug pairs with a ‘large’
Hill coefficient and low antibiotic concentrations, dose over-
laps from the same drug lead to higher killing than dose
overlaps from different drugs for all cell types except for
the one that is resistant to this drug. This type is then man-
aged by administrations of the other drug, making
intermediate cycling frequencies overall optimal. For rapidly
replicating cells, the concentration for which same-drug over-
laps provide an advantage are lower than the first effective
concentration. In this case, the most rapid cycling is always
optimal, even for drugs with ‘large’ Hill coefficients (see
electronic supplementary material, figure S17).

The deterministic ODE model correctly captures the be-
haviour in all scenarios but overestimates differences
between strategies for low/intermediate concentrations and
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Table 2. Summary of main results for the treatment of slowly replicating and rapidly replicating bacteria in the laboratory and in the patient.

replication results figure
 laboratory
optm cydmg O raprd cydmg . aIways b strategyor e asgoodas ey
frequency sIower cyclrng regimens.
. raprd © The most rapid cyclrng is aIways the best strategy o at least as good as electronic supplementary .
sIower cycllng regimens. material, $17
collaterl  slow  CShas marnIy an effect on the treatment efﬁcrency of slow cyclrng electronic supplementary” »
sensitivity (CS) regimens, the effect decreases with increasing concentrations (no effect at material, S10
very hrgh concentratrons)
' 'raoid "~ In the absence of bottlenecks, S has malnly an effect on the efﬁcrency of * electronic 'suople'meht'ary '
fast cycling regimens at low concentrations but the effect is weak. In the material, 523
presence of bottlenecks, CS might also slightly increase the treatment
efficiency of slow cycling regimens at low concentrations.
. patrent vvvvvv e e
. optim cydmg T rapld cydmg . notalwaysoptlmal SIowercycllngcanbeoptlmal e
frequency if Ky =Kg=20r under antagonistic drug drug interations.
. raprd © The most raprd cyclrng is aIways the best strategy o at least as good as electronic supplementary .
sIower cycllng regimens. material, $17
. drug—drug S ”Drug drug . ma|nIy e efﬁcrency R
interactions fast cycling regimens, the effect slightly decreases with increasing
conentration.
”raoid . Drug drug interactions have marnly an effect on the treatment efﬁuency of electronic 'suople‘meht'ary”
fast cyclrng regrmens but the effect Is less strong. materral 528
Ccollateral  slow (S has mainly an effect on the treatment efﬁqency of slow cycllng 4and 6
sensitivity (CS) regimens, the effect vanishes at very high concentrations. (S has an effect
on fast cycling regimens when resistance pre-exists.
‘ rapld  GShas malnly an effect on the treatment efﬁqency of fast cycllng reglmens - eIectronlcsuppIementary »

at low concentrations, but the effect is weak. (Pre-existence of resistance

was not considered.)

underestimates them for high concentrations. In particular, in
the deterministic model, all strategies (except for the 12 h
treatment) are equally good from a certain concentration on
(see electronic supplementary material, S1.4 for details).

3.3. Collateral sensitivity influences the efficiency of
slow cycling regimens, and drug—drug interactions
influence the efficiency of fast cycling regimens

In this third part, we describe how collateral sensitivity and
drug-drug interactions influence the efficiency of a given
cycling regimen and the optimal treatment choice. In all
cases, we consider these characteristics to be reciprocal, e.g.
collateral sensitivity in both single mutants and reciprocal
drug-drug interactions. Results for collateral resistance
(i.e. Beor>1) are discussed in electronic supplementary
material, S2.4.

As shown in figure 4a,d, for slowly replicating bacteria,
collateral sensitivity does not increase the treatment efficiency
when the drugs are switched rapidly. As the cycling

material, 523

frequency decreases (b,c and ¢), however, collateral sensitivity
becomes important (see electronic supplementary material,
52.5 for results for the laboratory model). For drug-drug
interactions, we observe the opposite—the efficiency of fast
cycling is strongly influenced by the interactions, whereas
slow cycling is not (figure 4f—j). Antagonism leads thereby
to a decrease and synergism to an increase in the treatment
efficiency. The strong effect of drug-drug interactions on
the performance of rapid but not slow cycling regimens is
intuitive since rapid cycling leads to more periods of drug
overlap during which the interaction becomes relevant. The
results for the effects of collateral sensitivity are maybe less
intuitive. One may think that collateral sensitivity should be
more influential under fast than under slow cycling as well,
as the trade-off can be exploited on more time points. The
reason that this is not observed lies in the sizes of the resistant
sub-populations during the treatments. The effect of collateral
sensitivity becomes visible only when the affected sub-
populations (i.e. the single resistant types) are sufficiently
large. Rapid cycling is able to better suppress the resistant
sub-populations than slow cycling, even in the absence of
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Figure 2. First effective concentration for a large range of sequential regimens in comparison with mono-therapy for the laboratory and patient environment. The blue
curves show the results for the model as described in the Methods section; the yellow curve shows results for a fully susceptible cell population in which resistance evolution
is impossible (u, = up = 0); the lilac curve shows results for treatment of a population of double-resistant cells. The grey dashed line marks the MIC of the single mutants.

collateral sensitivity. Similarly, since the resistant sub-popu-
lations grow more slowly under high drug concentrations,
the effect of collateral sensitivity becomes less visible with
increasing concentration, as also observed by Aulin ef al. [21].

If cells divide rapidly, resistant sub-populations can
become large even if drugs are cycled fast. Collateral sensi-
tivity therefore has an effect—albeit a very weak one—for
rapid regimens at low drug concentrations both in the labora-
tory and the patient (electronic supplementary material,
figures 523, S24A and S25A). In contrast, collateral sensitivity
effects are negligible for slow regimens (unless the population
is subject to repeated bottlenecks, where at least the determi-
nistic ODE model predicts a difference), because at the high
concentrations required for treatment success, growth rates
with and without collateral sensitivity are similar.

Until now, we have studied treatment efficiencies for drug
pairs that either display drug-drug interactions or collateral
sensitivity of resistant types but not both. Collateral sensi-
tivity has been found for drug pairs with synergistic and
for drug pairs with antagonistic interactions [45], and the
presence of both, drug-drug interaction and collateral sensi-
tivity, can strongly alter the speed of adaptation compared
with cases in which only one characteristic is present, as
was observed in models for combination treatment (see fig.
4 in [46]). We show treatment efficiencies for such drug
pairs in figure 4k-0. Our analysis shows that if drugs are
cycled slowly, an antagonistic drug pair with collateral sensi-
tivity is a better option than a synergistic drug pair without
collateral sensitivity (best visible in m and in the inset of o).

The results in figure 4 show that collateral sensitivity and
drug—drug interactions influence the performance of some
regimens more than that of others. Figure 5 compares the treat-
ment efficiencies across cycling regimens for two selected
scenarios in more detail (see electronic supplementary
material, 52.6 for more scenarios). In line with the previous
observations, we see that the characteristics of the drug pair
can influence the relative performances of the cycling strat-
egies. This is most prominently seen for the antagonistic
drug pair, where very rapid cycling becomes a poor choice
when treating slowly replicating bacteria. For rapidly replicat-
ing bacteria, by contrast, rapid cycling remains the optimal
choice since in that case, the effect of drug-drug interactions
is weak compared with the effect of the cycling frequency
itself (electronic supplementary material, figure S30).

3.4. The pre-existence of single mutants decreases the
treatment efficiency and makes collateral

sensitivity beneficial even for rapid cycling

Up to now, we assumed that the initial population consists
entirely of susceptible wild-type bacteria. However, resistant
types may already be present prior to treatment. Here, we
finally investigate the treatment efficiency for a hetero-
geneous population. To derive the number of pre-existing
resistant cells, we simulated growth of a bacterial population
from a single wild-type cell up to 10'° cells in the absence of
antibiotics (i.e. we numerically solved the ODE system
equation (2.1), setting antibiotic-induced killing to zero). By
the time the population had reached 100 cells, approximately
92 cells were resistant to drug A and drug B, respectively; the
double-resistant type was absent (less than 1 cell). To also
investigate the effect of higher initial levels of resistance, we
additionally consider a scenario with M,(0) = Mz(0) = 1000
and M, =0.

As expected, the treatment efficiency is lower if resistance
pre-exists, which especially affects slow regimens and for
antagonism also very rapid regimens (electronic supplemen-
tary material, figure S13). Importantly, with increasing
numbers of pre-existing mutants, collateral sensitivity
becomes effective at low (but not at high) concentrations,
even for rapid cycling (figure 6). This effect is, however,
much more pronounced for a drug pair with xy=xp=1
than for a drug pair with x4 = x5 =2, where collateral sensi-
tivity becomes effective only over an extremely narrow
range of the concentrations that we consider.

4. Discussion

Which factors affect the efficiency and the optimal cycling
frequency of sequential therapy? And is the optimal cycling
frequency the same in the laboratory and in the patient?
To answer these questions, we set up a pharmacokinetic-
pharmacodynamic (PKPD) patient model and a laboratory
model for comparison and simulated treatments for a set of
example drug pairs. To make sure that our main conclusions
are robust to stochasticity, we performed semi-stochastic
simulations in addition to solving a deterministic ODE system.
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Figure 3. Treatment efficiency of different regimens, cycling drug pairs with either x, = k=1 (upper four panels) or x, = kg =2 (lower four panels) in the
laboratory (left column) or in the patient (right column). Each plot compares the time by which all sub-population sizes reach the threshold N, for different
treatments across a wide range of concentrations. Panels (a,ce,g) show results obtained from the deterministic ODE model equation (2.1); panels (b,d,fh)
show results from simulations based on the semi-stochastic hybrid model. The most rapid cycling regimen is always optimal in the laboratory. In the patient,
slightly slower cycling performs better at low drug concentrations for the drug pair with x, = xz =2 (see (g) and (h)).

4.1. Comparison between the patient and the

laboratory
One key difference between the laboratory and the patient are
the pharmacokinetic processes that occur in the patient,
which is the focus of the present study. Especially, unlike in
the test tube, antibiotics from the previous administration
may still persist in the body at the time of the next adminis-
tration. For slow cycling, mostly doses of the same antibiotic
overlap; for rapid cycling, most overlaps involve doses from
different drugs. We find that conclusions from the laboratory
model (with or without bottlenecks) mostly carry over to the

treatment of rapidly dividing bacteria but not necessarily to
the treatment of slowly dividing bacteria in the patient.

We find that in the laboratory model, the most rapid cycling
performs either best or equally good as slower regimens, inde-
pendent of the drug concentration, the replication rate of
bacteria, and the presence or absence of bottlenecks. This finding
is in line with the correlation between the cycling frequency and
the extinction rate of bacterial populations observed in evolution
experiments by Roembhild et al. [10] and Batra et al. [8]. For the
patient, it holds true as well if the infecting bacteria have a high
cell division rate. For treatment of infections with slowly dividing
bacteria, by contrast, slightly slower cycling can sometimes lead
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Figure 4. Treatment efficiencies under different drug characteristics for three different cycling regimens with x, = x5 = 1. (a—e) Effect of collateral sensitivity,
comparing efficiencies of drug pairs with weak and with strong collateral sensitivity of resistant mutants to the efficiency of a drug pair without collateral sensitivity.
The influence of collateral sensitivity on the treatment efficiency increases as the cycling frequency decreases. (f~j) Effect of synergistic and antagonistic drug—drug
interactions. Drug—drug interactions are most relevant in fast cycling regimens. (k—0) Combined influence of collateral sensitivity and drug—drug interactions. For
slow cydling, a drug pair with antagonistic drug—drug interactions and collateral sensitivity is a better choice than a drug pair with synergistic drug—drug inter-
actions but without collateral sensitivity. Panels (a—c, ~h, k—m) show results from the deterministic ODE model; panels (d,e,ij,n,0) show results from the semi-
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stochastic hybrid model. Semi-stochastic simulations were too slow to simulate the regimen in which drugs are switched every 8 days.

to a higher treatment efficiency. As we will discuss in more detail
below, very rapid cycling can in that case be an inferior strategy
when (i) the pharmacodynamics curve is steep and drug concen-
trations low or if (i) the drugs interact antagonistically. We did
not observe that collateral sensitivity ever made rapid regimens
perform worse than slower regimes, but this could, in principle,
happen in other parts of the parameter space.

4.1.1. The influence of the Hill coefficients of the drugs on

treatment efficiency and the optimal cycling frequency
How the steepness of the pharmacodynamic function influ-
ences treatment success and antibiotic resistance evolution

has recently started to attract attention in modelling studies
[47,48]. A steeper pharmacodynamic function increases the
mutant selection concentration, i.e. the concentration above
which a resistant mutant has a selective advantage over the
susceptible wild-type [47,48]. It entails lower selection for
resistance at low concentrations and a larger Kkill rate at
high concentrations [48]. In a PKPD model for mono-therapy,
considering treatment of rapidly replicating bacteria, Yu ef al.
[48] found that treatment with a drug having a large Hill
coefficient (in their case 5) leads to a lower probability of
resistance and less treatment failure than treatment with a
drug having a low Hill coefficient (in their case 1.5). Similarly,
Aulin et al. [21] find that with slow drug cycling, drug pairs
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Figure 5. Comparison of treatment efficiencies for drug pairs with different drug characteristics at selected concentrations for k; = k3= 11in (a) and x, = x5 =2
in (b). The arrows indicate the cycling frequency that is optimal or at least as good as slower regimens for the respective characteristic. The figure shows results from

the deterministic ODE model.

with large Hill coefficients (in their case 3) perform better
than drug pairs with low Hill coefficients (in their case 0.5).
For rapid cycling, by contrast, Udekwu & Weiss [20] and
Aulin et al. [21] find that drug pairs with lower Hill coeffi-
cients (in their cases 1 and 0.5, respectively) can be superior
to drug pairs with larger Hill coefficients (in their case 3) in
terms of delaying the rise of double resistance to large num-
bers [20] or in reducing the probability of resistance for rapid
cycling [21].

For treatment of slowly replicating bacteria, we find that,
irrespective of the cycling frequency, lower drug doses are
sufficient for successful treatment and suppression of the bac-
terial population is faster for x4 = kg=2 than for ks =xp=1,
both in the laboratory and in the patient. For rapidly replicat-
ing bacteria, our results are more complex, and the first
effective concentration is in many cases lower for the drug
pair with x4 = kg =1. Essentially, the outcome is determined
by the two opposite effects of the Hill coefficient below and
above the MIC of bacteria: above their MIC, bacteria are
killed more efficiently if the Hill coefficient is high, but
below their MIC, they grow less if the Hill coefficient is
low. Besides differences in parameters such as the popu-
lation-wide mutation rate, one other reason why our results
for treatment of rapidly dividing bacteria are not straight-
forward to compare with other studies is that we focus on
the time to reduce all sub-population sizes to a given
threshold as a measure of treatment quality.

Overall, the results across studies confirm that the Hill
coefficient is an important parameter, the consequences of
which are not always trivial. To complement the picture
provided by our study, we performed a supplementary
analysis in which we considered the number of double
mutants at the end of the treatment for low drug doses and
rapid drug cycling for slowly replicating bacteria (electronic
supplementary material, S2.7). We find that resistance
evolves over a smaller range of doses for x4 =xg=2 than
for x4 = kg =1; especially, in line with the above observations
for a single drug, the minimum dose above which resistance
evolution occurs is higher. For a small range of doses, how-
ever, the final size of the double-resistant sub-population is
higher for the drug pair with the larger Hill coefficient.

In terms of the optimal cycling frequency, we find that the
most rapid cycling regimen is always at least as good as
slower regimens for k4 = kg =1 (unless drugs interact antag-
onistically), while slightly slower regimens can sometimes
be preferable if the Hill coefficient is large (k4 =xp=2) and
the bacteria are replicating slowly. Unlike us, Aulin et al.
[21] find even for rapidly replicating bacteria that the optimal
cycling frequency depends on the drugs’ Hill coefficient: in
the absence of collateral sensitivity, the most rapid cycling
regimen (1-day cycling) minimizes resistance evolution for a
low Hill coefficient, while for a large Hill coefficient, a
single drug switch proves to be optimal (3-day cycling,
which is intermediate between the two, performs worst).

4.1.2. The influence of collateral sensitivity

It has been speculated that rapid cycling regimens could
profit from exploiting collateral sensitivity effects [8]. In con-
trast with this idea, we found that if bacteria divide slowly
and resistance evolves de novo, collateral sensitivity increases
the treatment efficiency only for regimens with slow switch-
ing rates. The reason is that under rapid cycling, resistant
sub-populations never become large enough for collateral
sensitivity to have a visible effect. If single mutants pre-
exist at sufficiently high levels at the start of treatment, how-
ever, collateral sensitivity can show an effect even for rapid
cycling. If the cell division rate is high, the efficiency of
rapid cycling regimens (but not of slow ones) is indeed
improved by collateral sensitivity at low concentrations.
However, the effect is very small. Throughout our study, we
focus on drug concentrations that are high enough to ulti-
mately clear the infection. Experimental protocols often use
lower concentrations, in which case the beneficial effects of
collateral sensitivity could be substantial for rapid cycling
regimens. Aulin ef al. [21] indeed conclude that collateral sen-
sitivity can be best exploited at rather low concentrations,
which are lower than the ones that we consider.

Aulin et al. [21] find that collateral sensitivity reduces
resistance evolution in the 1-day cycling regimen but has
weak effects in the slower regimens, turning 1-day cycling
superior to a single drug switch for drug pairs with a large
Hill coefficient. Udekwu & Weiss [20], on the other hand,
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Figure 6. Comparison of treatment efficiencies for drugs pairs with and without collateral sensitivity for different starting populations in the columns, varying in the
pre-existence of single resistant types. The graphs show the time until all sub-population sizes have been suppressed below a threshold size N.. Panels (a—c) shows
the treatment for drugs with x4 = k=1 and panels (d—f) for drugs with x4 = k= 2. Panels (a) and (d) displays the comparison for a starting population
without the pre-existence of resistance. In (b) and (e) or (c) and (f), the starting population includes 92 or 1000 single resistant bacteria of each type, respectively.

find that slower cycling has an advantage over rapid cycling
for drugs exhibiting reciprocal collateral sensitivity (they,
unfortunately, do not compare with drugs without collateral
sensitivity).

4.1.3. The role of drug—drug interactions in treatment
Although drug-drug interactions are effective only in the
overlap phases of doses from different drugs, our results
show an influence of the type of interaction on the treatment
efficiency and the relative performances of cycling frequen-
cies. The time to suppress the bacterial population is
shorter with a synergistic drug pair and longer with an antag-
onistic drug pair than in the absence of interactions, as long
as the collateral sensitivity profile is the same for both drug
pairs. In that case, an antagonistic drug pair with collateral
sensitivity effects can, however, sometimes be more efficient
than a synergistic drug pair without such effects.

The influence of drug-drug interactions on treatment effi-
ciency and resistance evolution has attracted much attention
in the context of combination therapy, where both drugs are
administered simultaneously. In line with our observations,
synergistic interactions were found to increase bacterial clear-
ance in in vitro combination treatment, whereas antagonism
was associated with a low probability of population extinc-
tion [45]. On the other hand, other studies reported
accelerated resistance evolution under synergism for certain
antibiotic concentrations [49,50]. Similarly, modelling studies
demonstrate that in the presence of resource competition,
antagonistic drug pairs can have a benefit over synergistic
ones in terms of reduced resistance evolution, which is due
to the strength of competitive release experienced by resistant
types [50,51]. With hyper-antagonism (suppressive drug-
drug interactions), there might even be selection against
resistant variants [52-55]. In a supplementary analysis

(electronic supplementary material, S52.8), we found ranges
of drug doses in which synergism leads to larger sizes of
the resistant sub-populations than antagonism or Bliss inde-
pendence. However, these doses were lower than the first
effective dose and thus lower than the doses considered in
the main text. Our observations for high doses accord with
the finding of Rodriguez de Evgrafov et al. [19] who observed
no influence of drug-drug interactions on resistance evol-
ution under high antibiotic concentrations in a combination
treatment in the laboratory.

4.1.4. Limitations and extensions

In our comparison between the laboratory and the patient,
we focused on the consequences of dose overlaps, which
are present in the patient but not in the laboratory. However,
this is, of course, not the only difference between the two
environments. In the patient, the bacteria encounter a
spatially structured environment, commensal bacteria, the
human immune system etc.

On the side of the biology of bacteria, important factors
that we did not include are hypermutator strains and
stress-induced mutagenesis, which could lower the efficiency
of sequential therapy. We further assumed that all bacteria
in the population replicate at the same rate. However,
different sub-populations might replicate at different rates
and include persister types as, for example, observed by
Kaiser et al. [56] in mice. We showed that the optimal strategy
can vary with the replication rate of the bacteria, which could
be of importance for the treatment of heterogeneous
populations.

In our study, we focused on a limited set of drug pairs to
understand the dynamics in some detail and to provide
thorough explanations for the observed outcomes. We
especially did not vary the pharmacokinetics of the drugs.
In our example, the antibiotic has decayed to around 10%
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of the administered dose, when the next dose is given. If the
intervals between administrations are short and/or the half-
lives of the drugs long, both drugs are simultaneously pre-
sent in the body at similar concentrations during rapid
cycling. This would resemble combination therapy with
short intervals between administrations; combination therapy
with long intervals between administrations is different in
that drug levels might temporarily decrease to low levels.
Comparing the two strategies combination and sequential
therapy, both the modelling study by Aulin ef al. [21] and
the experimental study by Fuentes-Hernandez et al. [9] find
conditions under which sequential therapy performs better
than combination therapy and the other way round. This
indicates that the comparison is not straightforward, and a
detailed understanding would require a thorough analysis.
We further only considered bactericidal antibiotics. For bac-
teriostatic drugs, the maximum kill rate is given by the
intrinsic death rate. Moreover, since replication and mutation
are coupled, a drug-induced decrease in the replication rate
will also reduce the per capita rate at which mutations
occur. Consequently, the treatment efficiency and the optimal
cycling regimen might depend on the mode of action of
the drugs.

Previous work on sequential patient treatment is equally
restricted to a few specific parameter sets [20,21]. While this
is a meaningful approach to gain first fundamental insights,
future work is needed that provides parameter (and maybe
also structural) sensitivity analyses to unite and synthesize
results from different studies. A particular challenge in the
comparison across different studies, which has also been
highlighted in the context of drug cycling and other multi-
drug therapies at a community level [4], is the use of different
optimality criteria, since different criteria might identify
different strategies as optimal.

5. Conclusion

Our results show that sequential therapy efficiently controls
the spread of resistance and suppresses the bacterial
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