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Abstract

Given the rapid rise in energy demand by data centers and computing systems in gen-
eral, it is fundamental to incorporate energy considerations when designing (scheduling)
algorithms. Machine learning can be a useful approach in practice by predicting the fu-
ture load of the system based on, for example, historical data. However, the effectiveness
of such an approach highly depends on the quality of the predictions and can be quite
far from optimal when predictions are sub-par. On the other hand, while providing a
worst-case guarantee, classical online algorithms can be pessimistic for large classes of
inputs arising in practice.

This paper, in the spirit of the new area of machine learning augmented algorithms,
attempts to obtain the best of both worlds for the classical, deadline based, online speed-
scaling problem: Based on the introduction of a novel prediction setup, we develop al-
gorithms that (i) obtain provably low energy-consumption in the presence of adequate
predictions, and (ii) are robust against inadequate predictions, and (iii) are smooth, i.e.,
their performance gradually degrades as the prediction error increases.

1 Introduction

Energy is a major concern in society in general and computing environments in particular.
Indeed, data centers alone are estimated to consume 200 terawatt-hours (TWh) per year,
which is likely to increase by a factor of 15 by year 2030 [21]. Hardware manufacturers
approach this problem by incorporating energy-saving capabilities into their hardware, with
the most popular one being dynamic speed scaling, i.e., one can adjust the speed of the
processor or device. A higher speed implies a higher energy consumption but also more
processing capacity. In contrast, a lower speed incurs energy savings while being able to
perform less processing per unit of time. Naturally, to take advantage of this energy-saving
capability, scheduling algorithms need to decide on what speed to use at each timepoint
and consider the energy consumption of the produced schedule alongside more “traditional”
quality-of-service considerations.

This paper studies online, deadline-based speed-scaling scheduling, augmented with machine-
learned predictions. More specifically, a set of jobs J , each job j ∈ J with an associated
release time rj , deadline dj and processing requirement wj, arrives online and has to be
scheduled on a single speed-scalable processor. A scheduling algorithm needs to decide for
each timepoint t on: (i) the processor speed s(t) and (ii) which job j ∈ J to execute at t
(j(t)). Both decisions have to be made by the algorithm at any timepoint t while only having
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knowledge of the jobs with a release time equal to or less than t. A schedule is said to be
feasible if the whole processing requirement of every job j is executed within the respective
release time and deadline interval, i.e., if

∫

t:j(t)=j s(t)dt ≥ wj. The energy consumption of

a schedule, which we seek to minimize over all feasible schedules, is given by
∫ +∞
0 s(t)αdt,

where α > 1 is a constant, which in practice is between 1.1 and 3 depending on the em-
ployed technology [15, 31]. The offline setting of the problem in which the complete job set
J including their release times, deadlines, and workloads are known in advance was solved in
the seminal paper by Yao, Demers, and Shenker [32] who gave an optimal offline algorithm
called YDS. The arguably more interesting online setting in which the characteristics of a job
j only become known at its release time rj has been extensively studied [3,10–12,32], and the
currently best known online algorithm is qOA, by Bansal et al. [11] achieving a competitive
ratio of 4α/(2e1/2α1/4).

However, the purely online setting may be too restrictive in many practical scenarios for
which one can predict – with reasonable accuracy – the characteristics of future jobs, for exam-
ple, by employing a learning approach on historical data. Learning augmented algorithms is a
very novel research area (arguably first introduced in 2018 by Lykouris and Vassilvitskii [23])
trying to capture such scenarios in which predictions of uncertain quality are available for
future parts of the input. The goal in learning augmented algorithms is to design algorithms
that are at the same time (i) consistent, i.e., obtain an improved competitive ratio in the pres-
ence of adequate predictions, (ii) robust, i.e., there is a worst case guarantee independently
of the prediction accuracy (ideally within a constant factor of the competitive ratio of the
best known online algorithm that does not employ any predictions) and (iii) smooth, i.e., the
performance guarantee degrades gracefully with the quality of the predictions.

Previous Predictions Setups and Our Setup. Online Speed-Scaling with machine
learned predictions has been investigated before by Bamas et al. [8] who consider a pre-
diction setup in a sense orthogonal to ours; the release times and deadlines of jobs are known
in advance, and there is a prediction on the processing requirement. Although any input in-
stance (with integer release times and deadlines) can be modeled in such a way (by considering
all possible pairs of release times and deadlines and a processing requirement of zero for the
pairs that do not correspond to a job), this can be computationally quite expensive. Bamas
et al. present a consistent, robust, and smooth algorithm for the particular case in which
the interval length of each job is the same. And generalize their consistency and robustness
results to the general case (in which each job can have an arbitrary interval length). For this
more general setting, the proof of smoothness is omitted because “. . . the prediction model
and the measure of error quickly get complex and notation heavy”.

In the current paper, we consider the novel prediction setup in which predictions on the
release times and deadlines are provided to the algorithm. To keep the model simple, we
assume that the actual processing requirement of each job j ∈ J , as well as the number of
jobs n are known. It may be useful for the reader to think about our setup as having as many
unit-size jobs as total processing volume in the instance, and a prediction on the release time
and deadline of each such job. We note, however, that our actual setup requires significantly
fewer predictions than this simplified one.

In this context, the main contribution of the current paper is to introduce a natural
alternative prediction setup and error measure as well as an algorithm (SwP) within that
setup, which possesses the desired properties of consistency, smoothness, and robustness in
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the general setting. It should be pointed out that since the two papers consider different
prediction settings and in turn also error measures, the algorithms as well as their guarantees
are incomparable. However one can consider the two prediction setups as complementary of
each other.

Our Contribution. We show how the predictions can be used to develop an algorithm
called Scheduling with Predictions (SwP), that improves upon qOA when the predic-
tions are reasonably accurate. More formally, in Section 3 we show the following theorem:

Theorem 1. Algorithm SwP achieves a competitive ratio of

min

{

(

1

1− µ

)α−1(2η + 1

1− 2λ

)α−1

, 2α−1αα

(

1

µ

)α−1
}

.

Here, η is the error of the prediction (defined formally later) that captures the distance
between the predicted and the actual input instances, and 0 ≤ λ < 1/2, 0 ≤ µ ≤ 1 are two
hyperparameters that can be thought of as the confidence in the prediction. Theorem 1 implies
that SwP is at the same time consistent, smooth and robust where the exact consistency,
smoothness and robustness depend on the choice of the hyperparameters λ and µ.

Additionally, in Section 4 we obtain improved results for the restricted case in which all
jobs have a common deadline d, and we are given predictions regarding the release times
of the jobs. The corresponding algorithm is called Common-Deadline-Scheduling with
Predictions (CDSwP) and obtains the following improved competitive ratio:

Theorem 2. Algorithm CDSwP achieves a competitive ratio of

min

{

(

1 + η

1− λ

)α−1

, 2α
(

1 + λ

1− λ

)α−1
}

.

Although restricted, this case seems to capture the difficulty of the online setting for the
problem, as supported by the fact that the strongest lower bound of eα−1/α on the competitive
ratio for online algorithms for the problem is proven on such an instance [11].

Finally, in Section 5 we present an empirical evaluation of our results on a real-world
data-set, which suggests the practicality of our algorithm. The actual results are preceded
by Section 2 which contains preliminary results and observations. All omitted proofs can be
found in the supplementary material.

1.1 Related Work.

1.1.1 Online Energy-Efficient Scheduling.

As already mentioned, speed-scaling was first studied from an algorithmic point of view
by [32]. They studied the deadline-based version of the problem also considered here, and in
addition to providing the optimal offline algorithm called Y DS, two online algorithms called
Optimal Available (OA) and Average Rate (AVR). OA recalculates an optimal offline sched-
ule for the remaining instance at each release time, whereas AVR ”spreads” the processing
volume equally between its release time and deadline in order to determine the speed for each
timepoint t. The actual schedule then is simply an Earliest Deadline First (EDF) schedule
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with these speeds. They show that AVR obtains a competitive ratio of 2α−1αα which is es-
sentially tight as shown by [10]. Algorithm OA, on the other hand, was analyzed by [11] who
proved a tight competitive ratio of αα.

The currently best known algorithm for the problem, at least for modern processors which
satisfy α = 3 is the aforementioned qOA algorithm, which for any parameter q ≥ 1 sets the
speed of the processor to be q times the speed that the optimal offline algorithm would run
the jobs in the current state. Algorithm qOA attains a competitive ratio of 4α/(2e1/2α1/4),
for q = 2− 1/α ≈ 1.667.

The multiprocessor version of online, deadline-based, speed-scaling has also been studied,
see [3, 5] as well as other objectives, for example, flow time [4, 13]. We refer the interested
reader to surveys [2, 20].

1.1.2 Further Results on Learning Augmented Algorithms.

[23] was arguably the seminal paper in the area, considered the online caching problem. Sub-
sequently, [27] considered the ski-rental problem as well as non-clairvoyant scheduling. Similar
to the current work, the robustness and consistency guarantees were given as a function of
a hyperparameter that is part of the input to the algorithm. Both the caching and the ski-
rental problem have since been extensively studied in the literature (see for example [6,28,30]
and [18,29]).

Several other online problems have been investigated through the lens of learning-augmented
algorithms and results of similar flavor were obtained. Examples include scheduling and
queuing problems [24,26], online selection and matching problems [7,16], or the more general
framework of online primal-dual algorithms [9]. We direct the interested reader to a recent
survey [25].

2 Preliminaries

We consider online, deadline-based speed-scaling as described in the introduction. Given a
scheduling algorithm A on the set jobs J , the energy consumption of A on J is denoted
by EA(J ). When clear from the context, we may write EA instead of EA(J) to simplify the
notation.

As usual for online problems, the performance guarantees are given by employing com-
petitive analysis. Following the speed-scaling literature (see for example [11]) we use the
strict competitive ratio. Formally, the (strict) competitive ratio of algorithm A for the online,
deadline-based speed-scaling problem, on input instance I is given by

max
I

EA(I)

EY DS(I)
,

were EA(I) is the cost that algorithm A incurs on instance I, and the maximum is taken
over all possible input instances I. The competitive ratio in many cases will depend on the
prediction error.

Prediction Setup. The algorithm initially gets information about the number of jobs n,
the corresponding processing volumes wj ,∀j ∈ J , as well as for every job j ∈ J a prediction pj
for the release time rj and another prediction qj for the deadline dj . Again, the actual values
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of rj and dj only become known at timepoint rj . Let R = {r1, . . . rn}, D = {d1, . . . dn},
P = {p1, . . . pn} and Q = {q1, . . . qn}. Note that in the special case where all jobs have a
common deadline d we naturally only obtain predictions for the release times.

The quality of the prediction is measured in terms of a prediction error η, which intuitively
η measures the distance between the predicted values and the actual ones. We start by defining
the individual prediction error ηi for each job i ∈ J .

Definition 1. Let the prediction error for job i be ηi = max
{

|pi−ri|
qi−pi

, |qi−di|
qi−pi

}

.

Note that we implicitly assume that pi ≤ qi for all i ∈ J since otherwise, it is immediately
obvious that the quality of the predictions is low, and one could just run a classical online
algorithm for the problem. Furthermore, if the instance has a common deadline then ηi
simplifies to ηi =

|pi−ri|
d−pi

.
The (total) prediction error η of an input instance is then given by η = maxi ηi. We call

this max-norm-error.

Definition 2. We say that the total error η is a max-norm-error if η is given by the infinity
norm of the vector of the respective errors for each job. More formally,

η = ‖η‖∞ = max(η1, η2, . . . ηn).

Performance Guarantees. In the following we formalize the performance guarantees used
to evaluate our algorithms.

Definition 3. We say that an algorithm within the above prediction setup is:

• Consistent, if its competitive ratio is strictly better than that of the best online algorithm
without predictions for the problem, whenever η = 0.

• Robust, if its competitive ratio is within a constant factor from that of the best online
algorithm without predictions for the problem. Note that Robustness is independent of
the prediction quality.

• Smooth, if its competitive ratio is a smooth function of η.

Shrinking of Intervals. The most straightforward way to consider the predictions would
arguably be to blindly trust the predictions, i.e., schedule jobs assuming that the predicted
instance is the actual instance.

Consider the instance JPQ (resp. JRD) in which every job has the corresponding predicted
(resp. actual) release time and deadline. The naive algorithm would compute the optimal
offline schedule Y DS(JPQ) and try to schedule tasks according to it. If the predictions are
perfectly accurate, then this clearly is an optimal schedule, and the best one can do. However,
if the predictions are even slightly inaccurate, then the resulting schedule may be infeasible.
Moreover, our goal is to have a robust algorithm, which cannot be obtained by following the
predictions blindly. For these reasons, one has to trust the predictions more cautiously and
not blindly.

One of our crucial ideas is to slightly shrink the interval between each job’s release time
and deadline before scheduling it. The intuition is that if the predictions are only slightly off,
then a YDS schedule for the newly obtained instance will be feasible at a slight increase in
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energy consumption over the YDS schedule of the predicted instance. The following lemmas
formalize this intuition. We note that a similar result is also presented in [8]; however, given
that the actual setups are different new proofs are required (the proofs of these lemmas can
be found in the supplementary material).

Lemma 1. Consider a common deadline instance J , and another common deadline instance
Ĵ constructed from J such that every job ĵi ∈ Ĵ has workload ŵi = wi, d̂ = d, and r̂i =
ri + (1− ci) · (d− ri) for some shrinking parameter 0 ≤ ci < 1. Set c = maxi ci. Then,

EY DS(Ĵ ) ≤ (1/c)α−1EY DS(J ).

Lemma 2. Consider a (general) instance J , and another instance Ĵ in which every job
ji ∈ J corresponds to a job ĵi ∈ Ĵ with workload ŵi = wi, r̂i = ri +

1−c
2 · (di − ri) and

d̂i = di −
1−c
2 · (di − ri) for some shrinking parameter 0 ≤ c < 1. Then,

EY DS(Ĵ ) ≤ (1/c)α−1EY DS(J ).

It will be useful to bound the energy consumption of (the possibly infeasible for the
original input instance) schedule Y DS(JPQ). We compute the energy consumption of schedule
Y DS(JPQ) in the following lemma.

Lemma 3. For any η ≥ 0 there holds

EY DS(JPQ) ≤ (2η + 1)α−1EY DS(JRD).

Proof. Consider two sets P ∗ = {p∗1, . . . p
∗
n} and Q∗ = {q∗1 , . . . q

∗
n}, with p∗i = pi − ηi(qi − pi)

and q∗i = qi + ηi(qi − pi).
By the definition of ηi, p

∗
i and q∗i , we have (ri, di) ⊆ (p∗i , q

∗
i ), and therefore

EY DS(JP∗Q∗) ≤ EY DS(JRD).

By having c = 1
(2η+1) , and J = JP ∗Q∗ (ri = p∗i , di = q∗i ) in Lemma 2, we obtain J ′ = JPQ

and therefore,

EY DS(JPQ) ≤ (2η + 1)α−1EY DS(JP∗Q∗).

Using Lemma 1, we can obtain a similar result for common deadline instances.

Corollary 1. In common deadline instances for any parameter η ≥ 0, there holds

EY DS(JP ) ≤ (η + 1)α−1 · EY DS(JR).

The idea of shrinking intervals as described above will be useful for the general case as
well as the restricted common deadline case.

How much each algorithm will shrink the predicted job intervals will depend on the confi-
dence. This will be denoted by a confidence parameter 0 < λ ≤ 1/2 that will be given as input
to the respective algorithm. In the following, we define the shrunk prediction set of release
times and deadlines parametrized by this λ, and use the above lemmas to argue about how
this ”shrinking” actually affects the energy consumption of the corresponding Y DS-schedule.
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Definition 4. Let P ′ = {p′1, . . . , p
′
n} and Q′ = {q′1, . . . , q

′
n} be the shrunk prediction set of

release times and deadlines respectively in which p′i = ⌊pi+λ(qi−pi)⌋ and q′i = ⌈qi−λ(qi−pi)⌉
for all i ∈ [n].

We first observe that any schedule that considers the sets P ′ and Q′ as the actual release
times and deadlines of the jobs will be feasible, as long as the error η is not larger than λ.

Observation 1. Under the assumption that η ∈ (0, λ), it follows that ri ≤ p′i and q′i ≤ di
hold for every job i.

Proof. If pj ≥ rj the observation directly follows because p′j ≥ pj.
If pj < rj, let p

′′
i = pi + λ(qi − pi). By the assumption and the definitions of η, and ηi, we

have

|pi − ri| ≤ λ(qi − pi) = p′′i − pi.

Then the above equation gives

−pi + ri ≤ p′′i − pi,

and therefore ri ≤ p′′i . Since p′i = ⌊p′′i ⌋ and ri is an integer, we can also conclude ri ≤ p′i.
The same holds for the deadlines and their shrunk predictions.

Therefore, the schedule Y DS(JP ′Q′) is feasible. Although shrinking the intervals and then
running YDS is not a robust algorithm, it will be useful to bound its energy consumption
when η ≤ λ holds.

Lemma 4. For any η ∈ (0, λ) there holds

EY DS(JP ′Q′ ) ≤

(

2η + 1

1− 2λ

)α−1

· EY DS(JRD).

Proof.

EY DS(JP ′Q′ ) ≤
1

(1− 2λ)(α−1)
· EY DS(JPQ)

≤

(

2η + 1

1− 2λ

)α−1

· EY DS(JRD). (1)

By Lemma 2 we have the first inequality in (1), and the second inequality holds because of
Lemma 3.

Similarly for common deadline instances, since we shrink from one side, we obtain a better
competitive ratio.

Corollary 2. For any η ∈ (0, λ) in common deadline instances there holds

EY DS(JP ′) ≤

(

1 + η

1− λ

)α−1

· EY DS(JR).
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Proof.

EY DS(JP ′) ≤
1

(1− λ)(α−1)
· EY DS(JP )

≤

(

1 + η

1− λ

)α−1

· EY DS(JR). (2)

By Lemma 1 we have the first inequality in (2), and the second inequality holds because of
Corollary 1.

3 General Case

In this section we present algorithm ScheduleWithPredictions(λ, µ) (SwP(λ, µ) for short)
for the general learning-augmented speed-scaling setting. Parameter 0 ≤ λ < 1/2 describes
for which range of prediction errors we would like to obtain an improved competitive ratio.
The smaller the λ, the smaller that range but the better the corresponding competitive ratio
for η < λ. On the other hand, parameter 0 ≤ µ ≤ 1 allows us to set the desired trade-off
between consistency and robustness. As we will see, perfect predictions and λ = µ = 0 would
give a competitive ratio of 1.

Inspired by [8] algorithm SwP begins by partitioning each time slot It = [t, t + 1), t ∈ Z

into two parts: Iℓt = [t, t + (1 − µ)) and Irt = [t + (1 − µ), t + 1). We call Iℓt the left part,
and Irt the right part of time slot It. The idea is to reserve the left parts of time-slots for
following the prediction, and the right parts of the time-slots are, roughly speaking, intended
for safeguarding against inaccurate predictions. A key component of our algorithm consists
of elegantly and dynamically distributing the processing volume of each job upon its arrival
among the two parts. This distribution is crucial in order to obtain a trade-off between
consistency and robustness, based on the parameters λ and µ. The algorithm consists of two
steps, the preprocessing and the online step which we now describe in more detail.

Preprocessing: Partition left parts into intervals and assign jobs to them. Upon
receiving the predictions (P,Q), SwP computes a YDS-schedule S′ for instance (P ′, Q′) –
which is obtained by ”shrinking” (P,Q) as described above. Although S′ may not be feasible
for the actual instance (R,D), it will be used to partition the left parts into intervals and
subsequently assign each such interval of the partition to a specific job.

To this end, let It(j) := [t+ at(j), t + bt(j)) ⊆ It be the maximal subinterval of It during
which j is executed under S′. Note that It(j) could be empty for some combinations of j and
t. Furthermore, since by definition there are no release times or deadlines within It, and YDS
schedules according to EDF, there can be at most one execution interval of j within It. Let,
for every job j and left part Iℓt , I

ℓ
t (j) := [t+ aℓt(j), t+ bℓt(j)), where a

ℓ
t(j) = at(j)/(1− µ) and

bℓt(j) = bt(j)/(1 − µ), be the subinterval of Iℓt assigned to job j.
To obtain some intuition, scheduling the whole processing volume of each job j at a uniform

speed throughout intervals Iℓt (j) would result in a ”compressed” version of Y DS(P ′Q′) where
each time-slot is sped-up by a factor of 1/(1 − µ) to fit in the left part only, thus having an
energy consumption increased by a factor of (1/(1−µ))α over that of Y DS(P ′Q′). Although
(as we will see) such a compressed schedule would be consistent, it may not be robust (or
even feasible) in the presence of subpar predictions. For this reason, we will eventually only
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schedule part of the volume of each job in the associated left parts whenever feasible, and the
remaining volume will be processed on right parts.

Online Step: Job arrivals and processing SwP needs to decide exactly when each job
is to be processed within each time-slot and at what speed. This is done by (i) distributing
the processing volume of each job j to right parts of different time-slots It and associated
left parts Iℓt (j) upon its arrival, and (ii) feasibly scheduling the whole volume assigned to the
current time-slot (both to its left and right part), within the time-slot itself. In the following
we discuss how this is accomplished.

(i) Job Arrivals: Upon arrival of job j at rj, let δj = wj/(dj − rj) be its density and
ℓ(j) :=

∑

t∈[rj ,dj)
|Iℓt (j)| be the total processing time reserved for job j on the left parts during

the preprocessing step that can actually be feasibly used for job j. Furthermore let Vt(j) be
the total volume currently (from jobs 1, 2, . . . j − 1) assigned to Irt , for all t (thus Vt(1) = 0).

The algorithm assigns some amount of volume ytj (to be determined later) of job j to
interval Irt (thus Vt(j + 1) := Vt(j) + ytj), for all t ∈ [rj, dj), with 0 ≤ ytj ≤ δj . Finally

the remaining volume Xj := wj −
∑

t y
t
j is assigned to the left parts Iℓt (j) with t ∈ [rj , dj),

proportionally to their length, i.e., an interval Iℓt (j) with t ∈ [rj , dj) receives an |Iℓt (j)|/ℓ(j)-
fraction of Xj which implies that the average speed within Iℓt (j) must be Xj/ℓ(j). To gain
some intuition on the values of ytj, it is useful to think of the algorithm as waterfilling the
volume of j to both the left and the right parts such that no right part receives more than δj
amount of volume. More formally, the ytj, with 0 ≤ ytj ≤ δj and t ∈ [rj, dj) are defined such
that they satisfy the following inequalities:

Vt(j)

µ
≥ Xj/ℓ(j) ∀t ∈ [rj , dj) with ytj = 0 (3)

Vt(j) + ytj
µ

= Xj/ℓ(j) ∀t ∈ [rj, dj) with 0 < ytj < δj (4)

Vt(j) + ytj
µ

≤ Xj/ℓ(j) ∀t ∈ [rj , dj) with ytj = δj . (5)

Note that the left hand side in each of the above inequalities corresponds exactly to
Vt(j + 1)/µ and therefore to the average speed required to process the volume assigned to t
before the arrival of job j + 1 within Irt . We prove the existence of such ytj and describe how
they can be computed in Appendix B.

(ii) Processing: For each It, t = rj , . . . rj+1 − 1 the algorithm processes job j′ ≤ j
within every Iℓt (j

′) at a speed of Xj′/ℓ(j
′), and the assigned volume to Irt is processed within

Irt at a speed of Vt(j + 1)/µ, with the order of the jobs within each Irt being determined by
EDF.

The online step gets repeated upon the arrival of each job. We next show that the resulting
schedule is feasible.

Lemma 5. In the schedule output by SwP(λ, µ) a volume of wj is fully processed for each
job j within [rj , dj).
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Time

Speed

0 1 2 3 4 5 6 7 8 9

Figure 1: The speed profile corresponds to an instance with µ = 0.25. Job i arrives at ri = 2,
with di = 9, and wi = 7. Hence, δi =

wi

di−ri
= 1. For this instance, Y DS(P ′Q′) runs job i

only in 3 blocks, so we have ℓ(i) = 3 · 0.75 = 2.25. For the first four blocks we have yti = 0
and inequality (3) holds. In the fifth and sixth blocks, 0 < yti < δi and inequity (4) holds.
And in the last block, yti = δi = 1 and inequality (5) holds.

Proof. It is relatively easy to see that a total volume of wj is assigned to left and right parts
of It’s with t ∈ [rj , dj): Indeed, by the algorithm definition volume of wj only gets assigned
to Iℓt ⊂ It or It ⊂ It with t ∈ [rj , dj). In addition, a volume of

∑

t y
t
j gets assigned to the

right parts and wj −
∑

t y
t
j to the left parts for a total volume assignment of wj. It therefore

remains to show that all the assigned volume is feasibly processed in the processing step.
Consider some It with rj ≤ t < rj+1 and the corresponding Iℓt and Irt . Note that by the

above argument, for any such t no job with an index greater than j will assign any volume,
and that only job j′ ≤ j may be assigned to Iℓt (j

′). Therefore a speed of Xj′/ℓ(j
′) throughout

every such Iℓt (j) is sufficient to schedule all volume assigned to it. Finally, since there are no
release times or deadlines within each individual interval, the total volume of Vt(j + 1) can
be feasibly scheduled within Irt at a speed of Vt(j + 1)/µ.

We next show consistency and robustness of the algorithm.

Lemma 6 (Consistency). For any η ∈ (0, λ) there holds

ESwP ≤

(

1

1− µ

)α−1(2η + 1

1− 2λ

)α−1

EY DS(RD).

Proof. We can express ESwP as:

ESwP =
n
∑

j=1





Xα
j

ℓ(j)α−1
+

∑

t∈[rj ,dj)

(

Vt(j + 1)α

µα−1
−

Vt(j)
α

µα−1

)





=

n
∑

j=1





Xα
j

ℓ(j)α−1
+

∑

t∈[rj ,dj)





(

Vt(j) + ytj

)α

µα−1
−

Vt(j)
α

µα−1









≤
n
∑

j=1

wα
j

ℓ(j)α−1
=

(

1

1− µ

)α−1

Ej
Y DS(JP ′Q′ )

.
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The inequality holds by convexity of the power function and by the fact that Vt(j + 1)/µ ≤
Xj/ℓ(j) for each t such that ytj > 0 (Equations 4 and 5). The last equality follows since
for η ∈ (0, λ), for every job j there holds [rj , dj) ⊇ [p′j, q

′
j) (Observation 1), and because

by construction ℓ(j) is 1/(1 − µ) times the total processing time reserved for job j under
YDS(P ′Q′).

The lemma directly follows, since by Lemma 4,

EY DS(JP ′Q′ ) ≤

(

2η + 1

1− 2λ

)α−1

· EY DS(JRD).

Lemma 7 (Robustness). For any instance, we have

ESwP ≤ 2α−1αα

(

1

µ

)α−1

EY DS(JRD).

Proof. Note that by the algorithm definition there holds that Vt(j) ≥ Vt(i), for j > i and any
t, since upon each release time new volume gets assigned but volume never gets removed. We
therefore have

ESwP ≤

n
∑

j=1

(

Xα
j

ℓ(j)α−1

)

+
∑

t

(

Vt(n+ 1)α

µα−1

)

≤
∑

t





(

∑

j:t∈[rj ,dj)
δj

)α

µα−1





=

(

1

µ

)α−1

EAV R.

The second inequality follows by the convexity of the power function and the fact that Vt(n+
1)/µ ≥ Vt(j + 1)/µ ≥ Xj/ℓ(j) for each t such that ytj < δj (Equations 4 and 3). The lemma
follows by the competitive ratio of AVR [10].

Lemmas 6 and 7 together directly imply Theorem 1. Note that Theorem 1 not only implies
consistency and robustness, but also smoothness: the competitive ratio gracefully degrades
as the error increases.

4 All Jobs Have a Common Deadline

In this section, we present a simpler algorithm that achieves improved consistency and ro-
bustness over SwP for the special case in which all jobs have the same deadline, i.e., dj = d
for all j ∈ J . Since the deadline is the same for all jobs, we only consider predictions on the
n release times R = {r1, . . . , rn} and denote these by a set P = {p1, . . . , pn}.

We begin by analyzing a framework for combining different algorithms before presenting
an algorithm in Subsection 4.1 that is based on combining two different algorithms; the classic
online algorithm qOA that has a worst-case guarantee independent of the prediction error,
and a second one, that considers the predictions and has a good performance in the case of
small prediction error.

11



The general idea of combining online algorithms has been repeatedly employed in the
past in the areas of online algorithms and online learning, see, for example, the celebrated
results of Fiat et al. [17], Blum and Burch [14], Herbster and Warmuth [19], Littlestone and
Warmuth [22]. Such a technique has also been used in the learning augmented setting, see
Antoniadis et al. [6] for an explicit framework for combining algorithms, and Lykouris and
Vassilvtiskii [23] as well as Rohatgi [28] for implicit uses of such algorithm combinations.
However, as we will see, the specific problem considered in this paper allows for way more
flexibility in such algorithm combinations since it is possible to simulate the parallel execution
of different algorithms by increasing the speed. This allows us to obtain a much more tailored
result with at most one switch between the different algorithms and more straightforward
analysis. We start with the following structural lemma.

Lemma 8. Consider a partition of the job set of instance J into m job sets J1, J2, . . . Jm,
and furthermore consider m schedules C1, C2, . . . Cm with speed functions s1(t), s2(t), . . . sm(t)
respectively, such that Ci is a feasible schedule for Ji for all i = 1, . . . m. Then there exists
a schedule C with speed function sC(t) =

∑

i si(t) that is feasible for the complete job set J
and has an energy consumption of EC ≤ mα−1

∑

i Ei, where for each i, Ei =
∫

t si(t)
αdt is the

energy consumption of the respective schedule.

4.1 Algorithm CommonDeadlineScheduleWithPredictions (CDSwP)

At a high level CDSwP(λ) (almost) follows the optimal schedule for the predicted instance
as long as the prediction error is not higher than λ and switches to a classical online algorithm
(i.e., one without predictions) in case the prediction error becomes higher than λ.

More formally, the algorithm can reside in one of two modes: follow the prediction (FtP)
mode, and recovery mode. Initially, before the release time r1 of the first job the algorithm
is in the FtP-mode and has an associated speed-profile given by s(FtP (0), t) = 0 for all
t ∈ [0, d]. Upon each release time ri, i = 1, . . . n, and while in the FtP-mode, CDSwP(λ)
does the following:

• If ηi ≤ λ, CDSwP remains in the FtP-mode and updates the speed profile from
s(FtP (i− 1), t) to s(FtP (i), t) for [ri, d] with the help of a job instance J i. Instance J i

consists of:

– One job i′ with release time ri′ = ri, workload wi′ equal to the total amount of
unfinished at ri workload that was released at any timepoint t ≤ ri, and deadline
d.

– For each job j not yet released at rj , include job j with a release time of p′j, a

deadline of d and a volume of wi in J i.

The new speed-profile s(FtP (i), t) is given for any t ∈ [ri, d] by

s(FtP (i), t) :=

{

s(Y DS(J ′), t), if Y DS(J ′) runs job i′ at t,

0, otherwise.

Algorithm CDSwP now runs at s(FtP (i), t) for any t ∈ [ri, ri+1), and remains in the
FtP-mode.

12



Time

Speed

0 1 2 3 4 5 6 7 8 9

Figure 2: A common deadline instance with η > λ. The first time point with ηi > λ is time
5 in which we start to run qOA for the rest of the jobs (blue part) while we continue running
Y DS for the jobs released before 5 (red part). At time point 7.5, the workload of the first
set of jobs is finished.

• Otherwise, if ηi > λ then CDSwP switches to the recovery-mode, and sets k := i.

When in recovery-mode, the algorithm runs at speed s(t) = s(FtP (k−1), t)+s(qOA(k), t)
at each timepoint t until d, where s(FtP (k − 1), t) is the last speed-profile generated in the
FtP-mode, and s(qOA(k), t), is the speed that the online algorithm qOA would have at
timepoint t when presented (in an online fashion) with (the actual) jobs k, . . . n.

Note that defining the speed at any timepoint t is sufficient in order to fully describe
the algorithm. Indeed, since all jobs have a common deadline of d, it is irrelevant which
job (among the active jobs) is being processed at any timepoint t. Nevertheless, to simplify
the presentation we will implicitly assume in the following that at timepoint t the currently
active and unfinished job with the earliest release time is the one being processed – and ties
are broken arbitrarily. We first prove that the algorithm produces feasible schedules:

Observation 2. Algorithm CDSwP fully processes the whole processing volume of each job
wj , within [rj , d].

Proof. Note that by the algorithm definition, no job starts being processed before its arrival
in any mode. So it suffices to show that the complete processing volume of each job is
completed before its deadline. Assume first that the algorithm remains in the FtP-mode
until d. By the definition of the job instances J i, any still unfinished processing volume wn′

will be assigned to job n′ at timepoint rn and YDS will schedule it within [rn, d) according
to YDS at a speed of wn′/(d − rn). So the resulting schedule is feasible in that case. If the
algorithm switches to the recovery mode at some rk, then by the above argument the speed
profile s(FtP (k − 1), t) is sufficient to finish jobs 1, . . . k − 1, and furthermore speed profile
s(qOA(k), t) is feasible for for jobs k, . . . n, by the feasibility of algorithm qOA. So the overall
speed profile s(FtP (k− 1), t)+ s(qOA(j), t) is sufficient for processing the whole volume.

We begin by showing the following theorem which will imply consistency and smoothness.
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Lemma 9 (Consistency & Smoothness). Under the assumption that η ∈ (0, λ), there holds

ECDSwP ≤

(

1 + η

1− λ

)α−1

· EY DS(JR).

Before proving Lemma 9 we show the following intermediate result.

Lemma 10. Assuming that η ∈ (0, λ), there holds

ECDSwP ≤ EY DS(JP ′)

Proof. Consider job instance J i′ which consists of:

• A job ji−1 with release time ri, deadline d and volume wji−1 := w′
i − wi equal to the

total volume of jobs 1, . . . i− 1 that is still unfinished at ri,

• Job i with release time at p′i (and still deadline d and processing volume wi),

• For each job j not yet released at rj, include job j with a release time of p′j, a deadline

of d and a volume of wi in J i′.

Note that, instance J i′ differs from J i only in that job i is considered separately, and not
together with all previously released jobs that are still not finished. By Observation 1 a YDS
schedule for the former is a feasible schedule for the later, and therefore by optimality of YDS,

E
[ri,∞)
CDSwP (Ji)

≤ E
[ri,∞)

CDSwP (Ji′)
, (6)

where E
[a,b]
A(J), refers to the energy consumption that the schedule produced by algorithm A on

instance J has within interval [a, b].
Using this notation, we can express the total energy-consumption of the CDSwP as

ECDSwP =

n
∑

i=1

E
[ri,ri+1)

CDSwP (Ji)

=

n−2
∑

i=1

E
[ri,ri+1)

CDSwP (Ji)
+ E

[rn−1,rn)
CDSwP (Jn−1)

+ E
[rn,d)
CDSwP (Jn)

≤
n−2
∑

i=1

E
[ri,ri+1)

CDSwP (Ji)
+ E

[rn−1,rn)
CDSwP (Jn−1)

+ E
[rn,d)
CDSwP (Jn′)

=
n−2
∑

i=1

E
[ri,ri+1)
CDSwP (Ji)

+ E
[rn−1,d)
CDSwP (Jn−1)

...

≤ E
[r1,d)
CDSwP (J1)

≤ EY DS(JP ′),

where the inequalities follow by applying Equation (6).
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Proof of Lemma 9. By combining Lemmas 10 and 2 we have,

ECDSwP ≤ EY DS(JP ′) ≤

(

1 + η

1− λ

)α−1

· EY DS(JR),

and the lemma directly follows.

We note that the above proof also works in exactly the same way when only a subset A
of the job set is processed.

Corollary 3. Consider a set of jobs A ⊆ J and assume that ηi ∈ (0, λ) holds for every job
i ∈ A. Then

ECDSwP (A) ≤ EY DS(JP ′(A))

We next analyze the case of inadequate predictions.

Lemma 11. (Robustness) With a parameter η /∈ (0, λ), we have

ECDSwP ≤ 2α
(

1 + λ

1− λ

)α−1

· EqOA.

Proof. As in the definition of CDSwP, let k be the smallest index, such that ηk > λ. Hence,
the algorithm switches to the recovery mode at rk. We partition the job set into two subsets
A = {1, · · · , k − 1} and B = {k, · · · , n}. By Lemma 8, and by the fact that by Corollary 3
the energy consumption for set B is at most the energy consumption of qOA for the whole job
instance, it suffices to upper bound the energy consumption required for set A by the total
energy that qOA(k) uses.

We transform the schedule obtained by CDSwP for job set A through three intermediate
steps to the schedule produced by Y DSJ(R). Since EY DSJ(R) ≤ EqOAJ(R) this will imply the
theorem.

Step 1: Let JA be the job instance that contains all jobs in A, along with jobs j = k, k +
1, . . . n with respective release time p′j , deadline d and processing volume wj .

Let EA
CDSwP , and EA

Y DS(JA)
be the energy consumptions incured while scheduling the

subset of jobs A for CDSwP(J) and Y DS(JA) respectively.
By Corollary 3,

EA
CDSwP ≤ EA

YDS(JP ′).

Let JA
P be the job instance, consisting of the predicted release times (pi) of jobs in set A

and the ”shrunk” predicted release times (p′i) for the remaining jobs. Note that JA
P differs

from JA only in the release-times of jobs in set A. Since ηi ≤ λ for any i ∈ A, there holds for
any such i that d− p′i = 1/(1 − λ)(d− pi). By Lemma 1, there therefore holds

EA
Y DS(JP ′) ≤

(

1

1− λ

)α−1

· EA
Y DS(JA

P
)
.
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Consider set P ∗ = {p∗1, . . . p
∗
k−1, p

′
k, . . . , p

′
n} with p∗i = pi − ηi(qi − pi) for all j ∈ [k − 1].

There holds

EY DS(JA
P
) ≤ (1 + λ)α−1EY DS(JP∗) ≤ (1 + λ)α−1EY DS(JA). (7)

By having c = 1
(1+λ) , and J = JP ∗ (ri = p∗i ) in Lemma 1, we obtain J ′ = JP . Since we

have ηj < λ for all j < k, the first inequality in (7) holds. For every job i ∈ A there holds
(ri, d) ⊆ (p∗i , d). More specifically, a feasible schedule for JA is feasible for JP ∗ as well. The
second inequality in (7) then directly follows by the optimality of Y DS.

Putting things together we therefore have

EA
CDSwP ≤

(

1 + λ

1− λ

)α−1

· EA
YDS(JA), (8)

Step 2: In this step, we want to compare EA
Y DS(JA)

with the energy of Y DS algorithm for

a new job instance in which we consider the real release times for some jobs in set B that
their shrinking predictions are after their real release times.

A job instance J l is defined, consisting of the real release times of jobs in set A, the real
release times of job j in set B for which rj ≤ p′j, and the shrunk prediction (p′j) for the rest.
Since moving the release times of the future jobs to the left could increase the speed (and
hence increases energy) in the first part,

EA
Y DS(JA) ≤ EA

Y DS(J l).

Step 3: In the last step, we want to compare EA
YDS(J l)

with the optimum offline algorithm

(Y DS) for the complete job instance J and their real release time JR. We want to show

EA
Y DS(J l) ≤ EJ

Y DS(J l) ≤ EJ
Y DS(JR).

The first inequality holds because A ⊆ J . Consider the difference between two job in-
stances JR and J l. Since for each job i, its available time in JR is a subset of its available time
in J l, Y DS(JR) is a feasible algorithm for job instance J l. Therefore, the second inequality
holds.

So far we proved that

EA
CDSwP ≤

(

1 + λ

1− λ

)α−1

· EJ
Y DS(JR).

Since we run qOA for the job set B,

EB
CDSwP = EB

qOA(JR) ≤ EJ
qOA(JR).
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And by Lemma 8,

ECDSwP ≤ 2α−1 · (

(

1 + λ

1− λ

)α−1

· EJ
Y DS(JR) + EJ

qOA(JR)).

Since EJ
Y DS(JR) ≤ EJ

qOA(JR),

ECDSwP ≤ 2α−1 · (EqOA)(

(

1 + λ

1− λ

)α−1

+ 1)

≤ 2α
(

1 + λ

1− λ

)α−1

· (EqOA).

Lemmas 9 and 11 together imply Theorem 2.

5 Discussion on Confidence Parameters λ and µ

In order to give some intuition on how the confidence parameters µ and λ affect the obtained
performance guarantees of SwP, we perform some numerical experiments for different set-
tings. Moreover, we compare our algorithm with the currently best-known online algorithm
qOA and the optimum offline algorithm YDS using real-world data. All experiments were
run on a typical laptop computer.

We only consider α = 3 for the experiments, as this is the typical value of α for real-world
processors, see for example [15,31]. Furthermore for qOA, we only consider q = 2− 1

α ≈ 1.667
since this is the value that minimizes the competitive ratio [11].

The input data for our experiments is the same as in [1]. There, jobs are generated from
http requests received on EPAs web-server. For practical reasons, we limit our input instances
to the first 1000 jobs of their sample. In order to generate predictions for the input, we use
a normal distribution with a mean of 0, and a standard deviation of 0.01, 0.05, or 0.1. For
each job, two samples from this distribution are taken and each of them is scaled by the real
interval length of the job. The result is then added to each job’s actual release time and
deadline to obtain predictions for them.

In order to illustrate the effect of parameters λ and µ, we run SwP for different combi-
nations of these values. In particular we consider λ = 0, 0.1, 0.2, 0.3 and µ = 0.1, 0.2, · · · , 1.
Our results with standard deviations 0.01, 0.05, 0.1 can be found in Figure 3, Figure 4, and
Figure 5 respectively.

To gain some intuition on the results, recall that µ denotes the portion of each block for
which AVR is run. In particular, for µ = 1 the SwP algorithm becomes identical to the
AVR algorithm and disregards the predictions, whereas the smaller µ’s value the more the
predictions are trusted. This explains why the competitive ratio increases with µ. Similarly,
recall that λ defines how much the predicted interval will be shrunk and that the improved
competitive ratio is only proven for η ≤ λ but on the other hand the bigger λ gets the smaller
that improvement in the competitive ratio will be. Although the best choices for λ and µ
depend on the quality and/or structure of the predictions, our experiments highlight that for
appropriate such choices, one can significantly improve upon the energy-consumption of qOA.
To summarize, in practice the most sensible settings of λ and µ will depend on the quality
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as well as structure of the predictions and it may be worthwhile experimenting with different
such settings.

6 Conclusion

In this paper, we have presented a consistent, smooth, and robust algorithm for the general
classical, deadline-based, online speed-scaling problem using ML predictions for release times
and deadlines.

We can remove the assumption of knowing the number of jobs n, by slightly adapting the
error definition, so that the prediction is considered to be inadequate if the predicted number
of jobs is wrong.

It remains an interesting open question on whether a similar robust, consistent and smooth
algorithm exists for the more general setup in which the workloads of the jobs are not known
in advance but predicted along with their release times and deadlines. Although we were able
to extend SwP under the assumption that it satisfies a natural monotonicity property, it is
unclear if that property holds in general.
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A Energy of the Shrunk Instances

Lemma 1. Consider a common deadline instance J , and another common deadline instance
Ĵ constructed from J such that every job ĵi ∈ Ĵ has workload ŵi = wi, d̂ = d, and r̂i =
ri + (1− ci) · (d− ri) for some shrinking parameter 0 ≤ ci < 1. Set c = maxi ci. Then,

EY DS(Ĵ ) ≤ (1/c)α−1EY DS(J ).

Proof. In order to prove the theorem, we start with schedule CY DS(J ), in which each job ji
runs at a speed si. It suffices to show that there exists a feasible to schedule C ′(Ĵ ) for the
jobs of Ĵ in which each job ĵi runs at speed of ŝi =

1
c · si. The theorem then directly follows

by the definitions of the energy and the power function.
It is without loss of generality to assume that both CY DS(J ) and C ′(Ĵ ) are earliest release

time first schedules.Let ai be the timepoint at which ji starts being processed in CY DS(J ),
and let âi = d− c(d− ai) = d(1− c) + cai. Note that by construction, feasibility of CY DS(J )
and because c < 1, we have that ai ≥ ri and therefore âi = d(1− c)+ cai ≥ d(1− c)+ cri = r̂i.
Consider earliest release time first schedule C(Ĵ ) in which every job ji is processed at a speed
of ŝi.

In the remainder of this proof we show by induction, that in C ′(Ĵ ) every job ĵi starts
at âi. For the base case, it can be easily shown than in the optimal EDF schedule j1 starts
at r1 and therefore a1 = r1. It follows that â1 = r̂1 and the job can feasibly start executing
at â1. Assume that in C ′(Ĵ ) the first (according to release time) i many jobs start at their
respective âi’s. Then, in order to show that ĵi+1 starts at âi+1 it suffices to show that
ĵi finishes its execution before âi+1. Clearly ji finishes its execution no later than ai+1.
Therefore, ai + wi/si ≤ ai+1. In turn,

âi + wi/s
′
i = di(1− c) + cai + c(wi/si) ≤

di(1− c) + cai+1 = âi+1.

and ĵi+1 can start at âi+1. A similar argument shows that ĵn finishes before d̂ and feasibility
and therefore the proof of the theorem follows.

Lemma 2. Consider a (general) instance J , and another instance Ĵ in which every job
ji ∈ J corresponds to a job ĵi ∈ Ĵ with workload ŵi = wi, r̂i = ri +

1−c
2 · (di − ri) and

d̂i = di −
1−c
2 · (di − ri) for some shrinking parameter 0 ≤ c < 1. Then,

EY DS(Ĵ ) ≤ (1/c)α−1EY DS(J ).

Proof. We may assume that CY DS(J ) is an earliest deadline first schedule in which every job
ji runs at a speed of si. It suffices to show that there exists a feasible schedule C ′(Ĵ ) for the
jobs of Ĵ in which each job ĵi runs at a speed of ŝi =

1
c · si. Let the jobs be ordered by their

deadlines.
Consider an earliest deadline first schedule C ′(Ĵ ) in which every job ĵi runs at a speed of

ŝi. For a job k and a job i ≤ k, let ti(k) be the amount of time during which i is processed
within (rk, dk). Similarly we can define t̂i(k). It suffices to show that for every job jk and
every i < k there holds

t̂i(k) ≤ c · ti(k).
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Assume for the sake of contradiction that this does not hold, and let jk and ji be the first
pair of jobs for which it is not true. For this to be the case we must have ri ≤ rk ≤ di ≤ dk
and r̂i ≤ r̂k ≤ d̂i ≤ d̂k. The reason is that if the intervals are disjoint or the interval of one
job contains the other in any schedule then the inequality directly holds. So let z = rk − ri
and ẑ = r̂k − r̂i. By construction it must be that ẑ ≥ cz. Therefore and by the assumption
that k and i are the first such pair, more of job ĵi runs in ẑ than of job ji in z. This leads to
a contradiction since there is less of job ĵi left to run after r̂k

B Calculating the yti’s

First we show the following lemma.

Lemma 12. For any given 0 ≤ X ≤ ℓ(j)maxt∈[rj ,dj)(Vt(j) + δj)/µ there exist values ytj,
with 0 ≤ ytj ≤ δj so that equations (4),(5) and (3) are satisfied for all t ∈ [rj , dj), with X in

place of Xj . Furthermore for any t, t′ with ytj ≤ yt
′

j there holds Vt′(j) ≤ Vt(j), and
∑

ytj is a
continuous and non-decreasing function in X.

Proof. If X/ℓ(j) < mint∈[rj ,dj) Vt(j)/µ, then it is easy to verify that ytj = δj for all t ∈ [rj, dj)
satisfies all equations. So we assume for the remainder of this proof that mint∈[rj ,dj) Vt(j)/µ ≤
X/ℓ(j) ≤ maxt∈[rj ,dj)(Vt(j) + δj)/µ.

For any t ∈ [rj , dj), let

ytj :=











0, if Vt(j)/µ ≥ X/ℓ(j),

δj, if (Vt(j) + δj)/µ ≤ X/ℓ(j),

µX/ℓ(j)− Vt(j), otherwise.

(9)

It is easy to verify that for the above definition of ytj, equations (4), (5) and (3) are satisfied

with X in place of Xj, and that for any t, t′ with ytj ≤ yt
′

j there holds Vt′(j) ≤ Vt(j). Finally,
∑

ytj is a continuous function as a sum of a finite number of continuous functions, and non-
decreasing in X (as each ytj is by definition a non-increasing function of X).

Lemma 13. For any set of values Vt(j), there exist values ytj, with 0 ≤ ytj ≤ δj so that
equations (4),(5) and (3) are satisfied for all t ∈ [rj , dj).

Proof. Note that it suffices to show that there exists Xj = wj −
∑

t y
t
j where the ytj are as

defined in the proof of Lemma 12, since then by Lemma 12 the equations (4),(5), and (3)
would hold for Xj = wj −

∑

t y
t
j.

First, let X = wj and compute the values of ytj via (9). If
∑

t y
t
j = 0 , then we have found

the desired X and are done. Assume therefore, that 0 <
∑

t y
t
j ≤ wj. By Lemma 12,

∑

t y
t
j is

a non-decreasing and continuous function of X within [0, wj ] that obtains value 0 for X = 0,
and a value ≤ wj for X = wj . Equivalently the function wj −

∑

t y
t
j is non-increasing and

continuous in X within [0, wj ] and obtains value wj for X = 0 and a value ≥ 0 for X = wj .
Therefore, by the intermediate value theorem there must exist an Xj ∈ [0, wj ], such that
wj −

∑

t y
t
j obtains a value of Xj , which concludes the proof of the lemma.
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B.1 Algorithm

Lemmas 12 and 13 directly imply an algorithm for identifying such values of ytj. In particular,

since for any t, t′ with ytj ≤ yt
′

j there holds Vt′(j) ≤ Vt(j), we can order all relevant t’s by
Vt(j) and find (through enumeration) t′, t′′ such that for any Vt(j) ≥ V ′

t (j) we have ytj = 0,
for any Vt(j) ≤ Vt′′(j), y

t
j = δj and for all other t there holds 0 < ytj < δj . Let N be the

number of t’s such that ytj = δj , and Z = wj −Nδj be the remaining processing volume that
needs to be assigned through the ytj’s for t’s with Vt′′(j) < Vt(j) < Vt′(j). In other words we
need to find 0 < ytj < δj so that Z −

∑

t y
t
j = Xj , and for each individual such ytj, we have

ytj = µXj/ℓ(j) − Vt(j). This implies a system of k + 1 equations (for some k) with k + 1
unknowns, that by Lemma 13 has a solution assuming that t′, t′′ were chosen correctly.

C Combining Online Scheduling Algorithms

The proof of the following lemma is an adaptation of the proof of a similar result used in the
analysis of the Average Rate algorithm for the problem (see [10, 32]). However we reprove
it here, since (i) we obtain a more general result, and (ii) our respective schedules do not
necessarily satisfy all the properties of the corresponding schedules in [10,32].

Lemma 8. Consider a partition of the job set of instance J into m job sets J1, J2, . . . Jm,
and furthermore consider m schedules C1, C2, . . . Cm with speed functions s1(t), s2(t), . . . sm(t)
respectively, such that Ci is a feasible schedule for Ji for all i = 1, . . . m. Then there exists
a schedule C with speed function sC(t) =

∑

i si(t) that is feasible for the complete job set J
and has an energy consumption of EC ≤ mα−1

∑

i Ei, where for each i, Ei =
∫

t si(t)
αdt is the

energy consumption of the respective schedule.

Proof. Regarding feasibility, consider a partitioning of the time horizon defined by the points
T = ∪i{ri, di}. Let t1, t2, . . . be the points of T ordered from left to right. By definition of
sC(t) we have that

∫ ti+1

ti
sC(t)dt =

∑

i

∫ ti+1

ti
si(t). Consider schedule C that processes in every

interval (ti, ti+1) the same amount of volume for each job j as the corresponding schedule Ck

with j ∈ Ck does in this interval. The jobs inside such an interval (ti, ti+1) are processed in
an arbitrary order (this is possible because the interval does not contain any release times or
deadlines). Assume for the sake of contradiction that C is not feasible for J . Then there must
exist a job j ∈ Ck that misses its deadline dj = tℓ. This contradicts the feasibility of Ck since
C processes exactly the same amount of job j in every interval (ti, ti+1) for i = 0, . . . ℓ− 1 as
Ck.

With respect to the energy consumption, we have:

EC =

∫

t

(

∑

i

si(t)

)α

dt.

Note that for all i,
∫

t si(t)
αdt ≤ Ei. The lemma now follows since

∫

t

(

∑

i

si(t)

)α

dt ≤ mα−1

∫

t

(

∑

i

si(t)
α

)

dt = mα−1

(

∑

i

Ei

)

,

where the first inequality follows by Jensen’s inequality.
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