
Faster Pattern Matching under Edit Distance
A Reduction to Dynamic Puzzle Matching and
The Seaweed Monoid of Permutation Matrices

Panagiotis Charalampopoulos
Reichman University, Herzliya, Israel

pcharalampo@gmail.com

Tomasz Kociumaka
University of California, Berkeley, U.S.

kociumaka@berkeley.edu

Philip Wellnitz
Max Planck Institute for Informatics, SIC, Saarbrücken, Germany

wellnitz@mpi-inf.mpg.de

Abstract
We consider the approximate pattern matching problem under the edit distance. Given a text T of length n, a
pattern P of length m, and a threshold k, the task is to find the starting positions of all substrings of T that can
be transformed to P with at most k edits. More than 20 years ago, Cole and Hariharan [SODA’98, J. Comput.’02]
gave an O(n+ k4 · n/m)-time algorithm for this classic problem, and this runtime has not been improved since.

Here, we present an algorithm that runs in time O(n+ k3.5√logm log k · n/m), thus breaking through this
long-standing barrier. In the case where n1/4+ε ≤ k ≤ n2/5−ε for some arbitrarily small positive constant ε, our
algorithm improves over the state-of-the-art by polynomial factors: it is polynomially faster than both the algorithm
of Cole and Hariharan and the classic O(kn)-time algorithm of Landau and Vishkin [STOC’86, J. Algorithms’89].

We observe that the bottleneck case of the alternative O(n+ k4 · n/m)-time algorithm of Charalampopoulos,
Kociumaka, and Wellnitz [FOCS’20] is when the text and the pattern are (almost) periodic. Our new algorithm
reduces this case to a new dynamic problem (Dynamic Puzzle Matching), which we solve by building on tools
developed by Tiskin [SODA’10, Algorithmica’15] for the so-called seaweed monoid of permutation matrices. Our
algorithm relies only on a small set of primitive operations on strings and thus also applies to the fully-compressed
setting (where text and pattern are given as straight-line programs) and to the dynamic setting (where we maintain
a collection of strings under creation, splitting, and concatenation), improving over the state of the art.

Õ
(n

+
k

3.
5),

Th
is
wo

rk

O(kn
), [L

V89
]

O
(n

+
k

4),
[C
H
02
]

Ω(k
2) [
BI
18
]

k
≈

1

k
≈
n
1/

4

k
≈
n
2/

7

k
≈
n
1/

3

k
≈
n
2/

5

k
≈
n
1/

2

k
≈
n

t(n, k) ≈ n

t(n, k) ≈ n4/3

t(n, k) ≈ n7/5

t(n, k) ≈ n2

Figure 1 The running time t(n, k) of algorithms for the approximate pattern matching problem under the edit distance
as a function of k for the important special case where m = Θ(n). The scale is doubly logarithmic and sub-polynomial
factors are hidden; running times below n and above n2 are not relevant, neither are values of k that lie above n. Any
point that lies strictly to the bottom-right of the green line segment is unattainable unless SETH fails.

Funding Panagiotis Charalampopoulos: Partly supported by Israel Science Foundation grant 810/21.
Tomasz Kociumaka: Partly supported by NSF 1652303, 1909046, and HDR TRIPODS 1934846 grants, and an Alfred P.
Sloan Fellowship.

ar
X

iv
:2

20
4.

03
08

7v
1

 [
cs

.D
S]

 6
 A

pr
 2

02
2

https://orcid.org/0000-0002-6024-1557
mailto:pcharalampo@gmail.com
https://orcid.org/0000-0002-2477-1702
mailto:kociumaka@berkeley.edu
https://orcid.org/0000-0002-6482-8478
mailto:wellnitz@mpi-inf.mpg.de

0 Faster Pattern Matching under Edit Distance

Contents

1 Introduction 1
1.1 Related Work . 3
1.2 Open Problems . 3
1.3 Technical Overview . 4

2 Preliminaries 12
2.1 The PILLAR Model . 15
2.2 An Overview of an O(k4)-Time Algorithm for Pattern Matching with Edits in the PILLAR Model 17

Part I: From NewPeriodicMatches to DynamicPuzzleMatching
3 The NewPeriodicMatches Problem 20

3.1 Computing Occurrences in the Periodic Case: Preprocessing and Simplifications 20
3.2 A First Algorithm for NewPeriodicMatches . 22

4 Using DynamicPuzzleMatching for Algorithms for NewPeriodicMatches 26
4.1 Special Puzzle Pieces and How to Compute Them Efficiently 30
4.2 Solving NewPeriodicMatches via DynamicPuzzleMatching: A Warm-up Algorithm . 36
4.3 Solving NewPeriodicMatches via DynamicPuzzleMatching, Improvement 0: Replacing

Pair Substitutions with Pair Insertions and Pair Deletions . 38
4.4 Solving NewPeriodicMatches via DynamicPuzzleMatching, Improvement 1: Trimming

Long Perfectly Periodic Segments . 39

5 Faster NewPeriodicMatches: Additional Combinatorial Insights 48
5.1 Locked Fragments and their Properties . 48
5.2 Analyzing the Text Using Locked Fragments . 49

6 A Faster Algorithm for NewPeriodicMatches 52
6.1 Computing Occurrences Starting at Heavy Positions . 52
6.2 Computing Occurrences Starting at Light Positions . 53
6.3 Combining the Partial Results: Faster NewPeriodicMatches 63

7 Faster Approximate Pattern Matching in Important Settings 66
7.1 An Algorithm for the Standard Setting . 67
7.2 An Algorithm for the Dynamic Setting . 67
7.3 An Algorithm for the Fully Compressed Setting . 68

Part II: Seaweeds
8 The Seaweed Monoid of Permutation Matrices 70

8.1 Alignment Graphs and Distance Matrices . 71
8.2 Restriction of Permutation Matrices . 73
8.3 Computing the Seaweed Matrix . 77

9 Applications of Seaweeds 80

References 87

A Notation Overview for Part I 90

B Notation Overview for Part II 92

P. Charalampopoulos, T. Kociumaka, and P. Wellnitz 1

1 Introduction

Almost every introductory algorithms textbook covers the pattern matching problem: in a given text T
of length n, we wish to find all occurrences of a given pattern P of length m. As fundamental as both
this problem and its solutions are by today, as apparent are their limitations: a single surplus or missing
character in the pattern (or in a potential occurrence) results in (potentially all) occurrences being
missed. Hence, a large body of work focuses on approximate pattern matching, where we want to identify
substrings of the text that are close to the pattern. In particular, in this paper, we consider a classic
variant of approximate pattern matching where we allow for up to k insertions, deletions, and substitutions
(collectively: edits); that is, we consider approximate pattern matching under the edit distance.

Formally, for two strings X and Y , their edit distance (also known as the Levenshtein distance)
δE(X,Y), is the minimum number of insertions, deletions, and substitutions of single characters required
to transform X into Y . Now, in the pattern matching with edits problem, for a given text T , pattern P ,
and an integer threshold k > 0, the task is to find the starting positions of all k-error (or k-edit)
occurrences of P in T . Specifically, we wish to list all positions v in T such that the edit distance between
T [v . .w) = T [v]T [v + 1] · · ·T [w − 1] and P is at most k for some position w; we write OccEk (P, T) to
denote the set of all such positions v.

Let us highlight the main prior results for pattern matching with edits; for a thorough review of
other (in particular) early results on pattern matching with edits, we refer to the extensive survey of
Navarro [Nav01]. Back in 1980, Sellers [Sel80] demonstrated how the standard dynamic-programming
algorithm for computing δE(P, T) can be adapted to an O(nm)-time algorithm for the pattern matching
with edits problem. Around the same time, Masek and Paterson [MP80] reduced the running time by a poly-
logarithmic factor using the Four-Russians technique. Only several year later, Landau and Vishkin [LV88]
presented an O(nk2)-time solution, which they could then improve to the—by now—classic “kangaroo
jumping” algorithm that solves this problem in O(nk) time [LV89]. In search of even faster algorithms,
Sahinalp and Vishkin [SV96] developed an algorithm that runs in time O(n+ nk8+1/3(log∗ n)1/3/m1/3)—
this algorithm was then improved by Cole and Hariharan [CH02], who gave an O(n+k4n/m)-time solution,
which is asymptotically faster than the aforementioned Landau–Vishkin algorithm when k = o(3

√
m), and

in that setting also the fastest known algorithm even today.
From a lower-bound perspective, we can benefit from the discovery that the classic quadratic-time

algorithm for computing the edit distance of two strings is essentially optimal: Backurs and Indyk [BI18]
recently proved that any polynomial-factor improvement would yield a major breakthrough for the
satisfiability problem. For pattern matching with edits, this means that there is no hope for an algorithm
running in time O(n+ k2−εn/m) for any constant ε > 0: given an O(n+ k2−εn/m)-time algorithm for
pattern matching with edits, we could compute the edit distance of any two given strings X and Y of total
length N over an alphabet Σ in time O(N2−ε logN). Specifically, we pad X and Y to P := $2NX$2N and
T := $2NY $2N , where $ /∈ Σ. Now, as minv,w δE(P, T [v . .w)) = δE(P, T) = δE(X,Y), we can binary
search for the smallest value of k such that OccEk (P, T) is not empty.

Despite the large gap between the quadratic and bi-quadratic dependency on k, no further advancements
have been made to settle the running time of the pattern matching with edits problem. In particular, there
has not even been any progress on resolving the 24-year-old conjecture of Cole and Hariharan [CH02]
that an O(n + k3n/m)-time algorithm should be possible—until now. We give the first algorithm that
improves over the running time achieved by Cole and Hariharan [CH02]:

Main Theorem 1. Given a text T of length n, a pattern P of length m, and an integer threshold
k > 0, we can compute the set OccEk (P, T) in O(n+ n/m · k3.5√logm log k) time.

2 Faster Pattern Matching under Edit Distance

Observe that if k is roughly between n1/4 and n2/7, we obtain the first linear-time algorithm for the
important special case where text and pattern are close in length. Further, we still obtain polynomial
improvements in the running time for values of k that are roughly less than n2/5. Consult Figure 1 for a
graphical comparison of the running times of our algorithm with the previous state-of-the-art and the
conditional lower bound discussed above.

The PILLAR Model and Faster Algorithms in Other Settings

Our approach is reasonably general and allows for an easy adaption to different settings (where the text
and the pattern are not given explicitly). In particular, we follow the approach by Charalampopoulos,
Kociumaka, and Wellnitz [CKW20] and implement the algorithm in the so-called PILLAR model. In that
model, one bounds the running times of algorithms in terms of the number of calls to a small set of very
common operations (the PILLAR operations) on strings, such as computing the length of their longest
common prefix. Then, for any setting, an efficient implementation of the PILLAR operations yields a fast
algorithm for approximate pattern matching. For pattern matching with edits, [CKW20] presented an
algorithm that runs in O(n/m · k4) time in the PILLAR model. We improve upon their algorithm.

Main Theorem 2. Given a pattern P of length m, a text T of length n, and an integer threshold
k > 0, we can compute a representation of the set OccEk (P, T) as O(n/m · k3) arithmetic progressions with
the same difference in O(n/m · k3.5√logm log k) time in the PILLAR model.

Consistently with [CKW20], we represent the output set OccEk (P, T) as O(k3) disjoint arithmetic
progressions with a common difference. Unless P is almost periodic, though, OccEk (P, T) is of size O(k2),
and we can report OccEk (P, T) explicitly; see [CKW20] for a structural characterization of OccEk (P, T).

Now, in the standard setting, where the text and the pattern are both given explicitly, after an
O(n)-time preprocessing, we can perform each primitive PILLAR operation in constant time. We thus
instantly obtain Main Theorem 1. The same PILLAR implementation remains valid in the internal setting
introduced in [KRRW15]. Specifically, after a linear-time preprocessing of an input string X, the algorithm
of Main Theorem 2 can efficiently compute OccEk (P, T) for any two fragments P, T of the string X.

In Section 7, we show that existing implementations of the primitive operations of the PILLAR model
allow us to also obtain efficient algorithms for pattern matching under edit distance in the fully-compressed
setting (where the text and the pattern are given as straight-line programs) and in the dynamic setting
(where we maintain a collection of strings under creation, splitting, and concatenation). Our algorithms
improve over the state-of-the-art algorithms of [CKW20] for these settings: we trade a

√
k factor for a

factor that is asymptotically upper-bounded by the logarithm of the length of the considered pattern.
Formally, we obtain the following results.

Main Theorem 3. We can maintain a collection X of non-empty persistent strings of total length
N subject to makestring(U), concat(U, V), and split(U, i) operations that require O(logN + |U |),
O(logN), and O(logN) time, respectively, so that given two strings P, T ∈ X , and an integer threshold
k > 0, we can compute a representation of OccEk (P, T) as O(|T |/|P | · k3) arithmetic progressions with the
same difference in time O(|T |/|P | · k3.5

√
log |P | log k log2N).1

Main Theorem 4. Let GT denote a straight-line program of size n generating a string T , let GP denote a
straight-line program of size m generating a string P , let k > 0 denote an integer threshold, and set N := |T |
and M := |P |. We can compute |OccEk (P, T)| in time O(m logN + nk3.5 log2N

√
logM log k log logN)

and we can report the elements of OccEk (P, T) within O(|OccEk (P, T)|) extra time.

1 All running time bounds hold with high probability (that is, 1− 1/NΩ(1)). A deterministic version can be obtained at
the cost of a poly(log logN)-factor overhead.

P. Charalampopoulos, T. Kociumaka, and P. Wellnitz 3

1.1 Related Work

Pattern Matching with Mismatches. The Hamming distance of two (equal-length) strings is the number
of positions where the strings differ. This metric is more restrictive than edit distance since it allows
substitutions but does not support insertions or deletions.

In the pattern matching with mismatches problem, we are given a text T of length n, a pattern P
of length m, and an integer threshold k > 0, and we wish to compute the k-mismatch occurrences
of P in T , that is, all length-m substrings of T that are at Hamming distance at most k from P . This
problem has been extensively studied since the 1980s. A long line of works [Abr87, Kos87, LV86, GG86,
ALP04, CFP+16, GU18, CGK+20] has culminated in an Õ(n + kn/

√
m)-time algorithm, presented by

Gawrychowski and Uznański [GU18], who also showed that a significantly faster “combinatorial” algorithm
would have (unexpected) consequences for the complexity of Boolean matrix multiplication. Pattern
matching with mismatches on strings is thus well understood in the standard setting.

As shown in [CKW20], pattern matching with mismatches admits an Õ(k2 · n/m)-time algorithm in
the PILLAR model. Analogously to pattern matching with edits, this solution constitutes the basis of the
state-of-the-art algorithms in the internal, fully-compressed, and dynamic settings.

Online Algorithms for Pattern Matching with Edits. The pattern matching with edits problem has also
been considered in the online setting where the text arrives character by character and, by the time T [w]
becomes available, the algorithm needs to decide whether minv δE(P, T [v . .w)) ≤ k. Landau, Myers, and
Schmidt [LMS98] provided an online algorithm that runs in O(k) time per character. Subsequent work
focused on the streaming model, whether the main emphasis is on reducing the space complexity of an
online algorithm, usually at the cost of introducing Monte-Carlo randomization. Starikovskaya [Sta17]
presented an algorithm for this setting with both the space usage and the time required to process each
character of the text being proportional to

√
m(k logm)O(1). Very recently, Kociumaka, Porat, and

Starikovskaya [KPS21], improved upon this result, presenting an algorithm that uses Õ(k5) space and
processes each character of the text in Õ(k8) amortized time; here, Õ(?) hides logO(1)m factors.

Approximating Pattern Matching with Edits. Chakraborty, Das, and Koucký [CDK19] presented an
Õ(nm3/4)-time algorithm that produces, for each position w of the text, a constant factor approximation
of minv δE(P, T [v . .w)). They also provided an online algorithm with a weaker approximation guarantee.

1.2 Open Problems

The most important and obvious open problem is to close the gap between upper and lower bounds for the
pattern matching with edits problem; as is depicted in Figure 1. In the quest for faster algorithms, one
could try to relax the problem in scope, for instance, by considering its (easier) decision version where we
only need to check whether OccEk (P, T) is empty, or by allowing for some approximation by also reporting
an arbitrary subset of the positions in OccE(1+ε)k(P, T) \OccEk (P, T) for a small ε > 0.

Another research direction could be to devise an algorithm with an analogous running time as the one
presented here that reports all fragments of T that are at edit distance at most k from P (in appropriate
batches); recall that OccEk (P, T) is only the set of the starting positions of such fragments. While we
think that the O(k4 · n/m)-time PILLAR algorithm of [CKW20] can be generalized to report all such
fragments, our Õ(k3.5 · n/m)-time solution does not seem to generalize. We remark that Landau, Myers,
and Schmidt [LMS98] showed that all the sought fragments can be listed in O(nk) time; for this, they
adapted the algorithm of [LV89].

4 Faster Pattern Matching under Edit Distance

1.3 Technical Overview
For a string P (also called a pattern), a string T (also called a text), and an integer k > 0 (also called
a threshold), we say that P has a k-error occurrence in T at position v if we have δE(P, T [v . .w)) ≤ k
for some w ≥ v. We write OccEk (P, T) to denote the set of the starting positions of k-error occurrences
of P in T , that is, OccEk (P, T) := {v : ∃w≥v δE(P, T [v . .w)) ≤ k}. We now formally state the pattern
matching with edits problem.

PMwithEdits(P, T, k)
Input: A pattern P of length m, a text T of length n, and a positive integer k ≤ m.
Output: The set OccEk (P, T).

The NewPeriodicMatches Problem

Let us start with a short exposition of parts of our notation.2 A string S is primitive if it cannot be
expressed as Uy for a string U and an integer y > 1. For two strings U and V , we write δE(U, V ∗) :=
min{δE(U, V∞[0 . . j)) : j ∈ Z≥0} to denote the minimum edit distance between U and any prefix of
V∞ = V · V · · · . Further, we write δE(U, ∗V ∗) := min{δE(U, V∞[i . . j)) : i, j ∈ Z≥0, i ≤ j} to denote the
minimum edit distance between U and any substring of V∞.

As we explain in Sections 2.2 and 3.1, a recent algorithm of Charalampopoulos, Kociumaka, and
Wellnitz [CKW20] reduces the PMwithEdits problem to several instances of the following restricted
variant; the reduction takes O(n/m · k3) time in the PILLAR model.

NewPeriodicMatches(P, T, k, d,Q,AP ,AT)
Input: A pattern P of length m, an integer threshold k ∈ [0 . .m], a positive integer d ≥ 2k, a text T
of length n ∈ [m− k . .

⌈3/2m⌉+ k), a primitive string Q of length q := |Q| ≤ m/8d, an edit-distance
alignment AP : P Q∞[0 . . yP) of cost dP := δE(P, ∗Q∗) = δE(P,Q∗) ≤ d, and an edit-distance
alignment AT : T Q∞[xT . . yT) of cost dT := δE(T, ∗Q∗) ≤ 3d, where xT ∈ [0 . . q).
Output: The set OccEk (P, T) represented as O(d3) disjoint arithmetic progressions with difference q.

Specifically, [CKW20] implies the following reduction.

Fact 1.1. Let P denote a pattern of length m, let T denote a text of length n, and let k ≤ m denote
a positive integer.

We can compute a representation of the set OccEk (P, T) as O(n/m ·k3) disjoint arithmetic progressions
with the same difference in time O(n/m ·k3) in the PILLAR model plus the time required for solving several
instances NewPeriodicMatches(Pi, Ti, ki, di, Qi,APi ,ATi), where

∑
i |Pi| = O(n) and, for each i, we

have |Pi| ≤ m and di = d8k/m · |Pi|e.

Remark 1.2. In the case where Fact 1.1 is applied to an instance of the PMwithEdits problem
such that the pattern P is approximately periodic, the input (Pi, Ti, ki, di, Qi,APi ,ATi) to each produced
instance of NewPeriodicMatches satisfies the following conditions: Pi = P , Ti is a fragment of T ,
ki = k, and d = O(k). For the purposes of this technical overview, one can focus solely on that case.

Using the algorithm PeriodicMatches(P , T , k, d, Q) of [CKW20, Lemma 6.11] to solve the New-
PeriodicMatches problem in O(d4) time in the PILLAR model, the time (in the PILLAR model) required

2 See also Section 2, where we provide a comprehensive exposition of the notation used throughout this paper, including
those we consider standard. Further, consider the notation tables at the very end of this paper for a quick reference for
the most important notations.

P. Charalampopoulos, T. Kociumaka, and P. Wellnitz 5

for solving all instances of the NewPeriodicMatches problem that are generated by Fact 1.1 is∑
i

O(d4
i) =

∑
i

O(k4/m4 · |Pi|4) =
∑
i

O(k4/m · |Pi|) = O(n/m · k4).

In particular, we can reinterpret the O(n/m · k4)-time algorithm of [CKW20] for the PMwithEdits
problem as a combination of Fact 1.1 and PeriodicMatches(P , T , k, d, Q). Our main contribution is
the following faster algorithm for the NewPeriodicMatches problem.

Lemma 1.3 (NewPeriodicMatches(P, T, k, d, Q, AP , AT)). We can solve the NewPeriodic-
Matches problem in O(d3.5√logn log d) time in the PILLAR model.

By combining Fact 1.1 and Lemma 1.3, we obtain Main Theorem 2.

Main Theorem 2. Given a pattern P of length m, a text T of length n, and an integer threshold
k > 0, we can compute a representation of the set OccEk (P, T) as O(n/m · k3) arithmetic progressions with
the same difference in O(n/m · k3.5√logm log k) time in the PILLAR model.

Proof. By Fact 1.1, in O(n/m · k3) time, we can reduce the PMwithEdits problem to several instances
NewPeriodicMatches(Pi, Ti, ki, di, Qi,APi ,ATi), where

∑
i |Pi| = O(n) and, for each i, we have

|Pi| ≤ m and di = d8k/m · |Pi|e. By Lemma 1.3, the time required for solving all of the obtained instances
(in the PILLAR model) is∑

i

O(d3.5
i

√
log |Ti| log di) =

∑
i

O(k3.5/m3.5 · |Pi|3.5
√

logm log k)

=
∑
i

O(k3.5/m · |Pi|
√

logm log k)

= O(n/m · k3.5
√

logm log k).

A Fast Algorithm for the NewPeriodicMatches Problem

We continue with a high-level description of the algorithm that underlies Lemma 1.3. In what follows, for
simplicity, we assume that m/k � q � k and that both Q∞[0 . . yP) and Q∞[xT . . yT) are powers of Q.

A First Solution via the DynamicPuzzleMatching Problem. Let us first discuss how the (almost)
periodicity of P and T yields a simple way to filter out many potential starting positions of k-error
occurrences.

As an introductory example, suppose that P and T are perfectly periodic with period Q, that is,
P = Q∞[0 . .m) and T = Q∞[0 . .n). Observe that in this special case, AP and AT are cost-0 alignments
(that is, dT = dP = 0), and we have m = yP , 0 = xT , and n = yT . Next, we argue that all k-error
occurrences of P in T start around the positions in T where an exact occurrence of Q starts, that is, in
the intervals [jq − k . . jq + k] for j ∈ Z.3 To that end, observe that, for any alignment of cost at most k
mapping P to a fragment T [v . .w) of T , at least one of the copies of Q that comprise P must match
exactly; otherwise the edit distance would be much larger than k. Suppose that the i-th copy of Q, that
is, P [iq . . (i+ 1)q), is matched exactly. As Q is primitive and hence does not match any of its non-trivial
rotations, P [iq . . (i + 1)q) must be matched with a fragment T [i′q . . (i′ + 1)q) of T . As the entire
alignment makes at most k insertions and deletions, this implies that v ∈ [(i′ − i)q − k . . (i′ − i)q + k].

3 Under our earlier assumption that q � k, this claim indeed allows for filtering out some positions where no occurrence
may start as we have jq + k � (j + 1)q − k in that case.

6 Faster Pattern Matching under Edit Distance

S a p p r o x i m a t e p a t t e r n m a t c h i n g e d i t d i s t a n c e

a p p r o x i mS1

o x i m a tS2

i m a t e p a t t eS3

a t t e r n m a t c hS4

a t c h S5

a t c h i n g e d i t S6

e d i t d i s t a n c e S7

Figure 2 S1, . . . , S7 is a 4-puzzle whose value is S.

Now, the strings P and T are only almost periodic—in particular, the edits in AT and AP may widen
the intervals of potential starting positions, albeit only by a dT + dP ≤ 4d additive term. Since k < d, we
have OccEk ⊆

⋃
j∈Z[jq− 5d . . jq+ 5d]. Hence, for each j, we define a fragment Rj = T [rj . . r′j) of T that

is of lengthm+O(d) and, in the considered instance, is responsible for capturing k-error occurrences of P in
T that start in [jq−5d . . jq+5d]; specifically, we have rj+OccEk (P,Rj) ⊇ OccEk (P, T)∩[jq−5d . . jq+5d].
In addition, we identify a set J ⊆ Z of size O(m/q) such that OccEk (P, T) =

⋃
j∈J

(
rj + OccEk (P,Rj)

)
.

Our goal is to compute occurrences of P in each Rj separately. To that end, observe that both P and
all Rjs essentially decompose into (possibly slightly “edited”) copies of Q. In particular, for j, j + 1 ∈ J ,
we can obtain Rj+1 from Rj by replacing O(d) such “edited” copies. As a first step toward capturing
the notions of P and Rj decomposing into pieces and our algorithm replacing pieces of Rj , we define
∆-puzzles; consult Figure 2 for a visualization of an example of a ∆-puzzle.

Definition 1.4. For a ∆ ∈ Z≥0, we say that z ≥ 2 strings S1, . . . , Sz form a ∆-puzzle if
|Si| ≥ ∆ for each i ∈ [1 . . z], and
Si[|Si| −∆ . . |Si|) = Si+1[0 . . ∆) for each i ∈ [1 . . z).

The value of the puzzle is val∆(S1, . . . , Sz) := S1 · S2[∆ . . |S2|) · S3[∆ . . |S3|) · · ·Sz[∆ . . |Sz|).

In Section 4, we define pieces P1, . . . , Pz and Tj,1, . . . , Tj,z (for each j ∈ J) that form ∆-puzzles with
values P and Rj , respectively, where ∆ := 6(dP + dT + k). Let us intuitively describe these pieces.4 First,
let us partition both P and T into tiles, that is, maximal fragments that are aligned to different copies
of Q by AP and AT , respectively. Observe that all but O(d) tiles are exact copies of Q. Further, the
endpoints Rj are O(d) positions apart from tile boundaries. We then obtain an induced partition for Rj
by extending the first and last tiles that it fully contains by O(d) positions. Finally, we extend all tiles of
the partition of P and the induced partition of Rj , other than the trailing ones, by ∆ characters to the
right. Consult Figure 3 for a visualization of this setting.

We call pieces P2, . . . , Pz−1 and Tj,2, . . . , Tj,z−1 (for j ∈ J) internal. Observe that, for each i, all
internal pieces of the form Tj,i′ with j + i′ = i coincide; that is, overlapping parts of different Rjs share
their internal pieces. Hence, for each i ∈ (min J + 1 . . max J + z), we define Ti := Tj,i′ for any j ∈ J and
i′ ∈ (1 . . z) with j + i′ = i. This is an essential property for our approach to work: when moving from
Rj to Rj+1, we exploit that we need to only shift the pieces Ti, and not recompute them altogether.

Now, suppose that we can efficiently maintain a pair of ∆-puzzles so that we can at any time efficiently
query for the k-error occurrences of the value of the first puzzle in the value of the second one. Then,
as a warm-up solution, we can initialize the two puzzles as P1, . . . , Pz and Tmin J,1, . . . , Tmin J,z and then

4 This description provides an oversimplified definition of pieces. In particular, as defined in Section 4, P1 covers at least
2 tiles whereas Pz covers 17 tiles. This is due to complications arising without the assumption q � k.

P. Charalampopoulos, T. Kociumaka, and P. Wellnitz 7

Q∞ Q Q Q Q Q Q Q Q Q

P

T Rj

∆ ∆ ∆ ∆ ∆ ∆

Tj,3

Tj,5

Tj,7

Tj,6

Tj,1

. . .

∆ ∆ ∆ ∆ ∆ ∆

Tj,4

Tj,2

P1

P2

P3

P4

P5

P6

P7

Q∞ Q Q Q Q Q Q Q Q . . .

Figure 3 An alignment AP : P Q7 and an alignment AT : P Q9 are shown. Both P and T are partitioned
into tiles. Specifically, dashed lines indicate the copy of Q to which a tile of P (or T) is aligned by AP (or AT).
For example, AP aligns the shaded tile of P with the fifth copy of Q. The fragment Rj starts O(d) positions prior
to the start of the second tile of T and ends O(d) positions after the end of the eighth tile. The pieces P1, . . . , P7

and Tj,1, . . . , Tj,7 form ∆-puzzles with values P and Rj , respectively.

replace pieces of the second puzzle as necessary in order to iterate over puzzles Tj,1, . . . , Tj,z for all j ∈ J .
In fact, our final algorithm iterates over carefully trimmed versions of such puzzles, where we omit plain
pieces that do not contribute to the solution set in an interesting manner. Formally, we capture the
problem of maintaining such a pair of puzzles with the DynamicPuzzleMatching problem.

DynamicPuzzleMatching(k,∆,Sβ ,Sµ,Sϕ)
Input: Positive integers k and ∆, as well as string families Sβ , Sµ, and Sϕ of leading, internal, and
trailing pieces, respectively.
Maintained object: A sequence I = (U1, V1)(U2, V2) · · · (Uz, Vz) of ordered pairs of strings (a
DPM-sequence), that additionally satisfies the following two conditions:
(a) U1, V1 ∈ Sβ , Uz, Vz ∈ Sϕ, and, for all i ∈ (1 . . z), Ui, Vi ∈ Sµ,
(b) The torsion tor(I) :=

∑z
i=1
∣∣|Ui| − |Vi|∣∣ satisfies tor(I) ≤ ∆/2− k.

Update operations:
DPM-Delete(i): Delete the i-th pair of strings.
DPM-Insert((U ′, V ′), i): Insert the pair of strings (U ′, V ′) after the i-th pair of strings.
DPM-Substitute((U ′, V ′), i): Substitute the i-th pair of strings with the pair of strings (U ′, V ′).

It is assumed that I satisfies conditions (a) and (b) at initialization time and after each update.
Query (DPM-Query): Return OccEk (I) := OccEk (val∆(U1, . . . , Uz), val∆(V1, . . . , Vz)) under a promise
that U1, . . . , Uz and V1, . . . , Vz are ∆-puzzles.

We move on to our main result for the DynamicPuzzleMatching problem. For a precise statement,
we need to be able to quantify the complexity of the input families of strings; formally we define the
median edit distance of a family S of strings over an alphabet Σ as δE(S) := minŜ∈Σ∗

∑
S∈S δE(S, Ŝ).

Now, our result reads as follows.

8 Faster Pattern Matching under Edit Distance

Theorem 1.5. There is a data structure for DynamicPuzzleMatching(k,∆,Sβ ,Sµ,Sϕ) with
O(∆ log z log ∆)-time updates and queries, O(∆z log ∆)-time initialization, and O((d3 +∆2d) log2(d+∆))-
time preprocessing, where d = δE(Sβ) + δE(Sµ) + δE(Sϕ).5

Let us defer a detailed discussion of Theorem 1.5 (proved in Section 9) to the end of this overview.
Here, we discuss its application to the NewPeriodicMatches problem with the following string families.

Sβ := {P1} ∪ {Tj,1 : j ∈ J},
Sµ := {Pi : i ∈ (1 . . z)} ∪ {Ti : i ∈ (min J + 1 . . max J + z)},
Sϕ := {Pz} ∪ {Tj,z : j ∈ J}.

Next, we define multisets Special(P), Special(T), and Specialβϕ(T) of special pieces—in this overview, we
focus on the two former multisets. In our fixed instance, we have

Special(P) = {Pi : i ∈ (1 . . z) and Pi 6= Q∞[0 . . q + ∆)},
Special(T) = {Ti : i ∈ (1 + min J . . z + max J) and Ti 6= Q∞[0 . . q + ∆)}.

As mentioned earlier, there are only very few special pieces—crucially, we show the following lemma.

Lemma 1.6. The median edit distance of each of the families Sβ, Sµ, and Sϕ is bounded by O(d).
Further, each of the multisets Special(P), Special(T), and Specialβϕ(T) is of size O(d) and can be

computed in O(d) time in the PILLAR model.

For j ∈ J , let Ij denote the DPM-sequence (P1, Tj,1)(P2, Tj,2) · · · (Pz, Tj,z). Now for j ∈ J \max J ,
each of Ij and Ij+1 contains O(d) special pairs, that is, pairs that contain special pieces. Hence, we can
naively iterate over all Ijs in an instance of the DynamicPuzzleMatching problem using O(d · |J |)
updates; in the considered instance we have d · |J | = O(d · m/q). See Section 4.2 for details of this
reduction in the general case. As a preliminary improvement, in Section 4.4, we show how to reduce the
number of updates to O(d3). Let us give a brief sketch of this reduction.

We call a pair of pieces (Pi, Tj,i) plain if i ∈ (1 . . z) and neither Pi nor Tj,i is special; in the restricted
case that we are considering here, the second condition is equivalent to Pi = Tj,i = Q∞[0 . . q + ∆). For
j ∈ J , let I ′j denote the DPM-sequence obtained from Ij by trimming each run of plain pairs (that is,
maximal contiguous subsequences that consist of plain pairs) in Ij to length k+ 1 by deleting excess pairs.

The main idea is that we do not gain or lose any k-error occurrences by trimming the DPM-sequences,
that is, we have OccEk (Ij) = OccEk (I ′j). One direction is easy: removing the same substring from two
strings P and T may only decrease the edit distance between P and T ; this naturally translates to
DPM-sequences. For the other direction, observe that if a DPM-sequence contains a run of at least k + 1
plain pairs, then any cost-k alignment between the corresponding strings has to perfectly match at least
one copy of Q pair in such a run—we can hence duplicate said copy by adding more plain pairs in the
DPM-sequence without increasing the cost of the alignment. Induction then yields the claim.

With the aim of obtaining an O(d3) upper bound on the number of required updates for iterating over
the I ′js, let us think of the process of shifting P along T . For each j, each run of plain pairs in Ij can be
attributed to a run of plain pieces in P2, . . . , Pz−1 that overlap a run of plain pieces in Tj,2 . . . Tj,z−1. As
we shift P , in the most general case, the length of the overlap first increases, then it remains static, and,
finally, it decreases. Overall, as j gets incremented, a run of plain pairs that is attributed to a specific
pair of runs of plain pieces may change length ω(d) times. However, after trimming the lengths of all runs

5 Recall that z is the length of the DPM-sequence that we maintain in the data structure.

P. Charalampopoulos, T. Kociumaka, and P. Wellnitz 9

of plain pairs to k + 1, the length of such a run gets incremented/decremented O(d) times. As we have
O(d) special pieces in each of P and T , we have O(d2) pairs of runs of plain pieces, and hence we get the
desired O(d3) upper bound, as we can bound the number of updates other than insertions/deletions of
plain pairs by O(d2).

Note that we cannot always iterate explicitly over all I ′js as this would require Ω(m/q) calls to
DPM-Query. We circumvent this problem by observing that if we have I ′j−1 = I ′j (for some j ∈ J \min J),
then rj + OccEk (P,Rj) = q+ rj−1 + OccEk (P,Rj−1). Consequently, for any maximal interval [j1 . . j2] ⊆ J
where I ′j1

= · · · = I ′j2
, we only process I ′j1

; then, for each position u ∈ OccEk (P,Rj1), we report an
arithmetic progression {rj1 + u+ iq : i ∈ [0 . . j2 − j1]} of k-error occurrences of P in T . On a high level,
we are offloading the computation of

⋃j2
j=j1

(
rj + OccEk (P,Rj)

)
to the computation of OccEk (I ′j1

).

A Faster Solution. To obtain a faster solution for the NewPeriodicMatches problem, we intend to
trim runs of plain pairs even further, to a length of roughly Õ(

√
d). Now, naively processing the obtained

DPM-sequences, we may obtain “false-positive” occurrences, but—as we can prove—not too many. In
particular, we can extend existing tools to filter such “false-positive” occurrences.

For a slightly more detailed overview, for any two positions v < w of T , let us write Q∞[ρ(v) . . ρ(w))
for the fragment of Q∞ that AT aligns with T [v . .w). Suppose that we have

δE(P, ∗Q∗) = δE(P,Q∞[ρ(v) . . ρ(w))) ≤ δE(T [v . .w), ∗Q∗) = δE(T [v . .w), Q∞[ρ(v) . . ρ(w))).

Then, the triangle inequality yields

Λ := δE(P, ∗Q∗) + δE(T [v . .w), ∗Q∗) ≥ δE(P, T [v . .w)) ≥ δE(T [v . .w), ∗Q∗)− δE(P, ∗Q∗).

We see that, intuitively, the best case is when all the errors of P with Q∞[ρ(v) . . ρ(w)) cancel out
with errors of T [v . .w) with Q∞[ρ(v) . . ρ(w)). Now, roughly speaking, for each position v of T , we
quantify the “potential savings” that an alignment P T [v . .w) of cost at most k may yield compared
to minx δE(P,Q∞[ρ(v) . .x)) + miny δE(T [v . .w), Q∞[ρ(v) . . y))). To this end, we use the notion of
locked fragments from [CKW20] to mark each position of the text with a number of marks proportional to
said “potential savings”. (A similar notion was used in [CH02].) Based on a threshold η = Θ̃(

√
d) on the

number of marks (and a few technical conditions), we then classify each position as either heavy or light.
Details on locked fragments and our marking scheme can be found in Section 5.

We then present our solution for NewPeriodicMatches in Section 6. First, we show that the set of
heavy positions intersects Õ(

√
d) ranges, each of size O(d), where a k-error occurrences of P may start

(recall that OccEk ⊆
⋃
j∈Z[jq − 5d . . jq + 5d]). We can then compute the intersection of OccEk (P, T) with

heavy positions efficiently, that is, in Õ(d3.5) time, using known tools.
Having taken care of the heavy positions, we can return to DynamicPuzzleMatching for the light

positions. To that end, consider again T [v . .w), supposing that v is a light position of T . We then have
that Λ ≥ δE(P, T [v . .w)) ≥ Λ − η. Now, the optimal alignment A from P to T [v . .w) has to make
Λ− η edit operations just to align the locked fragments of the text and the pattern. This means that the
number of edit operations that A makes in aligning portions of P disjoint from the locked fragments of P
to portions of T disjoint from the locked fragments of T is at most η.

Now, we define a set Red(P) ⊇ Special(P) that additionally contains all pieces of P that overlap some
locked fragment of P ; we similarly define a set Red(T) of pieces of T . Importantly, both Red(P) and
Red(T) are of size O(d). Redefining plain pairs to be those that contain no red piece, we show that we
can trim each run of plain pairs to have a length of O(η) = Θ̃(

√
d). This allows us to reduce our problem

to an instance of the DynamicPuzzleMatching problem with Θ̃(d2.5) updates in total; as before, we
can essentially charge all but O(d2) updates to O(d2) pairs of runs of plain pairs, so that each such pair
gets charged with Θ̃(

√
d) updates.

10 Faster Pattern Matching under Edit Distance

A Solution for the DynamicPuzzleMatching Problem

For our solution to the DynamicPuzzleMatching problem (which we present in Section 9), we rely on
a framework of Tiskin [Tis07, Tis08, Tis15] (which we recall and extend in Section 8). A key observation
behind this framework is that semi-local alignments between strings U and V can be represented as
paths between boundary vertices of a certain alignment graph: a grid on vertices [0 . . |V |]× [0 . . |U |],
augmented with diagonal edges. All horizontal and vertical edges have weight 1 (they represent insertions
and deletions), whereas each diagonal edge (u, v)↔ (u+ 1, v + 1) has weight 0 (for a match) or 1 (for a
substitution). Then, δE(V [v . .w), U) corresponds to the distance from (v, 0) to (w, |U |). As observed
in [Tis08], even though there are quadratically many such distances, they can be encoded in linear space
using a certain permutation matrix that we denote by PV,U . Moreover, we can stitch alignment graphs by
computing a certain seaweed product of permutation matrices. For example, PV,UU ′ can be expressed as
the seaweed product of PV,U and PV,U ′ (shifted appropriately so that the characters of U ′ are indexed from
|U | rather than from 0). Tiskin [Tis15] provided an O(n logn)-time algorithm for computing the seaweed
product of two n× n permutation matrices, but we cannot hope to compute PV,U in truly subquadratic
time because it encodes δE(U, V).

In our setting, though, the strings U and V are of similar length (that is,
∣∣|V |−|U |∣∣ ≤ tor(I) ≤ ∆/2−k)

and we only care about alignments of cost at most k. The underlying paths corresponding to such alignments
are fully contained within a narrow diagonal band of the alignment graph: all of their vertices (u, v) satisfy
u− v ∈ I := [−k . . |V | − |U |+ k] (in short, they belong to band I of the alignment graph); see Figure 4
for an illustration. In order to capture this scenario, we restrict the alignment graph to band I, which
corresponds to zeroing out the costs of all diagonal edges outside band I. We prove that the permutation
matrix PU,V |I of the restricted graph can be encoded in O(|I|) space and computed in Õ(|I|2) time (in
the PILLAR model). Moreover, we show that PU,V |I can be expressed solely in terms of PU,V , which leads
to a new operation of restricting a permutation matrix P to a given interval I. We write P |I for the result
of said operation and we present a linear-time algorithm that computes P |I directly from P and I.

Let us now explain how these techniques are helpful in solving the DynamicPuzzleMatching
problem. Our high-level idea is to express PV,U |I as the seaweed product of z smaller permutation matrices
P1, . . . , Pz, with Pi depending only on the i-th pair (Ui, Vi). For a first attempt, we could use PVi,Ui , but
the corresponding parts of the alignment overlap and thus cannot be stitched easily. Thus, we trim each
piece Ui to U ′i so that U = val∆(U1, . . . , Uz) = U ′1 · · ·U ′z. Now, the seaweed product of matrices PVi,U ′i
(shifted appropriately), restricted a posteriori to interval I, yields PV,U |I . However, the individual matrices
PVi,U ′i are still too large, so we need to restrict them a priori as well. Thus, we actually use PVi,U ′i |Ii , for
appropriate intervals Ii of size at most ∆; see Figure 5 for an illustration. We build a balanced binary
tree on top of the permutation matrices PVi,U ′i |Ii in order to maintain their seaweed product (so that
every update requires recomputing O(log z) partial products). For each query, we retrieve PV,U |I and
apply the SMAWK algorithm [AKM+87] in order to check, for every v ∈ [0 . . |V | − |U |+ k], whether
δE(U, V [v . .w)) ≤ k holds for some w ∈ [|U | − k . . |W |] in Õ(∆) time in total.

The remaining challenge is to build the matrices PVi,U ′i |Ii . For this, we exploit the small median edit
distance of the families Sβ ,Sµ,Sϕ to show that all such matrices can be precomputed in Õ(d3 + ∆2d)
time. If the puzzle pieces were of size O(d+ ∆), we could simply use an algorithm of Charalampopoulos,
Kociumaka, and Mozes [CKM20] that maintains PX,Y subject to edits of X,Y . In general, though, we
decompose each piece into O(d) parts: perfect parts, which can be arbitrarily long but are kept intact
among all the puzzle pieces, and imperfect parts, which can contain edits but are of size O(∆). For each
perfect part, we compute a single restricted permutation matrix in Õ(∆2) time. For imperfect parts, we
use the dynamic algorithm of [CKM20]. Finally, the restricted permutation matrix of a pair of pieces is
obtained by stitching the matrices for pairs of parts similarly to how we obtain PV,U |I from PVi,U ′i |Iis.

P. Charalampopoulos, T. Kociumaka, and P. Wellnitz 11

a

a
a
a

b
b

b
b
b

b

a a a a ab b b b b b b

Figure 4 The alignment graph for U = bbabbbaaab and V = bbabbaabbaab. Thin edges have cost 1 whereas
thick edges have cost 0. The blue and orange path represent cost-2 alignments U V [0 . . 8) and U V [3 . . 12),
respectively. The diagonal band I = [−2 . . 4] = [−k . . |V | − |U |+ k] corresponding to k = 2 is shaded in blue.

V1

V2

V3

V4

U1

U2

U3

U4

U ′1

U ′2

U ′3

U ′4

Figure 5 A schematic illustration explaining why PV,U |I , which corresponds to the purple band, can be
obtained by the seaweed products of matrices PVi,U′i |Ii , which correspond to the pink bands within the rectangles
representing the alignment graphs of U ′i and Vi (subgraphs of the alignment graph of U and V).

12 Faster Pattern Matching under Edit Distance

2 Preliminaries

Sets and Arithmetic Progressions

For i, j ∈ Z, we write [i . . j] to denote {i, . . . , j} and [i . . j) to denote {i, . . . , j − 1}; the sets (i . . j]
and (i . . j) are defined similarly.

For integers a, d, and ` > 0, the set {a+ j · d : j ∈ [0 . . `)} is an arithmetic progression with starting
value a, difference d, and length `. Whenever we use arithmetic progressions in an algorithm, we store
them as triples (a, d, `) consisting of their first value, their difference, and their length.

For a set X ⊆ Z and an integer s ∈ Z, we write s+X and X + s to denote the set {s+ x : x ∈ X}
containing all elements of X incremented by s.

Strings

We write T = T [0]T [1] · · ·T [n − 1] to denote a string of length |T | = n over an alphabet Σ. The
elements of Σ are called characters. We write ε to denote the empty string.

A string P is a substring of a string T (denoted by P 4 T) if for some integers i, j with 0 ≤ i ≤ j ≤ |T |,
we have P = T [i] · · ·T [j − 1]. In this case, we say that there is an exact occurrence of P at position i
in T , or, more simply, that P exactly occurs in T . We write T [i . . j) for this particular occurrence of P
in T , which is formally a fragment of T specified by the two endpoints i, j. For notational convenience,
we may also refer to this fragment as T [i . . j − 1], T (i − 1 . . j − 1], or T (i − 1 . . j). Two fragments
(perhaps of different strings) match if they are occurrences of the same strings.

A prefix of a string T is a fragment that starts at position 0 (that is, a prefix is a fragment of the
form T [0 . . j) for some j ∈ [0 . . |T |)). A suffix of a string T is a fragment that ends at position |T | − 1
(that is, a suffix is a fragment of the form T [i . . |T |) for some i ∈ [0 . . |T |)). We write lcp(U, V) for the
length of the longest common prefix of two strings U and V , that is lcp(U, V) is the length of the longest
string that occurs as a prefix of both U and V . Similarly, we write lcpR(U, V) for the length of the longest
common suffix of two strings U and V , that is lcp(U, V) is the length of the longest string that occurs as
a suffix of both U and V .

For two strings U and V , we write UV or U · V to denote their concatenation. We also write
Uk := U · · ·U to denote the concatenation of k copies of the string U . Furthermore, we write U∞ to
denote an infinite string obtained by concatenating infinitely many copies of U . To simplify our exposition
at certain points, we may access such an infinite repetition of U also at negative positions; hence for an
integer j ∈ [0 . . |Q|) and a (possibly negative) integer i, we formally set U∞[i · |U | + j] := U [j]. A
string T is primitive if it cannot be expressed as T = Uk for any string U and any integer k > 1.

A positive integer p is a period of a string T if T [i] = T [i+ p] for all i ∈ [0 . . |T | − p). We refer to
the smallest period as the period per(T) of the string. Further, we call T [0 . . per(T)) the string period
of T . A string is periodic if its period is at most half of its length.

For a string T , we define the following rotation operations: The operation rot(?) takes as input
a string, and moves its last character to the front; that is, rot(T) := T [n − 1]T [0 . .n − 2]. The
inverse operation rot−1(?) takes as input a string and moves its initial character to the end; that
is, rot−1(T) := T [1 . .n− 1]T [0]. Observe that a primitive string T does not match any of its non-trivial
rotations, that is, we have T = rotj(T) if and only if j ≡ 0 (mod |T |).

For a string T , the reverse string of T is T [n− 1]T [n− 2] · · ·T [0].

P. Charalampopoulos, T. Kociumaka, and P. Wellnitz 13

Edit Distance and Pattern Matching with Edits

The edit distance (also known as Levenshtein distance) between two strings X and Y , denoted by δE(X,Y),
is the minimum number of character insertions, deletions, and substitutions required to transform X

into Y . Similarly, the deletion distance δD(X,Y) is the minimum number of character insertions and
deletions required to transform X into Y .

For a formal definition, we first define an alignment between strings.

Definition 2.1. A sequence A = (xi, yi)mi=0 is an alignment of X[x . .x′) onto Y [y . . y′), denoted
by A : X[x . .x′) Y [y . . y′), if we have

(x0, y0) = (x, y); and
for all i ∈ [0 . .m): (xi+1, yi+1) ∈ {(xi + 1, yi + 1), (xi + 1, yi), (xi, yi + 1)}; and

(xm, ym) = (x′, y′).

If (xi+1, yi+1) = (xi + 1, yi), we say that A deletes X[xi],
If (xi+1, yi+1) = (xi, yi + 1), we say that A inserts Y [yi],
If (xi+1, yi+1) = (xi+1, yi+1), we say that A aligns X[xi] and Y [yi]. If additionally X[xi] = Y [yi],
we say that A matches X[xi] and Y [yi]. Otherwise, we say that A substitutes Y [yi] for X[xi].

Further, for an alignment A : X[x . .x′) Y [y . . y′) with A = (xi, yi)mi=0, we define the inverse
alignment A−1 : Y [y . . y′) X[x . .x′) as A−1 := (yi, xi)mi=0. The cost of an alignment A of X[x . .x′)
onto Y [y . . y′), denoted by δAE (X[x . .x′), Y [y . . y′)), is the total number of characters that A inserts,
deletes, or substitutes. Now, we define the edit distance δE(X,Y) as the minimum cost of an alignment of
X[0 . . |X|) onto Y [0 . . |Y |). An alignment of X onto Y is optimal if its cost is equal to δE(X,Y). The
deletion distance δD(X,Y) is defined as the minimum cost of an alignment A : X Y that aligns X[x]
to Y [y] only if the two characters match.

Given an alignment A : X[x . .x′) Y [y . . y′) and a fragment X[x̄ . . x̄′) 4 X[x . .x′), we write
A(X[x̄ . . x̄′)) for the fragment Y [ȳ . . ȳ′) 4 Y [y . . y′) that A aligns against X[x̄ . . x̄′). Given that
insertions and deletions may render this definition ambiguous, we formally set

ȳ := min{ŷ : (x̄, ŷ) ∈ A} and ȳ′ :=
{

y′ if x̄′ = x′,

min{ŷ′ : (x̄′, ŷ′) ∈ A} otherwise.

This particular choice satisfies the following decomposition property.

Fact 2.2. For any alignment A of X onto Y and a decomposition X = X1 · · ·Xt into t fragments,
Y = A(X1) · · · A(Xt) is a decomposition into t fragments with δAE (X,Y) ≥

∑t
i=1 δE(Xi,A(Xi)).

Further, if A is an optimal alignment, then have equality: δAE (X,Y) =
∑t
i=1 δE(Xi,A(Xi)).

Consider Figure 6 for a visualization of an example.

Definition 2.3. For an alignment A : X[x . .x′) Y [y . . y′), and a pair (xi, yi) ∈ A where A does
not match xi and yi, we define the corresponding augmented breakpoint B as

B :=


(xi, yi, INS), if A inserts Y [yi],
(xi, yi, DEL), if A deletes X[xi],
(xi, yi, SUB), if A substitutes X[xi], and
(xi, yi,⊥), if xi = x′ and yi = y′ or if xi = x− 1 and yi = y − 1.

We write BX,Y (A) for the set of augmented breakpoints.

14 Faster Pattern Matching under Edit Distance

X = a a c − b c d

∗ = = ∗ = = ∗

Y = b a c d b c −
A = (0, 0) (1, 1) (2, 2) (3, 3) (3, 4) (4, 5) (5, 6) (6, 6)

Figure 6 Consider strings X = aacbcd and Y = bacdbc. We have δE(X,Y) = 3, witnessed by an
optimal alignment A : X Y . The alignment A inserts, deletes, or substitutes three characters; these
edit operations are denoted by red asterisks. The set of (augmented) breakpoints of A is BX,Y (A) =
{(−1,−1,⊥), (0, 0, SUB), (3, 3, DEL), (5, 6, INS), (6, 6,⊥)}. Further, we have A(X[0 . . 3)) = Y [0 . . 3) = bac,
A(X[3 . . 5)) = Y [3 . . 5) = dbc, and A(X[5 . . 6)) = Y [6 . . 6) = ε.

Algorithm 1 Pseudo code for Lemma 2.4.

1 Reverse(BX,Y (A) = {(x− 1, y − 1,⊥), . . . , (x′, y′,⊥)})
2 px← x; py ← y;
3 foreach B ∈ BX,Y (A) do
4 switch B do
5 case (a, b, INS) do
6 yield [σApx . .σAa)← [px . . a);
7 yield [λApy . .λAb]← [py . . b];
8 px← a; py ← b+ 1;
9 case (a, b, DEL) do

10 yield [σApx . .σAa]← [px . . a];
11 yield [λApy . .λAb)← [py . . b);
12 px← a+ 1; py ← b;
13 otherwise do
14 continue;
15 yield [σApx . .σAx′)← [px . .x′);
16 yield [λApy . .λAy′)← [py . . y′);

Observe that δAE (X,Y) = |BX,Y (A)| − 2, with the −2 term corresponding to (x′, y′,⊥) ∈ BX,Y (A) and
(x− 1, y − 1,⊥) ∈ BX,Y (A).

Moreover, observe that we can uniquely reconstruct A from BX,Y (A). Our algorithms use BX,Y (A)
(with elements stored in a sorted array) to represent the alignment A; if the cost of A is d, then this
breakpoint representation takes O(d+ 1) space.6

Lemma 2.4. For an alignment A : X[x . .x′) Y [y . . y′) and a position ȳ ∈ [y . . y′], write
[σAȳ . .λAȳ] := {x̄ ∈ [x . .x′] : (x̄, ȳ) ∈ A} for the corresponding positions in X under A.

Given the breakpoint representation of a cost-d alignment A, in O(d+ 1) time, we can compute the
sequences (σAȳ)y

′

ȳ=y and (λAȳ)y
′

ȳ=y, represented as concatenations of d + 1 arithmetic progressions with
difference 1.

Proof. First, observe that for a fixed ȳ ∈ [y . . y′], we have σAȳ 6= λAȳ if and only if A deletes X[σAȳ . .λAȳ).
Similarly, multiple positions yi, yi+1, . . . , yi+a share a common value of σAȳ? = λAȳ? if and only if A inserts

6 Observe that the breakpoint representation requires constant (non-zero) space for alignments with cost d = 0.

P. Charalampopoulos, T. Kociumaka, and P. Wellnitz 15

the fragment X[yi . . yi+a−1). Hence, to compute the values σAȳ and λAȳ for all ȳ, it suffices to do a linear
pass over the (augmented) breakpoints: we keep a pointer pX in X and a pointer py in Y , each pointing
to the character after the last insertion or deletion of A (or to X[x] and Y [y] at the beginning). Now,
when we encounter an insertion (a, b, INS), deletion (a, b, DEL) or the last breakpoint (a = x′, b = y′,⊥) in
BX,Y (A), we set

[σApx . .σAa] := [px . . a] and [λApy . .λAb] := [py . . b].

Afterward, we update xp and yp accordingly. Consult Algorithm 1 for a detailed pseudo-code.
The correctness follows immediately from the preceding discussion; for the running time, observe that

at each of the d+ 1 events, our algorithm requires constant time. In total, we hence obtain the claim.

We write δE(S, T ∗) := min{δE(S, T∞[0 . . j)) : j ∈ Z≥0} to denote the minimum edit distance between
a string S and any prefix of a string T∞. Further, we write δE(S, ∗T ∗) := min{δE(S, T∞[i . . j)) : i, j ∈
Z≥0, i ≤ j} to denote the minimum edit distance between S and any substring of T∞, and we set
δE(S, ∗T) := min{δE(S, T∞[i . . j|T |)) : i, j ∈ Z≥0, i ≤ j|T |}.

Next, it is easy to verify that the edit distance satisfies the triangle inequality.

Fact 2.5 (Triangle Inequality). Any strings A, B, and C satisfy

δE(A,C) + δE(C,B) ≥ δE(A,B) ≥ |δE(A,C)− δE(C,B)|.

Equally useful is the fact that we can easily remove prefixes (or suffixes) of the same length.

Fact 2.6. For any non-empty strings A and B, we have

δE(A[1 . . |A|), B[1 . . |B|)) ≤ δE(A,B) and δE(A[0 . . |A|− 1), B[0 . . |B|− 1)) ≤ δE(A,B).

Combining Facts 2.2 and 2.6, we see that we can “cut” fragments of equal length out of an optimal
alignment.

Corollary 2.7. Let A = Ap ·As and B denote non-empty strings and write A : A B for an optimal
alignment of A onto B. For any u ∈ [0 . . min{|As|, |A(As)|}), we have

δE(Ap,A(Ap)) + δE(As[u . . |As|),A(As)[u . . |A(As)|)) ≤ δE(A,B).

We conclude with the easy, but useful, observation that no k-error occurrence of a pattern may start
in the final part of the text.

Fact 2.8. For any text T of length n and any pattern P of length m we have OccEk (P, T) ∩ (n−m+
k . .n) = ∅.

2.1 The PILLAR Model
To unify the implementations of algorithms for (approximate) pattern matching problems in different
settings, [CKW20] introduced the PILLAR model. We use the same PILLAR model in this work. In
particular, we bound the running times of the algorithms in this work in terms of the number of calls
to a small set of very common operations (the primitive PILLAR operations) on strings.7 Together with

7 If our algorithms require (asymptotically) significant extra computations, we also specify the required extra running
time.

16 Faster Pattern Matching under Edit Distance

the implementations of said primitive operations (presented in detail in [CKW20]), we then obtain (fast)
algorithms for various different settings at once. This includes the standard setting, the fully compressed
setting, and a dynamic setting. We provide more details in Section 7.

To keep the PILLAR model flexible, we do not directly work on specific representations of (the input)
strings. Instead, in the PILLAR model, we maintain a collection of strings X ; the operations in the PILLAR
model work on fragments X[` . . r) of X ∈ X , which are represented via a handle.8 At the start of the
computation, the PILLAR model provides a handle to each X ∈ X , which represents X[0 . . |X|). Using
an Extract operation, we can obtain handles to other fragments of the strings in X [CKW20]:

Extract(S, `, r): Given a fragment S and positions 0 ≤ ` ≤ r ≤ |S|, extract the (sub)fragment
S[` . . r). If S = X[`′ . . r′) for X ∈ X , then S[` . . r) is defined as X[`′ + ` . . `′ + r).

The other primitive PILLAR model operations read as follows [CKW20]:
LCP(S, T): Compute the length of the longest common prefix of S and T .
LCPR(S, T): Compute the length of the longest common suffix of S and T .
IPM(P, T): Assuming that |T | ≤ 2|P |, compute Occ(P, T) (represented as an arithmetic progression
with difference per(P)).
Access(S, i): Assuming i ∈ [0 . . |S|), retrieve the character S[i].
Length(S): Retrieve the length |S| of the string S.

As working just with the primitive PILLAR model operations is rather bothersome, [CKW20] also
provides a useful toolbox of operations already implemented. For brevity, we only list these operations
here and refer to [CKW20] for (pointers to) their implementation.

Fact 2.9 (PILLAR Toolbox, [CKW20]). The PILLAR model supports all of the following operations.
Equality [Koc18, Fact 2.5.2]: For strings S and T , we can check whether S and T are equal in O(1)
time in the PILLAR model.
Period(S), [KRRW15, Koc18]: For a string S, we can compute per(S) or declare that per(S) > |S|/2
in O(1) time in the PILLAR model.
Rotations(S, T), [KRRW15, Koc18]: For strings S and T , we can find all integers j such that
T = rotj(S) in O(1) time in the PILLAR model. The output is represented as an arithmetic progression.
LCP(S,Q∞[` . . r)), [CKW20], see also [Koc18, Fact 2.5.2] and [BGK+16]: For strings S and Q and
integers 0 ≤ ` ≤ r, we can compute LCP(S,Q∞[` . . r)) in O(1) time in the PILLAR model.
LCPR(S,Q∞[` . . r)), [CKW20]: For strings S and Q and integers 0 ≤ ` ≤ r, we can compute
LCPR(S,Q∞[` . . r)) in O(1) time in the PILLAR model.
ExactMatches(P, T), [CKW20]: Let T denote a string of length n and let P denote a string of length m.
We can compute the set Occ(P, T) using O(n/ per(P)) time and O(n/m) PILLAR operations.
Verify(P, T, k, I), [CH02, Section 5]; see also [CKW20]: Let P denote a string of length m, let
T denote a string, and let k ≤ m denote a positive integer. Further, let I denote an interval of positive
integers. Using O(k(k + |I|)) PILLAR operations, we can compute {(`,minr δE(P, T [` . . r))) : ` ∈
OccEk (P, T) ∩ I}.

Finally, we observe that the adaptation of the Landau–Vishkin algorithm [LV89] already provided
in [CKW20] lets us efficiently compute an optimal alignment of a string S onto a substring of Q∞ starting
at a given position x ∈ Z.

8 The implementation details depend on the specific setting. In the standard setting, a fragment X[` . . r) is represented
by a reference to X and the endpoints `, r.

P. Charalampopoulos, T. Kociumaka, and P. Wellnitz 17

Lemma 2.10 (Alignment(S,Q, x)). Consider non-empty strings S,Q and an integer x ∈ Z. Using
O(1 + d2) PILLAR operations, we can construct (the breakpoint representation of) an alignment A :
S Q∞[x . . y) of optimal cost d = δE(S, rot−x(Q)∗).

Proof. Set Q̂ := rot−x(Q). [CKW20, Lemma 6.1] provides an online algorithm that, for subsequent
integers k ∈ Z≥0, computes the longest prefix Sk of S such that δE(Sk, Q̂∗) ≤ k, as well as a witness
length `k ∈ Z≥0 and alignment Ak : Sk Q̂[0 . . `k) of cost at most k. We run this algorithm until
Sk = S holds for the first time, which indicates that k = δE(S, Q̂∗) = d, and return the final alignment
Ad, reinterpreted as an alignment A : S Q[x . . y) for y := x+ `d.

A minor subtlety is that [CKW20, Lemma 6.1] provides a slightly weaker representation of the
alignment Ad, with (i, j) for an substitution of S[i] to Q̂[j], (i,⊥) for a deletion of S[i], and (⊥, j) for
an insertion of Q̂[j]. Nevertheless, a left-to-right scan of this representation, keeping track of the shift
δ, equal to the number insertions processed so far minus number of deletions processed so far, lets us
produce the breakpoints of A, that is, (−1, x− 1,⊥) at the beginning, (i, j + x, SUB) for each substitution
(i, j), (i, i+ δ + x, DEL) for each deletion (i,⊥), (j − δ, j + x, INS) for each insertion (⊥, j), and (|S|, y,⊥)
at the end.

In the PILLAR model, the algorithm of [CKW20, Lemma 6.1] takes O(1) preprocessing time and
O(1 + k) time for the kth step (for k ∈ Z≥0). Thus, running it for all k ∈ [0 . . d] costs O(1 + d2) time in
total. The post-processing of the alignment takes O(1 + d) extra time.

2.2 An Overview of an O(k4)-Time Algorithm for Pattern Matching with Edits in
the PILLAR Model

Before we discuss the new algorithm for pattern matching with edits, we briefly recall the algorithm
presented in [CKW20] that runs in O(k4) time in the PILLAR model when n = O(m).9 Thereby, we
can naturally introduce required notations and concepts. Further, we highlight the bottleneck in the
aforementioned algorithm; all other parts run in O(k3) time in the PILLAR model, which translates to a
running time of O(n+ k3) in the standard setting.

Toward obtaining algorithms for PMwithEdits, first observe that it suffices to focus on a bounded-
ratio version of said problem, where n < 3/2m + k (consult [CKW20] for a rigorous proof): Given
a text of arbitrary length n, we can reduce the problem to b2n/mc instances of the bounded-ratio
version of the problem using the so-called standard trick [Abr87]. That is, we consider the overlapping
fragments Ti := T [bi ·m/2c . . min{n, b(i+ 3) ·m/2c+ k − 1}), for i ∈ [0 . . b2n/mc − 1), and compute
the approximate occurrences of P in each of T0, . . . , Tb2n/mc−1. Afterward, we straightforwardly merge
the obtained partial results. Thus, an algorithm that solves the bounded-ratio version of the approximate
pattern matching problem in time f(k) in the PILLAR model, directly yields an algorithm that solves an
arbitrary instance of the approximate pattern matching problem in time O(n/m) · f(k) in the PILLAR
model.

Next, as a first step in solving the bounded-ratio version of PMwithEdits, we analyze the pattern
according to [CKW20, Lemma 6.4].10

Lemma 2.11 (Analyze(P, k), [CKW20, Lemma 6.4]). Let P denote a string of length m and let
k ≤ m denote a positive integer. Then, there is an algorithm that computes one of the following:
(a) 2k disjoint breaks B1, . . . , B2k 4 P , each having period per(Bi) > m/128k and length |Bi| = bm/8kc.

9 This translates to a running time of O(n+ k4) in the standard setting (under the assumption that n = O(m)).
10When citing specific statements of [CKW20], we do so using their numbering in the full (arXiv) version of the paper.

18 Faster Pattern Matching under Edit Distance

(b) Disjoint repetitive regions H1, . . . ,Hr 4 P of total length
∑r
i=1 |Hi| ≥ 3/8 ·m such that each region Hi

satisfies |Hi| ≥ m/8k and is constructed along with a primitive approximate period Qi such that
|Qi| ≤ m/128k and δE(Hi,

∗Q∗i) = d8k/m · |Hi|e.11

(c) A primitive approximate period Q of P with |Q| ≤ m/128k and δE(P, ∗Q∗) < 8k.
The algorithm uses O(k2) time plus O(k2) PILLAR operations.

For the case where the analysis of the pattern using Lemma 2.11 yields an approximate period Q, we
use the algorithm encapsulated in the following lemma.

Fact 2.12 (PeriodicMatches(P, T, k, d, Q), [CKW20, Lemma 6.11]). Let P denote a pattern
of length m and let T denote a text of length n. Further, let k ∈ [0 . .m] denote a threshold, let d ≥ 2k
denote a positive integer, and let Q denote a primitive string that satisfies |Q| ≤ m/8d and δE(P, ∗Q∗) ≤ d.

Then, we can compute a representation of the set OccEk (P, T) as O(n/m · d3) disjoint arithmetic
progressions with difference |Q| using O(n/m · d4) time in the PILLAR model.12

As the main contribution of this work, we reduce the running time in Fact 2.12 to Õ(n/m · d3.5).
For the case where the analysis of the pattern using Lemma 2.11 yields 2k disjoint breaks, we use the

efficient algorithm encapsulated in the following lemma.

Fact 2.13 (BreakMatches(P, T, {B1, . . . , B2k}, k), [CKW20, Lemmas 5.21 and 6.12]). Let k
denote a threshold and let P denote a pattern of length m having 2k disjoint breaks B1, . . . , B2k 4 P each
satisfying per(Bi) ≥ m/128k. Further, let T denote a text of length n < 3/2m+ k. Then, we can compute
the set OccEk (P, T), which is of size O(k2), using O(k3) time in the PILLAR model.

Finally, let us consider the case where the analysis of the pattern using Lemma 2.11 returns disjoint
repetitive regions H1, . . . ,Hr 4 P of total length

∑r
i=1 |Hi| ≥ 3/8m such that each region Hi satisfies

|Hi| ≥ m/8k and is constructed along with a primitive approximate period Qi such that |Qi| ≤ m/128k
and δE(Hi,

∗Q∗i) = d8k/m · |Hi|e.
In this case, we give a brief overview of the proof of [CKW20, Lemmas 5.24 and 6.13], stated below,

showing that the problem in scope reduces to several calls to the PeriodicMatches procedure of Fact 2.12.

Fact 2.14 (RepetitiveMatches(P,T,{(H1, Q1), . . . , (Hr, Qr)},k), [CKW20, Lemmas 5.24 and 6.13]).
Let P denote a pattern of length m and let k ≤ m denote a threshold. Further, let T denote a string
of length n < 3/2m+ k. Suppose that P contains disjoint repetitive regions H1, . . . ,Hr of total length at
least

∑r
i=1 |Hi| ≥ 3/8m such that each region Hi satisfies |Hi| ≥ m/8k and has a primitive approximate

period Qi with |Qi| ≤ m/128k and δE(Hi, Q
∗
i) = d8k/m · |Hi|e.

Then, we can compute the set OccEk (P, T), which is of size O(k2), using O(k4) time in the PILLAR
model.

Proof sketch. For each repetitive region Hi, set ki := b4 · k/m · |Hi|c and di := d8 · k/m · |Hi|e. We can
compute OccEki(Hi, T) using a call PeriodicMatches(Hi, T, ki, di, Q); consult [CKW20] for a rigorous
proof that the conditions in the statement of Fact 2.12 are indeed satisfied.

Next, using the sets OccEki(Hi, T) we can identify in O(k2 log log k) time O(k) length-k intervals whose
union is a superset of OccEk (P, T). Finally, we use Verify(P, T, k, J) for each such interval J to filter
out false-positive positions; these calls to Verify take O(k3) time in total in the PILLAR model.

All in all, we see that the pattern matching with edits problem reduces to several calls to the
PeriodicMatches procedure:

11Observe that we renamed the repetitive regions to H?, as we use R? later with a different meaning.
12The representation of OccEk (P, T) is not stated explicitly in [CKW20, Lemma 6.11].

P. Charalampopoulos, T. Kociumaka, and P. Wellnitz 19

If we can detect breaks in the pattern, no calls to PeriodicMatches are needed.
If the pattern is close to being periodic, a single call PeriodicMatches(P, T, k, d, Q) suffices. In
this case, we have d = O(k) and hence we obtain a representation of OccEk (P, T) that consists of O(k3)
disjoint arithmetic progressions with difference |Q|.
If P contains disjoint repetitive regions H1, . . . ,Hr of total length at least

∑r
i=1 |Hi| ≥ 3/8·m such that

each region Hi satisfies |Hi| ≥ m/8k and has a primitive approximate period Qi with |Qi| ≤ m/128k
and di := δE(Hi, Q

∗
i) = d8k/m · |Hi|e. Then, we make r calls PeriodicMatches(Hi, T, ki, di, Qi).

Not that if the pattern is not close to being periodic, the set OccEk is of size O(k2) due to [CKW20,
Lemmas 5.21 and 5.24]. Thus, in all cases, we obtain a representation of OccEk (P, T) as O(k3) arithmetic
progressions with the same difference. Observe that the common difference of arithmetic progressions
is solely dependent on P and k: it is |Q| if Lemma 2.11 returns an approximate period Q, while it can
be set to an arbitrary positive integer otherwise as the O(k2) positions of OccEk (P, T) are interpreted as
arithmetic progressions of length one in this case. We summarize the above discussion in the following
statement.

Fact 2.15. Let P denote a pattern of length m and let k ≤ m denote a threshold. Further, let T
denote a string of length n < 3/2m+ k.

We can compute a representation of OccEk (P, T) as O(k3) disjoint arithmetic progressions with the same
difference in O(k3) time in the PILLAR model and additionally several calls PeriodicMatches(Pi, T, ki, di, Qi)
such that

∑
i |Pi| ≤ m and di = d8k/m · |Pi|e. The common difference of said arithmetic progressions can

be computed given only P and k.

20

Part I: From NewPeriodicMatches to DynamicPuzzleMatching

3 The NewPeriodicMatches Problem

As a first step toward an improved implementation of the PeriodicMatches procedure, we recall useful
tools from [CKW20]—this also allows us to slightly simplify the problem statement of the problem we
need to solve. Then, we also give a first algorithm that solves said problem fast in a (very restricted)
special case; however, this algorithm turns out to be useful in general as well.

3.1 Computing Occurrences in the Periodic Case: Preprocessing and
Simplifications

In this (sub-)section, we exploit Fact 2.15 to reduce an instance of the PMwithEdits to several instances
of the NewPeriodicMatches problem defined in Section 1.3, which we restate here for convenience.

NewPeriodicMatches(P, T, k, d,Q,AP ,AT)
Input: A pattern P of length m, an integer threshold k ∈ [0 . .m], a positive integer d ≥ 2k, a text T
of length n ∈ [m− k . .

⌈3/2m⌉+ k), a primitive string Q of length q := |Q| ≤ m/8d, an edit-distance
alignment AP : P Q∞[0 . . yP) of cost dP := δE(P, ∗Q∗) = δE(P,Q∗) ≤ d, and an edit-distance
alignment AT : T Q∞[xT . . yT) of cost dT := δE(T, ∗Q∗) ≤ 3d, where xT ∈ [0 . . q).
Output: The set OccEk (P, T) represented as O(d3) disjoint arithmetic progressions with difference q.

Sepcifically, we prove the following reduction.

Fact 1.1. Let P denote a pattern of length m, let T denote a text of length n, and let k ≤ m denote
a positive integer.

We can compute a representation of the set OccEk (P, T) as O(n/m ·k3) disjoint arithmetic progressions
with the same difference in time O(n/m ·k3) in the PILLAR model plus the time required for solving several
instances NewPeriodicMatches(Pi, Ti, ki, di, Qi,APi ,ATi), where

∑
i |Pi| = O(n) and, for each i, we

have |Pi| ≤ m and di = d8k/m · |Pi|e.

As before, we use the standard trick to reduce the problem to O(n/m) bounded-ratio instances:
specifically, for each j ∈ [0 . . b2n/mc − 1), an instance PMwithEdits(P, Tj , k) with |Tj | < 3/2m + k

and, without loss of generality, |Tj | ≥ m− k (otherwise, OccEk (P, Tj) = ∅).
Let us fix some j ∈ [0 . . b2n/mc−1). We apply Fact 2.15 to reduce PMwithEdits(P, Tj , k), in O(k3)

time in the PILLAR model, to several calls PeriodicMatches(Pj,i, Tj , kj,i, dj,i, Qj,i) with
∑
i |Pj,i| ≤ m

and dj,i = d8k/m · |Pj,i|e. Over all j, the total length of the patterns in the constructed instances of
NewPeriodicMatches is thus

∑b2n/mc−2
j=0

∑
i |Pj,i| ≤

∑b2n/mc−2
j=0 m = O(n). As shown in the remainder

of Section 3.1, answering a call PeriodicMatches(Pj,i, Tj , kj,i, dj,i, Qj,i) reduces, in O(d2
j,i) time in the

PILLAR model, to solving an instance NewPeriodicMatches(Pj,i, Tj , kj,i, dj,i, Qj,i,APj,i ,ATj). Observe
that then, for a fixed j ∈ [0 . . b2n/mc − 1), we have∑

i

O(d2
j,i) =

∑
i

O(k2/m2 · |Pj,i|2) =
∑
i

O(k2/m · |Pj,i|) = O(k2).

Hence, over all j ∈ [0 . . b2n/mc − 1), the total time required for the reduction in the PILLAR model is
O(n/m · k3), dominated by the time required for the calls to the algorithm underlying Fact 2.15. Finally,
observe that for each Tj , we obtain a representation of OccEk (P, Tj) as O(k3) arithmetic progressions
with the same difference, which is computable from P and k. As P and k are common in all instances
PMwithEdits(P, Tj , k), all computed arithmetic progressions have the same difference. In linear time in

21

their number, we can linearly scan them in order to merge overlapping ones, thus ensuring that the final
output consists of O(n/m · k3) disjoint arithmetic progressions with the same difference.

In the remainder of Section 3.1 we show that answering a call PeriodicMatches(P, T, k, d,Q) reduces,
in O(d2) time in the PILLAR model, to solving an instance NewPeriodicMatches(P, T, k, d,Q,AP ,AT).

We first use the following (simplified) version of [CKW20, Lemma 6.8]; it is readily verified that all
conditions of Fact 3.1 are satisfied in this call.

Fact 3.1 (FindRelevantFragment(P, T, k, d, Q), Compare [CKW20, Lemma 6.8]). Let P denote
a pattern of length m, let T denote a text of length n, and let 0 ≤ k ≤ m denote a threshold such that
n < 3/2m + k. Further, let d ≥ 2k denote a positive integer and let Q denote a primitive string that
satisfies |Q| ≤ m/8d and δE(P, ∗Q∗) ≤ d.

Then, there is an algorithm that computes a fragment T ′ of T such that δE(T ′, ∗Q∗) ≤ 3d and
|OccEk (P, T)| = |OccEk (P, T ′)|. The algorithm runs in O(d2) time in the PILLAR model.

A simplified version of [CKW20, Lemma 6.5] lets us pick Q so that δE(P, ∗Q∗) = δE(P,Q∗).

Fact 3.2 (FindAWitness(k, Q, S), Compare [CKW20, Lemma 6.5]). Let k denote a positive integer,
let S denote a string, and let Q denote a primitive string that satisfies |S| ≥ (2k + 1)|Q|.

Then, we can compute a witness x ∈ Z≥0 such that δE(S, rot−x(Q)∗) = δE(S, ∗Q∗) ≤ k, or report that
δE(S, ∗Q∗) > k. The algorithm takes O(k2) time in the PILLAR model.

We use Fact 3.2 as follows. First, we make a call FindAWitness(d,Q, P) to derive x ∈ Z≥0 such that
δE(S, rot−x(Q)∗) = δE(P, ∗Q∗). Then, we make a call Alignment(P,Q, x) to the function of Lemma 2.10,
which yields an optimum alignment A : P Q∞[x . . y) of cost δE(P, ∗Q∗). Next, we extract a fragment
Q′ of P that A matches without any edits against Q∞[x′ . .x′ + |Q|) for some x′ ≡ x mod |Q|. Finally,
we replace Q := Q′.

We conclude that it suffices to implement the PeriodicMatches procedure under the following
assumptions:

m− k ≤ n < 3/2m+ k,
δE(T, ∗Q∗) ≤ 3d,
δE(P, ∗Q∗) = δE(P,Q∗).

These are exactly the conditions of the NewPeriodicMatches problem.
Next, we show how to efficiently obtain optimal alignments from P and T to Q∞, thus completing the

proof that of the fact that answering a call PeriodicMatches(P, T, k, d,Q) reduces, in O(d2) time in the
PILLAR model, to solving an instance NewPeriodicMatches(P, T, k, d,Q,AP ,AT).

Lemma 3.3. For any instance of the NewPeriodicMatches problem, we can construct optimal
alignments AP : P Q∞[0 . . yP) of cost dP (for some yP ∈ Z≥0) and AT : T Q∞[xT . . yT) of cost
dT (for some xT ∈ [0 . . |Q|) and yT ∈ Z≥0) in O(d2) time in the PILLAR model.

Proof. As for AP , we call Alignment(P,Q, 0) of Lemma 2.10, which directly yields the alignment
AP : P Q∞[0 . . yP) of cost dP = δE(P,Q∗).

As for AT , we first call FindAWitnes(3d,Q, T) of Fact 3.2 to obtain a positive integer xT such that
δE(T, rot−xT (Q)∗) = dT . This call is valid as the properties of the NewPeriodicMatches instance yield

n ≥ m− k ≥ 8d|Q| − k ≥ 7d|Q| ≥ (6d+ 1)|Q|.

Moreover, due to rot−xT (Q) = rot−xT mod |Q|(Q), we may set xT := xT mod |Q| and thus assume
xT ∈ [0 . . |Q|) without loss of generality. Next, we call Alignment(T,Q, xT) to obtain an alignment
T Q∞[xT . . yT) of cost δE(T, rot−xT (Q)∗) = dT .

The overall running time in the PILLAR model is O(1 + d2
P + d2 + d2

T) = O(d2).

22

3.2 A First Algorithm for NewPeriodicMatches
For the remainder of this section, we fix an instance of the NewPeriodicMatches(P, T, d, k,Q,AP ,AT)
problem and set κ := k + dP + dT , and τ := q dκ/2qe.

In a first step toward algorithms for NewPeriodicMatches, we discuss how the (almost-)periodicity
of P and T yield simple ways to filter out many potential starting positions of occurrences. In particular,
this allows us to obtain a fast algorithm for NewPeriodicMatches when q is very large.

Let us briefly recall an example from Section 1.3. Suppose that P and T are perfectly periodic with
period Q, that is P = Q∞[0 . .m] and T = Q∞[0 . .n]. In particular, in this special case AP and AT are
identity maps and we have m = yP , 0 = xT , n = yT , and dT = dP = 0. Now, clearly all occurrences start
around the positions in T where an exact occurrence of Q starts, that is, in the intervals [jq− k . . jq+ k]
for j ∈ Z. Now, if we have q > 2k, then indeed jq + k < (j + 1)q − k and we can thus filter out positions
where no occurrence may start.

Now, as we are dealing with almost periodic strings P and T , potential edits in AT and AP widen the
intervals of potential starting positions. Returning to the more general T and P fixed at the beginning of
this (sub-)section and given an alignment A : P T [v . .w) of cost at most k, observe that AT ◦A◦A−1

P

induces an alignment Q∞[0 . . yP) U := A−1
T (T [v . .w)) of cost at most κ = k + dT + dP . Now, as Q

is primitive and Q∞[0 . . yP) is a long substring of Q∞, we can conclude that U must be a prefix of
(rotr(Q))∞ for r ∈ [−κ . .κ]. Hence, U starts at some position u ∈

⋃
j∈Z[jq − xT − κ . . jq − xT + κ] of

Q∞[xT . . yT). The fact that AT is of cost dT , yields that v ∈
⋃
j∈Z[jq−xT −κ−dT . . jq−xT +κ+dT].

Now, if we have q > 2κ+ 2dT , then indeed jq − xT + κ+ dT < (j + 1)q − xT − κ− dT and we can thus
filter out positions where no occurrence may start.

Lemma 3.4. Consider an alignment A : P T [v . .w) of cost at most k and write Q∞[v′ . .w′) :=
AT (T [v . .w)). Further, for an integer j, we have

v ∈ [jq − xT − κ− dT . . jq − xT + κ+ dT],
v′ ∈ [max{xT , jq − κ} . . jq + κ], and
w′ ∈ [jq + yP − κ . . min{yT , jq + yP + κ}].

Further, we have |Q∞[v′ . .w′)| ∈ [yP − κ . . yP + κ].

Proof. We formalize the example from before. To that end, write B := AT ◦ A ◦A−1
P for the alignment of

Q∞[0 . . yP) to Q∞[v′ . .w′) induced by A; observe that B has a cost of at most κ. Observe that this
immediately yields the claimed bound on the size of Q∞[v′ . .w′).

Now, observe that the fragments of Q∞ that B aligns to each other are both long; hence at least one
full occurrence of Q is matched exactly under B.

Claim 3.5. There is a fragment Qi := Q∞[iq . . (i+ 1)q) of Q∞[0 . . yP) with B(Qi) = Qi = Q.

Proof. As P , T , d, k, and Q stem from our fixed instance of NewPeriodicMatches, we have

8dq ≤ m and dP ≤ d and κ ≤ 5d and 0 < d.

Combined, we hence also have

|Q∞[0 . . yP)| = yP ≥ m− dP ≥ 8dq − d ≥ 7dq ≥ (κ+ 2)q.

In particular, the fragment Q∞[0 . . yP) contains at least (κ+ 1) full repetitions of Q. As the alignment
B makes at most κ edits, at least one full occurrence of Q is hence aligned without edits.

23

Now, observe that the fragment B(Qi) from Claim 3.5 starts at some position i′q in Q∞—as B
allows for at most κ insertions and deletions, we hence obtain that v′ ∈ [(i′ − i)q − κ . . (i′ − i)q + κ].
Symmetrically, we obtain w′ ∈ [(i′ − i)q+ yP − κ . . (i′ − i)q+ yp + κ]. Further, we observe that B cannot
extend beyond AT . Finally, as AT (T [v . .w)) = Q∞[v′ . .w′) and AT is of cost dT , we also have that
v ∈ [(i′ − i)q − κ− dT . . (i′ − i)q + κ+ dT], thus completing the proof.

Observe that expanding the minimum and maximum expressions from Lemma 3.4 easily yields bounds
on the possible values of j; we have

j ∈ J̄ := [d(xT − κ)/qe . . b(yT − yP + κ)/qc] = {j ∈ Z : xT ≤ jq + κ and jq + yP − κ ≤ yT }.

Now, intuitively, we wish to process each fragment T [jq− xT − κ− dT . . jq− xT + κ+ dT] separately
(each corresponding to a single j ∈ J̄). However, if q is very small (that is, if q < κ/2), this results
in too many fragments to process. Hence we group them into longer fragments of length at least
τ := q dκ/2qe ≥ q(κ/2q) = κ/2; observe that τ is an integer multiple of q and that we have

τ = q dκ/2qe = q, if q ≥ κ/2 and (1)
τ ≤ q(1 + κ/2q) < κ, if q < κ/2. (2)

As discussed in the introductory example, for two consecutive integers j and j + 1, the intervals [jq −
κ . . jq + κ] and [(j + 1)q − κ . . (j + 1)q + κ] are disjoint only if q > 2κ—in which case τ = q. Hence, the
definition of τ agrees with Lemma 3.4.

In total, this leads to the following definition.

Definition 3.6. Partition Q∞ into blocks of length τ and number them starting from 0. For
the j-th block Qj := Q∞[jτ . . (j + 1)τ), we define the interesting region Q̄j of Qj as the fragment
Q̄j := Q∞[jτ − κ . . jτ + κ]. Now, write J for the set of all numbers of blocks whose interesting regions
overlap Q∞[xT . . yT − yP + κ). Formally, we set

J := [d(xT − κ)/τe . . b(yT − yP + κ)/τc] = {j ∈ Z : xT ≤ jτ + κ and jτ + yP − κ ≤ yT }.

Now, for each j ∈ J , we write Rj := T [rj . . r′j) for the largest fragment of T that corresponds to the
interesting region Q̄j; that is, we set

rj := min{aT : (aT , aQ) ∈ AT for jτ − κ ≤ aQ} and
r′j := max{aT : (aT , aQ) ∈ AT for aQ ≤ jτ + yP + κ}.

For convenience, we also set rmax J+1 := n.

Remark 3.7. For convenience, we write

AT (rj) := min{aQ : (rj , aQ) ∈ AT and jτ − κ ≤ aQ} and
AT (r′j) := max{aQ : (r′j , aQ) ∈ AT and aQ ≤ jτ + yP + κ}.

Observe that for most of j ∈ J , we have AT (rj) = jτ − κ and AT (r′j) = jτ + yP + κ. In particular,
whenever AT (rj) > jτ −κ, that is, if j ∈ [d(xT − κ)/τe . . b(xT + κ)/τc], then jτ −κ is a position before
the first position that AT maps to: we have jτ − κ ≤ xT and hence AT (rj) = xT , which in turn implies
rj = 0.

Similarly, whenever AT (r′j) < jτ + yP + κ, that is, if j ∈ [d(yT − yP − κ)/τe . . b(yT − yP + κ)/τc],
we have yT < jτ + yP + κ and hence AT (r′j) = yT , which in turn implies r′j = n.

24

Remark 3.8. It is useful to number the blocks before the zeroth block with negative indices: observe
that for xT < κ, we may have (min J) < 0. In particular, we see that (min J) ≥ d−κ/τe ≥ −2, so we may
indeed need to address a −1-st and −2-nd block.

Similarly, (max J) may exceed the natural barrier of (yT − yP)/τ . In particular, we see that (max J) ≤
dyT /τe − dyP /τe+ κ/τ ≤ dyT /τe − dyP /τe+ 2.

Remark 3.9. It is useful to upper bound the length of each fragment Rj : fix a j ∈ J and consider
the fragment AT (Rj) of Q∞. By construction, AT (Rj) has a length of

|AT (Rj)| = (yP + jτ + κ)− (jτ − κ) = yP + 2κ.

Now, as AT has a cost of dT , we conclude that the fragment Rj has a length of at most

|Rj | = r′j − rj ≤ |AT (Rj)|+ dT = yP + 2κ+ dT ≤ m+ 3κ− k.

Intuitively, we want to think of Rj as the fragment of T that contains all k-error occurrences of P
that start at a position in T that corresponds to a position in Q̄j . Formally, this requires a proof as a
fragment Rj could (in theory) be too short to fully contain such an occurrence.

Lemma 3.10. Fix a j ∈ J and a position v ∈ [rj . . rj+1). For any position w > r′j, any alignment
A : P T [v . .w) has a cost of at least k + 1.

Proof. We prove the contraposition. To that end, fix an alignment A : P T [v . .w) with a cost of at
most k. We intend to show that w ≤ r′j .

To that end, write Q∞[AT (v) . .AT (w)) := AT (T [v . .w)) and consider the position AT (v). First,
suppose that q ≥ κ/2 and, in particular, τ = q. Now, the definition of rj yields13

AT (v) ∈ [jτ − κ . . min{yT , (j + 1)τ − κ}) ⊆ [jq − κ . . (j + 1)q − κ)

Applying Lemma 3.4, we see that AT (v) ∈ [jq − κ . . jq + κ] and

AT (w) ≤ min{yT , jq + yP + κ} ≤ jq + yP + κ = jτ + yP + κ

Hence, by definition w ≤ r′j .
Next, suppose that q < κ/2. Now, using Equation (1), we see that14

AT (v) ≤ (j + 1)τ − κ ≤ jτ + κ− κ.

Now, using Lemma 3.4, we see that |AT (T [v . .w))| ≤ yP + κ and hence

AT (w) ≤ AT (v) + |AT (T [v . .w))| ≤ jτ + yP + κ.

Thus, we have w ≤ r′j ; completing the proof.

In particular, Lemma 3.10 confirms our earlier intuition: indeed, the fragment Rj fully contains all
k-error occurrences of P that start at a position in T that corresponds to a position in Q̄j .

As another consequence of Lemma 3.10, we see that the set OccEk (P, T) decomposes over J and Rj .

13Observe that if j is equal to max J , then by Lemma 3.4, for AT (v) ∈ [(j + 1)τ − κ . . yT] the interval of possible
positions for w′ is empty. Hence, also in this corner case, we can safely assume AT (v) ≤ (j + 1)τ .

14Again, if j is max J , then by Lemma 3.4 with τ ≥ q, we may assume AT (v) < (j + 1)τ .

25

Corollary 3.11. For any position v ∈ OccEk (P, T) and a corresponding alignment A : P T [v . .w),
there is a (unique) j ∈ J such that v ∈ [rj . . rj+1) and w ≤ r′j; that is, we have OccEk (P, T) =⋃
j∈J

(
OccEk (P,Rj) + rj

)
.

Proof. Recall that Rj = T [rj . . r′j). Now, using Lemma 3.10, we see that for each j ∈ J , the set
OccEk (P,Rj) (shifted by rj) contains all k-error occurrences of P that start in T [rj . . rj+1).

Finally, we need to argue that no k-error occurrence may start at a position in T not covered by the
fragments Rj . To that end, first observe that rmax J+1 = n, so we may lose an occurrence only if it starts
before rmin J in T . Set j∗ := min J and observe that we are done if j∗ = 0, as r0 = 0. Now, for a positive j∗,
if q ≥ κ/2 (and hence τ = q), we see that for any positive integer α, we have (j∗ − α)q + κ < xT—hence
(by Lemma 3.4) no k-error occurrence starts in T before rj∗ .

Finally, if q < κ/2 (and hence τ < κ by Equation (2)); we have

j∗τ − κ ≤
(

1 + xT − κ
τ

)
τ − κ < xT − κ ≤ xT .

Hence, we have AT (rj∗) = xT and hence rj∗ = 0; completing the proof.

Next, we discuss how to compute the sequences (rj) and (r′j).

Lemma 3.12. Given the alignment AT , in O(dT + 1) time, we can construct the sequences (rj)j∈J
and (r′j)j∈J , represented as concatenations of O(dT + 1) arithmetic progressions with difference τ .

Proof. We intend to employ Lemma 2.4 to compute the first positions in T that AT maps to a position
jτ − κ and the last positions in T that AT maps to a position jτ + yP + κ. Thereby, we immediately
obtain the desired entries of rj when AT (rj) = jτ − κ (by setting rj := σATjτ−κ) and the desired entries
of r′j when AT (r′j) = jτ + yP − κ (by setting r′j := λATjτ+yP−κ). Recalling Remark 3.7, we see that the
remaining entries of (rj) are those that correspond to a (short) prefix of T (for which rj = 0) and we see
that the remaining entries of (r′j) are those that correspond to a (short) suffix of T (for which r′j = n).

Formally, we use Lemma 2.4 to compute the sequences (σATv)yTv=xT and (λATw)yTw=xT—which we obtain
represented as O(dT + 1) arithmetic progressions with difference 1 (that is intervals) each. Now, for the
sequence (rj)j∈J ; for j ∈ [d(xT − κ)/τe . . b(xT + κ)/τc], we set rj = 0 (which we output as single-element
arithmetic progressions).

For the remaining values of (rj), that is for j ∈ [d(xT + κ)/τe . . b(yT − yP + κ)/τc], we process the
intervals that represent (σATv) as follows: for each interval I representing (σATv)xT+|I|−1

v=xT , we compute
the intersection [xT . .xT + |I|) ∩ (jτ − κ)j and return the corresponding entries of I as an arithmetic
progression with difference τ . For (r′j)j∈J we proceed analogously.

For the running time, computing (σATv) and (σATw) takes time O(dT + 1); post-processing the obtained
intervals takes constant time per interval for a total running time of O(dT + 1). Next, observe that as
τ ≥ κ/2, we have

|[d(xT − κ)/τe . . b(xT + κ)/τc]| ≤ 2κ/τ ≤ 4.

In particular we can handle the initial values of (rj) in constant time and we output a constant number of
extra arithmetic progressions. Similarly, we have

|[d(yT − yP − κ)/τe . . b(yT − yP + κ)/τc]| ≤ 2κ/τ ≤ 4.

26

In particular we can handle the final values of (r′j) in constant time and we output a constant number
of extra arithmetic progressions. Hence in total, the algorithm runs in time O(dT + 1) and produces
O(dT + 1) arithmetic progressions, each with difference τ ;15 thus completing the proof.

Finally, we present a first algorithm for NewPeriodicMatches, which is particularly useful for small
sets J , that is, when q � k. Let us note that this algorithm is also used in the general case for the efficient
computation of k-error occurrences that start in heavy positions; see Section 6.1.

Lemma 3.13. For each j ∈ J , we can compute the set OccEk (P,Rj) in O(d2) time in the PILLAR
model. In particular, we can solve the NewPeriodicMatches problem in O(d2|J |) time in the PILLAR
model.

Proof. Recall from Remark 3.9 that for each j ∈ J we have |Rj | ≤ m + 3κ − k. Thus, by Fact 2.9
and Lemma 3.12, the construction of OccEk (P,Rj) using Verify(P,Rj , k, [0 . . |Rj | − m + k)) takes
O(log(1 + dT) + k(k + κ)) = O(d2) time in the PILLAR model. Corollary 3.11 shows how the sets
OccEk (P,Rj) can be combined into OccEk (P, T); this takes time O(κ|J |) = O(d|J |). In total, we see that
the overall running time in the PILLAR model is dominated by the calls to Verify, which take time
O(d2|J |) in the PILLAR model.

4 Using DynamicPuzzleMatching for Algorithms for NewPeriodicMatches

In this section, we formalize the connection between the DynamicPuzzleMatching problem and the
NewPeriodicMatches problem. In particular, we define suitable puzzles for the strings P and T ; then
we show that in the setting of NewPeriodicMatches, we can compute OccEk (P, T) with using very few
DPM-* operations. To that end, we first define partitions of P and T (resulting in tiles) from which we
then construct appropriate puzzles.

Definition 4.1 (τ -tile partition). Consider a string S, a primitive string Q of length q, an integer
τ ∈ Z>0 divisible by q, and an alignment AS : S Q∞[xS . . yS), where xS ∈ [0 . . q) and yS ≥ xS.

Partition Q∞ into blocks of length τ and number them starting from 1. For the j-th block Qj :=
Q∞[max{xS , (j − 1)τ} . . min{yS , jτ}), we define the j-th tile of S (with respect to AS) as

S[si−1 . . si) := A−1
S (Qj).

Further, we define the τ -tile partition of S with respect to AS as the partition

S =
⊙
i∈Z>0

S[si−1 . . si).

Remark 4.2. Observe that the dyS/τe-th tile is the last non-empty tile of S. Hence, writing
βS := dyS/τe, we have

S =
βS⊙
i=1

S[si−1 . . si).

Remark 4.3. We observe that s0 = 0 and sβS = |S|. We also see that that for all other j ∈ (0 . .βS),
we have

si = min{aS ∈ [0 . . |S|] : (aS , iτ) ∈ AS}.

Recalling Lemma 2.4, we hence have si = σASiτ .

15Observe that this is also true for single-element arithmetic progressions.

27

It is easy to verify that we can indeed efficiently compute the τ -tile partition of a string.

Lemma 4.4. Let S =
⊙β

i=1 S[si−1 . . si) denote the τ -tile partition of a string S with respect to a
cost-d alignment AS : S Q∞[xS . . yS).

Given (the breakpoint representation of) AS, in O(d+ 1) time, we can construct the sequence (si)βi=0,
represented as O(d+ 1) arithmetic progressions with difference τ .

Proof. We use Lemma 2.4 to obtain the sequence (σASv)ySv=xS as a concatenation of O(d+ 1) arithmetic
progressions with difference 1. Next, in view of Remark 4.3, we extract and return the subsequence
(σASjτ)βS−1

j=1 = sj ; together with the boundary values of s0 = 0 and sβS = |S|.
For the running time, observe that it suffices to process each arithmetic progression in (σASv)ySv=xS in

O(1) time. Further, each such arithmetic progression contributes a single (perhaps empty) arithmetic
progression of difference τ to the output; to which we add exactly two further arithmetic progressions. In
total, this yields the claim.

As in Section 3.2, we fix an instance of the NewPeriodicMatches(P, T, d, k,Q,AP ,AT) problem
and we set κ := k + dP + dT , and τ := q dκ/2qe.

Now additionally, let P =
⊙βP

i=1 P [pi−1 . . pi) denote the τ -tile partition of P with respect to AP , and
let T =

⊙βT
i=1 T [ti−1 . . ti) denote the τ -tile partition of T with respect to AT .

Toward our goal of creating a suitable puzzle for DynamicPuzzleMatching, we first observe
that if βP is very small (that is if the tiles are very long), then we can already efficiently solve the
NewPeriodicMatches problem.

Lemma 4.5. We can solve NewPeriodicMatches in time O(d2βP) in the PILLAR model.

Proof. In light of Lemma 3.13, it suffices to prove that |J | = O(βP).
To that end, observe that by the definition of J (Definition 3.6), we have

|J | − 1 =
⌊
yT − yP + κ

τ

⌋
−
⌈
xT − κ
τ

⌉
≤ yT − yP − xT + 2κ

τ
= (yT − xT)− (yP − 0) + 2κ

τ

Rephrasing in terms of n and m yields

|J | − 1 ≤ n+ dT −m+ dP + 2κ
τ

.

Using n−m ≤ m/2 + k (from using the Standard Trick) and, thereafter, κ := k + dP + dT yield

|J | − 1 ≤ m/2 + k + dP + dT + 2κ
τ

= m+ 6κ
2τ .

Rephrasing in terms of yP and, thereafter, using τ ≥ κ/2, and the definition of βP yield

|J | − 1 ≤ yP + 7κ
2τ ≤ yP

2τ + 7 ≤ βP /2 + 7.

Rearranging yields |J | ≤ βP /2 + 8 ≤ 17/2 βP , completing the proof.

In particular, Lemma 4.5 allows us to assume (without loss of generality) that βP ≥ 20. Further, we
set ∆ := 6κ and z := βP − 17.

Now, we (essentially) extend the tiles from the τ -tile partition of P by an additional ∆ characters to
obtain a ∆-puzzle with value P .

Lemma 4.6. The following sequence P1, . . . , Pz forms a ∆-puzzle with value P :

28

P1 := P [p0 . . p2 + ∆);
Pi := P [pi . . pi+1 + ∆) for i ∈ (1 . . z);
Pz := P [pz . . |P |).

Proof. The only non-trivial claim is that each internal piece is well-defined, that is that 0 ≤ pi and that
pi+1 + ∆ ≤ |P |. To verify this claim, observe that we have for every i ∈ (1 . . z)

0 = p0 ≤ pi and
pi+1 + ∆ ≤ pz + ∆ = pz + 6κ

Using τ ≥ κ/2 and, thereafter,
∣∣(pz+14 − pz)− 14τ

∣∣ ≤ δE(P [pz . . pz+14), Q∞[zτ . . (z + 14)τ]) ≤ dP , we
obtain

pi+1 + ∆ ≤ pz + 14τ − dP ≤ pz+14 ≤ |P |.

Similarly, we obtain ∆-puzzles for T . In particular, we use the τ -tile partition of T in order to represent
the fragments Rj as ∆-puzzles.

Lemma 4.7. For each j ∈ J , the following sequence Tj,1, . . . , Tj,z forms a ∆-puzzle with value Rj:
Tj,1 := T [rj . . tj+2 + ∆);
Tj,i := T [tj+i . . tj+i+1 + ∆) for i ∈ (1 . . z);
Tj,z := T [tj+z . . r′j).

Proof. The only non-trivial claim is that each internal piece is contained within Rj , that is that rj ≤ tj+i
and that tj+i+1 + ∆ ≤ r′j . To verify this claim, first observe that τ ≥ κ/2 yields for every j ∈ J =
[d(xT − κ)/τe . . b(yT − yP + κ)/τc] and every i ∈ (1 . . z) that

xT ≤ xT − κ+ 2τ ≤
(⌈

xT − κ
τ

⌉
+ 2
)
τ ≤ (j + i)τ.

In particular, we have (tj+i, (j+ i)τ) ∈ AT . Similarly, we obtain jτ −κ ≤ (j+ 2)τ ≤ (j+ i)τ , so rj ≤ tj+i
holds by definition of rj .

For the other bound, we first observe that for any j ∈ J and i ∈ (1 . . z), we have

(j+ i+ 15)τ ≤
(⌊

yT − yP + κ

τ

⌋
+ βP − 3

)
τ ≤ yT −yP +κ+ (βP −3)τ ≤ yT −yP +κ+yP −2τ ≤ yT .

In particular, we have (tj+i+15, (j + i+ 15)τ) ∈ AT . Similarly, we obtain (j + i+ 15)τ ≤ (j + βP − 3)τ ≤
yP + jτ − κ, so tj+i+15 ≤ r′j holds by definition of r′j . Now, as ∆ = 7κ− κ ≤ 14τ − dT ≤ tj+i+15 − tj+i+1,
we obtain tj+i+1 + ∆ ≤ r′j ; completing the proof.

Taken together, we obtain the families of puzzle pieces that we use in the remainder of this work.

Definition 4.8. We write Sβ := {P1} ∪ {Tj,1 : j ∈ J} for the family of leading puzzle pieces.
We write Sµ := {Pi : i ∈ (1 . . z)} ∪ {Ti : i ∈ (min J + 1 . . max J + z)} for the family of internal
puzzle pieces.
We write Sϕ := {Pz} ∪ {Tj,z : j ∈ J} for the family of trailing puzzle pieces.

Remark 4.9. For convenience, for i ∈ (min J + 1 . . max J + z), we write Ti := T [ti . . ti+1 + ∆).
Observe that by construction, we have Ti = Tj,i′ for all j + i′ = i with i′ ∈ (1 . . z); that is overlapping
parts of different Rj ’s share their internal pieces. Observe further that this is an essential property for our
approach to work: when moving from Rj to Rj+1, we exploit that we need to only shift the pieces Ti, and
not recompute them altogether.

29

Finally, we wish to use the sets from Definition 4.8 for DynamicPuzzleMatching. To that end,
we need to convince ourselves that pairs of pieces Pi and Tj,i are indeed roughly of the same length on
average. In particular, we verify that our choice of ∆ := 6κ is indeed sufficient.

Lemma 4.10. For each j ∈ J , we have
∑z
i=1
∣∣|Tj,i| − |Pi|∣∣ ≤ 3κ− k.

Proof. Fix a j ∈ J . In a first step, we obtain bounds on the length differences of each individual pair of
pieces. To that end, consider a pair of internal pieces Pi and Tj,i for an i ∈ (1 . . z); the triangle inequality
yields∣∣|Tj,i| − |Pi|∣∣ ≤ δE(T [tj+i . . tj+i+1), P [pi . . pi+1))

≤ δE(T [tj+i . . tj+i+1), Q∞[(j + i)τ . . (j + i+ 1)τ))
+ δE(P [pi . . pi+1), Q∞[iτ . . (i+ 1)τ)). (3)

As for i = 1, recall from Remark 3.7 that AT (rj) = max{xT , jτ − κ} ≤ jτ + κ. Hence, the triangle
inequality yields∣∣|Tj,1| − |P1|

∣∣ ≤ δE(T [rj . . tj+2), P [0 . . p2))
≤ δE(T [rj . . tj+2), Q∞[AT (rj) . . (j + 2)τ))

+ δE(Q∞[AT (rj) . . (j + 2)τ), Q∞[0 . . 2τ))
+ δE(P [0 . . p2), Q∞[0 . . 2τ))
≤ δE(T [0 . . tj+2), Q∞[xT . . (j + 2)τ)) + κ+ δE(P [0 . . p2), Q∞[0 . . 2τ)). (4)

As for i = z, recall from Remark 3.7 that AT (r′j) = min{yT , yP + jτ + κ} ≥ yP + jτ − κ. Hence, the
triangle inequality yields∣∣|Tj,z| − |Pz|∣∣ ≤ δE(T [tj+z . . r′j), P [pz . . |P |))

≤ δE(T [tj+z . . r′j), Q∞[(j + z)τ . .AT (r′j)))
+ δE(Q∞[(j + z)τ . .AT (r′j)), Q∞[zτ . . yP))
+ δE(P [pz . . |P |), Q∞[zτ . . yP))
≤ δE(T [tj+z . . |T |), Q∞[(j + z)τ . . yT)) + κ+ δE(P [pz . . |P |), Q∞[zτ . . yP)). (5)

Now, observe that we have

dP ≥ δE(P [0 . . p2), Q∞[0 . . 2τ))

+
z−1∑
i=2

δE(P [pi . . pi+1), Q∞[iτ . . (i+ 1)τ))

+ δE(P [pz . . |P |), Q∞[zτ . . yP)).

Symmetrically,

dT ≥ δE(T [0 . . tj+2), Q∞[xT . . (j + 2)τ))

+
z−1∑
i=2

δE(T [tj+i . . tj+i+1), Q∞[(j + i)τ . . (j + i+ 1)τ))

+ δE(T [tj+z . . |T |), Q∞[(j + z)τ . . yT)).

Adding Equations (3) to (5) hence yields the claimed
∑z
i=1
∣∣|Tj,i| − |Pi|∣∣ ≤ 2κ+ dP + dT = 3κ− k.

30

4.1 Special Puzzle Pieces and How to Compute Them Efficiently
In order for puzzle pieces to be useful to us, we need to be able to efficiently compute the families Sβ ,
Sµ, and Sϕ from Definition 4.8. As it turns out, when considering instances of NewPeriodicMatches,
most puzzle pieces are substrings of Q∞—this in turn means that it suffices to locate and compute the
special pieces (that are different from some specific substrings of Q∞). We start with a formal definition
of special puzzle pieces.

Definition 4.11. We say that an internal piece is special if and only if it is different from Q∞[0 . . τ +
∆). We write Special(P) for the set of special internal pieces of P and we Special(T) for set of special
internal pieces of T ; that is, we set

Special(P) := {Pi : i ∈ (1 . . z) and Pi 6= Q∞[0 . . τ + ∆)} and
Special(T) := {Ti : i ∈ (1 + min J . . z + max J) and Ti 6= Q∞[0 . . τ + ∆)}.

Further, we say that a leading piece Tj,1 is special if and only if it is different from Q∞[−κ . . 2τ + ∆)
and that a trailing piece Tj,z is special if and only if it is different from Q∞[zτ . . yP + κ). Similar to
before, we write Specialβϕ(T) for the set of special leading and trailing pieces of T .

Remark 4.12. When we store a special internal piece Pi (or Ti), we store it as a pair (i, Pi) (or
(i, Ti)) together with its index i in the sequence of pieces; special leading and trailing pieces are stored
similarly.

As a main result of this (sub-)section, we prove that there are only very few special pieces and that we
can compute them efficiently.

Lemma 1.6. The median edit distance of each of the families Sβ, Sµ, and Sϕ is bounded by O(d).
Further, each of the multisets Special(P), Special(T), and Specialβϕ(T) is of size O(d) and can be

computed in O(d) time in the PILLAR model.

We proceed to prove Lemma 1.6 by first bounding the edit distances of the puzzle pieces to a common
substring of Q∞; we start with the internal pieces.

Lemma 4.13. For any i ∈ (1 . . z), the internal piece Pi from Lemma 4.6 satisfies

δE(Pi, Q∞[0 . . τ + ∆)) ≤
13∑
j=1

2δE(P [pi+j−1 . . pi+j), Q∞[(i+ j − 1)τ . . (i+ j)τ)).

In particular, the internal piece Pi is special only if any of the fragments P [pi+j−1 . . pi+j) for j ∈ [1 . . 13]
differs from Q∞[0 . . τ).

For any i ∈ (min J + 1 . . max J + z), the internal piece Ti from Lemma 4.7 satisfies

δE(Ti, Q∞[0 . . τ + ∆)) ≤
13∑
j=1

2δE(T [ti+j−1 . . ti+j), Q∞[(i+ j − 1)τ . . (i+ j)τ)).

In particular, the internal piece Ti is special only if any of the fragments T [ti+j−1 . . ti+j) for j ∈ [1 . . 13]
differs from Q∞[0 . . τ).

Proof. Fix an i ∈ (1 . . z). Recall that we defined Pi = P [pi . . pi+1+∆) and ∆ = 6κ ≤ 12τ . Observe that
we have 0 ≤ iτ and (i+ 15)τ ≤ (βP − 3)τ ≤ yP ; and thus indeed (pi+j , (i+ j)τ) ∈ AP for all j ∈ [0 . . 15].

31

Now, exploiting dP ≤ κ ≤ 2τ and (i+ 15)τ ≤ yP , we see that pi+1 + 12τ ≤ pi+1 + 14τ −dP ≤ pi+15 ≤ |P |.
Hence, we obtain (with the additional help of Fact 2.6)

δE(Pi, Q∞[0 . . τ + ∆))
= δE(P [pi . . pi+1 + ∆), Q∞[iτ . . (i+ 1)τ + ∆))
≤ δE(P [pi . . pi+1 + 12τ), Q∞[iτ . . (i+ 13)τ))

Extending the fragments P [pi . . pi+1 + 12τ) and Q∞[iτ . . (i+ 13)τ) and correcting for potential length
differences, we obtain

δE(Pi, Q∞[0 . . τ + ∆))
≤ δE(P [pi . . pi+13), Q∞[iτ . . (i+ 13)τ)) + |pi+13 − (pi+1 + 12τ)|
= δE(P [pi . . pi+13), Q∞[iτ . . (i+ 13)τ)) + |(pi+13 − pi+1)− 12τ |
≤ δE(P [pi . . pi+13), Q∞[iτ . . (i+ 13)τ)) + δE(P [pi+1 . . pi+13), Q∞[(i+ 1)τ . . (i+ 13)τ))

≤
13∑
j=1

2δE(P [pi+j−1 . . pi+j), Q∞[(i+ j − 1)τ . . (i+ j)τ)).

We proceed similarly for the internal pieces of T . To that end, fix an i ∈ (min J + 1 . . max J + z)
and recall that we set Ti = T [ti . . ti+1 + ∆). As before, observe that we have

xT ≤ xT − κ+ 2τ ≤ (d(xT − κ)/τe+ 2)τ ≤ iτ and
(i+ 15)τ ≤ (b(yT − yP + κ)/τc+ z + 14)τ

≤ yT − yP + κ+ (βP − 3)τ ≤ yT + κ− 2τ ≤ yT .

Thus, indeed, we have (ti+j , (i + j)τ) ∈ AT for all j ∈ [0 . . 15]. Now, exploiting dT ≤ κ ≤ 2τ and
(i+ 15)τ ≤ yT , we see that ti+1 + ∆ ≤ ti+1 + 14τ − dT ≤ ti+15 ≤ |T |. Hence, analogously to before, we
conclude that

δE(Ti, Q∞[0 . . τ + ∆)) ≤
13∑
j=1

2δE(T [ti+j−1 . . ti+j), Q∞[(i+ j − 1)τ . . (i+ j)τ));

completing the proof.

As an immediate corollary, we obtain the desired bound for δE(Sµ).

Corollary 4.14. We have δE(Sµ) ≤ 26κ and |Special(T)|+ |Special(P)| ≤ 26κ.

Proof. Recall that δE(Sµ) = minŜ
∑
S∈Sµ δE(S, Ŝ). Now, by Lemma 4.13, choosing Q∞[0 . . τ + ∆)

yields the upper bound

δE(Sµ) ≤
∑
S∈Sµ

δE(S,Q∞[0 . . τ + ∆))

=
z−1∑
i=2

δE(Pi, Q∞[0 . . τ + ∆)) +
max J+z−1∑
i=min J+2

δE(Ti, Q∞[0 . . τ + ∆))

≤ 2 ·
13∑
j=1

z−1∑
i=2

δE(P [pi+j−1 . . pi+j), Q∞[(i+ j − 1)τ . . (i+ j)τ))

+
max J+z−1∑
i=min J+2

δE(T [ti+j−1 . . ti+j), Q∞[(i+ j − 1)τ . . (i+ j)τ))

≤ 2 · 13 · (dP + dT) = 26κ.

32

Finally observe that each special piece has an edit distance of at least 1 to Q∞[0 . . τ + ∆); hence there
may be at most 26κ special pieces in total.

Finally, Lemma 4.13 easily yields an algorithm for computing the special internal pieces of P and T .

Corollary 4.15. Given the alignment AP , we can compute Special(P) in O(dP +1) time in the PILLAR
model; given the alignment AT , we can compute Special(T) in O(dT + 1) time in the PILLAR model.

Proof. By Lemma 4.13, for each special internal piece Pi (or Ti), there is a j ∈ [1 . . 15] such that
P [pi+j−1 . . pi+j) 6= Q∞[(i + j − 1)τ . . (i + j)τ) (or T [ti+j−1 . . ti+j) 6= Q∞[(i + j − 1)τ . . (i + j)τ)).
This, in turn, requires a breakpoint (aP , aQ) ∈ AP (or (aT , aQ) ∈ AT) with aQ ∈ [iτ . . (i+ 13)τ).

Hence, for each breakpoint (aP , aQ) ∈ AP , we identify pieces Pi with i ∈ (baQ/τc − 15 . . baQ/τc] ∩
(1 . . z) as candidates; for each breakpoint (aT , aQ) ∈ AT , we identify pieces Ti with i ∈ (baQ/τc −
15 . . baQ/τc] ∩ (min J + 1 . . max J + z) as candidates. For each of these candidates, we check Pi =
Q∞[0 . . τ + ∆) (or Ti = Q∞[0 . . τ + ∆) using an LCP operation of the PILLAR model.

By processing the breakpoints in left-to-right order and keeping track of the rightmost candidate
generated so far, we can list the indices i of the candidates Pi (or Ti) in left-to-right order without duplicates.
Then, a linear-time scan over the representation of (pi)βPi=0 (or (pi)βTi=0) obtained from Lemma 4.4 lets us
determine the endpoints of each candidate Pi (or Ti). Each breakpoint yields up to 15 candidates, so the
total running time in the PILLAR model is O(dP + 1) (or O(dT + 1)).

We proceed to special leading and trailing pieces—as there is at most one special leading piece of P
and at most one special trailing piece of P , we can trivially compute them fast. Hence, we first focus on
special leading and trailing peaces of T . To that end, we proceed as with the internal pieces; however, the
calculations become slightly more involved.

Lemma 4.16. For any j ∈ J , the leading piece Tj,1 from Lemma 4.7 satisfies

δE(Tj,1, Q∞[−κ . . 2τ + ∆)) ≤ 2κ+ 2dT .

Further, for any j ∈ [3 . . max J], the leading piece Tj,1 additionally satisfies

δE(Tj,1, Q∞[−κ . . 2τ + ∆)) ≤ 2
14∑

i=−1
δE(T [ti+j−1 . . ti+j), Q∞[(i+ j − 1)τ . . (i+ j)τ)).

In particular, the leading piece Tj,1 is special only if either j < 3 or any of the fragments T [ti+j−1 . . ti+j)
differs from Q∞[(i+ j − 1)τ . . (i+ j)τ) for i ∈ [−1 . . 14].

Proof. Fix a j ∈ J and recall from Remark 3.7 that AT (rj) = max{xT , jτ − κ} ≤ jτ + κ. Observe that
we have

xT ≤ xT − κ+ 2τ
(⌈

xT − κ
τ

⌉
+ 2
)
τ ≤ (j + 2)τ and

(j + 16)τ ≤
(⌊

yT − yP + κ

τ

⌋
+ 16

)
τ ≤ yT − yP + κ+ 16τ

≤ yT − (βP − 1)τ + 2τ + 16τ = yT − (βP − 19)τ ≤ yT .

Thus, indeed, we have (tj+i, (j + i)τ) ∈ AT for all i ∈ [2 . . 16]. Now exploiting dT ≤ κ ≤ 2τ and
(j + 16)τ ≤ yT , we see that tj+2 + ∆ ≤ tj+2 + 12τ ≤ tj+2 + 14τ − dT ≤ tj+16 ≤ |T |. Hence, we conclude

33

(with the additional help of Fact 2.6)

δE(Tj,1, Q∞[−κ . . 2τ + ∆))
= δE(T [rj . . tj+2 + ∆), Q∞[jτ − κ . . (j + 2)τ + ∆))
≤ δE(T [rj . . tj+2 + 12τ), Q∞[jτ − κ . . (j + 14)τ))

Replacing strings by superstrings and accounting for potential length differences, we obtain

δE(Tj,1, Q∞[−κ . . 2τ + ∆))
≤ δE(T [rj . . tj+14), Q∞[jτ − κ . . (j + 14)τ)) + |tj+14 − (tj+2 + 12τ)|
≤ δE(T [rj . . tj+2), Q∞[jτ − κ . . (j + 2)τ)) + 2δE(T [tj+2 . . tj+14), Q∞[(j + 2)τ . . (j + 14)τ))
= δE(T [rj . . tj+2), Q∞[jτ − κ . . (j + 2)τ))

+ 2
14∑
i=3

δE(T [ti+j−1 . . ti+j), Q∞[(i+ j − 1)τ . . (i+ j)τ))

≤ (AT (rj)− (jτ − κ)) + 2dT ≤ 2κ+ 2dT .

Now, for j ≥ 3, we have xT ≤ τ ≤ 3τ − κ ≤ jτ − κ and hence AT (rj) = jτ − κ. Moreover, we have
xT ≤ τ ≤ (j − 2)τ . Thus, in particular, we have (tj+i, (j + i)τ) ∈ AT even for all i ∈ [−2 . . 16]. Hence,
we conclude similarly to before

δE(T [rj . . tj+2), Q∞[jτ − κ . . (j + 2)τ))
≤ δE(T [tj−2 . . tj+2), Q∞[(j − 2)τ . . (j + 2)τ)) + |(rj − tj−2)− ((jτ − κ)− (j − 2)τ)|
≤ 2δE(T [tj−2 . . tj+2), Q∞[(j − 2)τ . . (j + 2)τ))

= 2
2∑

i=−1
δE(T [ti+j−1 . . ti+j), Q∞[(i+ j − 1)τ . . (i+ j)τ)).

In total, we obtain the claimed

δE(Tj,1, Q∞[−κ . . 2τ + ∆)) ≤ 2
14∑

i=−1
δE(T [ti+j−1 . . ti+j), Q∞[(i+ j − 1)τ . . (i+ j)τ)).

Similarly to Lemma 4.16, we analyze the (special) trailing pieces of T .

Lemma 4.17. For any j ∈ J , the trailing piece Tj,z from Lemma 4.7 satisfies

δE(Tj,z, Q∞[zτ . . yP + κ)) ≤ 2κ+ dT .

Further, for any j ∈ [min J . .βT − βP − 3], the trailing piece Tj,z additionally satisfies

δE(Tj,z, Q∞[zτ . . yP + κ)) ≤
z+19∑
i=z+1

δE(T [ti+j−1 . . ti+j), Q∞[(i+ j − 1)τ . . (i+ j)τ)).

In particular, the trailing piece Tj,z is special only if either j > βT − βP − 3 or any of the fragments
T [ti+j−1 . . ti+j) differs from Q∞[(i+ j − 1)τ . . (i+ j)τ) for i ∈ [1 . . z + 19].

34

Proof. Fix a j ∈ J and recall from Remark 3.7 that AT (r′j) = min{yT , yP + jτ + κ} ≥ yp + jτ − κ.
Observe that we have

xT ≤ xT − κ+ 2τ ≤ xT − κ+ zτ ≤
(⌈

xT − κ
τ

⌉
+ z

)
τ ≤ (j + z)τ) and

(j + z)τ ≤
(⌊

yT − yP + κ

τ

⌋
+ z

)
τ ≤ yT − yP + κ+ (βP − 17)τ

≤ yT − (βP − 1)τ + 2τ + (βP − 17)τ ≤ yT − 14τ ≤ yT

Thus, indeed, we have (tj+z, (j + z)τ) ∈ AT . Hence, we conclude

δE(Tj,z, Q∞[zτ . . yP + κ)) = δE(T [tj+z . . r′j), Q∞[(j + z)τ . . jτ + yP + κ))
≤ 2κ+ δE(T [tj+z . . r′j), Q∞[(j + z)τ . .AT (r′j)))
≤ 2κ+ dT .

Now, for j ≤ βT − βP − 3, we have yP + jτ + κ ≤ (βP + j + 2)τ ≤ (βT − 1)τ ≤ yT and hence
AT (r′j) = yP + jτ + κ. Moreover, we have yP + jτ + κ < (βP + j + 2)τ = (j + z + 19)τ ≤ yT . Thus, in
particular, we have (tj+i, (j + i)τ) ∈ AT even for all i ∈ [z . . z + 19]. Hence,

δE(Tj,z, Q∞[zτ . . yP + κ)) = δE(T [tj+z . . r′j), Q∞[(j + z)τ . . jτ + yP + κ))
≤ δE(T [tj+z . . tj+z+19), Q∞[(j + z)τ . . (j + z + 19)τ))

=
z+19∑
i=z+1

δE(T [ti+j−1 . . ti+j), Q∞[(i+ j − 1)τ . . (i+ j)τ));

completing the proof.

As with the internal pieces, we proceed to prove the desired bounds on δE(Sβ) and δE(Sϕ).

Corollary 4.18. We have δE(Sβ) ≤ 53κ, δE(Sϕ) ≤ 35κ, and |Specialβϕ(T)| ≤ 88κ.

Proof. We start with the leading pieces. To that end, first observe that

δE(P1, Q
∞[−κ . . 2τ + ∆)) ≤ κ+ δE(P [0 . . p2 + ∆), Q∞[0 . . 2τ + ∆))

≤ κ+ δE(P [0 . . p2 + 12τ), Q∞[0 . . 14τ))

Replacing strings by superstrings and accounting for potential length differences, we obtain

δE(P1, Q
∞[−κ . . 2τ + ∆)) ≤ κ+ δE(P [0 . . p14), Q∞[0 . . 14τ)) + |p14 − (p2 − 12τ)|

≤ κ+ δE(P [0 . . p14), Q∞[0 . . 14τ)) + δE(P [p2 . . p14), Q∞[2τ . . 14τ))
≤ κ+ 2δE(P,Q∞[0 . . yP))
≤ κ+ 2dP .

Next, we recall Remark 3.8 and in particular that min J ≥ −2. Therefore, Lemma 4.16 yields∑
j∈J

δE(Tj,1, Q∞[−κ . . 2τ + ∆))

≤ 5(2κ+ 2dT) + 2
14∑

i=−1

max J∑
j=3

δE(T [ti+j−1 . . ti+j), Q∞[(i+ j − 1)τ . . (i+ j)τ))

≤ 10κ+ 10dT + 32dT = 10κ+ 42dT .

35

Combined, we obtain the desired bound

δE(Sβ) ≤
∑
S∈Sβ

δE(S,Q∞[−κ . . 2τ + ∆))

≤ δE(P1, Q
∞[−κ . . 2τ + ∆)) +

∑
j∈J

δE(Tj,1, Q∞[−κ . . 2τ + ∆))

≤ κ+ 2dP + 10κ+ 42dT ≤ 53κ.

Now observe that each special leading piece has an edit distance of at least 1 to Q∞[−κ . . 2τ + ∆));
hence there may be at most 53κ special leading pieces in total.

We proceed to the trailing pieces. To that end, first observe that

δE(Pz, Q∞[zτ . . yP + κ)) ≤ κ+ δE(Pz, Q∞[zτ . . yP)) ≤ κ+ dP .

Next, we recall Remark 3.8 and in particular that max J ≤ dyT /τe−dyP /τe+ 2 = βT −βP + 2. Therefore,
Lemma 4.17 yields∑

j∈J
δE(Tj,z, Q∞[zτ . . yP))

≤ 5(2κ+ dT) +
z+19∑
i=z+1

βT−βP−3∑
j=min J

δE(T [ti+j−1 . . ti+j), Q∞[(i+ j − 1)τ . . (i+ j)τ))

≤ 10κ+ 5dT + 19dT = 10κ+ 24dT .

Combined, we obtain the desired bound

δE(Sϕ) ≤
∑
S∈Sϕ

δE(S,Q∞[zτ . . yP + κ))

≤ δE(Pz, Q∞[zτ . . yP + κ)) +
∑
j∈J

δE(Tj,z, Q∞[zτ . . yP + κ))

≤ κ+ dP + 10κ+ 24dT ≤ 35κ.

Finally observe that each special trailing piece has an edit distance of at least 1 to Q∞[zτ . . yP + κ));
hence there may be at most 35κ special trailing pieces in total. In total, we obtain the claimed bound of
|Specialβϕ(T)| ≤ 88κ, completing the proof.

Finally, we discuss how to compute the special leading and trailing pieces of T—again, the algorithm
strongly resembles Corollary 4.15 for the special internal pieces.

Corollary 4.19. Given the alignment AT , we can compute Specialβϕ(T) in O(dT + 1) time in the
PILLAR model.

Proof. For computing the special leading pieces, Remark 3.8 and Lemma 4.16 let us focus on the following
candidates: at most 5 pieces Tj,1 with j ≤ 2, as well as all pieces Tj,1 such that T [ti+j−1 . . ti+j) 6=
Q∞[(i+ j − 1)τ . . (i+ j)τ)) holds for some i ∈ [−1 . . 14]. Similarly for computing the special trailing
peaces, Remark 3.8 and Lemma 4.17 let us focus on the following candidates: at most 5 pieces Tj,z with
j ≥ βT − βP − 2, as well as all pieces Tj,z such that T [ti+j−1 . . ti+j) 6= Q∞[(i + j − 1)τ . . (i + j)τ))
holds for some i ∈ [z + 1 . . z + 19].

To satisfy T [ti+j−1 . . ti+j) 6= Q∞[(i + j − 1)τ . . (i + j)τ)), a breakpoint (aT , aQ) ∈ AT with
aQ ∈ [(i− 2)τ . . (i+ 14)τ) is needed. Hence, by scanning the breakpoints in the left-to-right order we can

36

generate all candidates in O(dT + 1) time. Next, we retrieve their endpoints using Lemmas 4.4 and 3.12,
and we verify each candidate using an LCP operation of the PILLAR model. The overall running time is
O(dT + 1).

Recalling and combining the various lemmas of this subsection, we obtain Lemma 1.6, which we restate
here for convenience.

Lemma 1.6. The median edit distance of each of the families Sβ, Sµ, and Sϕ is bounded by O(d).
Further, each of the multisets Special(P), Special(T), and Specialβϕ(T) is of size O(d) and can be

computed in O(d) time in the PILLAR model.

4.2 Solving NewPeriodicMatches via DynamicPuzzleMatching: A Warm-up
Algorithm

In this (sub-)section we obtain a first reduction from NewPeriodicMatches to DynamicPuzzle-
Matching. While overly naive in nature, it serves as an overview of the general structure of the more
involved variants that follow in later (sub-)sections. In particular, in this (sub-)section, we discuss the
following (easy) result.

Lemma 4.20. Given an instance NewPeriodicMatches(P, T, k, d,Q,AP ,AT), after a preprocessing
step that takes O(d + m/max{q, d}) time in the PILLAR model, we can compute OccEk (P, T) using a
DynamicPuzzleMatching(k,∆,Sβ ,Sµ,Sϕ) data structure, with ∆ + δE(Sβ) + δE(Sµ) + δE(Sϕ) = O(d),
that maintains a DPM-sequence of length z = O(m/max{q, d}) under
O(d ·m/max{q, d}) calls to DPM-Substitute and
O(m/max{q, d}) calls to DPM-Query.
Consider a given instance NewPeriodicMatches (P , T , k, d, Q, AP , AT) and write κ := k+dP +dT

and τ := q dκ/2qe. Further, as before, let P =
⊙βP

i=1 P [pi−1 . . pi) denote the τ -tile partition of P with
respect to AP ; let T =

⊙βT
i=1 T [ti−1 . . ti) denote the τ -tile partition of T with respect to AT ; and set

∆ := 6κ and z := βP − 17. Finally, we define the families of puzzle pieces according to Definition 4.8.
Recalling Remark 4.2 and Lemma 1.6, we readily confirm that our choices for ∆, Sβ , Sµ, and Sϕ

indeed satisfy z = O(m/max{q, d}), ∆ = O(d), and δE(Sβ) + δE(Sµ) + δE(Sϕ) = O(d).
Intuitively, we proceed as follows: we initialize a DynamicPuzzleMatching(k,∆,Sβ ,Sµ,Sϕ) data

structure with a DPM-sequence I of length z that represents P and Rmin J , and call DPM-Query to obtain
OccEk (Imin J) = OccEk (P,Rmin J), that is, the k-error occurrences of P in Rmin J . Then, iterating over
J , for a j ∈ (min J . . max J], we use DPM-Substitute operations to transform I into a DPM-sequence
that represents P and Rj ; to then call DPM-Query to OccEk (Ij) = OccEk (P,Rj), that is, obtain the k-error
occurrences of P in Rj .

Observe that by Corollary 3.11, we indeed obtain all k-error occurrences of P in T . As we have
|J | = O(βP) = O(m/max{q, d}) (see Lemma 4.5), we can already see that the number of calls to
DPM-Query is just as promised in Lemma 4.20. For a bound on the number of calls to DPM-Substitute,
we need to be more precise on how we transform the DPM-sequence I. We start with formally defining
the DPM-sequence(s) I.

Definition 4.21. For each j ∈ J , we set Ij := (P1, Tj,1)(P2, Tj,2) · · · (Pz, Tj,z).
Recall that by Lemmas 4.6 and 4.7 we have val∆(P1, . . . , Pz) = P and val∆(Tj,1, . . . , Tj,z) = Rj .

Let us write I = (U1, V1)(U2, V2) . . . (Uz, Vz) for the DPM-sequence maintained in the Dynamic-
PuzzleMatching data structure. We initialize I with the DPM-sequence I ← Imin J . Then, we iterate
over J (starting from min J) as follows.

37

If j > min J , for each i ∈ [1 . . z] with Tj−1,i 6= Tj,i, we substitute the i-th pair of strings with (Pi, Tj,i).
We perform these updates in non-decreasing order with respect to

∣∣|Tj,i| − |Pi|∣∣− ∣∣|Tj−1,i| − |Pi|
∣∣.

We call DPM-Query to obtain OccEk (Ij) = OccEk (P,Rj); and we set OccEk (P, T) := OccEk (P, T) ∪ (rj +
OccEk (P,Rj)).

Verifying the Conditions of DynamicPuzzleMatching

Before we discuss the number of required calls to DPM-Substitute, we have to convince ourselves that I
fulfills the constraints of DynamicPuzzleMatching on the maintained DPM-sequence. In particular,
we need to show that the following conditions are satisfied at all times.
(a) U1, V1 ∈ Sβ and Uz, Vz ∈ Sϕ, and, for all i ∈ (1 . . z), Ui, Vj ∈ Sµ
(b) tor(I) =

∑z
i=1
∣∣|Ui| − |Vi|∣∣ ≤ ∆/2− k.

Observe that before any DPM-Query, the DPM-sequence I is equal to the DPM-sequence Ij . Now,
while Condition (a) is satisfied by construction, we need to work slightly harder for Condition (b). First,
if we have I = Ij for some j ∈ J , then Lemma 4.10 yields

tor(I) = tor(Ij) =
z∑
i=1

∣∣|Pi| − |Tj,i|∣∣ ≤ 3κ− k = ∆/2− k.

Next, consider the sequence of updates U between two sequences Ij and Ij+1. Observe that by construction,
we can split U into two disjoint parts: first the updates U≤ that do not increase the torsion tor(Ij),
followed by the updates U> that do. In particular, we can apply the following useful fact, which directly
yields the desired properties.

Fact 4.22. Let C denote a non-negative integer and let I and I ′ denote sequences of length z that
satisfy tor(I) ≤ C and tor(I ′) ≤ C. Consider a sequence U of updates that

transforms I into I ′, and
is ordered such that all updates that do not increase the torsion of the DPM-sequence precede all
updates that increase the torsion of the DPM-sequence.

Then, any DPM-sequence I ′′ obtained from I by applying a prefix of U satisfies tor(I ′′) ≤ C.

Bounding the Number of Calls to DPM-Substitute

We return to bounding the number of calls to DPM-* operations. In particular, our next goal is to
upper-bound the number of pairs that our algorithm substitutes to transform Ij−1 to Ij for some
j ∈ (min J . . max J].

To that end, observe that we might need to substitute the head or the tail of the DPM-sequence.
Further, for each i ∈ (1 . . z), the i-th pair is substituted only if at least one of Tj−1,i and Tj,i differs
from Q∞[0 . . τ + ∆); that is, if either Tj−1,i or Tj,i is special. Now, recall from Lemma 1.6 that the set
Special(T) ∪ Special(P) is of size O(d)—thus, for each j ∈ J , we perform O(d) substitutions.

In total, we hence perform O(κ|J |) = O(κ ·m/τ) = O(d ·m/max{q, d}) calls to DPM-Substitute;
recall that earlier we already bounded the number of calls to DPM-Update by O(|J |) = O(m/max{q, d}).

Analyzing the Preprocessing Time

Now for bounding the preprocessing time, we need to argue about the time required for constructing the
initial DPM-sequence Imin J , as well as the time required to compute the substitutions that are to be
performed.

38

For computing Imin J we turn to Lemmas 4.4 and 3.12, which yield the sequences (rj)j∈J , (r′j)j∈J ,
(pi)βPi=0, and (ti)βTi=0, from which we can easily obtain Imin J in time O(z + κ) = O(m/max{q, d}+ d).

For computing which pieces to update, Lemma 1.6 yields the special pieces of P and T in a suitable
representation in time O(d) (in the PILLAR model).

To summarize our result, let us recall Lemma 4.20, which we have just proved.

Lemma 4.20. Given an instance NewPeriodicMatches(P, T, k, d,Q,AP ,AT), after a preprocessing
step that takes O(d + m/max{q, d}) time in the PILLAR model, we can compute OccEk (P, T) using a
DynamicPuzzleMatching(k,∆,Sβ ,Sµ,Sϕ) data structure, with ∆ + δE(Sβ) + δE(Sµ) + δE(Sϕ) = O(d),
that maintains a DPM-sequence of length z = O(m/max{q, d}) under
O(d ·m/max{q, d}) calls to DPM-Substitute and
O(m/max{q, d}) calls to DPM-Query.
Observe that combining Theorem 1.5 and Lemma 4.20, we obtain an algorithm for NewPeriodic-

Matches that requires Õ(d3 + ∆2d) = Õ(d3) time for preprocessing, Õ(∆z) = Õ(d ·m/max{q, d}) time
for initialization, and Õ(∆κ ·m/τ) = O(d2 ·m/max{q, d}) time for processing updates and queries. This
yields an overall running time of Õ(d3 + d2 ·m/max{q, d}), which is by far too much. In particular, in
the remainder of this section (and, by extension, this part), we aim to replace the factor m/max{q, d}
with a small power of d.

4.3 Solving NewPeriodicMatches via DynamicPuzzleMatching, Improvement 0:
Replacing Pair Substitutions with Pair Insertions and Pair Deletions

In our quest to replace the factor O(m/τ) = O(m/max{q, d}) in Lemma 4.20 by a small power of d, we
take a small detour to give an alternative algorithm for obtaining Ij from Ij−1. In particular, observe
that up until now, we have not used the DPM-Delete and DPM-Insert operations, as we could make do
with just calling DPM-Substitute. While we do not decrease the overall number of calls to DPM-*, in this
(sub-)section, we decrease the number of such calls that involve special pieces to O(κ2) = O(d2). Formally,
we call an internal pair of pieces in I canonical if it does not contain a special piece.

Definition 4.23. For an instance NewPeriodicMatches(P, T, k, d,Q,AP ,AT), write ∆ := 6(k +
dP + dT) and τ := q dκ/2qe. We call a pair of pieces canonical if it equals

Q := (Q∞[0 . . τ + ∆), Q∞[0 . . τ + ∆)).

Now, we obtain the following variant of Lemma 4.20.

Lemma 4.24. Given an instance NewPeriodicMatches(P, T, k, d,Q,AP ,AT), after a preprocessing
step that takes O(d + m/max{q, d}) time in the PILLAR model, we can compute OccEk (P, T) using a
DynamicPuzzleMatching(k,∆,Sβ ,Sµ,Sϕ) data structure, with ∆ + δE(Sβ) + δE(Sµ) + δE(Sϕ) = O(d),
that maintains a DPM-sequence of length z = O(m/max{q, d}) under
O(d · m/max{q, d}) calls to DPM-Delete and DPM-Insert that delete and insert, respectively, a
canonical pair,
O(d2) calls to DPM-Substitute, and
O(m/max{q, d}) calls to DPM-Query.

Proof. In general, we follow the algorithm from Lemma 4.20; however, we use a different method for
transforming Ij−1 to Ij (for j ∈ (min J . . max J]).

First, observe that, by Lemmas 4.16 and 4.17, we need to performO(κ) = O(d) calls to DPM-Substitute
for the head and the tail of the maintained DPM-sequence I. We can thus focus on updates involving
pairs of internal pieces.

39

Now, as an illustrative example, consider an internal pair Pj−1
i := (Pi, Tj−1,i), and suppose that

only Tj−1,i is special (that is, different from Q∞[0 . . ∆ + τ)). Further, suppose that the pairs Pj−1
i−1 :=

(Pi−1, Tj−1,i−1) and Pj−1
i+1 := (Pi+1, Tj−1,i+1) are both canonical. Now, observe that in Ij , all pieces of P

get aligned to a piece of T that is one piece to the right compared to Ij−1, that is, we need to construct
the pairs

Pji−1 := (Pi−1, Tj,i−1) = (Pi−1, Tj−1,i) = Pj−1
i and Pji := (Pi, Tj,i) = (Pi, Tj−1,i+1) = Q.

Now, instead of calling DPM-Substitute to directly create Pji−1 and Pji (as we did in Lemma 4.20), we
DPM-Delete the canonical pair Pj−1

i−1 and DPM-Insert it after (the unchanged) Pji−1 = Pj−1
i . Observe

that by doing so, we replaced the previous calls to DPM-Substitute with an equal number of calls to
DPM-Delete and DPM-Insert involving copies of Q.

Generalizing the above example, unless both pieces Pi and Tj−1,i (or both Pi and Tj,i) are special
(and if i ∈ (2 . . z − 1)), we can replace the calls to DPM-Substitute with an equal number of calls to
DPM-Delete and DPM-Insert that delete and insert a copy of Q, respectively. Now, by Lemma 1.6, there
are at most O(d) special pieces in P and T each—hence, over all Ij , j ∈ J in total, only at most O(d2)
pairs contain two special pieces. Replacing all other calls to DPM-Substitute, we obtain the claimed
result.

Remark 4.25. Observe that in the worst case, no algorithm can iterate over all Ij for j ∈ J with
o(κ ·m/τ) updates. Consider the example, where for some constant c, every bcz/κc-th piece within each
of the sequences P2, . . . , Pz−1 and Tmin J+2, . . . , Tmax J+z−1 is special and no two special pieces are equal.
We can easily convince ourselves that for each pair j1, j2 ∈ J , we have δE(Ij1 , Ij2) = Ω(κ) and hence
Ω(κ ·m/τ) updates are required for exactly computing each Ij .

Remark 4.26. Observe that for each j ∈ J , the DPM-sequence Ij without its head and tail consists
of O(κ) pairs that contain at least one special piece and O(κ) runs of canonical pairs. Then, roughly
speaking the following claims hold (which we prove—in a more general setting—in Section 4.4): each run
of canonical pairs in Ij−1 remains intact in Ij up to the potential insertion or deletion of a canonical pair.
In addition, we can decide whether we need any of these two potential updates by inspecting the pairs
adjacent to the run in scope.

Thus, in the transformation of Ij−1 to Ij we have to insert or delete O(κ) canonical pairs. The crucial
observation in Section 4.4 now is that for very long runs of Q, inserting or deleting a single copy of Q
does not matter, that is, the resulting k-error occurrences are essentially the same. This allows us to skip
many of the calls to DPM-Insert and DPM-Delete, decreasing their number to a power of O(d). Observe
that this allows us to circumvent Remark 4.25, as we compute the sequences Ij only approximately.

4.4 Solving NewPeriodicMatches via DynamicPuzzleMatching, Improvement 1:
Trimming Long Perfectly Periodic Segments

In this (sub-)section, we extend and formalize the idea that Remark 4.26 hinted at. In particular, we
exploit that insertions and deletions of canonical pairs Q that extend or shrink a “long” run of canonical
pairs do not alter the answer to a DynamicPuzzleMatching query. Based on this, we iterate over
“compressed” versions of the sequences in scope, while still being able to compute all sought approximate
occurrences. To simplify our exposition, let us define a Trim operator for DPM-sequences.

Definition 4.27. Consider a DPM-sequence I, where the elements of some subset Plain(I) of the
internal canonical DPM-pairs are labeled as plain. (We call all other pieces non-plain.)

40

For a positive integer α, we write Tm(I,Plain(I), α) for the DPM-sequence obtained from I by removing
exactly one plain DPM-pair from any one contiguous subsequence of plain DPM-pairs of length at least α+1;
if I does not contain any such subsequence, we set Tm(I,Plain(I), α) := I. (That is, Tm(I,Plain(I), α)
is a DPM-sequence of length at least z − 1.)

Further, we write Trim(I,Plain(I), α) := Tm?(I,Plain(I), α) for an iterated application of Tm until
the DPM-sequence remains unchanged. (That is, in Trim(I,Plain(I), α) every contiguous subsequence of
plain DPM-pairs is of length at most α.)

Remark 4.28. For technical reasons, we may not want to include all canonical pairs Q in the set
Plain(I). In particular, write Red(P) ⊇ Special(P) for a set of red pieces of P and write Red(T) ⊇ Special(T)
for a set of red pieces of T . Now, for a j ∈ J , we set

Plain(Ij) := {(Pi, Tj,i) : i ∈ (1 . . z) and Pi /∈ Red(P) and Tj,i /∈ Red(T).

Abusing notation, we write Trim(Ij ,Red(P),Red(T), α) := Trim(Ij ,Plain(Ij), α).

Remark 4.29. It is easy to see that for every j ∈ J , we have |Trim(Ij ,Red(P),Red(T), α)| =
O(α|Red(P)| |RedT |): in the DPM-sequence Trim(Ij ,Red(P),Red(T), α), the set Plain(Ij) contains at
most O(|Red(P)||Red(T)|) sequences of contiguous pairs, each of length of at most α. In particular, we
have |Trim(Ij ,Special(P),Special(T), α)| = O(d2α) by Lemma 1.6.

As a key result of this (sub-)section, we proceed to show that we can trim the DPM-sequences Ij with
α = k + 1 and still recover all k-error occurrences of P in Rj .

Lemma 4.30. For any j ∈ J , we have

OccEk (P,Rj) = OccEk (Ij) = OccEk (Trim(Ij ,Special(P),Special(T), k + 1)).

Now, we can concisely state the main algorithmic result of this (sub-)section.

Lemma 4.31. Given an instance NewPeriodicMatches(P, T, k, d,Q,AP ,AT), after a preprocessing
step that takes O(d3α logn) time in the PILLAR model model, we can compute

G :=
⋃
j∈J

(rj + OccEk (Trim(Ij ,Special(P),Special(T), k + 1)))

as O(d4) arithmetic progressions with difference τ = O(max{q, d}), using a DynamicPuzzleMatching
(k,∆,Sβ ,Sµ,Sϕ) data structure, with ∆ + δE(Sβ) + δE(Sµ) + δE(Sϕ) = O(d), that maintains a DPM-
sequence of length z = O(dα) under
O(d3) calls to DPM-Delete and DPM-Insert that delete and insert, respectively, a canonical pair,
O(d2) calls to DPM-Substitute, and
O(d2) calls to DPM-Query.

We proceed with a proof of Lemma 4.30; formally, we prove the following, slightly stronger statement.

Lemma 4.32. Fix a string Q̂ and integers k ≥ 0 and ∆ > 0. Further, consider a DPM-sequence I
whose pieces form ∆-puzzles and that has a torsion of tor(I) ≤ ∆/2− k, and a set Plain(I) of DPM-pairs
labeled as plain, where Plain(I) ⊆ {(Ui, Vi) ∈ I : i ∈ (1 . . z) and Ui = Vi = Q̂}.

For any α ≥ 1, we have OccEk (Tm(I,Plain(I), α)) ⊇ OccEk (I) and OccEk (Tm(I,Plain(I), k + α)) =
OccEk (I).

41

Proof. Let us assume that the Tm-operation indeed removes a plain piece of I, otherwise there is nothing
to prove. Further, let us fix an α ≥ 1. Now, first, we convince ourselves that the Tm operation produces
valid ∆-puzzles.

Claim 4.33. Given a ∆-puzzle X := X1, . . . , Xi, Xi+1, . . . , Xz with Xi = Xi+1 and value X := val∆(X),
the sequence

X ′ := X1, . . . , Xi−1, Xi+1, . . . , Xz = X1, . . . , Xi, Xi+2, . . . , Xz

forms a ∆-puzzle with value

val∆(X ′) = X[0 . . ξi + b∆/2c)X[ξi + |Xi| − d∆/2e . . |X|) = X[0 . . ξi + p)X[ξi+1 + p . . |X|),

where ξi :=
∑i−1
t=1 |Xt| −∆ and p ∈ [0 . . |Xi| −∆].

Proof. By definition, we have Xi[|Xi| − ∆ . . |Xi|) = Xi+1[0 . . ∆) and Xi+1[|Xi+1| − ∆ . . |Xi+1|) =
Xi+2[0 . . ∆). As Xi = Xi+1, we also have Xi[|Xi|−∆ . . |Xi|) = Xi+2[0 . . ∆), yielding the claim.

Now, let us write I = (U1, V1)(U2, V2) · · · (Uz, Vz) and U := val∆(U1, . . . , Uz) and V := val∆(V1, . . . , Vz).
Further, for each j ∈ (1 . . z), write U [uj . .u′j) = Uj and V [vj . . v′j) = Vj ; that is uj =

∑j−1
t=1 (|Ut| −∆)

and vj =
∑j−1
t=1 (|Vt| −∆). With Claim 4.33 in mind, we also write Ûj := U [ûj . . û′j), where

ûj := uj + b∆/2c =
j−1∑
t=1

(|Ut| −∆) + b∆/2c and

û′j := ûj + |Uj | −∆ =
j−1∑
t=1

(|Ut| −∆) + |Uj | − d∆/2e = u′j − d∆/2e .

For convenience, we define û′1 and ûz analogously. Observe that we have û′j = ûj+1, that is, we obtain a
partition of U = U [0 . . û′1)Û2 · · · Ûz−1U [ûz . . |U |).

We proceed to show OccEk (Tm(I,Plain(I), α)) ⊇ OccEk (I). To that end, suppose that the Tm-operation
removes the DPM-pair (Ui, Vi) from I. We may assume that Ui = Ui+1 = Vi = Vi+1, as the Tm-operation
may not fully remove a subsequence of plain DPM-pairs and we can relabel the remaining plain pair, if
necessary. In particular, we can interpret Ûi as the fragment cut out of U due to the Tm-operation.

Now, write

U ′ := val∆(U1, . . . , Ui−1, Ui+1, . . . , Uz) and V ′ := val∆(V1, . . . , Vi−1, Vi+1, . . . , Vz),

and consider an optimal alignment A : U V [a . . b) of cost at most k. As I has a bounded torsion, we
can see that A indeed aligns Ûi within Vi—in fact, it does so for every fragment Ûi.

Claim 4.34. For any j ∈ (1 . . z), the fragment V̂j := V [v̂j . . v̂′j) := A(Ûj) is contained in Vj .
Proof. Observe that we have by construction

vj = uj +
j−1∑
t=1

(|Vt| − |Ut|) ≤ uj +
z∑
t=1

∣∣|Ut| − |Vt|∣∣ = uj + tor(I) ≤ uj + b∆/2c − k ≤ a+ ûj − k ≤ v̂j .

Symmetrically, we obtain

v̂′j ≤ b+ û′j − |U |+ k ≤ |V | − |U |+ u′j − d∆/2e+ k

≤ |V | − |U |+ u′j − tor(I) = |V | − |U |+ u′j −
z∑
t=1

∣∣|Ut| − |Vt|∣∣)
≤ |V | − |U |+ u′j −

z∑
t=j+1

(|Vt| − |Ut|) = v′j ,

42

thus completing the proof.

Next, we use Corollary 2.7 to cut out the pair (Ui, Vi) from A; we have

δE(U, V [a . . b)) ≥ δE(U [0 . . ûi), V [a . . v̂i)) + δE(U [ûi + |Ui| −∆ . . |U |), V [v̂i + |Ui|+ ∆ . . b))

Now, Claim 4.34 ensures that V̂i is indeed contained in Vi. Adding that Vi[0 . . |Ui −∆)Vi+1 has a period
|Ui| −∆, we see that V [v̂i . . v̂i + |Ui| −∆) is a rotation of Vi[0 . . |Ui| −∆). Thus, we indeed obtain V ′:

δE(U [0 . . ûi), V [a . . v̂i)) + δE(U [ûi + |Ui| −∆ . . |U |), V [v̂i + |Ui|+ ∆ . . b))
= δE(U ′[0 . . ûi), V ′[a . . v̂i)) + δE(U ′[ûi . . |U ′|), V ′[v̂i . . b− |Ui|+ ∆))
≥ δE(U ′, V ′[a . . b− |Ui|+ ∆)).

In total, we constructed an alignment A′ : U ′ V ′[a . . b − |Ui| + ∆) of cost at most k—and hence
completed the proof of OccEk (Tm(I,Plain(I), α)) ⊇ OccEk (I).

Now, to prove OccEk (Tm(I,Plain(I), k+α)) = OccEk (I), and more specifically OccEk (Tm(I,Plain(I), k+
α)) ⊆ OccEk (I), we first observe that in I, the DPM-pair (Ui, Vi) is part of a contiguous subsequence
X := (Ui−k′ , Vi−k′) · · · (Ui, Vi) · · · (Ui+k′′ , Vi+k′′) of length (at least) k′+k′′+1 ≥ k+2, where all DPM-pairs
that are equal to (Ui, Vi). Again, write

U ′ := val∆(U1, . . . , Ui−1, Ui+1, . . . , Uz) and V ′ := val∆(V1, . . . , Vi−1, Vi+1, . . . , Vz),

and consider an optimal alignment A : U ′ V ′[a . . b) of cost at most k. As the alignment A can make
at most k edits, at least one DPM-pair of the contiguous subsequence

X ′ := (Ui−k′ , Vi−k′) · · · (Ui−1, Vi−1)(Ui+1, Vi+1) · · · (Ui+k′′ , Vi+k′′)

gets aligned without any edits; as all pairs of X are the same, we may thus assume without loss of
generality that V̂i−1 = Ûi−1. In particular, we can insert (Ui, Vi) into X ′ after (Ui−1, Vi−1) such that
Ûi = V̂i; that is (using Fact 2.2), we have

δE(U ′, V ′[a . . b)) = δE(U ′[0 . . ûi), V ′[a . . v̂i)) + 0 + δE(U ′[û′i . . |U |), V ′[v̂′i . . b))
= δE(U [0 . . ûi), V [a . . v̂i)) + 0

+ δE(U [û′i + |Ui| −∆ . . |U |), V [v̂′i + |Ui| −∆ . . b+ |Ui| −∆))
≥ δE(U, V [a . . b+ |Ui| −∆)).

In total, we constructed an alignment A′ : U V [a . . b + |Ui| − ∆) of cost at most k—and hence
completed the proof of OccEk (Tm(I,Plain(I), k + α)) ⊆ OccEk (I).

Combining Lemmas 4.10 and 4.32, we obtain Lemma 4.30, which we restate here for convenience.

Lemma 4.30. For any j ∈ J , we have

OccEk (P,Rj) = OccEk (Ij) = OccEk (Trim(Ij ,Special(P),Special(T), k + 1)).

Remark 4.35. Observe that we could trim sequences of plain pairs to be even shorter than k + 1. By
Lemma 4.32, processing such a “over-trimmed” sequence naively might result in false-positive reports of
k-error occurrences, though. In essence, the remainder of this part shows when and how we are able to
avoid such false-positive reports when trimming with α = Θ̃(

√
d).

43

Observe that trimming the DPM-sequences alone is not enough to obtain Lemma 4.31: in the
interesting case where κ3 = o(m/τ), we cannot afford to consider each of the O(m/τ) DPM-sequences
I ′j := Trim(Ij ,Red(P),Red(T), k + 1) separately. However, for most values j ∈ J , we have I ′j−1 = I ′j .
Further, if rj − rj−1 = τ , then we have rj + OccEk (P,Rj) = rj−1 + OccEk (P,Rj−1) + τ . Consequently, we
can return all occurrences compactly as arithmetic progressions. (Also recall from Lemma 3.12 that the
sequence (rj)j∈J is the concatenation of O(dT + 1) arithmetic progressions with difference τ .) While these
observations alone still are not enough to obtain a faster algorithm for NewPeriodicMatches, they do
yield an alternative algorithm with (roughly) the same running time as Fact 2.12.

With Remark 4.35 in mind, we give a slightly more general algorithm that allows for an arbitrary
threshold α up to which we may trim the runs of plain pairs in the sequences Ij . In particular, we prove
the following more general variant of Lemma 4.31.

Lemma 4.36 (TrimmedPM(T, P, k,Q,AP ,AT ,Red(P),Red(T), α)). Suppose we are given an instance
NewPeriodicMatches(P, T, k, d,Q,AP ,AT), a positive integer α, as well as sets of puzzle pieces
Red(P) ⊇ Special(P) and Red(T) ⊇ Special(T) of size O(d) each.

After a preprocessing step that takes O(d2α logn) time in the PILLAR model, we can compute

G :=
⋃
j∈J

(rj + OccEk (Trim(Ij ,Red(P),Red(T), α)))

as O(d3α) arithmetic progressions with difference τ = O(max{q, d}), using a DynamicPuzzleMatching
(k,∆,Sβ ,Sµ,Sϕ) data structure, with ∆ + δE(Sβ) + δE(Sµ) + δE(Sϕ) = O(d), that maintains a DPM-
sequence of length z = O(dα) under
O(d2α) calls to DPM-Delete and DPM-Insert that delete and insert, respectively, a canonical pair,
O(d2) calls to DPM-Substitute, and
O(d2α) calls to DPM-Query.

Proof. As in Sections 4.2 and 4.3, we set Sβ , Sµ, Sϕ according to Definition 4.8 and choose ∆ := 6κ =
6(k + dP + dT). Further, for each j ∈ J , set I ′j := Trim(Ij ,Red(P),Red(T), α).

In contrast to the warm-up algorithms, we initialize the DynamicPuzzleMatching data structure
with I ← I ′min J (instead of Imin J). Now, in general we follow the approach of the algorithms from
Sections 4.2 and 4.3: we transform I to be equal to I ′j and then call DPM-Query to obtain the contained
k-error occurrences. However, we skip over an I ′j if it is equal to I ′j+1 and instead extend the arithmetic
progressions obtained from the last call to DPM-Query by τ .

Claim 4.37. In O(κ2α logn) time in total, we can compute, for all j ∈ J \ {min J} with I ′j−1 6= I ′j ,
a sequence updatej of DynamicPuzzleMatching update operations that transforms I ′j−1 to I ′j , such
that if we perform these updates one by one, all intermediate sequences satisfy conditions (a) and (b) of
DynamicPuzzleMatching. Further, these sequences of updates are returned in increasing order with
respect to j and contain in total
O(d2α) calls to DPM-Delete and DPM-Insert that delete and insert, respectively, a canonical pair and
O(d2) calls to DPM-Substitute.

Proof. We store I as a doubly-linked list I. We compute sequences that consist of the following types of
updates:

list-sub(pointer, (Pi, Tj,i)): given a handle pointer to an element of I, substitute (Pi, Tj,i) for this
element.
list-ins(pointer, (Pi, Tj,i)): given a handle pointer to an element of I, insert (Pi, Tj,i) before this element.

44

list-del(pointer): given a pointer pointer to an element of I, delete its successor in I.
While this interface is different from that of DynamicPuzzleMatching, each update can be mapped to
a DynamicPuzzleMatching update as long as we are able to perform the following operation: given
a handle to an element of I, return its rank, that is, the number of elements that precede it in I. This
operation can be implemented in O(logn) time by maintaining a balanced binary search tree over the
elements of I at the cost of an O(logn)-time additive overhead for each update operation.

In O(κ log κ) time, we store the elements of Red(P) ∪ {P1, Pz} in a doubly linked list LP and we store
the elements of Red(T) in a doubly linked list LX , each sorted with respect to their starting positions. At
all times, we store a bidirectional pointer between each element of each of LP and LT and the DPM-pair
that contains it in I. (We do not explicitly mention when such pointers need to be updated.) For both P
and T , we write pointer(Pi) (or pointer(Ti)) for the pointer from the element of LP (or LT) corresponding
to Pi (or Ti) to the element of I that contains Pi (or Ti).

We insert all updates in a global min-heap with keys in (min J . . max J] × Z ∪ {−∞}. When we
are done generating updates, we pop them from the heap, inserting an update with key (j, p) in the
min-heap updatej with priority p. These priorities ensure that the conditions on the maintained sequence
are satisfied at all times. We can easily convince ourselves that this process indeed returns sequences
updatej in increasing order with respect to j.

Similar to the algorithm that was sketched in Section 4.3, we consider a few types of updates to I:
O(κ) substitutions of the head/tail of the sequence,
O(κ2) updates that involve a pair that contains a red fragment, and
O(κ2α) insertions/deletions of a plain pair, effectively shrinking/expanding a run of plain pairs.

In order to develop some more intuition, let us examine how the length of the run of plain pairs that
succeeds the head of I changes in the course of the algorithm. This length may decrease as a DPM pair A
containing some Tt ∈ Red(T) approaches the head of I while we slide P on T . When such a DPM-pair
disappears in the process of transforming It−1 to It, the length of the considered run might increase
depending on where the leftmost pair with a red piece in It is; roughly speaking, the run of plain pairs
after A in It−1 becomes the run of plain pairs that succeeds the head of It.

We say that a run of plain pairs is enclosed by the two DPM-pairs that are adjacent to it. Suppose
that in each of Ij−1 and Ij there is a run of plain pairs that is enclosed by a pair that contains a fragment
Pi ∈ Red(P) ∪ {P1, Pz} and a pair that contains a fragment Tt ∈ Red(T). The lengths of these two runs
differ by at most one; details are provided below. Observe that any run of plain pairs in Ij−1 that is not
enclosed by a pair that contains a fragment Pi ∈ Red(P) ∪ {P1, Pz} and a pair that contains a fragment
Tt ∈ Red(T) either remains intact in Ij or is shifted to the left by one position. In particular, each
change to the length of a run as we transform I ′j−1 to I ′j can be attributed to a single pair of fragments
Pi ∈ Red(P) ∪ {P1, Pz} and Tt ∈ Red(T) getting closer to (or farther from) each other.

We first issue updates for the head and the tail of the sequence.16 To this end, we first compute the
union HeadTail of the sets

{j ∈ J : Tj,1 6= Q∞[−κ . . 2τ + ∆)} and {j ∈ J : Tj,z 6= Q∞[zτ . . yP + κ)},

with its elements sorted in increasing order, in O(κ) time using Lemmas 4.16 and 4.17. For each
j ∈ HeadTail \ min J , for each e ∈ {1, z} we issue an update list-sub(pointer(Pe), (Pe, Tj,e)) with key
(j,
∣∣|Tj,e| − |Pe|∣∣ − ∣∣|Tj−1,e| − |Pe|

∣∣). Further, for each j ∈ HeadTail \ max J , for each e ∈ {1, z}, issue
update list-sub(pointer(Pe), (Pe, Tj+1,e)) with key (j + 1,

∣∣|Tj+1,e| − |Pe|
∣∣− ∣∣|Tj,e| − |Pe|∣∣).

16 Some of the issued updates might be redundant or duplicate, but this is not a problem.

45

Let us now issue all updates that involve some red fragment. For each pair of fragments Pi ∈ Red(P)
and Tt ∈ Red(T) we do the following.

If t− i ∈ (min J . . max J], we issue the following updates:
list-sub(pointer(Pi), (Pi, Tt)) with key (t− i,

∣∣|Tt| − |Pi|∣∣− ∣∣|Tt−1| − |Pi|
∣∣), and

if i+ 1 < z and Pi+1 6∈ Red(P), list-del(pointer(Pi)) with key (t− i,−∞).
If t− i+ 1 ∈ (min J . . max J], we issue the following updates:

if i > 2 and Pi−1 6∈ Red(P), list-ins(pointer(Pi), (Pi−1, Tt)) with key (t− i+ 1,
∣∣|Tt| − |Pi−1|

∣∣), and
if Tt+1 6∈ Red(T), list-sub(pointer(Pi), (Pi, Tt+1)) with key (t− i+ 1,

∣∣|Tt+1| − |Pi|
∣∣− ∣∣|Tt| − |Pi|∣∣).

Next, we show how to compute updates that allow the algorithm to maintain the trimmed length
of the run of plain pairs that is enclosed by a pair containing some Pi ∈ Red(P) ∪ {P1, Pz} and a pair
containing some Tt ∈ Red(T), when such a run exists.

First, we consider the case where the pair containing Pi precedes the pair containing Tt = Tj−1,t−(j−1)
in some I ′j−1 and these two pairs enclose a non-empty run of plain pairs. In this case, the run would
either shrink in I ′j or retain its length α. Let the successor of Pi in LP be Pv. Further, if Tt is not the
first element in LT let its predecessor in LT be Tu = Tj−1,u−(j−1); otherwise, set u := −∞. The following
conditions must be satisfied:
(i) t− (j − 1) ≤ v, which is equivalent to j > t− v, so that Pv is not in a pair strictly between the two

pairs and hence none of the elements of Red(P) is,
(ii) u− (j − 1) ≤ i, which is equivalent to j > u− i, so that there is no non-plain pair containing some

element of Red(T) between the two pairs, and
(iii) t− (j − 1)− i > 1, which is equivalent to j ≤ t− i− 1, so that the precedence condition is satisfied

and the two pairs are not adjacent.
Further, the run should shrink in I ′j only if the two pairs are close enough, that is, if t− (j− 1)− i− 1 ≤ α,
which is equivalent to j > t− i− α− 1. Hence, for each

j ∈ (max{min J, t− v, u− i, t− i− α− 1} . . min{max J, t− i− 1}],

we issue an update list-del(pointer(Pi)) with key (j,−∞). Observe that the total number of such issued
updates is at most (t− i− 1)− (t− i− α− 1) = α.

We now consider the complementary case where in each of I ′j−1 and I ′j , the pair containing Pi succeeds
the pair containing Tt and these two pairs either enclose a non-empty run of plain pairs or are adjacent.17

In this case, the run would either be expanded by one plain pair in I ′j or retain its length α. Let the
predecessor of Pi in LP be Py. Further, if Tt is not the last element in LT let its successor in LT be
Tw = Tj−1,w−(j−1); otherwise, set w :=∞. The following conditions must be satisfied:
(i) t− (j − 1) > y, which is equivalent to j ≤ t− y, so that Pw is strictly to the left of both pairs in
I ′j−1, as if this is not the case then the condition on I ′j would not be satisfied,

(ii) w − (j − 1) > i, which is equivalent to j ≤ w − i, so that Ty (if it exists) is strictly to the right of
both pairs in I ′j−1, as if this is not the case then the condition on I ′j would not be satisfied,

(iii) t− (j − 1) < i, which is equivalent to j > t− i+ 1, so that the precedence condition is satisfied.
Further, the run should be expanded in I ′j only if the two pairs are close enough, that is, if i−(t−(j−1))−1 <
α, which is equivalent to j ≤ α+ t− i+ 1. Hence, for each

j ∈ (max{min J, t− i+ 1} . . min{max J, t− y, w − i, α+ t− i+ 1}],

17Observe that the pairs can only be adjacent in I′j−1.

46

we issue an update list-ins(pointer(Pi), (Q∞[0 . . τ + ∆), Q∞[0 . . τ + ∆))) plain pair in the (potentially
empty) run preceding the pair that contains Pi with key (j,−∞). Observe that the total number of such
issued updates is at most (α+ t− i+ 1)− (t− i+ 1) = α.

Clearly, we can compute all updates for a given pair (in the intermediate interface) in O(α) time.
The conditions of DynamicPuzzleMatching are clearly satisfied at initialization. Condition (a) is

satisfied at all times as all the updates involving the head or tail of only involve pairs in Sβ × Sβ and
Sϕ × Sϕ, respectively, while all remaining updates involve pairs in Sµ × Sµ. Condition (b) is satisfied at
all times; it is satisfied for each constructed I ′j by Lemma 4.10 as I ′j is a subsequence of Ij , and for all
other constructed sequences by a direct application of Fact 4.22, which is applicable because of how the
updates in each updatej are sorted.

We are now ready to complete the reduction to DynamicPuzzleMatching; see Algorithm 2 for a
pseudocode implementation.

Using Claim 4.37, we initialize the set

U = {updatej : j ∈ (min J . . max J] and I ′j−1 6= I ′j}.

To simplify the construction of certain arithmetic progressions later in the proof, we insert to U
the following single-element (void) sequences of updates. For each j ∈ (min J . . max J] such that
rj − rj−1 6= τ and I ′j−1 = I ′j , we insert to U the sequence updatej that consists of a single element:
DPM-Substitute((P1, Tj,1),1), that is, the substitution of the first pair of the maintained sequence with
(P1, Tj,1). By Lemma 3.12, we only generate O(dT + 1) new updates.

Now, we initialize the sequence I with I ′min J . We consider the sequences of updates updatej in U in
increasing order with respect to j and apply them to the maintained sequence I. Prior to performing the
sequence of updates updatej we do the following. Suppose that the maintained sequence I corresponds to I ′t,
that is, either updatej is the first element of U and t = min J or the previously applied sequence of updates
was updatet. First, we compute OccEk (I ′t) using a DPM-Query. Observe that we have I ′t = · · · = I ′j−1 and
hence OccEk (I ′t) = · · · = OccEk (I ′j−1). Further, for each i ∈ (t . . j), we have ri − ri−1 = τ and hence
ri + OccEk (I ′i) = rt + OccEk (I ′t) + (i− t)τ . We can thus efficiently return

⋃j−1
i=t (ri + OccEk (I ′t)) as the union

of O(|OccEk (I ′i)|) arithmetic progressions⋃
a∈OccE

k
(I′t)

{rt + a+ i · τ : i ∈ [0 . . j − t)}.

(Observe that in the case where t = j − 1, each of the constructed arithmetic progressions consists of a
single element.) Finally, we apply the sequence of updates updatej . The case where there are no more
updates to be processed is treated analogously (with j set to max J + 1). The upper bound on the number
of returned arithmetic progressions is embedded in the analysis of the time complexity of the algorithm.

We now proceed to analyze the time required by Algorithm 2.
First, recall that the elements of U as returned by Claim 4.37 in O(κ2α logn) time are sorted in

increasing order with respect to j and a representation of (rj)j∈J as the concatenation of O(dT + 1)
arithmetic progressions with difference τ can be computed in O(dT + 1) time in the PILLAR model due to
Lemma 3.12. Thus, Lines 4–6 can be implemented in O(κ2α) time in a parallel left-to-right scan of U and
the aforementioned representation of (rj)j∈J , maintaining the sortedness of U .

Next, observe that I ′min J is of length O(κα) as it consists of a head, a tail, O(κ) non-plain pairs and
O(κ) runs of plain pairs, each of length at most α. This sequence can be computed in O(κα+ κ log κ)
time: the head and the tail are computed in O(log(κ+ 1)) time due to Corollary 4.15 and Lemmas 4.16
and 4.17, while the pairs consisting of internal pieces can be computed by processing the elements of

47

Algorithm 2 Reduction of computing G to an instance of DynamicPuzzleMatching.

1 TrimmedPM(T , P , k, Q, AP , AT , Red(P), Red(T), α)
2 G ← ∅;
3 Construct set U of sequences updatej specified in Claim 4.37; // O(κ2α logn) time
4 foreach j ∈ (min J . . max J] such that rj − rj−1 6= τ and I ′j−1 = I ′j do
5 updatej ← {DPM-Substitute((P1, Tj,1),1)};
6 U ← U ∪ {updatej};
7 I ← I ′min J ; // O(κα+ κ log κ) time
8 t← min J ;
9 foreach j ∈ {i ∈ (min J . . max J + 1] : updatei 6= ∅ or i = max J + 1} in incr. order do

10 OccEk (I ′j)← DPM-Query;
11 foreach a ∈ OccEk (I ′j) do
12 G ← G ∪ {rt + a+ i · τ : i ∈ [0 . . j − t)};
13 if j ≤ max J then
14 Apply the sequence of updates updatej on I;
15 t← j;
16 return G;

Red(P), Red(T) in a left-to-right manner, after sorting them with respect to their starting positions in
O(κ log κ) time.

The for-loop of Lines 9–15 is executed O(κ2α) times as this is an upper bound on the number of
sequences of updates that are processed. For each j ∈ J , due to Lemma 4.10, we have

∑zj
i=1
∣∣|Fj,i|−|Gj,i|∣∣ ≤∑z

i=1
∣∣|Tj,i| − |Pi|∣∣ ≤ 3κ− k and hence |OccEk (Fj , Gj)| = O(κ). Thus, each query in Line 10 returns a set

of size O(κ). Hence, apart from the time required for DynamicPuzzleMatching updates and queries,
each iteration of the for-loop takes O(κ) time, for a total of O(κ3α) time. It readily follows that the
output of the algorithm consists in O(κ3α) arithmetic progressions.

All in all, in O(κ3α+κ2α logn) = O(d3α+d2α logn) time, the problem in scope reduces to an instance
of DynamicPuzzleMatching with Sβ + Sµ + Sϕ = O(d) (due to Lemma 1.6), ∆ = 6κ = O(d), I
initialized as a sequence of length O(dα), and O(d2α) updates and queries.

As a direct consequence, we obtain an alternative algorithm for the NewPeriodicMatches problem
with a competitive running time, that is, we obtain an algorithm for NewPeriodicMatches, which is
slower than the algorithm implied by Fact 2.12 only by a poly-logarithmic factor.

Corollary 4.38. We can solve the NewPeriodicMatches problem in O(d4 logn log d) time in the
PILLAR model.

Proof. By Lemma 4.30, in order to solve an instance of NewPeriodicMatches, it suffices to construct
sets Special(P) and Special(T) in O(d) time in the PILLAR model using Lemma 1.6 and call the algorithm
underlying Lemma 4.36 with Red(X) := Special(X) for each X ∈ {P, T} and α := k + 1.

Using Theorem 1.5 for the DynamicPuzzleMatching problem, we need O(d3 log2 d) time for
preprocessing, O(d4 log d) time for initialization, and O(d3 · d logn log d) time for processing updates and
queries. Overall, the required time is thus O(d4 logn log d).

In the following sections, our goal is to reduce the NewPeriodicMatches problem to an instance
TrimmedPM(T, P, k,Q,AT ,AP ,Red(P),Red(T), O(

√
d)) with |Red(P)|+ |Red(T)| = O(d).

48

5 Faster NewPeriodicMatches: Additional Combinatorial Insights

While the improved algorithms in [CKW20] crucially relied on analyzing and understanding the structure
of the pattern, we obtain the improvements in this work by additionally analyzing and understanding the
structure of the text. Throughout this section, we fix a text T , a pattern P , a primitive string Q, and
parameters dP , dT , and d stemming from an instance of NewPeriodicMatches. Our goal is to classify
each position of the text where a k-error occurrence of P can start (cf. Fact 2.8 in this regard) as either
heavy or light, using the notion of locked fragments, depending on some parameter η. The heavy positions
are few and can be covered by a few heavy ranges of small total length. The set of light positions may be
large, but, as explained and exploited in Section 6, for each light position v ∈ OccEk (P, T), any alignment
A : P T [v . .w) of cost mint δE(P, T [v . . t)) is quite restricted: it does not makes edit operations
outside the vicinity (interpreted as O(ητ) positions) of locked fragments of the text and the pattern.

5.1 Locked Fragments and their Properties
We intend to understand and analyze the structure of the text by using a more elaborate version of the
marking schemes used in [CKW20]. In particular, we heavily rely on the notion of locked fragments in
text and pattern from [CKW20].

Definition 5.1 ([CKW20, Definition 5.5]). Let S denote a string and let Q denote a primitive string.
We say that a fragment L of S is locked (with respect to Q) if at least one of the following holds:

For some integer α, we have δE(L, ∗Q∗) = δE(L,Qα).
The fragment L is a suffix of S and δE(L, ∗Q∗) = δE(L,Q∗).
The fragment L is a prefix of S and δE(L, ∗Q∗) = δE(L, ∗Q).
We have L = S.

Let us also recall an intuitive example from [CKW20].

Example 5.2 ([CKW20]). Fix a primitive string Q and consider a string U = Qk+1SQk+1 with
δE(U, ∗Q∗) ≤ k. In any optimal alignment of U with a substring of Q∞ with at most k edits, at least
one of the leading k + 1 occurrences of Q in U is matched exactly and at least one of the trailing k + 1
occurrences of Q in U is matched exactly. Hence, all occurrences preceding (or succeeding) said exactly
matched occurrence of Q are also matched exactly. Thus, U is locked with respect to Q.

As in [CKW20], we also need the slightly stronger notion of an h-locked prefix of a string.

Definition 5.3 ([CKW20, Definition 5.10]). Let S denote a string, let Q denote a primitive string, and
let h ≥ 0 denote an integer. We say that a prefix L of S is h-locked (with respect to Q) if at least one
of the following holds:

For every p ∈ [0 . . |Q|), if δE(L, rotp(Q)∗) ≤ h, then δE(L, rotp(Q)∗) = δE(L,Q∞[−p . . j|Q|)) for
some j ∈ Z.
We have L = S.

Given a string S (that is either the pattern or the text), we intend to construct locked fragments
covering all errors of S with respect to ∗Q∗, such that the total length of these locked fragments is roughly
proportional to the product of |Q| and δE(S, ∗Q∗).

Lemma 5.4 (Locked(S, Q, d, h), [CKW20, Lemma 6.9]). Let S denote a string, let Q denote a
primitive string, let dS denote a positive integer such that δE(S, ∗Q∗) ≤ dS and |S| ≥ (2dS + 1)|Q|, and
let h ∈ Z≥0.

Then, there is an algorithm that computes disjoint locked fragments L1, . . . , L` � S such that

49

S = L1 ·
⊙`−1

i=1(QαiLi+1) for positive integers α1, . . . , α`−1;18

L1 is an h-locked prefix of S and L` is a suffix of S;
δE(S, ∗Q∗) =

∑`
i=1 δE(Li, ∗Q∗) and δE(Li, ∗Q∗) > 0 for i ∈ (1 . . `); and∑̀

i=1
|Li| ≤ (5|Q|+ 1)δE(S, ∗Q∗) + 2(h+ 1)|Q|.

The algorithm takes O(d2
S + h) time in the PILLAR model.

5.2 Analyzing the Text Using Locked Fragments

Our marking scheme is similar to the marking scheme used in the proof of [CKW20, Theorem 5.2]. As
both T and P are close to being periodic, we can compute locked fragments with respect to a common
string Q (which is given as a parameter in the call of NewPeriodicMatches).

We start with some intuition for how different locked fragments of T and P influence the edit distance
between T and P . To that end, let LP denote the set of locked fragments computed for P , let LT denote the
set of locked fragments computed for T , and consider an alignment A : P T [t . . t′). If A aligns a locked
fragment LP ∈ LP to a fragment of Q∞, that is, A(LP) does not overlap any locked fragment of T [t . . t′),
we obtain δAE (LP ,A(LP)) ≥ δE(LP , ∗Q∗). Symmetrically, any locked fragment LT ∈ LT of T [t . . t′), for
which A−1(LT) does not overlap any locked fragment of P satisfies δAE (A−1(LT), LT) ≥ δE(LT , ∗Q∗).

However, if A aligns a substring U of a locked fragment LP ∈ LP to a substring V of a locked fragment
LT ∈ LT , the situation is not as straightforward. (One can consider the cleaner case where U is LP and V
is LT .) Suppose for simplicity that there exist integers x and y such that δE(U, ∗Q∗) = δE(U,Q∞[x . . y))
and δE(V, ∗Q∗) = δE(V,Q∞[x . . y)). In this case, by the triangle inequality, we have that

δE(U, ∗Q∗) + δE(V, ∗Q∗)−min{δE(U, ∗Q∗), δE(V, ∗Q∗)} ≤ δE(U, V) ≤ δE(U, ∗Q∗) + δE(V, ∗Q∗).

In other words, by aligning these substrings of locked fragments, we can hope to “save” at most
min{δE(U, ∗Q∗), δE(V, ∗Q∗)} edits compared to the δE(U, ∗Q∗) + δE(V, ∗Q∗) upper bound (when aligning
the same locked fragments to substrings of Q∞ instead).

To quantify said potential “savings”, we give marks to each position t in the text corresponding to
the total number of marks potentially saved in alignment A : P T [t . . t′). Roughly speaking, for each
pair of fragments LT and LP , we place min{δE(LT , ∗Q∗), δE(LP , ∗Q∗)} marks at position t, if they may
overlap in any alignment A : P T [t . . t′) with at most κ̂ insertions and deletions; κ̂ can be thought
to be O(d). In what follows, when we check whether two fragments overlap, we thus allow for a (small)
slack κ̂. Formally, the marking scheme is captured in Definition 5.5.

Definition 5.5. For a text T , a pattern P , a primitive string Q with δE(P, ∗Q∗) = dP and δE(T, ∗Q∗) =
dT , and corresponding sets of locked fragments LP := Locked(P,Q, dP , ∂P) and LT := Locked(T,Q, dT , 0),
write mk for the function that maps an integer v to a (weighted) number of locked fragments in LP that
(almost) overlap locked fragments in LT when aligning P to position v.

18This item is not stated in [CKW20, Lemma 6.9]. However, it readily follows from the construction algorithm underlying
that lemma and it is already used in [CKW20] (for instance, in the proof of [CKW20, Claim 5.17]). We believe that
adding a proof of this item here would not be instructive.

50

Formally, we first define a function mk : Z× Z≥0 × LP × LT → Z≥0 by

mk(v, κ̂, LP = P [`P . . rP), LT = T [`T . . rT))

:=


δE(LT , ∗Q∗), if `P = 0 and v ∈ (`T − κ̂− rP . . rT + κ̂− `P);

min{δE(LT , ∗Q∗), δE(LP , ∗Q∗)}, if `P 6= 0 and v ∈ (`T − κ̂− rP . . rT + κ̂− `P);
0, otherwise.

Now, set

mk(v, κ̂,LP ,LT) :=
∑

LP∈LP

∑
LT∈LT

mk(v, κ̂, LP , LT).

When κ̂, LP , and LT are clear from context we may just write mk(v) for mk(v, κ̂,LP ,LT).
We continue with a set of useful observations about our marking scheme. Fix sets of locked fragments

LP := Locked(P,Q, dP , ∂P) and LT := Locked(T,Q, dT , 0), with ∂P = O(d).

Lemma 5.6. For every κ̂ ∈ Z≥0, we have∑
v∈Z

mk(v, κ̂,LP ,LT) ≤ 2dT (dP + 2)κ̂+ 2dT (6dP + 3dT + ∂P + 2)|Q|+ 2dP |Q| = O(d2(κ̂+ |Q|)).

Proof. Fix a locked fragment LP = P [`P . . rP) ∈ LP and a locked fragment LT = P [`T . . rT) ∈ LT . If
`P 6= 0, then the definition of mk yields∑

v∈Z
mk(v, κ̂, LP , LT) ≤

∑
v∈(`T−κ̂−rP . . rT+κ̂−`P)

min{δE(LT , ∗Q∗), δE(LP , ∗Q∗)}

≤ min{δE(LT , ∗Q∗), δE(LP , ∗Q∗)}(|LT |+ |LP |+ 2κ̂)
≤ δE(LT , ∗Q∗)(|LP |+ 2κ̂) + δE(LP , ∗Q∗)|LT |.

Similarly, if `P = 0, then the definition of mk yields∑
v∈Z

mk(v, κ̂, LP , LT) ≤
∑

v∈(`T−κ̂−rP . . rT+κ̂−`P)

δE(LT , ∗Q∗)

≤ δE(LT , ∗Q∗)(|LT |+ |LP |+ 2κ̂)
≤ δE(LT , ∗Q∗)(|LP |+ 2κ̂) + dT |LT |.

Overall, we have∑
a∈Z

mk(v, κ̂,LP ,LT) ≤
∑

LP∈LP

∑
LT∈LT

(δE(LT , ∗Q∗)(|LP |+ 2κ̂) + δE(LP , ∗Q∗)|LT |) + dT
∑

LT∈LT
|LT |

≤ dT
∑

LP∈LP
(|LP |+ 2κ̂) + (dP + dT)

∑
LT∈LT

|LT |

≤ dT (dP + 2)2κ̂+ dT
∑

LP∈LP
|LP |+ (dP + dT)

∑
LT∈LT

|LT |

≤ 2dT (dP + 2)κ̂+ dT (5|Q|+ 1)dP + 2dT (∂P + 1)|Q|+ (dP + dT)(5|Q|+ 1)dT
+ (dP + dT)2|Q|

≤ 2dT (dP + 2)κ̂+ 2dT (6dP + 3dT + ∂P + 2)|Q|+ 2dP |Q|.

Definition 5.7. For a set U of fragments of a string S and an interval I ⊆ Z, we write UI =
{S[x . . y) ∈ U : [x . . y) ∩ I 6= ∅}.

51

Recall that, as stated in Fact 2.8, OccEk (P, T) ∩ (n−m+ k . .n) = ∅. We partition the remaining
positions of the text into two groups. Intuitively, a position t ∈ [0 . .n−m+ k] is light if it has a few
marks, and there cannot be an alignment A : P T [t . . t′) with at most κ̂ insertions and deletions that
aligns the first position of P , the last position of LP1 , or the last position of P against a portion of a locked
fragment of T .

Definition 5.8. For any fixed thresholds κ̂ ∈ Z≥0 and η ∈ Z>0, we say that a position v ∈
[0 . .n−m+ k] is light if the following conditions are simultaneously satisfied:

mk(v, κ̂,LP ,LT) < η,
LT[v−κ̂ . . v+κ̂) = ∅,
LT[v+m−κ̂ . . v+m+κ̂) = ∅, and
LT[v+|LP1 |−κ̂ . . v+|LP1 |+κ̂) = ∅.

Otherwise, the position v ∈ [0 . .n−m+k] is called heavy. We denote the sets of heavy and light positions
by H and L, respectively.

Lemma 5.9 (Heavy(P, T, k, d,Q,LP ,LT , κ̂, η)). Consider an instance of the NewPeriodicMatches
problem, families LP = Locked(P,Q, dP , ∂P) and LT = Locked(T,Q, dT , 0), as well as thresholds κ ∈ Z≥0
and η ∈ Z>0,

The set H of heavy positions, represented as the union of O(d2) disjoint integer ranges, can be computed
in O(d2 log log d) time.

Proof. We implement the marking process according to Definition 5.5, assigning η extra marks to all
positions made heavy due to the last three items in Definition 5.8. Formally, we produce the following
O(d2) weighted intervals:

(`T − κ̂ − rP . . rT + κ̂ − `P) of weight min{δE(LT , ∗Q∗), δE(LP , ∗Q∗)} for each locked fragment
LP = P [`P . . rP) ∈ LP with `P 6= 0 and LT = T [`T . . rT) ∈ LT ,
(`T − κ̂− rP . . rT + κ̂− `P) of weight δE(LT , ∗Q∗) for each locked fragment LP = P [`P . . rP) ∈ LP
with `P = 0 and LT = T [`T . . rT) ∈ LT ,
(`T − κ̂ . . rT + κ̂) of weight η for each locked fragment LT = T [`T . . rT) ∈ LT ,
(`T − κ̂−m . . rT + κ̂−m) of weight η for each locked fragment LT = T [`T . . rT) ∈ LT ,
(`T − κ̂− |LP1 | . . rT + κ̂− |LP1 |) of weight η for each locked fragment LT = T [`T . . rT) ∈ LT .

The heavy positions are exactly those positions in [0 . .n −m + k] that are contained in intervals of
total weight at least η; they can be computed using a sweep-line procedure with events corresponding to
interval endpoints. The number of events is O(d2), so the output consists of O(d2) disjoint ranges. In
terms of the running time, the bottleneck is sorting the events using the algorithm of [AHNR98].

Lemma 5.10. The total number of heavy positions does not exceed

|H| ≤ 2dT (dP + 2 + 3η)κ̂+ 2dT (6dP + 3dT + ∂P + 2 + 9η)|Q|+ 2dP |Q|+ 6|Q|η + 2κ̂η
η

= O((d2/η + d)(κ̂+ |Q|)).

Moreover, for any integer b ∈ Z>0,∣∣∣∣∣⋃
v∈H

[v − b . . v + b]

∣∣∣∣∣
≤ 2dT (dP + 2 + 3η)(κ̂+ b) + 2dT (6dP + 3dT + ∂P + 2 + 9η)|Q|+ 2dP |Q|+ 6|Q|η + 2(κ̂+ 2b)η

η

= O((d2/η + d)(κ̂+ b+ |Q|)).

52

Proof. By Lemma 5.6, the number of positions violating the first condition of Definition 5.8 does not exceed(
2dT (dP + 2)κ̂+ 2dT (6dP + 3dT + ∂P + 2)|Q|+ 2dP |Q|

)
/η = O(d2(κ̂ + |Q|)/η). As for the remaining

conditions, each locked fragment LT ∈ LT may yield at most 3(|LT |+ 2κ̂) heavy positions, for a total of:∑
LT∈LT

3(|LT |+2κ̂) ≤ 3(5|Q|+1)dT +3 ·2|Q|+6(dT +2)κ̂ ≤ 18dT |Q|+6|Q|+6dT κ̂+2κ̂ = O(d(κ̂+ |Q|)).

As for the second claim, observe that if v is heavy, then all positions in [v− b . . v+ b]∩ [0 . .n−m+k]
would be heavy if we increased the threshold κ̂ to κ̂+ b. This is because the left endpoint of all intervals
considered in the proof of Lemma 5.9 contains a −κ̂ term whereas the right endpoint contains a +κ̂ term
(and there is no other dependency on κ̂). Further,

∣∣⋃
v∈H[v − b . . v + b] \ [0 . .n−m+ k]

∣∣ ≤ 2b, since
H ⊆ [0 . .n−m+ k].

6 A Faster Algorithm for NewPeriodicMatches

In this section, we present the core of our improvements: a faster algorithm for NewPeriodicMatches.

Lemma 1.3 (NewPeriodicMatches(P, T, k, d, Q, AP , AT)). We can solve the NewPeriodic-
Matches problem in O(d3.5√logn log d) time in the PILLAR model.

Let us fix an instance of the NewPeriodicMatches problem, sets of locked fragments LP :=
Locked(P,Q, dP , 2d) and LT := Locked(T,Q, dT , 0), that is, we have ∂P := 2d, an integer κ̂ := 7d ≥
∂P + 2k + dP + dT > κ and an integer threshold η := max{1, b

√
d/
√

log(n+ 1) log(d+ 1)c} ≤ d. Further,
consider a partition of the positions of T in [0 . .n−m+ k] into heavy and light using Lemma 5.9.

First, we show how to compute k-error occurrences that start at heavy positions; this is a straightforward
application of Lemmas 3.12 and 3.13. Then, we reduce the problem of computing k-error occurrences that
start at light positions to an instance TrimmedPM(T, P, k,Q,AT ,AP ,Red(P),Red(T), α)), where Red(P)
and Red(T) are both of size O(d) and contain all the internal pieces that (almost) overlap locked fragments,
and α = o(

√
d).

6.1 Computing Occurrences Starting at Heavy Positions
Lemma 6.1 (HeavyMatches(P, T, k, d, Q, AP , AT , H)). Given an instance of the New-

PeriodicMatches problem and the set H of heavy positions constructed using Lemma 5.9, OccEk (P, T)∩H
can be computed in O(d3 + d4/η) time in the PILLAR model.

Proof. Recall that the set H is represented as the union of O(d2) disjoint heavy ranges (listed in the
left-to-right order).

Our algorithm starts with an application Lemma 3.12 to construct the sequence (rj)j∈J , represented
as a concatenation of O(d) arithmetic progressions. Our first goal is to enumerate elements of the
set J ′ := {j ∈ J : [rj . . rj+1) ∩ H 6= ∅}. For this, we simultaneously traverse the sequence (rj)j∈J
along with the heavy ranges constituting H. For each heavy range H ⊆ H, we list all j ∈ J such that
[rj . . rj+1) ∩H 6= ∅ (only the smallest such j might have already been listed for an earlier heavy range).
In the second phase, we compute O :=

⋃
j∈J′(rj + OccEk (P,Rj)) ∩ [rj . . rj+1) using Lemma 3.13, making

sure that the positions are listed in the left-to-right order. Finally, we simultaneously scan O and the
heavy ranges constituting H, reporting all positions v ∈ O ∩H.

As for correctness, observe that Rj = T [rj . . r′j), so O ⊆ OccEk (P, T) and, due to the final filtering
step, we output a subset of OccEk (P, T) ∩ H. To prove the converse inclusion, consider a position
v ∈ OccEk (P, T) ∩H. By Corollary 3.11, there exists j ∈ J such that v ∈ (rj + OccEk (P,Rj)) ∩ [rj . . rj+1)
and, by the definition of J ′, we also have j ∈ J ′. Consequently, v is indeed reported.

53

As for the complexity analysis, let us first compute the running time in terms of |J ′|. Constructing the
sequence (rj)j∈J costs O(d) time. The set J ′ can be computed in O(|J ′|+ d+ d2) = O(|J ′|+ d2) time.
The applications of Lemma 3.13 cost O(d2) time each (in the PILLAR model), for a total of O(|J ′| · d2)
time in the PILLAR model. This is also a (crude) upper bound on the output size, so the final filtering
step works in O((1 + |J ′|)d2) time. Overall, the running time in the PILLAR model is O((1 + |J ′|)d2).

It remains to bound |J ′|. Observe that each interval [rj . . rj+1) (possibly except for the last one with
j = max J) has length at most τ + dT . Moreover, the total length of any s intervals [rj . . rj+1) with
0 < rj < rj+1 < n is at least sτ − dT . On top of that, there might be one non-empty interval with rj = 0
and one non-empty interval with rj+1 = n. We conclude that

|J ′| ≤ 2 +
∑
j∈J′\{max J} |[rj . . rj+1)|+ dT

τ
≤ 2 +

∣∣⋃
v∈H[v − τ − dT . . v + τ + dT]

∣∣+ dT

τ
.

Since τ = Θ(max(|Q|, d)) and dT , dP , k, κ̂ = O(d), the bound of Lemma 5.10 yields that |J ′| = O(d+d2/η).
Hence, the total running time is O(d3 + d4/η) just as claimed.

6.2 Computing Occurrences Starting at Light Positions
6.2.1 Combinatorial Insights
The following fact follows directly from Definition 5.8.

Fact 6.2. For any light position v in T and for any w ∈ (v + m − κ̂ . . v + m + κ̂), we have
LT[v . .w) = {T [` . . r) ∈ LT : [` . . r) ⊆ [v . . v +m)}.

For each position v of T , set ρ(v) ∈ [xT . . yT] such that AT (T [v . .n)) = Q∞[ρ(v) . . yT). Observe
that

δE(T, ∗Q∗) = δE(T [0 . . v), Q∞[xT . . ρ(v))) + δE(T [v . .n), Q∞[ρ(v) . . yT))

= δE(T [0 . . v), ∗rot−ρ(v)(Q)) + δE(T [v . .n), rot−ρ(v)(Q)∗).

Lemma 6.3. For any two positions v < w of T such that LT[v] = LT[w] = ∅, we have

δE(T [v . .w), ∗Q∗) = δE(T [v . .w), Q∞[ρ(v) . . ρ(w))) =
∑

L∈LT[v . .w)

δE(L, ∗Q∗).

Proof. Set LT[v . .w) = {LTj ∈ LT : j ∈ [j1 . . j2]}, and observe that all elements of this set are fragments
of T [v . .w). Now, we have

δE(T [v . .w), Q∞[ρ(v) . . ρ(w)))
= δE(T,Q∞[xT . . yT))− δE(T [0 . . v), Q∞[xT . . ρ(v)))− δE(T [w . .n), Q∞[ρ(w) . . yT)))

≤ dT −
j1−1∑
j=1

δE(LTj , ∗Q∗)−
`T∑

j=j2+1
δE(LTj , ∗Q∗)

=
j2∑
j=j1

δE(LTj , ∗Q∗)

≤ δE(T [v . .w), ∗Q∗)
≤ δE(T [v . .w), Q∞[ρ(v) . . ρ(w))).

54

Lemma 6.4. Consider a light position v of T . If δE(LP1 , rot−ρ(v)(Q)∗) < ∂P , then there is a
w ∈ [v . .n] such that

δE(P, T [v . .w)) ≤ δE(LP1 , rot−ρ(v)(Q)∗) +
`P∑
i=2

δE(LPi , ∗Q∗) +
∑

L∈LT[v . . v+m)

δE(L, ∗Q∗).

Proof. We first prove two auxiliary claims.

Claim 6.5. We have δE(P, rot−ρ(v)(Q)∗) = δE(LP1 , rot−ρ(v)(Q)∗) +
∑`P

i=2 δE(LPi , ∗Q∗) < ∂P + dP .

Proof. The inequality δE(P, rot−ρ(v)(Q)∗) ≥ δE(LP1 , rot−ρ(v)(Q)∗) +
∑`P

i=2 δE(LPi , ∗Q∗) holds trivially.
By Lemma 5.4, we have P = LP1 Q

α1LP2 Q
α2 · · ·Qα`P−1LP`P for some non-negative integers αi. Since

LP1 is ∂P -locked, we have δE(LP1 , rot−ρ(v)(Q)∗) = δE(LP1 , Q∞[ρ(v) . . jq)) for some non-negative integer
j. Further, for each i ∈ (1 . . `P), we have δE(LPi , ∗Q∗) = δE(LPi , Qβi) for some non-negative integer βi.
Finally, we have δE(LP`P ,

∗Q∗) = δE(LP`P , Q
∞[0 . .x)) for some non-negative integer x.

Set γ = α1+
∑`P−1
i=2 (αi+βi). The above discussion implies that there is an alignment of P with the prefix

Q[ρ(v) . . jq)QγQ∞[0 . .x) of Q[ρ(v) . . jq)Q∞ that costs δE(LP1 , rot−ρ(v)(Q)∗)+
∑`P

i=2 δE(LPi , ∗Q∗), thus
proving that δE(P, rot−ρ(v)(Q)∗) ≤ δE(LP1 , rot−ρ(v)(Q)∗) +

∑`P

i=2 δE(LPi , ∗Q∗). This concludes the proof
of the claimed equality.

The claimed inequality holds since δE(LP1 , rot−ρ(a)(Q)∗) < ∂P and
∑`P

i=2 δE(LPi , ∗Q∗) ≤ dP .

Claim 6.6. There is a w ∈ (v + m − κ̂ . . v + m + κ̂) ∩ [0 . .n) such that δE(P, rot−ρ(v)(Q)∗) =
δE(P,Q∞[ρ(v) . . ρ(w))).

Proof. Recall that LT[v+m−κ̂ . . v+m+κ̂) = ∅ holds because v is a light position of T . Since LT contains
a suffix of T , we conclude that either n ≤ v + m − κ̂ or v + m + κ ≤ n. The former case contradicts
v ≤ n − m + k < n − m + κ̂, so T [v + m − κ̂ . . v + m + κ̂) must be a fragment of T disjoint with
all locked fragments in LT . This means that AT matches T [v + m − κ̂ . . v + m + κ̂) without any
edits to AT (T [v + m − κ̂ . . v + m + κ̂)). Since (v, ρ(v)) ∈ AT and the cost of AT is dT , the fragment
AT (T [v+m− κ̂ . . v+m+ κ̂)) must contain Q∞[ρ(v) +m− κ̂+ dT . . ρ(v) +m+ κ̂− dT). Consequently,
for every y ∈ (ρ(v) +m− κ̂+dT . . ρ(v) +m+ κ̂−dT), there exists w ∈ (v+m− κ̂ . . v+m+ κ̂)∩ [0 . .n)
such that y = ρ(w). Since δE(P, rot−ρ(v)(Q)∗) ≤ ∂P + dP < κ̂− dT holds by Claim 6.5, such w exist in
particular for y chosen so that δE(P, rot−ρ(v)(Q)∗) = δE(P,Q∞[ρ(v) . . y)).

We get the desired bound by combining Claims 6.5 and 6.6, Fact 6.2, , and Lemma 6.3 via the triangle
inequality; observe that Lemma 6.3 is applicable because LT[w] ⊆ L

T
[v+m−κ̂ . . v+m+κ̂) = ∅.

δE(P, T [v . .w))
≤ δE(P,Q∞[ρ(v) . . ρ(w))) + δE(T [v . .w), Q∞[ρ(v) . . ρ(w))) (triangle inequality)

= δE(P, rot−ρ(v)(Q)∗) + δE(T [v . .w), Q∞[ρ(v) . . ρ(w))) (Claim 6.6)

= δE(LP1 , rot−ρ(v)(Q)∗) +
`P∑
i=2

δE(LPi , ∗Q∗) +
∑

L∈LT[v . .w)

δE(L, ∗Q∗) (Claim 6.5 and Lemma 6.3)

= δE(LP1 , rot−ρ(v)(Q)∗) +
`P∑
i=2

δE(LPi , ∗Q∗) +
∑

L∈LT[v . . v+m)

δE(L, ∗Q∗). (Fact 6.2)

This completes the proof of the lemma.

55

For a position v and a locked fragment L ∈ LP ∪ LT , we write mk(v, L) for the number of marks
placed in v due to pairs of locked fragments that contain L; formally:

mk(v, L) =
{ ∑

LT∈LT mk(v, κ̂, L, LT) if L ∈ LP ;∑
LP∈LP mk(v, κ̂, LP , L) if L ∈ LT .

Definition 6.7. For a light position v of T , set

D(v) := {LP1 } ∪ {L ∈ LP ∪ LT[v . . v+m) : mk(v, L) < δE(L, ∗Q∗)}.

Let us now provide some intuition on what follows. Consider an alignment A : P T [v . .w), where
v is a light position of T and the cost of A is not larger than k. In the next lemma, we essentially
lower bound the cost of the restriction of such an alignment A to each locked fragment. For instance,
we lower bound δE(L,A(L)) for each L ∈ LP . Our lower bound is positive only for elements of D(v).
Consider some locked fragment L ∈ D(v)∩LP other than LP1 . Roughly speaking, at most mk(v, L) errors
of L with a fragment Q′ of Q∞ cancel out with errors between A(L) and Q′, yielding a lower bound
δE(L,A(L)) ≥ δE(L, ∗Q∗)−mk(v, L). Then, the definition of D(v) guarantees that, for any L ∈ D(v)∩LP ,
A(L) is disjoint from all L′ ∈ D(v) ∩ LT . One can exploit this property to obtain a lower bound for the
cost of A by showing that we can sum over the lower bounds for individual locked fragments in D(v). In
fact, we use this reasoning to lower bound the cost of an alignment between two other strings, obtained
from P and T , respectively, via the deletion of some fragments; this happens in the proof of Lemma 6.20
in Section 6.2.2.

Lemma 6.8. Consider a light position v of T and a locked fragment L ∈ LP ∪ LT[v . . v+m).
1. If L = T [v + ` . . v + r) ∈ LT , then every U ∈ {P [i . . j) : i ≥ `− k and j ≤ r + k} satisfies

δE(L,U) ≥ δE(L, ∗Q∗)−mk(v, L).

2. If L = P [` . . r) ∈ LP \ {LP1 }, then every U ∈ {T [i . . j) : i ≥ v + `− k and j ≤ v + r + k} satisfies

δE(L,U) ≥ δE(L, ∗Q∗)−mk(v, L).

3. If L is LP1 , then for every U ∈ {T [v . . v + j) : j ∈ [|L| − k . . |L|+ k]} satisfies

δE(L,U) ≥ δE(L, rot−ρ(v)(Q)∗)−mk(v, L).

Proof. Consider some L ∈ LP ∪ LT[v . . v+m). If L ∈ LT , let Y = P ; otherwise, let Y = T . Further, let
U := Y [u . .w) denote any of the fragments specified in the statement of the lemma, and let

ζ :=
{
δE(LP1 , rot−ρ(v)(Q)∗) if L = LP1 ,

δE(L, ∗Q∗) otherwise.

Consult Figure 7 for an illustration of the setting.
Let x and y denote integers that satisfy δE(U,Q∞[x . . y)) = δE(U, ∗Q∗). In the case where L = LP1 ,

we choose x = ρ(v) and y = ρ(w) so that Q∞[x . . y) is a prefix of rot−ρ(v)(Q)∞. This is allowed
by Lemma 6.3 because LT[v−κ̂ . . v+κ̂) = LT[v+|LP1 |−κ̂ . . v+|LP1 |+κ̂) = ∅, and it ensures that the following
inequality holds in all three cases (the inequality holds trivially if L 6= LP1):

δE(L,Q∞[x . . y)) ≥ ζ. (6)

56

T
v

L

P

u′ u w w′

k k

Figure 7 An illustration of the setting in the proof of Lemma 6.8. Locked fragments are distinguished by
diagonal stripes. In this example, L is the sole element of LT[v . . v+m) and Y = P . The fragment U = P [u . .w) is
shaded in blue, the fragment P [u′ . .w′) is shaded in red.

Further, our marking scheme implies

mk(v, L) ≥
∑

K∈LY[u . .w)

δE(K, ∗Q∗). (7)

Let Y [u′ . .w′) denote the fragment of Y that is covered by Y [u . .w) and the elements of LY[u . .w). We
have

δE(U,Q∞[x . . y)) = δE(U, ∗Q∗) ≤ δE(Y [u′ . .w′), ∗Q∗) =
∑

K∈LY[u . .w)

δE(K, ∗Q∗), (8)

where the last equality follows from the properties of locked fragments as computed by Lemma 5.4.
We are now ready to prove the claimed inequality.

δE(L,U) ≥ |δE(L,Q∞[x . . y))− δE(U,Q∞[x . . y))| (triangle inequality)
≥ δE(L,Q∞[x . . y))− δE(U,Q∞[x . . y))
≥ ζ − δE(U,Q∞[x . . y)) (due to (6))

≥ ζ −
∑

K∈LY[i . . j)

δE(K, ∗Q∗) (due to (8))

≥ ζ −mk(v, L). (due to (7))

This completes the proof of the lemma.

6.2.2 Shrinking Runs of Plain Pairs to Length o(
√

d)
We set Red(P) to be equal to

Special(P) ∪ {Pi : i ∈ (1 . . z) and ∃P [` . . r)∈LP [`− 13κ̂ . . r + 13κ̂) ∩ [pi . . pi+1 + ∆) 6= ∅}.

Similarly, we set Red(T) to be equal to

Special(T)∪{Ti : i ∈ (min J+1 . . max J+z) and ∃T [` . . r)∈LT [`−13κ̂ . . r+13κ̂)∩[ti . . ti+1+∆) 6= ∅}.

Next, we upper-bound the sizes of these two sets and show how to construct them efficiently.

Lemma 6.9. Given P , T , AP , AT , LP , and LT , the sets Red(P) and Red(T) are of size O(d) and
can be constructed in time O(d log log d) in the PILLAR model.

57

Proof. We start with upper-bounding the size of each of the sets Red(P) and Red(T). Special(P) and
Special(T) are of size O(d) due to Lemma 1.6. The task is therefore to bound, for each of P and T , the
number of internal pieces that are within 13κ̂ positions of a locked fragment.

Let (S, βS) denote either of (P, βP) or (T, βT) and LS = {L[`j . .hj) : j ∈ [1 . . `S]}. It suffices to
upper bound the number of tiles S[si−1 . . si) with i ∈ (1 . .βS) in the τ -tile partition of S (with respect
to AS) such that [si−1 . . si) overlaps [`j −∆− 13κ̂ . .hj + 13κ̂) for some j ∈ [1 . . `S]; that is,

|{i ∈ (1 . .βS) : ∃j∈[1 . . `S][`j −∆− 13κ̂ . .hj + 13κ̂) ∩ [si−1 . . si) 6= ∅}|.

Intuitively, we extend each locked fragment in LS by ∆ + 13κ̂ characters to the left and by 13κ̂
characters to the right, thus covering at most ‖LS‖+ `S · (2 · 13 + 6)κ̂ = ‖LS‖+ 32`S κ̂ positions of S, since
∆ = 6κ ≤ 6κ̂. Let us first upper bound the size µ of the set M of tiles (other than the first and last ones)
that are fully covered by these “extended” locked fragments, that is, M = {i ∈ (0 . .βS) : [si−1 . . si) ⊆⋃
j∈[1 . . `S][`j −∆− 13κ̂ . .hj + 13κ̂)}. We have∑
i∈M

(τ − |S[si−1 . . si)|) ≤
∑
i∈M

δE(S[si−1 . . si), Q[(i− 1)τ . . iτ)) ≤ δE(S, ∗Q∗)

and hence

µ · τ − δE(S, ∗Q∗) ≤
∑
i∈M
|S[si−1 . . si)| ≤ ‖LS‖+ 32`S κ̂,

which is equivalent to

µ ≤ ‖L
S‖+ 32`S κ̂+ δE(S, ∗Q∗)

τ
.

Finally, we have to account for the at most 2`S tiles that overlap “extended” locked fragments but are not
fully contained in them; we have at most two such tiles for each L ∈ LS .

Since `S = O(δE(S, ∗Q∗)) and ‖LS‖ = O(δE(S, ∗Q∗) · q) by Lemma 5.4, δE(S, ∗Q∗) = O(κ), and
τ = Θ(max{κ, q}), we have

2`S + ‖L
S‖+ 32`S κ̂+ δE(S, ∗Q∗)

τ
= O

(
κ+ κq + κκ̂+ κ

τ

)
= O(κ̂) = O(d).

Let us now show how to efficiently construct the sets in scope. First, recall that Special(P) and
Special(T) can be constructed in O(d) time in the PILLAR model due to Lemma 1.6. The remaining
elements of Red(P) (resp. Red(T)) can be computed in a simultaneous left-to-right scan of:

the representation of starting positions of internal pieces pi (resp. ti) as O(d) arithmetic progressions,
which can be computed in O(d) time due to Lemma 4.4;
the O(d) locked fragments of P (resp. T) sorted with respect to their starting positions.

The O(d log log d) time required for sorting the starting positions of the locked fragments, using the
algorithm of [AHNR98], is the bottleneck of the algorithm in the PILLAR model.

Definition 6.10. For j ∈ J , set I ′j := (Fj,1, Gj,1) · · · (Fj,zj , Gj,zj) := Trim(Ij ,Red(P),Red(T), 2η+30),
and Fj := val∆(Fj,1, . . . , Fj,zj) and Gj := val∆(Gj,1, . . . , Gj,zj).

Further, let Fj,i and Gj,i correspond to the fragments Fj[fj,i . . fj,i+1 + ∆) and Gj[gj,i . . gj,i+1 + ∆),
respectively, that is, we set fj,1 = gj,1 = 0 and, for i ∈ [2 . . zj + 1], fj,i =

(∑
x<i |Fj,x|

)
− ∆ and

gj,i =
(∑

x<i |Gj,x|
)
−∆.

The focus of the remainder of Section 6.2.2 is to prove the following lemma.

58

Lemma 6.11. OccEk (P, T)∩L =
(⋃

j∈J (rj + OccEk (I ′j))
)
∩L =

(⋃
j∈J (rj + OccEk (Fj , Gj))

)
∩L.

The combination of Corollary 3.11 and Lemma 4.32 directly yields the following.

Corollary 6.12.
(⋃

j∈J(rj + OccEk (Fj , Gj))
)
⊇
(⋃

j∈J(rj + OccEk (P,Rj))
)

= OccEk (P, T).

The following—skippable—example illustrates that, for some j ∈ J and p ∈ OccEk (Fj , Gj), we might
have rj + p 6∈ OccEk (P, T) if rj + p ∈ H.

Example 6.13. Let k > 6 denote an integer and set Σ = {a, b}. Further, set U = aib and V = ai+1b
for i = b2k/3c. Set Q = UV U and P = Qy(UV V)k+1Qy and T = Qw(V V U)k+1Qw for some integers
y and w that satisfy w > y > k, ensuring that d := 2k ≤ |P |/8|Q|. We have a valid instance of the
NewPeriodicMatches problem with dP = dT = k + 1 and τ = Θ(q).

Consider a set of locked fragments (with respect to Q) for each of P and T such that the only locked
fragment of P (resp. T) that is not its prefix or suffix is LP2 := P [y|Q| . . y|Q|+(k+1)(3i+5)) = (UV V)k+1

(or LT2 := [w|Q| . .w|Q| + (k + 1)(3i + 5)) = (V V U)k+1).19 Let η = O(
√
k) denote the threshold

used in the marking and assume that k is large enough so that η < k. Consider some j ∈ J and a
position p of Rj such that Qy(V V U)k+1Qy is a prefix of Rj[p . . r′j), noting that rj + p has at least
min{δE(LP2 , ∗Q∗), δE(LT2 , ∗Q∗)} = k + 1 > η marks, and is thus heavy.

We next argue that mint(δE(P,Rj[p . . t))) > k. Toward a contradiction, suppose that there exists an
integer t′ and an alignment A : P Rj[p . . t′) of cost at most k. Then, at least one of the first/last y
copies of Q in P is matched exactly by A since y > k. In addition, at least one of the copies of UV V is
matched exactly by A. Thus, A makes at least |U | edits in order to “synchronize” a copy of V V U in P
to a copy of V V U in T , and then at least |U | more edits to “synchronize” copies of Q. Hence, we have
mint(δE(P,Rj[p . . t))) ≥ 2|U | = 2(b2k/3c+ 1) ≥ 4k/3 > k.

On the other hand, for some integers y1 ≤ y and y2 ≤ cη, where c is a constant independent from k,
we have

Fj = Qy1(UV V)k+1Qy2 = Qy1U(V V U)k+1V UQy2−1 and
Gj[p . . |Gj |) = Qy1(V V U)k+1Qy2W, for some string W.

It is easy to observe that

min
t
δE(Fj , Gj[p . . t))

≤ δE(Qy1 , Qy1) + δE(U, ε) + δE((V V U)k+1, (V V U)k+1) + δE(V UQy2−1, Qy2−1UV)
≤ |U |+ δE(V UQy2−1, U3y2−1) + δE(U3y2−1, Qy2−1UV)
= i+ 1 + 2y2.

We can assume that k is large enough so that k > 12cη, in which case i+ 1 + 2y2 < 2k/3 + k/6 + k/6 = k.
The point is that the implied alignment pays |U | to “synchronize” copies of V V U , but it can then afford
to pay for the (fewer than k) misaligned copies of Q without needing to “synchronize” again.

It remains to show that, for any light position p ∈
(⋃

j∈J (rj+OccEk (Fj , Gj))
)
, we have p ∈ OccEk (P, T).

The following lemma demonstrates that, for each j ∈ J , we can restrict our attention to a subset of the
positions of Rj .

19These are not precisely the locked fragments that would be computed by the algorithm underlying Lemma 5.4, but they
are consistent with the properties that need to be satisfied and are easier to work with for the sake of this example.

59

Lemma 6.14. Consider some j ∈ J and a position p of Rj such that rj + p is a light position of T .
If δE(LP1 , rot−ρ(rj+p)(Q)∗) ≥ ∂P , then p 6∈ OccEk (Fj , Gj).

Proof. By the definition of Red(T), it follows that |Fj | ≥ |LP1 | and any prefix of Fj of length at most
|LP1 | + 13κ̂ is also a prefix of P . Combined with the upper bound on the sum of length-differences
from Lemma 4.10, this also implies that any prefix of Gj of length at most |LP1 | + 13κ̂ − 3κ is also a
prefix of Rj . Further, recall that we have |Rj | ≤ |P |+ 3κ− k due to Lemma 4.10. Consequently, since
|Rj | − |Fj | = |P | − |Gj |, OccEk (Fj , Gj) ⊆ [0 . . |Gj | − |Fj |+ k] ⊆ [0 . . 3κ].

It thus suffices to consider the case where p ∈ [0 . . 3κ]. Let W denote a prefix of Gj[p . . |Gj |) that
satisfies δE(Fj[0 . . |LP1 |),W) = mint δE(Fj[0 . . |LP1 |), Gj[p . . t)). We distinguish between two cases:

If |W | ∈ [|LP1 | − k . . |LP1 |+ k], then W is a prefix of T [rj + p . .n) since p+ |W | ≤ 3κ+ |LP1 |+ k ≤
|LP1 |+ 13κ̂− 3κ. Thus, by Lemma 6.8, we have

δE(LP1 ,W) ≥ δE(LP1 , rot−ρ(rj+p)(Q)∗)−mk(rj + p, LP1) ≥ ∂P −mk(rj + p, LP1) ≥ 2d− η ≥ d > k.

Otherwise, we have δE(Fj[0 . . |LP1 |),W) ≥
∣∣|W | − |LP1 |∣∣ > k.

To conclude the proof, it suffices to observe that mint δE(Fj , Gj[p . . t)) ≥ mint δE(LP1 , Gj[p . . t)) > k,
and hence p 6∈ OccEk (Fj , Gj).

In what follows, for convenience, we assume that, for each run of plain pairs of Ij that has been
trimmed, the deleted pairs correspond to a suffix of this run. This yields a natural mapping from pairs of
I ′j to pairs of Ij .

Definition 6.15. For each j ∈ J and each i ∈ [1 . . zj], let orig(j, i) denote the number of pairs to the
left of pair (Fj,i, Gj,i) that were deleted in the process of obtaining I ′j from Ij . We say that pair (Fj,i, Gj,i)
originates from pair (Pi+orig(j,i), Tj,i+orig(j,i)).

Let each internal pair of pieces (Fj,i, Gj,i) inherit the color of (Pi+orig(j,i), Tj,i+orig(j,i)). In addition,
mark the first and the last pairs as not plain.

Definition 6.16. For j ∈ J and i ∈ [1 . . zj], we say that Fj[x1 . .x2) (or Gj[x1 . .x2)) has an overlap
with a pair (Fj,i, Gj,i) if and only if [x1 . .x2)∩[fj,i . . fj,i+1+∆) 6= ∅ (or [x1 . .x2)∩[gj,i . . gj,i+1+∆) 6=
∅).

Definition 6.17. Consider some j ∈ J and a contiguous sequenceM = (Fj,i1 , Gj,i1) · · · (Fj,i2 , Gj,i2)
of pairs in I ′j that are either all plain or all not plain (that is,M is monochromatic). Fix an X ∈ {Fj , Gj}.
For i ∈ [1 . . zj], if X = F , we set xj,i = fj,i; otherwise, we set xj,i = gj,i.

For a non-negative integer γ, we say that a fragment X[x1 . .x2) of X ∈ {Fj , Gj} is γ-contained by
M when the following two conditions are satisfied: (a) x1 ≥ xj,i1 +γ or i1 = 1 and (b) x2 ≤ xj,i2+1 +∆−γ
or i2 = zj.

Fact 6.18. If a fragment U of F or G is ∆-contained by a monochromatic sequenceM of contiguous
pairs in I ′j, then U only overlaps pairs inM.

Lemma 6.19. For j ∈ J , consider a monochromatic sequence M = (Fj,i1 , Gj,i1) · · · (Fj,i2 , Gj,i2) of
contiguous pairs in I ′j . Let {X,Y } = {Fj , Gj} and X[x1 . .x2) be a fragment of X that is γ-contained by
M for γ ≥ 13κ. All the pairs of I ′j that overlap Y [y1 . . y2) := Y [max{0, x1 − 4κ} . . min{|Y |, x2 + 4κ})
belong toM.

60

Proof. For i ∈ [1 . . zj], if X = Fj and Y = Gj , let xj,i = fj,i and yj,i = gj,i; otherwise, let xj,i = gj,i
and yj,i = fj,i.

Recall that the sum of length-differences of pairs in I ′j is at most 3κ− k, that is, |xj,i − yj,i| ≤ 3κ− k
for all i. Let us first show that Y [y1 . . y2) does not overlap any of the first i1 − 1 pairs. The case where
i1 = 1 is trivial. In the remaining case,

y1 ≥ x1 − 4κ ≥ xj,i1 + γ − 4κ ≥ yj,i1 + 13κ− 4κ− (3κ− k) ≥ yj,i1 + (13− 7)κ = yj,i1 + ∆.

We next show that Y [y1 . . y2) does not overlap any of the last zj − i2 pairs, thus concluding the proof.
The case where i2 = zj is trivial. In the remaining case,

y2 ≤ x2 +4κ ≤ xj,i2+1 +∆−γ+4κ ≤ yj,i2+1 +∆−13κ+4κ+(3κ−k) ≤ yj,i2+1 +∆−(13−7)κ = yj,i2+1.

We are done by a direct application of Fact 6.18.

Lemma 6.20. Consider some j ∈ J and a position p ∈ OccEk (Fj , Gj) such that rj + p is a light
position of T . Then, rj + p ∈ OccEk (P, T).

Proof. First, observe that we may assume that I ′j 6= Ij ; otherwise, the statement follows trivially. To
avoid clutter, we drop the subscript j when referring to Fj and Gj and simply call them F and G,
respectively.

Let b denote a position ofG and let B : F G[p . . b) denote an alignment of cost mint δE(F,G[p . . t)) ≤
k. We intend to show that, in this case, there exist a position c of Rj and an alignment C : P Rj[p . . c)
of the same cost.

Set

LT[rj+p . . rj+p+m) = {LTi : i ∈ [i1 . . i2]}.

Observe that there is a natural mapping of each locked fragment LPi ∈ LP to a fragment of F , which we
denote by LFi ; we denote the set of fragments in the image of this mapping by LF . Similarly, there is a
natural mapping of each locked fragment LTi ∈ {LTi : i ∈ [i1 . . i2]} to a fragment of G, which we denote
by LGi ; we denote the set of fragments in the image of this mapping by LG. Let D′(p) consist of the images
of the locked fragments in D(rj + p) under these mappings. Observe that each fragment L ∈ LF ∪ LG
only overlaps non-plain pairs. For a fragment LXy ∈ LX , where X ∈ {P, T, F,G}, let LXy = X[`Xy . . rXy).
The following claim follows instantly.

Claim 6.21. Each fragment L ∈ LF ∪LG is 13κ̂-contained by a sequence of contiguous non-plain pairs
in I ′j .

We next essentially show that, if we were to mark positions of Gj based on overlaps of pairs of
fragments in LF × LG, consistently with Definition 5.5, position p of Gj would get the same number of
marks as position rj + p of T .

Claim 6.22. For all x ∈ [1 . . |LP |] and y ∈ [i1 . . i2], we have∣∣[`Gy − κ̂ . . rGy + κ̂) ∩ [p+ `Fx . . p+ rFx)
∣∣ =

∣∣[`Ty − κ̂ . . rTy + κ̂) ∩ [rj + p+ `Px . . rj + p+ rPx)
∣∣.

Proof. Consider sequencesMx = (Fj,w1 , Gj,w1) · · · (Fj,w2 , Gj,w2) andMy = (Fj,w3 , Gj,w3) · · · (Fj,w4 , Gj,w4)
of contiguous non-plain pairs of I ′j that 13κ̂-contain LFx and LGy , respectively, and are maximal in the
sense that they cannot be extended and remain monochromatic. (Such sequences exist by Claim 6.21.)

First, consider the case whereMx andMy do not coincide. We treat the case whereMx lies to the
left ofMy; the other case can be handled analogously. In this case, w2 < zj and w3 > 1. Recall that

61

p ∈ [0 . . 3κ]. By Lemma 6.19, we have that G[p+ `Fx . . p+ rFx) only overlaps pairs inMx and hence it is
disjoint from [`Gy − κ̂ . . rGy + κ̂) since p+ rFx ≤ gj,w3 ≤ `Gy − κ̂. Now, observe that orig(j, w1) ≤ orig(j, w3)
and hence

rj + p+ rPx = rj + orig(j, w1)τ + p+ rFx < rj + orig(j, w3)τ + `Gy − κ̂ = `Ty − κ̂.

Thus, in this case, both considered intersections are empty.
Otherwise,Mx andMy coincide. We then have

rj + orig(j, w1)τ + [p+ `Fx . . p+ rFx) = rj + [p+ `Px . . p+ rPx) = [rj + p+ `Px . . rj + p+ rPx)

and

rj + orig(j, w1)τ + [`Gy − κ̂ . . rGy + κ̂) = rj + [`Ty − rj − κ̂ . . rTy − rj + κ̂) = [`Ty − κ̂ . . rTy + κ̂).

The statement readily follows in the considered case.

Let B = (fv, gv)uv=0. For each LFi ∈ D′(p), let [aFi . . bFi) ⊆ [0 . .u] so that LFi = F [faF
i

. . fbF
i

)
and B(LFi) = G[gaF

i
. . gbF

i
). Symmetrically, for each LGi ∈ D′(p), let [aGi . . bGi) ⊆ [0 . .u] so that

LGi = G[gaG
i

. . gbG
i

) and B−1(LGi) = F [faG
i

. . fbG
i

). Further, let E denote the multiset union of the
multisets

EF = {[aFi . . bFi) : LFi ∈ LF ∩ D′(p)} and EG = {[aGi . . bGi) : LGi ∈ LG ∩ D′(p)}.

In fact, the following claim implies that the multiplicity of each element of E is one.

Claim 6.23. The intervals in E are pairwise disjoint.

Proof. First, observe that the elements of each of LF and LG are pairwise disjoint and hence the elements
of each of EF and EF are pairwise disjoint.

Now, consider any two fragments LFx ∈ D′(p) and LGy ∈ D′(p). Observe that since LPx , LTy ∈ D(rj + p),
we have mk(rj + p, κ̂, LPx , L

T
y) = 0. Hence, [`Ty − κ̂ . . rTy + κ̂) ∩ [rj + p + `Px . . rj + p + rPx) = ∅. By

Claim 6.22, we also have [gaGy − κ̂ . . gbGy + κ̂) ∩ [p+ faFx . . p+ fbFx) = ∅.
Since the cost of B is no more than k, gi ∈ [p+fi−k . . p+fi+k] holds for all i ∈ [0 . .u]. In particular,

we have [gaGy − k − 1 . . gbGy + k] ⊇ [p+ faGy − 1 . . p+ fbGy + 1). Since [gaGy − κ̂ . . gbGy + κ̂) ⊇ [gaGy − k −
1 . . gbGy +k], we then have [faGy − 1 . . fbGy + 1)∩ [faFx . . fbFx) = ∅, that is, [faGy . . fbGy]∩ [faFx . . fbFx] = ∅.
This implies [aGy . . bGy) ∩ [aFx . . bFx) = ∅; consequently, the intervals in E are pairwise disjoint.

Set Λ := δE(LP1 , rot−ρ(rj+p)(Q)∗) +
`P∑
i=2

δE(LPi , ∗Q∗) +
i2∑
i=i1

δE(LTi , ∗Q∗).

Claim 6.24.∑
LF
i
∈D′

j
(p)

δE(LFi ,B(LFi)) +
∑

LG
i
∈D′

j
(p)

δE(LGi ,B−1(LGi)) ≥ Λ− 2mk(rj + p).

Proof. Using Lemma 6.8, we lower bound each individual term of the left-hand side of the proved inequality.
We consider three cases.

62

1. Consider some LGi = G[p + ` . . p + r) ∈ D′j(p) and let LTi = [rj + p + `′ . . rj + p + r′). Since
δE(F,G[p . . b)) ≤ k, we have B−1(LGi) 4 F [max{0, ` − k} . . min{|F |, r + k}). By Claim 6.21,
LGi is 13κ̂-contained by a sequence M of contiguous non-plain pairs in I ′j . Then, by Lemma 6.19,
F [max{0, ` − k} . . min{|F |, r + k}) only overlaps pairs of I ′j that are in M and hence it is a
substring of P [(`′ − `) + max{0, `− k} . . (r′ − r) + min{|F |, r + k}), which in turn is a substring of
P [(max{0, `′−k} . . min{|P |, r′+k}). Thus, δE(LGi ,B−1(LGi)) ≥ δE(LTj , ∗Q∗)−mk(rj + p, LTj) holds
by Lemma 6.8.

2. Consider some LFi = F [` . . r) ∈ D′j(p) \ {LP1 } and let LPi = P [`′ . . r′). Since δE(F,G[p . . b)) ≤ k,
we have B(LFi) 4 G[max{p, p+ `− k} . . min{|G|, p+ r + k}). As before, by combining Claim 6.21
and Lemma 6.19 we get that G[max{p, p+ `− k} . . min{|G|, p+ r+ k}) is a substring of T [rj + (`′−
`) + max{p, p+ `− k} . . rj + (r′ − r) + min{|G|, p+ r + k}), which in turn is a substring of T [rj +
p+ max{0, `′ − k} . . rj + p+ min{|T |, r′ + k}). Thus, δE(LFi ,B(LFi)) ≥ δE(LPi , ∗Q∗)−mk(rj + p, LPi)
holds by Lemma 6.8.

3. Lastly, since δE(F,G[p . . b)) ≤ k, we have that B(LF1) is a prefix of T [rj + p . . rj + p+ |LP1 |+ k)},
and hence δE(LF1 ,B(LF1)) ≥ δE(LP1 , rot−ρ(rj+p)(Q)∗)−mk(rj + p, LP1) holds by Lemma 6.8.

We now put everything together. In the following inequalities, we use the fact that, for each
L ∈ (LP ∪ LT[rj+p . . rj+p+m)) \ D(rj + p,B), we have δE(L, ∗Q∗) ≤ mk(rj + p, L), and hence the sum of
δE(L, ∗Q∗)−mk(rj + p, L) over all such L is at most zero.∑

LF
i
∈D′

j
(p)

δE(LFi ,B(LFi)) +
∑

LG
i
∈D′

j
(p)

δE(B−1(LGi), LGi)

≥ δE(LP1 , rot−ρ(rj+p)(Q)∗)−mk(rj + p, LP1) +
∑

LP
i
∈D(rj+p)\{LP1 }

(δE(LPi , ∗Q∗)−mk(rj + p, LPi))

+
∑

LT
i
∈D(rj+p)

(δE(LTi , ∗Q∗)−mk(rj + p, LTi))

≥ δE(LP1 , rot−ρ(rj+p)(Q)∗) +
`P∑
i=2

δE(LPi , ∗Q∗) +
i2∑
i=i1

δE(LTi , ∗Q∗)−
`P∑
i=1

mk(rj + p, LPi)

−
i2∑
i=i1

mk(rj + p, LTi)

= Λ−
`P∑
i=1

`T∑
v=1

mk(rj + p, κ̂, LPv , L
T
i)−

i2∑
i=i1

`P∑
v=1

mk(rj + p, κ̂, LPv , L
T
i)

≥ Λ− 2mk(rj + p).

This concludes the proof of the claim.

Next, due to Lemma 6.14, we have δE(LP1 , rot−ρ(rj+p)(Q)∗) < ∂P . By a direct application of Lemma 6.4,
we then have that mint δE(P, T [rj + p . . t)) ≤ Λ. If Λ ≤ k, then we are done. For the remainder of the
proof we thus consider the case where Λ > k, which, combined with the fact that rj + p is a light position
of T , means that Λ− 2mk(rj + p) > k − 2mk(rj + p) ≥ k − 2η.

Claim 6.25. For any run M of 2η + 30 consecutive plain pairs (Fj,i1 , Gj,i1), . . . , (Fj,i2 , Gj,i2) in I ′j ,
there exists some i ∈ (i1 . . i2) for which δE(F [fj,i . . fj,i+1),B(F [fj,i . . fj,i+1))) = 0.

Proof. We have |fj,i1+14 − fj,i1 | ≥ 14τ − dT ≥ 14κ/2− dT ≥ 6κ = ∆. Similarly, |fj,i2−13 − fj,i2+1| ≥ ∆.
Thus, U = F [fj,i1+14 . . fj,i2−13) is ∆-contained by M and hence only overlaps pairs in M by Fact 6.18.

63

Now, each fragment LFi ∈ LF is 13κ̂-contained by a sequence of contiguous non-plain pairs and hence
only overlaps non-plain pairs. Further, for each fragment LGi ∈ LG, as shown in the proof of Claim 6.24,
B−1(LGi) only overlaps non-plain pairs. Observe that two fragments of F are necessarily disjoint if the
sets of pairs that they overlap are disjoint, and hence [fj,i1+14 . . fj,i2−13) is disjoint from all elements of
E . As the intervals in E are pairwise disjoint by Claim 6.23, using Claim 6.24, we obtain

k ≥ δE(F,G[p . . b))

≥ δE(U,B(U)) +
∑

LF
i
∈D′

j
(p)

δE(LFi ,B(LFi)) +
∑

LG
i
∈D′

j
(p)

δE(B−1(LGi), LGi)

≥ δE(U,B(U)) + Λ− 2mk(rj + p)
> δE(U,B(U)) + k − 2η.

Hence, we have δE(U,B(U)) < 2η. This implies that
∑i2−14
i=i1+14 δE(F [fj,i . . fj,i+1),B(F [fj,i . . fj,i+1))) <

2η, and hence, since the number of summands in in the left-hand side of the inequality is i2 − 14− (i1 +
14) + 1 = 2η+ 30− 28 > η and each of these summands is a non-negative integer, the claim follows.

We are now ready to conclude the proof of the lemma. LetM1, . . . ,Mw denote the trimmed runs
of 2η + 30 consecutive plain pairs in I ′j such that, for all i, Mi originated from a run with χ(i) more
plain pairs. For i ∈ [1 . .w], letMi = (Fj,si , Gj,si) · · · (Fj,ei , Gj,ei) let ψ(i) ∈ (si . . ei) be such that and
δE(F [fj,ψ(i) . . fj,ψ(i)+1),B(F [fj,ψ(i) . . fj,ψ(i)+1))) = 0; observe that ψ(i) exists due to Claim 6.25. Let
us now show how to construct C given B = (fv, gv)uv=0. We intuitively achieve this by inserting χ(i) copies
of Q∞[0 . . τ) after each of F [fj,ψ(i) . . fj,ψ(i)+1) and B(F [fj,ψ(i) . . fj,ψ(i)+1)) and aligning them without
errors, thus restoring the original length of each trimmed plain run, without changing the cost of the
alignment. Initially, set C := B. Then, for each ψ(i), in decreasing order

replace each pair (fv, gv) of C that satisfies fv ≥ fj,ψ(i)+1 with (χ(i) · τ + fv, χ(i) · τ + gv), and
insert (fj,ψ(i)+1 + µ, gj,ψ(i)+1 + µ)χ(i)·τ−1

µ=0 after (fj,ψ(i)+1 − 1, gj,ψ(i)+1 − 1).

We conclude with the proof of Lemma 6.11 as promised.

Lemma 6.11. OccEk (P, T) ∩ L =
(⋃

j∈J(rj + OccEk (I ′j))
)
∩ L =

(⋃
j∈J(rj + OccEk (Fj , Gj))

)
∩ L.

Proof. (⊆): This direction is an immediate consequence of Corollary 6.12.
(⊇): This direction is an immediate consequence of Lemma 6.20.

6.3 Combining the Partial Results: Faster NewPeriodicMatches
We are ready to prove our headline result—Lemma 1.3—which we restate here for convenience.

Lemma 1.3 (NewPeriodicMatches(P, T, k, d, Q, AP , AT)). We can solve the NewPeriodic-
Matches problem in O(d3.5√logn log d) time in the PILLAR model.

Proof. Consistently with all previous sections, set

η := max{1, b
√
d/
√

log(n+ 1) log(d+ 1)c} ≤ d and κ := k + dP + dT and κ̂ := 7d.

First, observe that we may assume η = Θ(
√
d/
√

(log(n+ 1) log(d+ 1))—otherwise, in the case where√
d ≤

√
log(n+ 1) log(d+ 1), PeriodicMatches(P, T, k, d, Q) from Fact 2.12 already runs in time

O(d4) = O(d3.5
√

log(n+ 1) log(d+ 1)).20

We proceed in roughly four steps.

20All running times in this proof are in the PILLAR model.

64

First, in a preprocessing step, we identify the heavy positions H and the light positions L in T , as well
as a filter F (according to Lemma 3.4) for where potential k-error occurrences may start.
Next, we compute all k-error occurrences starting at a position in H, using the Verify-based algorithm
from Section 6.1. In particular, we obtain H ∩OccEk (P, T) as a set of positions.
Next, we use TrimmedPM from Lemma 4.36 to obtain a candidate set R of potential starting positions
of k-error occurrences (represented as O(d3η) disjoint arithmetic progressions with difference τ).
From Section 6.2, we have (R ∩ F) \ (H ∩ F) = OccEk (P, T) ∩ L; hence we proceed to compute
H ∩ F (represented as a set), and R∩ F (represented as O(d3η) disjoint arithmetic progressions with
difference τ), and thereafter compute their set difference to obtain OccEk (P, T) ∩ L (represented as
O(d3η) disjoint arithmetic progressions with difference τ).
In a post-processing step, we union the two sets H ∩OccEk (P, T) and OccEk (P, T) ∩ L and compute a
representation as O(d3) arithmetic progressions with difference q.

Preprocessing. We compute the sets of locked fragments LP = Locked(P,Q, dP , ∂P) and LT =
Locked(T,Q, dT , 0) in O(d2) time using Lemma 5.4 and call Heavy(P, T, d, k,Q,LP ,LT , κ̂, η) to obtain
the set H of heavy positions, represented as the union of O(d2) disjoint integer ranges, in O(d2 log log d)
time (cf. Lemma 5.9).

Define J and each of rj and I ′j , for j ∈ J , as in Sections 3 and 4 and Definition 6.10, and set

R :=
⋃
j∈J

(rj + OccEk (I ′j)).

Observe that by Lemma 6.11, OccEk (P, T) is equal to the union

OccEk (P, T) = (OccEk (P, T) ∩H) ∪ (OccEk (P, T) ∩ L) = (OccEk (P, T) ∩H) ∪ (R∩ L).

Finally, for our filter, we recall that Lemma 3.4 yields

F :=
⋃
j∈Z

[jq − xT − κ− dT . . jq − xT + κ+ dT] ⊇ OccEk (P, T).

Observe that we thus have

OccEk (P, T) ∩ L = (R∩ F) \ (H ∩ F). (9)

Heavy occurrences. By Lemma 6.1, we can compute OccEk (P, T) ∩H in time

O(d3 + d4/η) = O(d3.5
√

logn log d).

Light occurrences. Let us now proceed to computing the remaining k-error occurrences, namely those
that start at light positions. To this end, we first compute the O(d)-size sets Red(P) and Red(T),
defined in the beginning of Section 6.2.2, in O(d log log d) time (cf. Lemma 6.9). Then, we call
TrimmedPM(T, P, k,Q,AP ,AT ,Red(P),Red(T), 2η + 30) from Lemma 4.36, which returns a representation
of R as O(d3 · η) arithmetic progressions with difference τ := q dκ/2qe. Plugging in Theorem 1.5 for the
DynamicPuzzleMatching data structure, TrimmedPM runs in time

O(d3 · η · logn log d) = O(d3.5
√

logn log d).

We move on to remove the surplus positions from the candidate set R. We start by computing H ∩ F .

Claim 6.26. The set H ∩ F is of size O(d3/η) and can be computed in time O(d3/η).

65

Proof. The proof is similar to a part of the proof of Lemma 6.1.
Due to Lemma 5.9, our representation of H consists of O(d2) disjoint integer ranges. In addition, due

to Lemma 5.10, we have

|H| = O((d2/η + d)(κ̂+ q)) = O(d2/η · (d+ q)).

Let us first upper-bound the size of |H ∩ F|. We distinguish between two cases.
First, if q ≤ d, we have |H ∩ F| ≤ |H| = O(d3/η).
As for the complementary case where q > d, observe that only O(d) out of any O(q) consecutive
integers are in F . Hence, H ∩ F is of size O(d2 + |H| · d/q) = O(d3/η).

As for computing H ∩ F , we first sort the O(d2) integer ranges that comprise H with respect to their
starting positions in O(d2 log d) time and then scan them from left to right, skipping positions in Z \ F .
The running time of the scan is proportional to the total number of input ranges and output positions,
and hence we are done.

We move on to compute R∩ F . In what follows, for any integer x, let us say that the residue modulo
x of a non-empty arithmetic progression whose difference is a multiple of x is the residue of any element
of this arithmetic progression modulo x.

Claim 6.27. We can compute a representation of R∩ F as O(d3η) disjoint arithmetic progressions
with difference τ , sorted according to their starting positions, in O(d3.5√logn log d) time.

Proof. In a linear scan of the O(d3η) arithmetic progressions that comprise R as returned by the call to
the algorithm TrimmedPM, we delete any arithmetic progression whose elements are not in F . Then, we
sort all arithmetic progressions according to their starting positions in time O(d3η log d) = O(d3.5) and
distribute them among O(d/q · τ) = O(d2) buckets according to their residues modulo τ . Finally, we scan
linearly the arithmetic progressions in each bucket, greedily merging progressions that overlap (that is, we
merge progressions if their union is also a valid arithmetic progression with difference τ). The number of
the resulting arithmetic progressions is clearly upper-bounded by the size of the input, that is, O(d3η); we
sort them according to their starting positions in O(d3.5) time.

Finally, we compute the set difference (R∩ F) \ (H ∩ F) = OccEk (P, T) ∩ L.

Claim 6.28. A representation of OccEk (P, T) ∩ L as O(d3η) disjoint arithmetic progressions with
difference τ , sorted according to their starting positions, can be computed in time O(d3.5√logn log d)
time the PILLAR model.

Proof. We intend to use equation (9), relying on Claims 6.26 and 6.27 to computeH∩F and a representation
of R ∩ F as O(d3η) disjoint arithmetic progressions with difference τ in O(d3.5) time in total. Then,
we process the elements of these two sets in O(d/q · τ) = O(d2) batches, where each batch contains all
elements with a specific residue modulo τ . For such a fixed residue, we scan in parallel the arithmetic
progressions in R∩ F and the positions in H ∩ F , both of which are sorted in increasing order. When
some element of H ∩ F is contained in some arithmetic progression in R∩ F , this arithmetic progression
is split into two parts, either of which may be empty. The number of the resulting arithmetic progressions
is upper-bounded by the total size of the input, that is, O(d3η); we sort them according to their starting
positions in O(d3.5) time.

66

Post-processing. Recall that the set OccEk (P, T) ∩ H is computed explicitly using Lemma 6.1 in
O(d3.5√logn log d) time; its size is O(d3/η) due to Lemma 3.4 and Claim 6.26. In addition, due
to Claim 6.28, a representation of OccEk (P, T) ∩ L as O(d3η) disjoint arithmetic progressions with
difference τ can be computed in O(d3.5√logn log d) time. Overall, by taking the union of the disjoint
sets OccEk (P, T) ∩ H and OccEk (P, T) ∩ L, we obtain a representation of OccEk (P, T) as O(d3η) disjoint
arithmetic progressions with difference τ . In what follows, we show how to efficiently replace these
arithmetic progressions with difference τ with arithmetic progressions with difference q. This allows
us to benefit from the fact that OccEk (P, T) can be decomposed to O(d3) arithmetic progressions with
difference q (see [CKW20, Main Theorem 7]) to decrease the size of the output.

First, we repeatedly merge any two arithmetic progressions that contain elements that are τ positions
apart. Then, we process each of the O(d) relevant residues modulo q separately. Let us fix such a residue r.
We maintain arrays Br and Sr, each of size τ/q, during a left-to-right scan of the text. When some
position µ of T is processed, for i ∈ [0 . . τ/q),

Br[i] stores a boolean variable indicating whether the successor of µ in Z with residue iq + r modulo
τ is in OccEk (P, T).
Sr[i] stores the successor of µ in Z with residue iq+ r modulo τ that is not in OccEk (P, T) if Br[i] = 1
and ∞ otherwise.

We maintain balanced binary trees over arrays Br and Sr so that we can efficiently query for the leftmost
non-zero element in any subarray of Br and the minimum element of Sr, with an O(log d)-time additive
overhead per update of Br and Sr. All updates to Br and Sr can be stored in a priority queue after a
linear-time preprocessing of the arithmetic progressions in scope, prioritized by the value of µ that triggers
them.

In our scan of T , we maintain the minimum position µ ∈ OccEk (P, T) of residue r modulo q that we
have not reported so far. Given such a position µ, we query in O(log d) time for the successor ν of µ in Z
with residue iq + r that is not in OccEk (P, T):

If there is any false entry in Br(µ− r mod q . . τ/q), then the sought integer can be retrieved in O(1)
time given the leftmost such entry;
else, if there is any false entry in Br[0 . .µ− r mod q), then the sought integer can be retrieved in
O(1) time given the leftmost such entry;
else, all entries of Br are set to true and hence the sought integer corresponds to the smallest integer
stored in Sr.

Given ν, we report the arithmetic progression {µ+ iq : i ∈ [0 . . (ν−µ)/q))}. Then, we implicitly continue
our scan of T by performing the necessary (precomputed) updates in Br and Sr until we reach either
the successor of ν in Z with residue r modulo q that is in OccEk (P, T) or the end of the text. The former
condition can be checked using array Br in O(log d) time prior to each update to either Br or Sr. Then,
we set said position as µ and repeat the above process.

Over all residues, the total time taken is O(d2 + d3η log d) = O(d3.5): we pay O(dτ/q) = O(d2) time
to initialize all arrays, while all other operations take total time proportional to the product of log d with
the total size of the input and the output arithmetic progressions. We can benefit from the upper bound
on the number of arithmetic progressions to which OccEk (P, T) can be decomposed due to the greedy
nature of the algorithm that computes them. This concludes the proof of this lemma.

7 Faster Approximate Pattern Matching in Important Settings

In this section, we rely on known implementations (see [CKW20]) of the PILLAR model in the static,
dynamic, and fully compressed settings, thereby lifting Main Theorem 2 to these settings.

67

7.1 An Algorithm for the Standard Setting
In the standard setting, we implement a handle to S = X[` . . r) as a pointer to X ∈ X (which is stored
explicitly) along with the indices ` and r. As was argued in detail in [CKW20], for the implementation of
the PILLAR model in the standard setting it suffices to combine well-known results. Namely,

Extract, Access, and Length admit trivial implementations;
LCP queries can be efficiently implemented by constructing a generalized suffix tree for the strings in
the collection [Far97] and preprocessing it for O(1)-time lowest common ancestor queries [BF00], while
for LCPR we can use an analogous construction over the reverse strings of the strings in the collection;
IPM queries can be answered inO(1) time by the linear-size data structure of Kociumaka et al. [KRRW15,
Koc18].

The above discussion is summarized in the following statement.

Theorem 7.1 (see [CKW20, Theorem 7.2]). After an O(n)-time preprocessing of a collection of strings
of total length n, each PILLAR operation can be performed in O(1) time.

Combining Theorem 7.1 and Main Theorem 2, we obtain an algorithm for pattern matching with edits
that is faster than the algorithm of Cole and Hariharan [CH02], unless k/ log(k + 1) = O(logm) or both
algorithms run in O(n) time.

Main Theorem 1. Given a text T of length n, a pattern P of length m, and an integer threshold
k > 0, we can compute the set OccEk (P, T) in O(n+ n/m · k3.5√logm log k) time.

Observe that the algorithm encapsulated in Theorem 7.1 is faster than the classical O(nk)-time
algorithm of Landau and Vishkin [LV89] when k = ω(1) and k2.5√log k = o(m/

√
log(m+ 1)).

Remark 7.2. Our algorithm also applies to the internal setting. That is, a string S of length n can
be preprocessed in O(n) time, so that given fragments P and T of S, and a threshold k, we can compute
OccEk (P, T) in time O(|T |/|P | · k3.5√logm log k).

7.2 An Algorithm for the Dynamic Setting
Next, we consider the dynamic setting. In particular, we consider the dynamic maintenance of a collection
of non-empty persistent strings X that is initially empty and undergoes updates specified by the following
operations:

makestring(U): Insert a non-empty string U to X .
concat(U, V): Insert UV to X , for U, V ∈ X .
split(U, i): Insert U [0 . . i) and U [i . . |U |) in X , for U ∈ X and i ∈ [0 . . |U |).

Let N denote an upper bound on the total length of all strings in X throughout the execution of the
algorithm. Gawrychowski et al. [GKK+18] presented a data structure that efficiently maintains such a
collection and allows for efficient longest common prefix queries. In [CKW20], it was (a) argued in detail
that that the aforementioned data structure readily supports all PILLAR operations other than IPM queries,
and (b) shown that it can be augmented to efficiently answer IPM queries; see also [Cha20, Section 4] for
a more direct proof of the latter claim. The above discussion is formalized in the following statement.

Theorem 7.3 ([GKK+18, CKW20]). A collection X of non-empty persistent strings of total length N
can be dynamically maintained with operations makestring(U), concat(U, V), split(U, i) requiring time
O(logN + |U |), O(logN) and O(logN), respectively, so that PILLAR operations can be performed in time
O(log2N).21

21All running time bounds hold w.h.p.

68

A very recent work [KK22, Section 8] provides an alternative deterministic implementation of
dynamic strings, supporting operations makestring(U), concat(U, V), split(U, i) in O(|U | logO(1) logN),
O(log |UV | logO(1) logN), and O(log |U | logO(1) logN), respectively, so that PILLAR operations can be
performed in time O(logN logO(1) logN) time.

Combining Theorem 7.3 and Main Theorem 2, we obtain the following result for approximate pattern
matching under the edit distance for dynamic strings.

Main Theorem 3. We can maintain a collection X of non-empty persistent strings of total length
N subject to makestring(U), concat(U, V), and split(U, i) operations that require O(logN + |U |),
O(logN), and O(logN) time, respectively, so that given two strings P, T ∈ X , and an integer threshold
k > 0, we can compute a representation of OccEk (P, T) as O(|T |/|P | · k3) arithmetic progressions with the
same difference in time O(|T |/|P | · k3.5

√
log |P | log k log2N).22

The result encapsulated in Main Theorem 3 should be compared to [CKW20, Main Theorem 3], which
has the same complexity guarantees for processing updates, but answers approximate pattern matching
queries under the edit distance in O(|T |/|P | · k4 log2N) time w.h.p.

7.3 An Algorithm for the Fully Compressed Setting
Next, we focus on the fully compressed setting, where we want to solve approximate pattern matching
when both the text and the pattern are given as a straight-line programs.

We write NG for the set of non-terminals of a context-free grammar G and call the elements of SG :=
NG ∪ Σ symbols. Then, a straight line program (SLP) G is a context-free grammar that consists of a set
NG = {A1, . . . , An} of non-terminals, such that each Ai ∈ NG is associated with a unique production rule
Ai → fG(Ai) ∈ (Σ ∪ {Aj : j < i})∗. For SLPs given as input, we can assume without loss of generality
that each production rule is of the form A→ BC for some symbols B and C (that is, the given SLP is in
Chomsky normal form).

Every symbol A ∈ SG generates a unique string, which we denote by gen(A) ∈ Σ∗. The string gen(A)
can be obtained from A by repeatedly replacing each non-terminal by its production. In addition, A is
associated with its parse tree PT(A) consisting of a root labeled with A to which zero or more subtrees
are attached:

If A is a terminal, there are no subtrees.
If A is a non-terminal A→ BC, then PT(B) and PT(C) are attached (in this order).

Observe that if we traverse the leaves of PT(A) from left to right, spelling out the corresponding non-
terminals, then we obtain gen(A). We say that G generates gen(G) := gen(An). The parse tree PTG of G
is then the parse tree of the starting symbol An ∈ NG .

First, as also observed in [CKW20], given an SLP G of size n, generating a string S of size N , we can
efficiently implement the PILLAR operations through dynamic strings. Let us start with an empty collection
X of dynamic strings. Using O(n) makestring(a) operations, for a ∈ Σ, and O(n) concat operations
(one for each non-terminal of G), we can insert S to X in O(n logN) time w.h.p. Then, we can perform
each PILLAR operation in O(log2N) time w.h.p., due to Theorem 7.3, thus outperforming Theorem 7.4.
Next, we outline a deterministic implementation of PILLAR operations in the fully compressed setting.

Following [CKW20], the handle of a fragment S = X[` . . r) consists of a pointer to the SLP G ∈ X
generating X along with the positions ` and r. This makes operation Extract trivial. As argued
in [CKW20], all remaining PILLAR operations admit efficient implementations in the considered setting.

22All running time bounds hold with high probability (that is, 1− 1/NΩ(1)). A deterministic version can be obtained at
the cost of a poly(log logN)-factor overhead.

69

For operation Length, we precompute |gen(A)| for each non-terminal A using dynamic programming.
For operation Access, we use the data structure of Bille et al. [BLR+15].
For operations LCP and LCPR, we use the data structure of I [I17] that is based on the recompression
technique, which is due to [Jeż15, Jeż16].
For operation IPM, we use a data structure presented in [CKW20, KK20] that is also based on the
recompression technique.

The above discussion is summarized in the following statement.

Theorem 7.4 (see [BLR+15, I17, CKW20, KK20]). Given a collection of SLPs of total size n, generating
strings of total length N , each PILLAR operation can be performed in O(log2N log logN) time after an
O(n logN)-time preprocessing.

We are now ready to present an efficient algorithm for approximate pattern matching under edit distance
in the fully compressed setting. We choose to state our results using the deterministic implementation of
the PILLAR model in this setting, that is, Theorem 7.4.

We are given an SLP GT of size n with T := gen(GT), an SLP GP of size m with P := gen(GT), and a
threshold k and are required to compute the k-error occurrences of P in T .

Set N := |T |, M := |P |, and X := {GT ,GP }. The overall structure of our algorithm is as follows: We
first preprocess the collection X in O((n+m) logN) time according to Theorem 7.4. Next, we traverse GT
and compute, for every non-terminal A of GT , the approximate occurrences of P in T that “cross” A.
We combine Theorem 7.4 with Main Theorem 2 to compute such occurrences. Finally, we combine the
computed occurrences using dynamic programming.

Formally, for each non-terminal A ∈ NGT , with production rule A→ BC, let
A` := gen(B)[max{0, |gen(B)| −M − k + 1} . . |gen(B)|),
Ar := gen(C)[0 . . min{M + k, |gen(C)|}), and
cross(A) := (OccEk (P,A`Ar) ∩ [0 . . |A`|)) \OccEk (P,A`),

observing that OccEk (P, gen(A)) can then be partitioned to
OccEk (P, gen(B)),
|gen(B)| − |gen(A`)|+ cross(A), and
|gen(B)|+ OccEk (P, gen(C)).

Next, observe that, by combining Theorem 7.4 and Main Theorem 2, cross(A) can be computed in
time O(k3.5√logM log k log2N log logN) since A`Ar and A` are fragments of gen(GT) of length at most
2(M + k− 1). Now, the size of |OccEk (P, T)| can be computed by a straightforward dynamic programming
approach: for a non-terminal A ∈ NGT , with production rule A→ BC, the number of k-errors occurrences
of P in gen(A) equals |OccEk (P, gen(B))| + |cross(A)| + |OccEk (P, gen(C))|. Further, all approximate
occurrences can be reported in time proportional to their number by performing a traversal of PTG ,
avoiding to explore subtrees that correspond to fragments of T that do not contain k-error occurrences.23

We obtain the following algorithm for pattern matching with edits in the fully compressed setting.

Main Theorem 4. Let GT denote a straight-line program of size n generating a string T , let GP denote a
straight-line program of size m generating a string P , let k > 0 denote an integer threshold, and set N := |T |
and M := |P |. We can compute |OccEk (P, T)| in time O(m logN + nk3.5 log2N

√
logM log k log logN)

and we can report the elements of OccEk (P, T) within O(|OccEk (P, T)|) extra time.

The result encapsulated in Main Theorem 4 should be compared to [CKW20, Main Theorem 2], which
summarizes an algorithm that computes |OccEk (P, T)| in time O(m logN + nk4 log2N log logN) and can
then report all elements of OccEk (P, T) within O(|OccEk (P, T)|) extra time.

23Compare [CKW20, Main Theorem 2] for a similar algorithm.

70

Part II: Seaweeds

8 The Seaweed Monoid of Permutation Matrices

We start by introducing the terminology behind the definition of permutation matrices and their seaweed
products. We mostly follow [KS21, Section 3.2] and [Tis07, Chapters 2 and 3], except that we use matrices
whose rows and columns are indexed with non-empty integer intervals (finite or infinite). Consistently
with previous work, we think of the plane reflected along the horizontal axis; that is, (1, 1) is below and to
the right of (0, 0). For an interval I ⊆ Z, denote

I+ = {i ∈ Z : i ∈ I or i− 1 ∈ I}, +I = {i ∈ Z : i ∈ I or i+ 1 ∈ I},
I− = {i ∈ Z : i ∈ I and i+ 1 ∈ I}, −I = {i ∈ Z : i ∈ I and i− 1 ∈ I}.

Moreover, for S ⊆ Z, we define span(S) = {i ∈ Z : ∃s,s′∈Ss ≤ i ≤ s′} as the smallest interval containing S.
The (min,+) product of matrices A ∈ ZI×K≥0 and B ∈ ZK×J≥0 is a matrix A�B ∈ ZI×J≥0 with entries

defined as follows for i ∈ I and j ∈ J :

(A�B)[i, j] = min
k∈K
{A[i, k] +B[k, j]}.

For A ∈ ZI×J , the density matrix A� ∈ ZI−×J− has entries defined as follows for i ∈ I− and j ∈ J−:

A�[i, j] = A[i+ 1, j] +A[i, j + 1]−A[i, j]−A[i+ 1, j + 1].

A matrix A ∈ ZI×J is a Monge matrix if all entries of the density matrix A� are non-negative.
A matrix A ∈ {0, 1}I×I is a permutation matrix if each row and each column contains exactly one

entry equal to 1. We define span(A) = −span({i ∈ I : A[i, i] = 0}), and we say that the matrix is
bounded if span(A) is finite. Note that a permutation matrix A can be represented with a permutation
σ : +span(A) → +span(A) such that A[i, j] = 1 if and only if j = σ(i) (when i ∈ +span(A)) or j = i

(otherwise).
For a bounded permutation matrix A ∈ {0, 1}I×I , the distribution matrix AΣ ∈ ZI

+×I+

≥0 , has its entries
defined as follows for i, j ∈ I+ (the entries are finite because A is bounded):

AΣ[i, j] =
∑
i′≥i

∑
j′<j

A[i′, j′].

By constructing the data structure of Chan and Pǎtraşcu [CP10] for answering two-sided orthogonal range
counting queries in 2D over the non-zero entries of A, one obtains the following.

Fact 8.1 ([Tis07, CKM20, KS21]). After O(w
√

logw)-time preprocessing of a permutation representing
a permutation matrix A with w = |span(A)|, any entry of AΣ can be computed in O(logw/log logw)
time.

The seaweed product of bounded permutation matrices A,B ∈ {0, 1}I×I is defined as A � B :=
(AΣ �BΣ)�.

Theorem 8.2 (Tiskin [Tis07, Tis15]). For any two bounded permutation matrices A,B, the seaweed
product C := A�B is a permutation matrix with span(C) ⊆ span(span(A) ∪ span(B)). Moreover, given
the permutations representing A and B, the permutation representing C can be constructed in O(w logw)
time, where w = |span(span(A) ∪ span(B))|.

For a matrix A ∈ ZI×J and an integer s ∈ Z, we define the (diagonal) shift of A by s units as a matrix
A↘ s ∈ Z(I+s)×(J+s) such that (A↘ s)[i+ s, j + s] = A[i, j] for (i, j) ∈ I × J .

Fact 8.3. The ↘ operation distributes over the seaweed product, that is, (A↘ s) � (B↘ s) =
(A�B)↘ s holds for all bounded permutation matrices A,B and integers s ∈ Z.

71

8.1 Alignment Graphs and Distance Matrices
Definition 8.4. Given a set M ⊆ Z2, we define the alignment graph AG(M) with vertices Z2 and

weighted edges:
(x, y) 1←→ (x+ 1, y) for every (x, y) ∈ Z2 (horizontal edges),
(x, y) 1←→ (x, y + 1) for every (x, y) ∈ Z2 (vertical edges),
(x, y) 0←→ (x+ 1, y + 1) for every (x, y) ∈ Z2 \M (diagonal edges).

We denote the underlying distance function on Z2 by distM .

We introduce an order ≺ on Z2 so that (x, y) ≺ (x′, y′) if and only if x < x′ and y < y′. For S ⊆ Z2,
we denote by LIS(S) the maximum length of an increasing sequence (with respect to ≺) of points in S.

Lemma 8.5. Consider a set M ⊆ Z2 and two points p = (x, y), p′ = (x′, y′) in Z2.
If x ≤ x′ and y ≤ y′, then distM (p, p′) = |x′ − x|+ |y′ − y| − 2LIS(([x . .x′)× [y . . y′)) \M).
If x ≤ x′ and y ≥ y′, then distM (p, p′) = |x′ − x|+ |y′ − y|.
If x ≥ x′ and y ≤ y′, then distM (p, p′) = |x′ − x|+ |y′ − y|.
If x ≥ x′ and y ≥ y′, then distM (p, p′) = |x′ − x|+ |y′ − y| − 2LIS(([x′ . .x)× [y′ . . y)) \M).

Proof. Let us fix a shortest path between p and p′ in AG(M) and a box B := [i . . i′]× [j . . j′] containing
all vertices of this path. Observe that distM (p, p′) = distM,B(p, p′), where distM,B denotes the distance
function of the subgraph of AG(M) induced by B. By [KS21, Lemma 12], distM,B(p, p′) satisfies the
claimed formula in all four cases.

Definition 8.6. For a box B = [i . . i′]× [j . . j′], we define the left-top and bottom-right boundaries
(ltBd)d∈[i−j′ . . i′−j], (brBd)d∈[i−j′ . . i′−j] so that

ltBd =
{

(i, i− d) for d ∈ [i− j′ . . i− j],
(d+ j, j) for d ∈ [i− j . . i′ − j],

brBd =
{

(d+ j′, j′) for d ∈ [i− j′ . . i′ − j′],
(i′, i′ − d) for d ∈ [i′ − j′ . . i′ − j].

Definition 8.7. For a finite set M ⊆ Z2, we say that B = [i . . i′]× [j . . j′] is a bounding box of M
if M ⊆ [i . . i′)× [j . . j′). We then define an infinite matrix DM,B ∈ ZZ×Z as follows:

DM,B[a, b] :=
{

distM (ltBa , brBb) if a, b ∈ [i− j′ . . i′ − j],
|a− b| otherwise.

Lemma 8.8. For every finite set M ⊆ Z2, the distance matrix DM,B does not depend on the choice
of the bounding box B.

Proof. Consider an arbitrary bounding box B = [i . . i′] × [j . . j′] and the minimum bounding box
B̂ = [ı̂ . . ı̂′] × [̂ . . ̂′]; if M = ∅, set ı̂ = ı̂′ = i and ̂ = ̂′ = j. We prove DM,B[a, b] = DM,B̂[a, b] by
analyzing several cases:

a, b ∈ [ı̂− ̂′ . . ı̂′ − ̂]. Lemma 8.5 implies distM (ltBa , lt
B̂
a) = 0 = distM (brB̂b , brBb). Thus,

DM,B[a, b] = distM (ltBa , brBb) = distM (ltB̂a , brB̂b) = DM,B̂[a, b].

a, b ∈ [i − j′ . . i′ − j] and a /∈ [ı̂ − ̂′ . . ı̂′ − ̂]. Lemma 8.5 implies distM (ltBa , brBa) = 0 and
distM (brBa , brBb) = |a− b|. Thus,

DM,B[a, b] = distM (ltBa , brBb) = distM (brBa , brBb) = |a− b| = DM,B̂[a, b].

72

a, b ∈ [i − j′ . . i′ − j] and b /∈ [ı̂ − ̂′ . . ı̂′ − ̂]. Lemma 8.5 implies distM (ltBb , brBb) = 0 and
distM (ltBa , lt

B
b) = |a− b|. Thus,

DM,B[a, b] = distM (ltBa , brBb) = distM (ltBa , lt
B
b) = |a− b| = DM,B̂[a, b].

Otherwise, DM,B[a, b] = |a− b| = DM,B̂[a, b].

Definition 8.9. For a finite set M ⊆ Z2, we define the distance matrix DM := DM,B (for an arbitrary
bounding box B of M) and the seaweed matrix PM := 1/2D

�
M .

Fact 8.10. For every finite set M ⊆ Z2 and vector (u, v) ∈ Z2, we have PM+(u,v) = PM↘ (u− v),
where M + (u, v) = {(x+ u, y + v) : (x, y) ∈M}.

Lemma 8.11. For every finite set M ⊆ Z2, the seaweed matrix PM is a bounded permutation matrix.
Moreover, DM [a, b] = 2PΣ

M [a, b] + a− b holds for all a, b ∈ Z2.

Proof. By [KS21, Lemma 19], for every bounding box B = [i . . i′]× [j . . j′], the matrix PM restricted
to entries PM [a, b] with a, b ∈ [i− j′ . . i′ − j) is a permutation matrix. Since the bounding box can be
chosen arbitrarily large, the entire matrix PM is a bounded permutation matrix. The second claim also
follows from [KS21, Definition 18 and Lemma 19].

Definition 8.12. We say that two boxes B = [i . . i′]× [j . . j′] and B̂ = [ı̂ . . ı̂′]× [̂ . . ̂′] are
vertically adjacent if i = ı̂, i′ = ı̂′, and j′ = ̂,
horizontally adjacent if i′ = ı̂, j = ̂, and j′ = ̂′.

Lemma 8.13. Consider finite sets M,M̂ ⊆ Z2 with (horizontally or vertically) adjacent bounding
boxes B and B̂, respectively. Then, PM∪M̂ = PM � PM̂ .

Proof. It suffices to prove that DM∪M̂ = DM �DM̂ . By symmetry, we assume without loss of generality
that the boxes B, B̂ are vertically adjacent, that is, B = [i . . i′]× [j . . j′] and B̂ = [i . . i′]× [j′ . . j′′]
for some integers i ≤ i′ and j ≤ j′ ≤ j′′. By Lemma 8.8, for every a, c ∈ Z, we have DM∪M̂ [a, c] =
distM∪M̂ ((a+ j, j), (c+ j′′, j′′)), since

[min{i, a+ j, c+ j′′} . . max{i′, a+ j, c+ j′′}]× [j . . j′′]

is a bounding box for M ∪ M̂ . In addition, since each path from (a+ j, j) to (c+ j′′, j′′) passes through a
vertex of the form (b+ j′, j′) for some b ∈ Z, we also have

distM∪M̂ ((a+j, j), (c+j′′, j′′)) = min
b∈Z
{distM∪M̂ ((a+j, j), (b+j′, j′)) + distM∪M̂ ((b+j′, j′), (c+j′′, j′′))}.

Now, for every a, b, c ∈ Z, Lemmas 8.5 and 8.8 yield

DM [a, b] = distM ((a+ j, j), (b+ j′, j′)) = distM∪M̂ ((a+ j, j), (b+ j′, j′)),

since [a+ j . . b+ j′)× [j . . j′) is disjoint from M̂ , and

DM̂ [b, c] = distM̂ ((b+ j′, j′), (c+ j′′, j′′)) = distM∪M̂ ((b+ j′, j′), (c+ j′′, j′′)),

since [b+ j′ . . c+ j′′)× [j′ . . j′′) is disjoint from M .
Thus, DM∪M̂ [a, c] = minb∈Z{DM [a, b] +DM̂ [b, c]} holds as claimed.

Lemma 8.14. Every bounded permutation matrix can be represented as PM for some finite set
M ⊆ Z2.

73

Proof. Tiskin [Tis07] showed that every bounded permutation matrix can be represented as the seaweed
product of transposition matrices, which can be defined as the unique permutation matrices Gd :
{0, 1}Z×Z satisfying span(Gd) = {d} for d ∈ Z. By Definitions 8.7 and 8.9, for any y, d ∈ Z≥0, we
have Gd = P{(y+d,y)}. By Lemma 8.13, any product Gd1 � · · · � Gdt can be represented as PM for
M = {(y + dy, y) : y ∈ [1 . . t]}.

For a set M ⊆ Z2, we define span(M) = span({x− y : (x, y) ∈M}).

Lemma 8.15. For every finite set M ⊆ Z2, we have span(PM) ⊆ span(M).

Proof. Let a ∈ Z\+span(M). This means that a, a+1 /∈ span(M) and thus a, a+1 /∈ {x−y : (x, y) ∈M}.
By Lemma 8.5, this implies DM [a, a] = DM [a+ 1, a+ 1] = 0 and DM [a, a+ 1] = DM [a+ 1, a] = 1.
Consequently,

PM [a, a] = 1/2 (DM [a, a+ 1] +DM [a+ 1, a]−DM [a, a]−DM [a+ 1, a+ 1]) = 1.

Thus, {a ∈ Z : PM [a, a] = 0} ⊆ +span(M). Given that span(M) is an interval, this yields span(PM) =
−span({a ∈ Z : PM [a, a] = 0}) ⊆ span(M).

8.2 Restriction of Permutation Matrices
For a finite set M ⊆ Z2 and an integer interval I, we denote M |I := {(x, y) ∈ M : x − y ∈ I}; observe
that span(M |I) = span({x− y : (x, y) ∈M |I}) ⊆ span(I) = I.

Lemma 8.16. Consider a finite set M ⊆ Z2 and an integer interval I = (` . . r). The restricted
seaweed matrix PM |I can be characterized as follows based on the sets

L = {(a, b) ∈ [` . . r]2 : a+ b ≤ `+ r and DM [a, b] ≥ a+ b− 2`},
R = {(a, b) ∈ [` . . r]2 : a+ b ≥ `+ r and DM [a, b] ≥ 2r − a− b}.

For every a, b ∈ +I, we have PM |I [a, b] = 1 if and only if at least one of the following cases holds:
(1) (a+ 1, b), (a, b+ 1) ∈ L and (a+ 1, b+ 1) /∈ L, or
(2) (a+ 1, b), (a, b+ 1) ∈ R and (a, b) /∈ R, or
(3) PM [a, b] = 1, (a, b) /∈ L, and (a+ 1, b+ 1) /∈ R.

Moreover, (a + 1, b), (a, b + 1) /∈ L holds for every (a, b) ∈ [` . . r]2 \ L and (a − 1, b), (a, b − 1) /∈ R
holds for every (a, b) ∈ [` . . r]2 \R.

Proof. Let us first prove an auxiliary claim characterizing the restricted distance matrix DM |I .

Claim 8.17. For every a, b ∈ Z, the restricted distance matrix satisfies

DM |I [a, b] =
{

min{DM [a, b], a+ b− 2`, 2r − a− b} if a, b ∈ (` . . r),
|a− b| otherwise.

Proof. Consider the smallest bounding box B of M |I . The second case follows from the fact that
span(PM |I) ⊆ span(M |I) ⊆ (` . . r). As for the first case, note that AG(M) is a subgraph of AG(M |I), so
DM |I [a, b] ≤ DM [a, b]. Moreover, the triangle inequality yields

DM |I [a, b] ≤ DM |I [a, `] +DM |I [`, b] = |a− `|+ |`− b| = a+ b− 2` and
DM |I [a, b] ≤ DM |I [a, r] +DM |I [r, b] = |a− r|+ |r − b| = 2r − a− b.

Finally, observe that if a path from ltBa to brBb in AG(M |I) does not reach any vertex (x, y) with x− y /∈ I,
then path is also present in AG(M). Otherwise, the path must reach a vertex (x, y) with x− y ∈ {`, r}, so
its length is at least min{|a− `|+ |`− b|, |a− r|+ |r − b|} = min{a+ b− 2`, 2r − a− b}.

74

Claim 8.17 implies

L = {(a, b) ∈ [` . . r]2 : DM |I [a, b] = a+ b− 2`} and
R = {(a, b) ∈ [` . . r]2 : DM |I [a, b] = 2r − a− b}.

By Definitions 8.7 and 8.9, the neighboring entries of DM |I differ by at most one. Consequently, if
(a, b) ∈ [` . . r]2 \L, then DM |I [a, b] < a+ b− 2`, so DM |I [a+ 1, b] < a+ b− 2`+ 1 = (a+ 1) + b− 2` and
DM |I [a, b+1] < a+b−2`+1 = a+(b+1)−2`. Similarly, if (a, b) ∈ [` . . r]2\R, thenDM |I [a, b] < 2r−a−b,
so DM |I [a− 1, b] < 2r−a− b+ 1 = 2r− (a− 1)− b and DM |I [a, b− 1] < 2r−a− b+ 1 = 2r−a− (b− 1).

Thus, it remains to prove the statement characterizing PM |I . In Case (1), we have

PM |I [a, b] = DM |I [a+ 1, b] +DM |I [a, b+ 1]−DM |I [a, b]−DM |I [a+ 1, b+ 1]
> (a+ 1 + b− 2`) + (a+ b+ 1− 2`)− (a+ b− 2`)− (a+ 1 + b+ 1− 2`) = 0.

In Case (2), we have

PM |I [a, b] = DM |I [a+ 1, b] +DM |I [a, b+ 1]−DM |I [a, b]−DM |I [a+ 1, b+ 1]
> (2r − a− 1− b) + (2r − a− b− 1)− (2r − a− b)− (2r − a− b− 1) = 0.

In Case (3), we have

PM |I [a, b] = DM |I [a+ 1, b] +DM |I [a, b+ 1]−DM |I [a, b]−DM |I [a+ 1, b+ 1]
= DM [a+ 1, b] +DM [a, b+ 1]−DM [a, b]−DM [a+ 1, b+ 1]
= PM [a, b] = 1.

Thus, if at least of the three cases holds, then indeed PM |I [a, b] = 1.
For a proof of the converse implication, suppose that PM |I [a, b] = 1 for some a, b ∈ [` . . r). Since the

neighboring entries of DM |I differ by at most one, the equality

1 = DM |I [a+ 1, b] +DM |I [a, b+ 1]−DM |I [a, b]−DM |I [a+ 1, b+ 1]

implies DM |I [a + 1, b + 1] = DM |I [a, b] and DM |I [a + 1, b] = DM |I [a, b + 1] = DM |I [a, b] + 1. If
(a, b) ∈ L, then we have (a + 1, b), (a, b + 1) ∈ L and (a + 1, b + 1) /∈ L, that is, case (1) holds. If
(a+ 1, b+ 1) ∈ R, then we have (a+ 1, b), (a, b+ 1) ∈ R and (a, b) /∈ R, that is, case (2) holds Finally, if
(a, b) /∈ L and (a+ 1, b+ 1) /∈ R, then (a, b), (a+ 1, b), (a, b+ 1), (a+ 1, b+ 1) /∈ L ∪R, so

PM [a, b] = DM [a+ 1, b] +DM [a, b+ 1]−DM [a, b]−DM [a+ 1, b+ 1]
= DM |I [a+ 1, b] +DM |I [a, b+ 1]−DM |I [a, b]−DM |I [a+ 1, b+ 1]
= PM |I [a, b] = 1,

that is, Case (3) holds.

Corollary 8.18. Consider two finite sets M,M̂ ⊆ Z2 with PM = PM̂ . For every integer interval
I ⊆ Z, we have PM |I = PM̂ |I .

Proof. If I is a finite interval, then Lemma 8.16 provides a complete characterization of PM |I in terms
of DM and PM , whereas Lemma 8.11 provides a complete characterization of DM in terms of PM .
Consequently, PM |I = PM̂ |I holds in this case. If I is an infinite interval, then we define J = span(M∪M̂)∩I
and observe that M |I = M |J as well as M̂ |I = M̂ |J , so PM |I = PM |J = PM̂ |J = PM̂ |I .

75

Corollary 8.18 combined with Lemma 8.14 let us define the restriction operation on bounded
permutation matrices.

Definition 8.19. For a bounded permutation matrix A and an interval I, we define the restriction of
A to I, denoted A|I , as PM |I , where M ⊆ Z2 is an arbitrary finite set such that A = PM .

Lemma 8.20. The following equalities hold for all bounded permutation matrices A,B, intervals
I, J ⊆ Z, and shifts s ∈ Z:
(a) A|I �B|I = (A�B)|I ;
(b) (A|I)|J = A|I∩J ;
(c) (A|I)↘ s = (A↘ s)|I+s.

Proof. (a) Let M,M̂ ⊆ Z2 be finite sets such that A = PM and B = PM̂ (these sets exist by Lemma 8.14).
By Definitions 8.7 and 8.9, we can shift M and M̂ along the diagonals without influencing PM and
PM̂ . In particular, this lets us assume that M and M̂ admit vertically adjacent bounding boxes so
that A�B = PM∪M̂ holds by Lemma 8.13. Since M |I and M̂I also admit the same vertically adjacent
bounding boxes, Lemma 8.13 also yields A|I �B|I = PM |I∪M̂ |I = P(M∪M̂)|I = (A�B)|I .

(b) Let M ⊆ Z2 be a finite set such that A = PM . Observe that (M |I)|J = {(x, y) ∈ M |I : x− y ∈
J} = {(x, y) ∈M : x− y ∈ I ∩ J} = M |I∩J}. By Definition 8.19, this implies (A|I)J = AI∩J .

(c) LetM ⊆ Z2 be a finite set such that A = PM . Observe that (M+(s, 0))|I+s = {(x, y) ∈M+(s, 0) :
x−y ∈ I+s} = {(x+s, y) ∈M+(s, 0) : x+s−y ∈ I+s} = {(x+s, y) : (x, y) ∈M and x−y ∈ I} = (M |I)+
(s, 0). Consequently, Fact 8.10 implies (A↘ s)|I+s = P(M+(s,0))|I+s = P(M |I)+(s,0) = (A|I)↘ s.

Next, we turn the combinatorial characterization of Lemma 8.16 into an efficient algorithm for
restricting permutation matrices.

Lemma 8.21 (Restrict(σ, I)). Given a permutation matrix A (represented by a permutation σ) and
an integer interval I, the permutation matrix A|I (represented by a permutation σ|I) can be constructed in
O(|span(A)|) time.

Proof. Write (` . . r) := I ∩ span(A); observe that A|I = A|(` . . r), so we construct σ|I using the
characterization of Lemma 8.16. For each a ∈ [` . . r), we initialize σ|I(a) := σ(a); this covers case (3),
so it suffices to assign the values σ|I(a) corresponding to cases (1) and (2). As for case (1), we traverse
the boundary of the set L (that is, pairs (a, b) ∈ L with (a+ 1, b+ 1) /∈ L). A symmetric traversal of the
boundary of the set R (that is, pairs (a, b) ∈ L with (a− 1, b− 1) /∈ R) covers case (2). The algorithm
implementing this strategy is presented as Algorithm 3.

Let us focus on the traversal of the boundary of L. Observe that (r, `), (`, r) ∈ L due to DM [r, `] ≥
|r − `| = r + `− 2` and DM [`, r] ≥ |`− r| = `+ r − 2`. Consequently, by the last part of Lemma 8.16,
the boundary of L forms a path from (r, `) to (`, r) with individual steps going either down or to the
left. In Lines 4–15, we traverse this path while maintaining v = DM [a, b]. This value is initialized to
DM [`, r] = 2PΣ

M [`, r] + `− r according to Lemma 8.11 and the definition of the distribution matrix.
After visiting (a, b) ∈ L, we proceed to (a + 1, b) or (a, b − 1) depending on whether (a + 1, b) ∈

L or not. According to the definition of L, this condition is equivalent to a + 1 + b ≤ ` + r and
DM [a+ 1, b] ≥ a+ 1 + b− 2`. The first part is verified explicitly, whereas for the second one, we observe
that DM [a+ 1, b]−DM [a, b] = 1− 2

∑
b′∈[` . . b) PM [a, b′], that is, DM [a+ 1, b] = v+ 1 if σ(a) ≥ b and

DM [a+ 1, b] = v − 1 otherwise. In the former case, v ≥ a+ b− 2` yields v + 1 ≥ a+ 1 + b− 2`, whereas
in the latter one, we explicitly check whether v − 1 ≥ a+ 1 + b− 2`. If this test, implemented in Line 7,
reveals (a+ 1, b) ∈ L, we move to (a+ 1, b) and update v as described above. Otherwise, we proceed to
(a, b−1). In order to update v, we observe that DM [a, b−1]−DM [a, b] = 1−2

∑
a′∈[a . . r) PM [a′, b−1],

76

Algorithm 3 Restricting the seaweed matrix.

1 Restrict(σ, I)
2 (` . . r)← I ∩ span(A);
3 foreach d ∈ [` . . r) do σ|I(d) := σ(d);
4 (a, b) := (`, r);
5 v := 2|{d ∈ dom(σ) : d ≥ ` and σ(d) < r}|+ `− r;
6 while (a, b) 6= (r, `) do
7 if a+ 1 + b ≤ `+ r and (σ(a) ≥ b or v − 1 ≥ a+ 1 + b− 2`) then
8 if σ(a) ≥ b then v := v + 1;
9 else v := v − 1;

10 a := a+ 1;
11 else
12 σ|I(a) := b− 1;
13 if σ−1

M (b− 1) < a then v := v + 1;
14 else v := v − 1;
15 b := b− 1;
16 while (a, b) 6= (`, r) do
17 if a− 1 + b ≥ `+ r and (σ(a− 1) < b or v − 1 ≥ 2r − a+ 1− b) then
18 if σ(a− 1) < b then v := v + 1;
19 else v := v − 1;
20 a := a− 1;
21 else
22 σ|I(a− 1) := b;
23 if σ−1

M (b) ≥ a then v := v + 1;
24 else v := v − 1;
25 b := b+ 1;
26 return σ|I ;

that is, DM [a, b− 1] = v + 1 if σ(b− 1) < a and DM [a, b− 1] = v − 1 otherwise. In this case, we also
know that σ|I(a) is covered by case (1) of Lemma 8.16. Thus, we set σ|I(a) = b− 1 in Line 12; this value
is either assigned correctly (if (a+ 1, b− 1) ∈ L) or overwritten in the next step (otherwise).

Lines 16–25 implement traversal of the boundary of R and cover case (2) of Lemma 8.16. Observe that
(`, r), (r, `) ∈ R due to DM [`, r] ≥ |`− r| = 2r− `− r and DM [r, `] ≥ |r− `| = 2r− `− r. Consequently,
by the last part of Lemma 8.16, the boundary of R forms a path from (`, r) to (r, `) with individual steps
going either up or to the right. We traverse this path maintaining v = DM [a, b]. Given that the traversal
of the boundary of L terminated at (a, b) = (`, r), we do not need to initialize v.

After visiting (a, b) ∈ R, we proceed to (a− 1, b) or (a, b+ 1) depending on whether (a− 1, b) ∈ R or
not. According to the definition of R, this condition is equivalent to a− 1 + b ≥ `+ r and DM [a− 1, b] ≥
2r − a+ 1− b. The first part is verified explicitly, whereas for the second one, we observe that

DM [a− 1, b]−DM [a, b] = 2
∑

b′∈[` . . b)

PM [a− 1, b′]− 1,

that is, DM [a − 1, b] = v + 1 if σ(a − 1) < b and DM [a − 1, b] = v − 1 otherwise. In the former case,
v ≥ 2r − a − b yields v + 1 ≥ 2r − a + 1 − b, whereas in the latter one, we explicitly check whether
v − 1 ≥ 2r − a+ 1− b. If this test, implemented in Line 17, reveals (a− 1, b) ∈ R, we move to (a− 1, b)

77

and update v as described above. Otherwise, we proceed to (a, b+ 1). In order to update v, we observe
that DM [a, b + 1] −DM [a, b] = 2

∑
a′∈[a . . r) PM [a′, b] − 1, that is, DM [a, b + 1] = v + 1 if σ(b) ≥ a

and DM [a, b + 1] = v − 1 otherwise. In this case, we also know that σ|I(a − 1) is covered by case (2)
of Lemma 8.16. Thus, we set σ|I(a − 1) = b in Line 22; this value is either assigned correctly (if
(a− 1, b+ 1) ∈ R) or overwritten in the next step (otherwise).

The running time of the algorithm is O(|span(A)|); this includes building the permutation σ−1
M .

8.3 Computing the Seaweed Matrix
Lemma 8.22. Consider a finite set M ⊆ Z2. For every (x, y) ∈ Z, there are unique thresholds

φ(x, y), ψ(x, y) ∈ Z such that the following holds for any bounding box B ∈ [i . . i′]× [j . . j′] of M :

distM (ltBd , (x+ 1, y))− distM (ltBd , (x, y)) =
{

1 if d ≤ ψ(x, y),
−1 otherwise.

distM (ltBd , (x, y + 1))− distM (ltBd , (x, y)) =
{
−1 if d ≤ φ(x, y),
1 otherwise.

Moreover,
If (x, y) ∈M , then φ(x+ 1, y) = min{ψ(x, y), φ(x, y)} and ψ(x, y + 1) = max(ψ(x, y), φ(x, y)).
Otherwise, φ(x+ 1, y) = ψ(x, y) and ψ(x, y + 1) = φ(x, y).

Proof. Let us first consider points (x, y) ∈ Z2 with x < i or y < j. In this case, we have distM (ltBd , (x, y)) =
distM (ltBd , (x+1, y+1)) = |x−y−d|, distM (ltBd , (x+1, y)) = |x+1−y−d|, distM (ltBd , (x, y+1)) = |x−y−1−d|.
Consequently, ψ(x, y) = φ(x+ 1, y) = x− y and φ(x, y) = ψ(x, y + 1) = x− y − 1.

For the remaining points, we proceed by induction on x+ y. Suppose that the existence of unique
values ψ(x, y) and φ(x, y) has already been established. If (x, y) /∈M , then distM ((x, y), (x+ 1, y+ 1)) = 0.
We consider four cases depending on whether d ≤ ψ(x, y) and d ≤ φ(x, y).

If d ≤ ψ(x, y) and d ≤ φ(x, y), then

distM (ltBd , (x, y)) = distM (ltBd , (x+ 1, y + 1)) = distM (ltBd , (x+ 1, y))− 1
= distM (ltBd , (x, y + 1)) + 1.

If d ≤ ψ(x, y) and d > φ(x, y), then

distM (ltBd , (x, y)) = distM (ltBd , (x+ 1, y + 1)) = distM (ltBd , (x+ 1, y))− 1
= distM (ltBd , (x, y + 1))− 1.

If d > ψ(x, y) and d ≤ φ(x, y), then

distM (ltBd , (x, y)) = distM (ltBd , (x+ 1, y + 1)) = distM (ltBd , (x+ 1, y)) + 1
= distM (ltBd , (x, y + 1)) + 1.

If d > ψ(x, y) and d > φ(x, y), then

distM (ltBd , (x, y)) = distM (ltBd , (x+ 1, y + 1)) = distM (ltBd , (x+ 1, y)) + 1
= distM (ltBd , (x, y + 1))− 1.

78

Based on this case analysis, we see that φ(x+ 1, y) = ψ(x, y) and ψ(x, y + 1) = φ(x, y) are unique and
well-defined.

If (x, y) ∈M , then Lemma 8.5 implies

distM (ltBd , (x+ 1, y + 1)) = 1 + min{distM (ltBd , (x+ 1, y)), distM (ltBd , (x, y + 1))}.

We consider the same four cases as previously:
If d ≤ ψ(x, y) and d ≤ φ(x, y), then

distM (ltBd , (x, y)) = distM (ltBd , (x+ 1, y))− 1 = distM (ltBd , (x, y + 1)) + 1,

so

distM (ltBd , (x+ 1, y + 1)) = distM (ltBd , (x, y)).

If d ≤ ψ(x, y) and d > φ(x, y), then

distM (ltBd , (x, y)) = distM (ltBd , (x+ 1, y))− 1 = distM (ltBd , (x, y + 1))− 1,

so

distM (ltBd , (x+ 1, y + 1)) = distM (ltBd , (x, y)) + 2.

If d > ψ(x, y) and d ≤ φ(x, y), then

distM (ltBd , (x, y)) = distM (ltBd , (x+ 1, y)) + 1 = distM (ltBd , (x, y + 1)) + 1,

so

distM (ltBd , (x+ 1, y + 1)) = distM (ltBd , (x, y)).

If d > ψ(x, y) and d > φ(x, y), then

distM (ltBd , (x, y)) = distM (ltBd , (x+ 1, y)) + 1 = distM (ltBd , (x, y + 1))− 1,

so

distM (ltBd , (x+ 1, y + 1)) = distM (ltBd , (x, y)).

Based on this case analysis, we conclude that φ(x + 1, y) = min{ψ(x, y), φ(x, y)} and ψ(x, y + 1) =
max(ψ(x, y), φ(x, y)) are unique and well-defined.

Lemma 8.23 (Seaweed(I,successor(M,?, ?))). Consider a finite set M ⊆ Z2. Suppose that we are
given an interval I ⊇ span(M) and function successor(M,?, ?) that, given d ∈ I and y ∈ {−∞} ∪ Z, in
O(1) time returns min{y′ ≥ y : (y′ + d, y′) ∈M}, where min∅ =∞. Then, a permutation σM : +I → +I

representing PM can be constructed in O(|I|2 log log |I|) time.

Proof. Write I := (` . . r). Our solution, presented as Algorithm 4 maintains a permutation σ : +I → +I

and implicitly iterates over all pairs (y, d) ∈ Z× [`− 1 . . r] in the lexicographic order. The main invariant
is that, after processing (y, d), the permutation σ is as follows:

σ(d′) =


ψ(y + 1 + d′, y + 1) for d′ ∈ [` . . d),
φ(y + 1 + d, y) for d′ = d,

ψ(y + d′, y) for d′ ∈ (d . . r).

Additionally, the algorithm maintains a priority queue Q that stores events (y′, d′) ∈ Z×(` . . r) satisfying
the following three invariants for every d′ ∈ (` . . r):

79

Algorithm 4 Constructing the seaweed matrix.

1 Seaweed(I, successor(M,?, ?))
2 (` . . r) := I;
3 foreach d ∈ [` . . r) do σ(d) := d;
4 foreach d ∈ (` . . r) do Q.insert(successor(M,d,−∞), d);
5 while Q not empty do
6 (y, d) := Q.extractMin();
7 if y 6=∞ and σ(d− 1) < σ(d) then
8 swap(σ(d− 1), σ(d));
9 if d− 1 ∈ (` . . r) then Q.insert(successor(M,d− 1, y + 1), d− 1);

10 if d+ 1 ∈ (` . . r) then Q.insert(successor(M,d+ 1, y), d+ 1);
11 return σ−1;

(1) If (y′, d′) ∈ Q with y′ 6=∞, then (y′, d′) �lex (y, d) and (y′ + d′, y′) ∈M .
(2) If σ(d′ − 1) < σ(d′) and d′ ≤ d, then (successor(M,d′, y + 1), d′) ∈ Q.
(3) If σ(d′ − 1) < σ(d′) and d′ > d, then (successor(M,d′, y), d′) ∈ Q.

In the initialization phase (Lines 3–4), we set σ(d) = d for d ∈ +I and Q = {(successor(M,d,−∞), d) :
d ∈ (` . . r)}. The processing of (y, d) handled implicitly if (y, d) /∈ Q. Otherwise, we extract (y, d)
from Q and check whether σ(d − 1) < σ(d). If so, we swap σ(d − 1) with σ(d) and insert to Q pairs
(successor(M,d− 1, y + 1), d− 1) (provided that d− 1 ∈ (` . . r)) and (successor(M,d− 1, y), d+ 1)
(provided that d+ 1 ∈ (` . . r)). After processing all (y, d) ∈ Z× [`−1 . . r], the queue Q may still contain
entries of the form {∞} × (` . . r), which are extracted one by one until Q is empty.

Let us first prove that the invariants are satisfied after the initialization. For this, we select d = `−1 and
an arbitrary value y with M ⊆ Z× [y . .∞). Since ψ(y+d′, d′) = d′ holds for all d′ ∈ +I, the permutation
σ satisfies the invariant. As for the invariants regarding Q, note that Q = {(successor(M,d′, y), d′) :
d′ ∈ (` . . r)}. In particular, Q contains all the required pairs. Moreover, if (y′, d′) ∈ Q with y′ 6=∞, then
y′ ≥ y (and thus (y′, d′) �lex (y, d)) and (y′ + d′, y′) ∈M (by definition of successor(M,?, ?)).

Next, consider processing (y, d) ∈ [` − 1 . . r]. If d = ` − 1, the invariants for (y, ` − 1) are exactly
the same as the invariants for (y − 1, r). If d = `, then the only difference between the invariants for
(y, `− 1) and (y, `) is that σ(`) needs to be updated from ψ(y + `, y) to φ(y + 1 + `, y). However, due to
(y + `, y) /∈ M , Lemma 8.22 guarantees φ(y + 1 + `, y) = ψ(y + `, y). If d = r, then the only difference
between the invariants for (y, r − 1) and (y, r) is that σ(r − 1) needs to be updated from φ(y + r, y) to
ψ(y + r, y + 1). However, due to (y + r, y) /∈ M , Lemma 8.22 guarantees ψ(y + r, y + 1) = φ(y + r, y).
Hence, in each of the above three cases, the void implementation (guaranteed by Q ⊆ Z × (` . . r)) is
correct.

In the main case of d ∈ (` . . r), the values σ(d−1), σ(d) should be updated from φ(y+d, y), ψ(y+d, y)
to ψ(y + d, y + 1), φ(y + d+ 1, y). If (y + d, y) /∈M , then (y + d, y) /∈ Q and our implementation is void.
This is correct because Lemma 8.22 yields ψ(y + d, y + 1) = φ(y + d, y) and φ(y + d+ 1, y) = ψ(y + d, y).
If (y + d, y) ∈ M and σ(d − 1) < σ(d), then the invariant on Q guarantees (y + d, y) ∈ Q. Hence,
our algorithm swaps σ(d − 1) with σ(d). This is correct because Lemma 8.22 yields ψ(y + d, y + 1) =
max(ψ(y+ d, y), φ(y+ d, y)) = ψ(y+ d, y) and φ(y+ d+ 1, y) = min{ψ(y+ d, y), φ(y+ d, y)} = φ(y+ d, y).
If (y + d, y) ∈M and σ(d− 1) ≥ σ(d), the queue Q may contain (y + d, y) or not. In both scenarios, our
algorithm keeps σ(d − 1) and σ(d) intact This is correct because Lemma 8.22 yields ψ(y + d, y + 1) =
max(ψ(y+ d, y), φ(y+ d, y)) = φ(y+ d, y) and φ(y+ d+ 1, y) = min{ψ(y+ d, y), φ(y+ d, y)} = ψ(y+ d, y).

80

Next, we shall prove that the invariants regarding Q remain satisfied. Since (y, d) is removed from
Q, all the remaining elements (y′, d′) satisfy (y′, d′) �lex (y, d) and (y′, d′) ∈ M . By definition of
successor(M,?, ?), this is also true for the newly inserted elements, if any. Next, consider d′ ∈ (` . . r)
with σ(d′ − 1) < σ(d). If d′ ∈ (` . . d − 1), the entries σ(d′ − 1) and σ(d′) were kept intact, so
(successor(M,d′, y + 1), d′) is still guaranteed to be contained in Q. The same is true for d′ = d − 1
if we did not swap σ(d − 1) with σ(d). If we did, however, then (successor(M,d − 1, y + 1), d − 1)
is contained in Q because it was inserted explicitly. Symmetrically, for d′ ∈ (d + 1 . . r), the entries
σ(d′ − 1) and σ(d′) were kept intact, so (successor(M,d′, y), d′) is still guaranteed to be contained in
Q. The same is true for d′ = d + 1 if we did not swap σ(d − 1) with σ(d). If we did, however, then
(successor(M,d + 1, y), d) is contained in Q because it was inserted explicitly. It remains to consider
d′ = d. Due to ψ(y + d, y + 1) < φ(y + d, y), Lemma 8.22 guarantees (y, y + d) /∈ M . Consequently,
(successor(M,d, y), d) = (successor(M,d, y + 1), d) is still guaranteed to be contained in Q.

We conclude the correctness analysis by considering d = r and an arbitrary value y with M ∩ Z ×
(−∞ . . y] The invariants show that σ(d′) = ψ(y + d′, d′) for d′ ∈ +I and that Q does not contain any
entry (y′, d′) with y′ 6=∞ (so no further iterations alter σ). Recall that PM [a, b] = 1 implies DM [a, b] =
DM [a+ 1, b+ 1] and DM [a, b+ 1] = DM [a+ 1, b] = DM [a, b] + 1, that is, DM [a, b+ 1]−DM [a, b] = 1
and DM [a+ 1, b+ 1]−DM [a+ 1, b] = −1. Using Definitions 8.7 and 8.9 and Lemma 8.22, we conclude
that a ≤ σ(b) and a+ 1 > σ(b), that is, that a = σ(b). Since PM is a permutation matrix, this guarantees
that σ−1 is the permutation representing PM .

As for the running time, we observe that each swap of subsequent entries of σ increases the number of
inversions in σ, so the total number of swaps is O(|I|2). Consequently, the total number of operations on
Q is O(|I|+ |I|2) = O(|I|2). Using the state-of-the-art priority queries with integer keys [Han04, Tho07],
we can achieve O(log log |I|) time per operation, for a total running time of O(|I|2 log log |I|).

9 Applications of Seaweeds

For two strings X,Y ∈ Σ∗, we define M(X,Y) = {(x, y) ∈ [0 . . |X|) × [0 . . |Y |) : X[x] 6= Y [y]}.
Moreover, we denote DX,Y = DM(X,Y) and PX,Y = PM(X,Y). Lemma 8.5 and Definition 8.7 yields the
following characterization:

Fact 9.1. For X,Y ∈ Σ∗ and 0 ≤ ` ≤ r ≤ |X|, we have δD(X[` . . r), Y) = DX,Y [`, r − |Y |].

Lemma 9.2. All strings X,Y, Z ∈ Σ∗ satisfy PX,Y Z = PX,Y � (PX,Z↘ (−|Y |)) and PXY,Z =
PX,Z � (PY,Z↘ |X|).

Proof. Observe that M(X,Y Z) = M(X,Y) ∪ (M(X,Z) + (0, |Y |)) and the two sets of the right-hand
side have vertically adjacent bounding boxes. Hence, Fact 8.10 and Lemma 8.13 imply PX,Y Z =
PX,Y �PM(X,Z)+(0,|Y |) = PX,Y �(PX,Z↘ (−|Y |)). Similarly,M(XY,Z) = M(X,Z)∪(M(Y,Z)+(|X|, 0)),
and the two sets of the right-hand side have horizontally adjacent bounding boxes. Hence, Fact 8.10
and Lemma 8.13 imply PXY,Z = PX,Z � PM(Y,Z)+(|X|,0|) = PX,Z � (PY,Z↘ |X|).

The principle behind Lemma 9.2 was used in the algorithm of [CKM20] to maintain δD(X,Y) subject
to edit operations in X,Y . The algorithm of [CKM20] actually maintains the seaweed matrix PX,Y , so
we get the following result:

Fact 9.3 ([CKM20]). There exists a dynamic algorithm that maintains PX,Y subject to character
insertions and deletions in X,Y ∈ Σ∗. The initialization costs O(|X| · |Y |) time and the updates cost
O((|X|+ |Y |) log2(|X|+ |Y |)) time.

81

Lemma 9.4. Consider families X ,Y ⊆ Σ≤n. The seaweed matrices PX,Y for X ∈ X and Y ∈ Y can
all be constructed in O(n2 + (1 + dX)(1 + dY)n log2 n) time, where dX = δE(X), and dY = δE(Y).

Proof. We iterate over (X,Y) ∈ X × Y while maintaining PX,Y via Fact 9.3. The initialization costs
O(n2) time whereas updating (X,Y) to (X ′, Y ′) costs O((δE(X,X ′) + δE(Y, Y ′))n log2 n) time. To bound
the total contribution of the update costs, let X̂ and Ŷ be such that δE(X) =

∑
X∈X δE(X, X̂) and

δE(Y) =
∑
Y ∈Y δE(Y, Ŷ). Then, δE(X,X ′) + δE(Y, Y ′) ≤ δE(X, X̂) + δE(X ′, X̂) + δE(Y, Ŷ) + δE(Y ′, Ŷ).

Consequently, the total update time is O((|Y| ·δE(X)+ |X | ·δE(Y))n log2 n) = O((1+dX)(1+dY)n log2 n)
because |Y| ≤ 1 + δE(Y) and |X | ≤ 1 + δE(X).

Lemma 9.5. There exists a dynamic algorithm that maintains a matrix �t
i=1(Ai↘

∑i
j=1 δi) subject

to insertions and deletions of pairs (δi, Ai) consisting of an integer δi and a bounded permutation matrix
Ai. The update cost is O(w logw log t) time and the initialization costs O(wt logw) time, where w =
|span(

⋃t
i=1 span(Ai↘ (

∑i
j=1 δj)))|.

Proof. We maintain a balanced binary tree with t leaves representing [1 . . t]. A node ν whose subtree
contains leaves representing [` . . r] maintains Aν := �r

i=`(Ai↘
∑i
j=` δi) as well as sν =

∑r
i=` δi. If

ν is the ith leaf, then Aν = Ai↘ δi and sν = δi. If ν is an internal node with children νL, νR, then
Aν = AνL � (AνR↘ sνL) and sν = sνL + sνR ; this matrix can be constructed in O(w logw) time using
Theorem 8.2. Any insertion or deletion requires updating O(log t) nodes, whereas the initialization
requires computing Aν for all O(t) nodes. Thus, the running times are O(w logw log t) and O(wt logw),
respectively.

Lemma 9.6. Consider strings X,Y , an integer interval I = [` . . r], and a decomposition Y = Y1 · · ·Yt
such that Yi = Y [yi . . y′i) for i ∈ [1 . . t]. Moreover, for i ∈ [1 . . t], let Xi = X[xi . .x′i), where
xi ≤ max(0, yi + `) and x′i ≥ min{|X|, y′i + r}, and Ii ⊇ I − xi + yi is an integer interval. Then,
PX,Y |I = (�t

i=1 ((PXi,Yi |Ii)↘ (xi − yi))) |I .

Proof. We start with an auxiliary claim.

Claim 9.7. For every i ∈ [1 . . t], we have PX,Yi |I+yi = ((PXi,Yi |Ii)|I−xi+yi)↘ xi.

Proof. Let Mi = M(X,Yi) so that PMi
= PX,Yi . Observe that Mi|I+yi = {(x, y) ∈ Mi : x − y ∈

I + yi} = {(x, y) ∈ Mi : x − y − yi ∈ I} = {(x, y) ∈ Mi : x − y − yi ∈ [` . . r]} = {(x, y) ∈
Mi : x ∈ [y + yi + ` . . y + yi + r]} ⊆ [0 . . |Xi|) × [yi + ` . . y′i + r). At the same time, Mi|I+yi ⊆
[0 . . |X|)× [0 . . |Yi|), so Mi|I+yi ⊆ [xi . .x′i)× [0 . . |Yi|). In particular, Mi|I+yi = (Mi ∩ ([xi . .x′i)×
[0 . . |Yi|)))|I+yi = (M(Xi, Yi)− (0, yi))|I+yi , so PX,Yi |I+yi = (PXi,Yi↘ xi)|I+yi = (PXi,Yi |I−xi+yi)↘ xi
holds by Lemma 8.20(c). Moreover, due to Lemma 8.20(b) and Ii ⊇ I − xi + yi, the equality PX,Yi |I+yi =
(PXi,Yi |I−xi+yi)↘ xi = ((PXi,Yi |Ii)|I−xi+yi)↘ xi holds as claimed.

PX,Y |I =
(
�t
i=1(PX,Yi↘ (−yi))

)
|I Lemma 9.2

=
((

�t
i=1(PX,Yi↘ (−yi))

)
|I
)
|I Lemma 8.20(b)

=
(
�t
i=1 ((PX,Yi↘ (−yi))|I)

)
|I Lemma 8.20(a)

=
(
�t
i=1((PX,Yi |I+yi)↘ (−yi))

)
|I Lemma 8.20(c)

=
(
�t
i=1 (((PXi,Yi |Ii) |I−xi+yi)↘ (xi − yi))

)
|I Claim 9.7

=
(
�t
i=1 (((PXi,Yi |Ii)↘ (xi − yi)) |I)

)
|I Lemma 8.20(c)

=
((

�t
i=1 ((PXi,Yi |Ii)↘ (xi − yi))

)
|I
)
|I Lemma 8.20(a)

=
(
�t
i=1 ((PXi,Yi |Ii)↘ (xi − yi))

)
|I . Lemma 8.20(b)

This completes the proof.

82

Corollary 9.8. Consider strings X, X̂, Y, Ŷ , alignments AX : X̂ X and AY : Ŷ Y , an integer
k ≥ δAXE (X, X̂) + δAYE (Y, Ŷ), an interval [` . . r], and a decomposition Ŷ = Ŷ1 · · · Ŷt such that Ŷi =
Ŷ [ŷi . . ŷ′i) for i ∈ [1 . . t]. For i ∈ [1 . . t], let

X̂i = X̂[x̂i . . x̂′i), where x̂i = max(0, ŷi + `− k) and x̂′i = min{|X̂|, ŷ′i + r + k}.
Yi = Y [yi . . y′i) = AY (Ŷi).
Xi = X[xi . .x′i) = AX(X̂i).
Ii = [`− k − x̂i + ŷi . . r + k − x̂i + ŷi]

Then, PX,Y |I = (�t
i=1 ((PXi,Yi |Ii)↘ (xi − yi))) |I .

Proof. By Fact 2.2, Y = Y1 · · ·Yt is a decomposition of Y . Due to Lemma 9.6, it suffices to prove that
xi ≤ max(0, yi + `), x′i ≥ min{|X|, y′i + r}, and Ii ⊇ I − xi + yi. If x̂i = 0, then xi = 0. Otherwise,
xi ≤ x̂i + δAXE (X, X̂) = ŷi + ` − k + δAXE (X, X̂) ≤ yi + δAYE (Y, Ŷ) + ` − k + δAXE (X, X̂) ≤ yi + `

holds as claimed. If x̂′i = |X̂|, then x′i = |X|. Otherwise, x′i ≥ x̂′i − δAXE (X, X̂) = ŷ′i + r + k −
δAXE (X, X̂) ≤ y′i − δAYE (Y, Ŷ) + r + k − δAXE (X, X̂) ≥ y′i + r holds as claimed. Finally, note that
` − k − x̂i + ŷi ≤ ` − k − xi + δAXE (X, X̂) + yi + δAYE (Y, Ŷ) ≤ ` − xi + yi and r + k − x̂i + ŷi ≥
r + k − xi − δAXE (X, X̂) + yi − δAYE (Y, Ŷ) ≥ r − xi + yi, so Ii ⊇ I − xi + yi holds as claimed.

Lemma 9.9. Given a string family S, a string S̄ ∈ S such that
∑
S∈S δE(S, S̄) ≤ 2δE(S) can be

constructed in O(1 + δE(S)3) time in the PILLAR model.

Proof. The algorithm computes δE(S, S′) for all pairs of distinct strings S, S′ ∈ S and returns the string
S̄ ∈ S minimizing

∑
S∈S δE(S, S̄).

As for correctness, consider Ŝ ∈ Σ∗ such that δE(S) =
∑
S∈S δE(S, Ŝ). Then, there exists S̄′ ∈ S

such that |S|δE(S̄′, Ŝ) ≤
∑
S∈S δE(S, Ŝ) = δE(S). Consequently,

∑
S∈S δE(S, S̄′) ≤

∑
S∈S(δE(S, Ŝ) +

δE(S̄′, Ŝ)) ≤ δE(S) + |S|δE(S̄′, Ŝ) ≤ 2δE(S). Now, by definition of S̄, we have
∑
S∈S δE(S, S̄) ≤∑

S∈S δE(S, S̄′) ≤ 2δE(S).
As for the running time note that computing δE(S, S′) costs O(δE(S, S′)2) = O((δE(S, Ŝ)+δE(S′, Ŝ))2)

time. Across all pairs (S, S′) this is bounded by O(|S|
∑
S∈S δE(S, Ŝ)2 +

∑
S,S′∈S δE(S, Ŝ)δE(S′, Ŝ)) =

O(|S|δE(S)2) = O(1 + δE(S)3).

Lemma 9.10. Consider families X ,Y ⊆ Σ≤n, a positive integer d ≥ δE(X) + δE(Y), as well as
an integer interval I. The matrices PX,Y |I for X ∈ X and Y ∈ Y can all be constructed in O((d3 +
d|I|2) log2(d+ |I|)) time in the PILLAR model.

Proof. First, we compute X̂ ∈ X and Ŷ ∈ Y such that δE(X , X̂) ≤ 2δE(X) and δE(Y, Ŷ) ≤ 2δE(Y)
(Lemma 9.9) as well as optimal alignments AX : X̂ X and AY : Ŷ Y for all X ∈ X and Y ∈ Y
(represented by the underlying breakpoints).

Next, we iteratively construct of a partition Ŷ = Ŷ1 · · · Ŷt of Ŷ , where Ŷi = Ŷ [ŷi . . ŷ′i) for i ∈ [1 . . t].
In the i-th iteration, we set ŷi = 0 (if i = 1) or ŷi = ŷ′i−1 (otherwise). Next, we define ŷ′i. If
ŷi > |Ŷ | − (|I|+ 4d), we set ŷ′i = |Ŷ |. Otherwise, we define Ŷi = Ŷ [ŷi . . ŷ′i) to be the longest possible
fragment of Ŷi starting position ŷi such that either (a) |Ŷi| = |I| + 4d or (b) Yi := AY (Ŷi) matches Ŷi
for all Y ∈ Y and Xi := AX(X̂i) matches X̂i for all X ∈ X , where X̂i is defined as in Corollary 9.8 for
k = 2d. This construction partitions Ŷ into perfect fragments satisfying condition (b) and the remaining
imperfect fragments.

Let us denote Ui = {AX(X̂i) : X ∈ X} and Yi = {AY (Ŷi) : Y ∈ Y}. Our goal is to compute PXi,Yi |Ii
(with Ii defined in Corollary 9.8 for k = 2d) for all (Xi, Yi) ∈ Ui × Yi. If Ŷi is a perfect fragment, then
|Ui| = |Yi| = 1, and we apply Lemma 8.23. Otherwise, we use Lemma 9.4 to first construct PXi,Yi , and
then we derive PXi,Yi |Ii using Lemma 8.21.

83

Finally, we initialize the data structure of Lemma 9.5 with Ai = PX̂i,Ŷi |Ii and δ1 = 0 and δi =
x̂i − ŷi − x̂i−1 + ŷi−1 for i ∈ [2 . . t]. For each (X,Y) ∈ X × Y, we substitute Ai := PXi,Yi |Ii whenever
(Xi, Yi) 6= (X̂i, Ŷi) and δi := xi − yi − xi−1 + yi−1 whenever xi − yi − xi−1 + yi−1 6= x̂i − ŷi − x̂i−1 + ŷi−1.
Then, we retrieve the matrix A := �t

i=1(Ai↘
∑i
j=1 δi) from the dynamic algorithm of Corollary 9.8 and

return A|I , computed using Lemma 8.21. Finally, we undo all the substitutions applied for (X,Y).
Correctness of the algorithm follows directly from Corollary 9.8. It remains to analyze the running

time. First, we note that the applications of Lemma 9.9 take O(d3) time. Constructing the alignment
AX : X̂ X costs O(1 + δE(X, X̂)2) time, which sums up to O(d2) across all X ∈ X . Symmetrically, all
the alignments AY : Ŷ Y are built in O(d2).

In order to efficiently implement the partitioning of X̂, we construct the sets

BX = {x̂ ∈ [0 . . |X̂|] : (x̂, x) ∈ BAX for some X ∈ X and x ∈ [0 . . |X|]} and

BY = {ŷ ∈ [0 . . |Ŷ |] : (ŷ, y) ∈ BAY for some Y ∈ Y and y ∈ [0 . . |Y |]}.

For each X ∈ X , the contribution of X to BX can be constructed in O(1+ δE(X, X̂)) time by scanning the
(breakpoints behind) AX . Consequently, the set BX is of size O(d) and can be constructed in O(d log d)
time (this includes sorting and removing duplicates). A symmetric argument shows that BY is of size
O(d) and can be constructed in O(d log d) time.

Recall that for Ŷi = Ŷ [ŷi . . ŷ′i), we have X̂i = X̂[x̂i . . x̂′i), where x̂i = max(0, ŷi + ` − k) and
x̂′i = min{|X̂|, ŷ′i+r+k}. Thus, Ŷ [ŷi . . ŷ′i) is a perfect fragment as long as [ŷi+`−k . . ŷ′i+r+k)∩BX = ∅
and [ŷi . . ŷ′i)∩BY = ∅. In O(log d) time (by binary search over BX and BY), we can verify this condition
for ŷ′i = ŷi+|I|+4d and, if satisfied, determine the maximum possible ŷ′i. Thus, the partition is constructed
in O((d+ t) log d) time.

Our next goal is to prove that t = O(d). For this, we note that we cannot simultaneously have
[x̂i . . x̂′i) ∩ BX = ∅ = [x̂i+1 . . x̂′i+1) and [ŷi . . ŷ′i) ∩ BY = ∅ = [ŷi+1 . . ŷ′i+1) ∩ BY for any i ∈ [1 . . t).
At the same time, [x̂i . . x̂′i) ∩ [x̂i+2 . . x̂′i+2) = ∅ = [ŷi . . ŷ′i) ∩ [ŷi+2 . . ŷ′i+2) holds for i ∈ [1 . . t − 2]
(because x̂i+2 ≥ ŷ′i+1 + `− k ≥ ŷi+1 + |I|+ 4d+ `− k = x̂i+1 + (r − `) + 2k + r − k = x̂′i + r + k ≤ ŷ′i).
Consequently, the number t′ of imperfect fragments is at most 2|BY |+ 2|BX | = O(d) and the partition
size t satisfies t ≤ 2t′+ 1 = O(d). Moreover, each X ∈ X satisfies

∑t
i=1 δE(X̂i, Xi) ≤ 2δE(X̂,X) and each

Y ∈ Y satisfies
∑t
i=1 δE(Ŷi, Yi) ≤ 2δE(Ŷ , Y). In particular, we conclude that

∑t
i=1 δE(Ui) = O(d) and∑t

i=1 δE(Yi) = O(d).
Each application of Lemma 9.4 costs O((|I|+ d)2 + (1 + δE(Ui))(1 + δE(Yi))(|I|+ d) log2(|I|+ d)) time,

which is O(d(|I|+d)2 +d2(|I|+d) log2(|I|+d)) = O((d3 +d|I|2) log2(|I|+d)) in total. On the other hand,
each application of Lemma 8.23 costs O((d+ |I|)2 log log(|I|+ d)), which is O((d3 + d|I|2) log log(|I|+ d))
in total; the subsequent calls to Lemma 8.21 are dominated by this running time.

Observe that |span(
⋃t
i=1 span(Ai↘ (

∑i
j=1 δj)))| = O(|I|+ d) holds at all times, so the initialization

of Corollary 9.8 costs O((|I|+ d)t log(|I|+ d)) = O((d2 + d|I|) log(|I|+ d)) time, whereas each update
costs O((|I| + d) log t log(|I| + d)) = O((|I| + d) log2(|I| + d)) time. The total number of updates is
O(|X | · δE(Y) + δE(X) · |Y|) = O(d2), so this sums up to O((d3 + d2|I|) log2(|I|+ d)). Finally, the total
time needed to restrict the returned matrices is O(|X | × |Y| × (|I|+ d)) = O(d3 + d2|I|).

Lemma 9.11. Let U1, . . . , Uz and V1, . . . , Vz denote ∆-puzzles with values U and V , respectively.
Moreover, consider k,w ∈ Z≥0 such that

k +
z∑
i=1

∣∣|Ui| − |Vi|∣∣ ≤ w ≤ ∆/2.

Further, define strings U ′i and intervals Ii so that

84

U ′1 = U1[0 . . |U1|+ w −∆) and I1 = [−k . .w];
U ′i = Ui[w . . |Ui|+ w −∆) and Ii = [0 . . ∆] for i ∈ [2 . . z − 1];
U ′z = Uz[w . . |Uz|) and Iz = [0 . . ∆].

Then, we have

PV,U |[−k . . |V |−|U |+k] =
(

�z
i=1

(
(PVi,U ′i |Ii)↘

(i−1∑
j=1

(|Vj | −∆− |U ′j |)
)))
|[−k . . |V |−|U |+k].

Proof. Observe that U ′i = U [ui . .u′i), where ui =
∑i−1
j=1 |U ′i | and u′i =

∑i
j=1 |U ′i |. Moreover, Vi =

V [vi . . v′i), where vi =
∑i−1
j=1(|Vi| −∆) and v′i = ∆ +

∑i
j=1(|Vi| −∆). By Lemma 9.6, it suffices to prove

that vi ≤ max(0, ui − k), v′i ≥ min{|V |, u′i + |V | − |U |+ k}, and Ii ⊇ [−k . . |V | − |U |+ k + 1)− vi + ui
hold for i ∈ [1 . . z].

As for the first inequality, we have vi = 0 if i = 1. Otherwise, ui = w +
∑i−1
j=1(|Ui| − ∆) and

vi =
∑i−1
j=1(|Vi| − ∆), so vi − ui =

∑i−1
j=1(|Vi| − |Ui|) − w ≤ w − k − w = −k holds as claimed. As

for the second inequality, we have v′i = |V | if i = z. Otherwise, u′i = w +
∑i
j=1(|Ui| − ∆) and

v′i = ∆+
∑i
j=1(|Vi|−∆), so v′i−u′i =

∑i
j=1(|Vi|−|Ui|)+∆−w = |V |−|U |−(

∑z
j=i+1 |Vi|−|Ui|)+∆−w ≥

|V | − |U | −w+ k + ∆−w ≥ |V | − |U |+ k holds as claimed. Next, we need to prove that I + ui − vi ⊆ Ii.
This is true for i = 1, when ui = vi = 0 and I = [−k . . |V | − |U |+ k + 1] ⊆ [−k . .w] = I. Otherwise,
ui − vi =

∑i−1
j=1(|Ui| − |Vi|) + w ≥ k − w + w ≥ k and

ui−vi =
i−1∑
j=1

(|Ui|−|Vi|)+w = |U |−|V |+
z∑
j=i

(|Vi|−|Ui|)+w ≤ |U |−|V |+w−k+w = |U |−|V |+2w−k,

that is, ui− vi ⊆ [k . . |U |− |V |+ 2w−k]. Hence, so [−k . . |V |− |U |+k] + vi−ui ⊆ [0 . . 2w] ⊆ [0 . . ∆]
holds as claimed.

Lemma 9.12. Consider an instance of the DynamicPuzzleMatching problem. We can maintain a
permutation matrix A such that A = PV,U |[−k . . |V |−|U |+k+1] holds whenever U1, . . . , Uz and V1, . . . , Vz
are ∆-puzzles with values U and V , respectively.

The preprocessing of each family Si costs O((d3
i +di∆2) log2(di + ∆)) time, where di = min{1, δE(Si)},

the initialization of I costs O(z∆ log ∆) time, and
the updates of I cost O(∆ log z log ∆) time.

Proof. Set w := b∆/2c. The preprocessing consists of the following steps:
1. We build Uβ = {S[0 . . |S|+w−∆) : S ∈ Sβ} and process (Uβ ,Sβ) using Lemma 9.10 for I = [−k . .w].
2. We build Uµ = {S[w . . |S|+w−∆) : S ∈ Sµ} and process (Uµ,Sµ) using Lemma 9.10 for I = [0 . . ∆].
3. We build Uϕ = {S[w . . |S|) : S ∈ Sϕ} and process (Uϕ,Sϕ) using Lemma 9.10 for I = [0 . . ∆].
At initialization time, we initialize the data structure of Lemma 9.5 with Ai = PVi,U ′i |Ii for i ∈ [1 . . z],
δ1 = 0, and δi = |U ′i−1| − |Vi−1| −∆ for i ∈ [2 . . z], where U ′i and Ii are defined in Lemma 9.11. At
update time, we update the sequence Ai and δi accordingly. At query time, we retrieve the matrix
A := �t

i=1(Ai↘
∑i
j=1 δi) from the dynamic algorithm of Lemma 9.5, and return A|[−k . . |V |−|U |+k],

retrieved using Lemma 8.21.
As for correctness, we note that all the possible matrices Ai = PVi,U ′i |Ii have been constructed at during

the preprocessing phase. Moreover, Lemma 9.11 guarantees that A|[−k . . |V |−|U |+k] = PV,U |[−k . . |V |−|U |+k]
provided that U1, . . . , Uz and V1, . . . , Vz are ∆-puzzles with values U and V , respectively.

It remains to analyze the running time. Due to δE(Ui) ≤ δE(Si), preprocessing each family Si using
Lemma 9.10 costs O((d3

i + di∆2) log2(di + ∆)) time.

85

Observe that |span(
⋃t
i=1 span(Ai↘ (

∑i
j=1 δj)))| = O(∆) holds at all times, so the initialization of

Corollary 9.8 costs O(∆z log ∆) time, whereas each update costs O(∆ log z log ∆) time. Each query costs
O(∆) time.

Lemma 9.13. Consider strings U, V and an integer k ∈ Z≥0 such that I := [−k . . |V | − |U |+ k] is
non-empty. Given PV,U |I , the set OccDk (U, V) can be constructed in O(|I|log |I|/log log |I|) time.

Proof. By Fact 9.1, we have δD(V [i . . j), U) = DV,U [i, j − |U |]. Moreover, Claim 8.17 yields

DM(V,U)|I [i, j − |U |]
= min{DV,U [i, j − |U |], i+ j − |U |+ 2(k + 1), 2(|V | − |U |+ k + 1)− i− j + |U |}
= min{DV,U [i, j − |U |], 2k + 2 + i+ j − |U |, 2k + 2 + 2|V | − |U | − i− j}.

If j ≥ |U | − k, then

2k + 2 + i+ j − |U | ≥ k + 2 + i > k.

If i ≤ |V | − |U |+ k, then

2(|V | − |U |+ k + 1)− i− j + |U | > |V | − j + k + 2 > k.

Hence, for (i, j) ∈ [0 . . |V | − |U | + k] × [|U | − k . . |V |], we have δD(U, V [i . . j)) ≤ k if and only
if DM(V,U)|I [i, j − |U |] ≤ k. On the other hand δD(U, V [i . . j)) ≥ |j − i − |U‖ > k holds whenever
j < |U |−k or i > |V |−|U |+k. Hence, our task reduces to checking, for each i ∈ [0 . . |V |−|U |+k], whether
DM(V,U)|I [i, j−|U |] ≤ k holds for some j ∈ [|U |−k . . |V |]. For this, we recall that DM(V,U)|I is a Monge
matrix and note that it remains a Monge matrix when restricted to [0 . . |V | − |U |+ k]× [−k . . |V | − |U |].
The SMAWK algorithm [AKM+87] finds row-minima in anm×mMonge matrix using O(m) queries asking
for values of the matrix entries. By Fact 8.1 and Lemma 8.11, after O(|I|

√
log |I|)-time preprocessing, we

have O(log |I|/log log |I|)-time access to entries of DM(V,U)|I . Since m = |V | − |U |+ k + 1 ≤ |I|, the final
running time is O(|I|log |I|/log log |I|).

Proposition 9.14. There is a data structure for a DynamicPuzzleMatching(k,∆,Sβ ,Sµ,Sϕ)
problem variant, reporting OccDk (U, V) instead of OccEk (U, V), with O(∆ log z log ∆)-time updates and
queries, O(∆z log ∆)-time initialization, and O((d3 + ∆2d) log2(d+ ∆))-time preprocessing, where d =
δE(Sβ) + δE(Sµ) + δE(Sϕ).

Proof. Let w = b∆/2c. We use Lemma 9.12 to maintain a permutation matrix A such that A =
PV,U |[−k . . |V |−|U |+k] holds whenever U1, . . . , Uz and V1, . . . , Vz are ∆-puzzles with values U, V , respectively.

It remains to implement queries. If |V | < |U |−k, then we report that OccD(U, V) = ∅. Otherwise, we
derive A = PV,U |[−k . . |V |−|U |+k]. Next, we compute OccDk (U, V) using Lemma 9.13. These two steps add
O(w logw/ log logw) to the query time, which is dominated by the update time O(w log z logw).

Theorem 1.5. There is a data structure for DynamicPuzzleMatching(k,∆,Sβ ,Sµ,Sϕ) with
O(∆ log z log ∆)-time updates and queries, O(∆z log ∆)-time initialization, and O((d3 +∆2d) log2(d+∆))-
time preprocessing, where d = δE(Sβ) + δE(Sµ) + δE(Sϕ).24

24Recall that z is the length of the DPM-sequence that we maintain in the data structure.

86

Proof. We apply Proposition 9.14 using the distortion-free embedding from δE to δD [Tis07]. This
embedding is defined by mapping every string S ∈ Σ∗ to a string f(S) :=

⊙|S|−1
i=0 S[i]$, where $ /∈

Σ. Observe that δE(S, T) = 1/2 δD(f(S), f(T)) and OccEk (P, T) = {i ∈ [0 . . |T | − |P | + k] : 2i ∈
OccD2k(f(P), f(T))}. Thus, we use Proposition 9.14 we the strings mapped through f and the integer
parameters k and ∆ doubled. Note that PILLAR operations on the family f(X) can be easily implemented
using the PILLAR operations on X .

REFERENCES 87

References

Abr87 Karl R. Abrahamson. Generalized string matching. SIAM Journal on Computing, 16(6):1039–
1051, 1987. doi:10.1137/0216067.

AHNR98 Arne Andersson, Torben Hagerup, Stefan Nilsson, and Rajeev Raman. Sorting in linear time?
Journal of Computer and System Sciences, 57(1):74–93, 1998. doi:10.1006/jcss.1998.1580.

AKM+87 Alok Aggarwal, Maria M. Klawe, Shlomo Moran, Peter W. Shor, and Robert E. Wilber.
Geometric applications of a matrix-searching algorithm. Algorithmica, 2:195–208, 1987. doi:
10.1007/BF01840359.

ALP04 Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching with
k mismatches. Journal of Algorithms, 50(2):257–275, 2004. doi:10.1016/S0196-6774(03)
00097-X.

BF00 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In LATIN
2000: Theoretical Informatics, 4th Latin American Symposium, Proceedings, pages 88–94, 2000.
doi:10.1007/10719839_9.

BGK+16 Maxim Babenko, Paweł Gawrychowski, Tomasz Kociumaka, Ignat Kolesnichenko, and Tatiana
Starikovskaya. Computing minimal and maximal suffixes of a substring. Theoretical Computer
Science, 638:112–121, 2016. doi:10.1016/j.tcs.2015.08.023.

BI18 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM Journal on Computing, 47(3):1087–1097, 2018. doi:
10.1137/15M1053128.

BLR+15 Philip Bille, Gad M. Landau, Rajeev Raman, Kunihiko Sadakane, Srinivasa Rao Satti, and
Oren Weimann. Random Access to Grammar-Compressed Strings and Trees. SIAM Journal
on Computing, 44(3):513–539, 2015. doi:10.1137/130936889.

CDK19 Diptarka Chakraborty, Debarati Das, and Michal Koucký. Approximate online pattern
matching in sublinear time. In 39th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2019, pages 10:1–10:15, 2019. doi:
10.4230/LIPIcs.FSTTCS.2019.10.

CFP+16 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya. The
k-mismatch problem revisited. In 27th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, pages 2039–2052, 2016. doi:10.1137/1.9781611974331.ch142.

CGK+20 Timothy M. Chan, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, and Ely Porat.
Approximating text-to-pattern hamming distances. In 52nd Annual ACM Symposium on
Theory of Computing, STOC 2020, pages 643–656, 2020. doi:10.1145/3357713.3384266.

CH02 Richard Cole and Ramesh Hariharan. Approximate String Matching: A Simpler
Faster Algorithm. SIAM Journal on Computing, 31(6):1761–1782, 2002. doi:10.1137/
S0097539700370527.

Cha20 Panagiotis Charalampopoulos. Data Structures for Strings in the Internal and Dynamic
Settings. PhD thesis, King’s College London, 2020.

CKM20 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Shay Mozes. Dynamic string alignment.
In 31st Annual Symposium on Combinatorial Pattern Matching, CPM 2020, pages 9:1–9:13,
2020. doi:10.4230/LIPIcs.CPM.2020.9.

CKW20 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Faster approximate
pattern matching: A unified approach. In 61st Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2020, pages 978–989, 2020. Full version: arXiv:2004.08350v2.
arXiv:2004.08350v2, doi:10.1109/FOCS46700.2020.00095.

https://doi.org/10.1137/0216067
https://doi.org/10.1006/jcss.1998.1580
https://doi.org/10.1007/BF01840359
https://doi.org/10.1007/BF01840359
https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.1016/S0196-6774(03)00097-X
https://doi.org/10.1007/10719839_9
https://doi.org/10.1016/j.tcs.2015.08.023
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/130936889
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.10
https://doi.org/10.4230/LIPIcs.FSTTCS.2019.10
https://doi.org/10.1137/1.9781611974331.ch142
https://doi.org/10.1145/3357713.3384266
https://doi.org/10.1137/S0097539700370527
https://doi.org/10.1137/S0097539700370527
https://doi.org/10.4230/LIPIcs.CPM.2020.9
http://arxiv.org/abs/2004.08350v2
https://doi.org/10.1109/FOCS46700.2020.00095

88 REFERENCES

CP10 Timothy M. Chan and Mihai Pătraşcu. Counting inversions, offline orthogonal range counting,
and related problems. In 21st Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2010, pages 161–173, 2010. doi:10.1137/1.9781611973075.15.

Far97 Martin Farach. Optimal suffix tree construction with large alphabets. In 38th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 1997, pages 137–143, 1997.
doi:10.1109/SFCS.1997.646102.

GG86 Zvi Galil and Raffaele Giancarlo. Improved string matching with k mismatches. SIGACT
News, 17(4):52–54, 1986. doi:10.1145/8307.8309.

GKK+18 Paweł Gawrychowski, Adam Karczmarz, Tomasz Kociumaka, Jakub Łącki, and Piotr Sankowski.
Optimal dynamic strings. In 29th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, pages 1509–1528, 2018. arXiv:1511.02612, doi:10.1137/1.9781611975031.99.

GU18 Pawel Gawrychowski and Przemyslaw Uznański. Towards unified approximate pattern matching
for Hamming and L1 distance. In 45th International Colloquium on Automata, Languages, and
Programming, ICALP 2018, 2018. doi:10.4230/LIPIcs.ICALP.2018.62.

Han04 Yijie Han. Deterministic sorting in O(n log logn) time and linear space. J. Algorithms,
50(1):96–105, 2004. doi:10.1016/j.jalgor.2003.09.001.

I17 Tomohiro I. Longest common extensions with recompression. In 28th Annual Symposium on
Combinatorial Pattern Matching, CPM 2017, volume 78, 2017. doi:10.4230/LIPIcs.CPM.
2017.18.

Jeż15 Artur Jeż. Faster fully compressed pattern matching by recompression. ACM Transactions on
Algorithms, 11(3):20:1–20:43, 2015. doi:10.1145/2631920.

Jeż16 Artur Jeż. Recompression: A simple and powerful technique for word equations. Journal of
the ACM, 63(1):4:1–4:51, 2016. doi:10.1145/2743014.

KK20 Dominik Kempa and Tomasz Kociumaka. Resolution of the Burrows–Wheeler transform
conjecture. In 61st Annual IEEE Symposium on Foundations of Computer Science, FOCS
2020, 2020.

KK22 Dominik Kempa and Tomasz Kociumaka. Dynamic suffix array with polylogarithmic queries
and updates. In 54th Annual ACM Symposium on Theory of Computing, STOC 2022, 2022.
arXiv:2201.01285.

Koc18 Tomasz Kociumaka. Efficient Data Structures for Internal Queries in Texts. PhD thesis,
University of Warsaw, October 2018.

Kos87 S.R. Kosaraju. Efficient string matching. Manuscript, 1987.
KPS21 Tomasz Kociumaka, Ely Porat, and Tatiana Starikovskaya. Small space and streaming pattern

matching with k edits. In 62nd Annual Symposium on Foundations of Computer Science,
FOCS 2021, 2021. arXiv:2106.06037.

KRRW15 Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Internal pattern
matching queries in a text and applications. In 26th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, pages 532–551, 2015. doi:10.1137/1.9781611973730.36.

KS21 Tomasz Kociumaka and Saeed Seddighin. Improved dynamic algorithms for longest increasing
subsequence, 2021. arXiv:2011.10874.

LMS98 Gad M. Landau, Eugene W. Myers, and Jeanette P. Schmidt. Incremental string comparison.
SIAM Journal on Computing, 27(2):557–582, 1998. doi:10.1137/S0097539794264810.

LV86 Gad M. Landau and Uzi Vishkin. Efficient string matching with k mismatches. Theoretical
Computer Science, 43:239–249, 1986. doi:10.1016/0304-3975(86)90178-7.

LV88 Gad M. Landau and Uzi Vishkin. Fast string matching with k differences. Journal of Computer
and System Sciences, 37(1):63–78, 1988. doi:10.1016/0022-0000(88)90045-1.

https://doi.org/10.1137/1.9781611973075.15
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1145/8307.8309
http://arxiv.org/abs/1511.02612
https://doi.org/10.1137/1.9781611975031.99
https://doi.org/10.4230/LIPIcs.ICALP.2018.62
https://doi.org/10.1016/j.jalgor.2003.09.001
https://doi.org/10.4230/LIPIcs.CPM.2017.18
https://doi.org/10.4230/LIPIcs.CPM.2017.18
https://doi.org/10.1145/2631920
https://doi.org/10.1145/2743014
http://arxiv.org/abs/2201.01285
http://arxiv.org/abs/2106.06037
https://doi.org/10.1137/1.9781611973730.36
http://arxiv.org/abs/2011.10874
https://doi.org/10.1137/S0097539794264810
https://doi.org/10.1016/0304-3975(86)90178-7
https://doi.org/10.1016/0022-0000(88)90045-1

REFERENCES 89

LV89 Gad M. Landau and Uzi Vishkin. Fast parallel and serial approximate string matching. Journal
of Algorithms, 10(2):157–169, 1989. doi:10.1016/0196-6774(89)90010-2.

MP80 William J. Masek and Mike Paterson. A faster algorithm computing string edit distances.
Journal of Computer and System Sciences, 20(1):18–31, 1980. doi:10.1016/0022-0000(80)
90002-1.

Nav01 Gonzalo Navarro. A guided tour to approximate string matching. ACM Comput. Surv.,
33(1):31–88, 2001. doi:10.1145/375360.375365.

Sel80 Peter H. Sellers. The theory and computation of evolutionary distances: Pattern recognition.
J. Algorithms, 1(4):359–373, 1980. doi:10.1016/0196-6774(80)90016-4.

Sta17 Tatiana Starikovskaya. Communication and streaming complexity of approximate pattern
matching. In CPM 2017, pages 13:1–13:11, 2017. doi:10.4230/LIPIcs.CPM.2017.13.

SV96 Süleyman Cenk Sahinalp and Uzi Vishkin. Efficient approximate and dynamic matching of
patterns using a labeling paradigm (extended abstract). In 37th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 1996, pages 320–328, 1996. doi:10.1109/SFCS.
1996.548491.

Tho07 Mikkel Thorup. Equivalence between priority queues and sorting. J. ACM, 54(6):28, 2007.
doi:10.1145/1314690.1314692.

Tis07 Alexander Tiskin. Semi-local string comparison: algorithmic techniques and applications, 2007.
arXiv:0707.3619.

Tis08 Alexandre Tiskin. Semi-local string comparison: Algorithmic techniques and applications.
Math Comput Sci, 1(4):571–603, 2008. doi:10.1007/s11786-007-0033-3.

Tis15 Alexander Tiskin. Fast distance multiplication of unit-monge matrices. Algorithmica, 71(4):859–
888, 2015. doi:10.1007/s00453-013-9830-z.

https://doi.org/10.1016/0196-6774(89)90010-2
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1016/0022-0000(80)90002-1
https://doi.org/10.1145/375360.375365
https://doi.org/10.1016/0196-6774(80)90016-4
https://doi.org/10.4230/LIPIcs.CPM.2017.13
https://doi.org/10.1109/SFCS.1996.548491
https://doi.org/10.1109/SFCS.1996.548491
https://doi.org/10.1145/1314690.1314692
http://arxiv.org/abs/0707.3619
https://doi.org/10.1007/s11786-007-0033-3
https://doi.org/10.1007/s00453-013-9830-z

90 REFERENCES

A Notation Overview for Part I

Notation Explanation

i, j Integer indices.
s, v, w, x, y Positions in strings, typically occurring in pairs as boundaries of fragments.

F,G, S, U, V,X, Y Strings or fragments of strings; possibly with additional meaning in their
respective contexts.

(aX , aY) Elements of an alignment of (fragments of) X Y . We may deviate from
this notation in the special case of alignments of (fragments of) a string to
(fragments of) itself.

T , |T | = n Text T of length n.
P , |P | = m Pattern P of length m.

k A non-negative threshold k used to denote the allowed number of edits when
searching for occurrences of P in T .

OccEk (P, T) The set of all starting positions of k-edit occurrences of P in T .

The Standard Trick We may assume n < 3/2 m+ k with a running-time overhead of O(n/m) (see
Section 2.2).

Q, |Q| = q Primitive string Q of length q.
AT : T Q∞[xT . . yT), dT An alignment of T onto a fragment ofQ∞ with cost dT . We have xT ∈ [0 . . q).
AP : P Q∞[0 . . yP), dP An alignment of P onto a fragment of Q∞ with cost dP .

κ := dP + k + dT For an alignment A : P T [v . .w) of cost at most k, the bound κ is an
upper bound on the number of edits of the induced alignment AT ◦ A ◦ A−1

P :
Q∞[0 . . yP) Q∞[v′ . .w′).

τ := q dκ/2qe Auxiliary parameter.

d Positive integer that satisfies dT /3 ≤ d and dP ≤ d and 2k ≤ d and 8q/m ≤ d.

J See Definition 3.6; we have J = [d(xT − κ)/τe . . b(yT − yP + κ)/τc].
Rj := T [rj . . r′j) See Definition 3.6; we have rj := min{aT : (aT , aQ) ∈ AT for jτ − κ ≤ aQ}

and r′j := max{aT : (aT , aQ) ∈ AT for aQ ≤ jτ + yP + κ}. Furthermore,
rmax J+1 := n.

S =
⊙βS

i=1 S[si−1 . . si) Tile partition of a string S with respect to some alignment
AS : S Q∞[xS . . yS) with S[si−1 . . si) = A−1

S (Q∞[max{xS , (j −
1)τ} . . min{yS , jτ})).

βS := dyS/τe The number of the last non-zero tile of S.
P =

⊙βP
i=1 P [pi−1 . . pi) τ -tile partition of P . We assume that βP ≥ 20 (by Lemma 4.5).

T =
⊙βT

i=1 T [ti−1 . . ti) τ -tile partition of T .

∆ := 6κ Overlap of neighboring puzzle pieces.
z := βP − 17 Number of puzzle pieces.
P1, . . . , Pz A ∆-puzzle with value P , where P1 := P [p0 . . p2 + ∆) and

val∆(P1, . . . , Pz) = P Pi := P [pi . . pi+1 + ∆) for i ∈ (1 . . z) and Pz := P [pz . . |P |).
Tj,1, . . . , Tj,z A ∆-puzzle with value Rj , where Tj,1 := T [rj . . tj+2 + ∆) and

val∆(Tj,1, . . . , Tj,z) = Rj Tj,i := T [tj+i . . tj+i+1 + ∆) for i ∈ (1 . . z) and Tj,z := T [tj+z . . r′j).
Tmin J+2, . . . , Ti, . . . , Tmax J+z−1 Shorthand for the pieces Tj,i′ with j + i′ = i and i ∈ (1 . . z); that is

Ti := T [ti . . ti+1 + ∆).

REFERENCES 91

Sβ := {P1} ∪ {Tj,1 : j ∈ J} The set of leading puzzle pieces.
Sµ := {Pi : i ∈ (1 . . z)} ∪ The set of internal puzzle pieces.

{Ti : i ∈ (min J + 1 . . max J + z)}
Sϕ := {Pz} ∪ {Tj,z : j ∈ J} The set of trailing puzzle pieces.

δE(S) := minŜ∈Σ∗
∑

S∈S δE(S, Ŝ) The median edit distance of the family S.

Special(T), Special(P) The special internal pieces in T and P , that is, the pieces in Sµ that differ
from Q∞[0 . . τ + ∆).

I = (U1, V1)(U2, V2) . . . (Uz, Vz) Sequence of ordered pairs of strings, a DPM-sequence. Occasionally, we call
the elements (Ui, Vi) a DPM-pair.

OccEk (I) := OccEk (U, V) Set of k-error occurrences of the string U := val∆(U1, . . . , Uz) in the string
V := val∆(V1, . . . , Vz).

tor(I) :=
∑z

i=1

∣∣|Ui| − |Vi|∣∣ The torsion of the DPM-sequence I.
Ij := (P1, Tj,1)(P2, Tj,2) · · · (Pz, Tj,z) DPM-sequence representing the strings P = val∆(P1, . . . , Pz) and Rj =

val∆(Tj,1, . . . , Tj,z); we have tor(Ij) ≤ 3κ− k = ∆/2− k by Lemma 4.10.
Q := (Q∞[0 . . τ + ∆), The plain (internal) DPM-pair.

Q∞[0 . . τ + ∆))

LP , ∂P , LP1 The set of locked fragments of P that contains a ∂P -locked prefix LP1 , computed
using Locked(P,Q, dP , ∂P).

LT The set of locked fragments of T , computed using Locked(T,Q, dT , 0).
κ̂ A slack allowance for computing overlaps of fragments for the purpose of

marking.
mk(v, κ̂, LP , LT) The number of marks given to a position v due to the (possible) overlap of

LP ∈ LP with LT ∈ LT .
mk(v) = mk(v, κ̂,LP ,LT) The total number of marks given to a position v of T .

mk(v, L) The number of marks given to a position v of T due to overlaps of pairs of
locked fragments containing locked fragment L.

η,H,L A positive integer threshold used in the partition of the positions [0 . .n−
m+ k] of T to a set H of heavy positions and a set L of light positions; see
Definition 5.8.

ρ(?) A mapping from positions of T to integers in [xT . . yT) such that
AT (T [v . .n)) = Q∞[ρ(v) . . yT).

D(v) For a light position v of T , the set
{LP1 } ∪ {L ∈ LP ∪ LT[v . . v+m) : mk(v, L) < δE(L, ∗Q∗)}.

92 REFERENCES

B Notation Overview for Part II

Notation Explanation

I+,+I, I−,−I An interval I extended or shrunk by one element to the left or right.
span(S) The smallest integer interval containing a set S ⊆ Z.

A�B The min-plus product of matrices A,B.
A� The density matrix of a matrix A.

span(A) The span of a permutation a matrix A, defined as −span({i ∈ I : A[i, i] = 0}).
AΣ The distribution matrix of a matrix A.

A�B The seaweed product of permutation matrices A,B; defined as (AΣ �BΣ)�.
A↘ s The diagonal shift of a matrix A by s units; (A↘ s)[i+ s, j + s] = A[i, j].

M A finite subset of Z2.
AG(M) The alignment graph of M .
distM The distance function on Z2 induced by distances in AG(M).
≺ A partial order on Z2 defined so that (x, y) ≺ (x′, y′) if and only if x < x′ and y < y′.

LIS(S) The maximum length of a ≺-chain within S ⊆ Z2.

ltB , brB The left-top and the bottom-right boundary of a bounding box B.
DM,B , DM The distance matrix of M with respect to a bounding box B (shown to be independent of B).

PM The seaweed matrix of M , defined as 1
2D

�
M .

span(M) The span of M , defined as span({x− y : (x, y) ∈M}).
MI The restriction of M to interval I, defined as {(x, y) ∈M : x− y ∈ I}.
AI The restriction of a permutation matrix A to interval I, defined as PM|I if A = PM (shown to be

independent of M).

M(X,Y) The set of mismatches between two strings X,Y , defined as {(x, y) : X[x] 6= Y [y]}.
DX,Y , PX,Y The distance matrix and the permutation matrix of M(X,Y).
δD(X,Y) The deletion distance between strings X,Y .
δD(X) The median deletion distance of a finite string family X .

	1 Introduction
	1.1 Related Work
	1.2 Open Problems
	1.3 Technical Overview

	2 Preliminaries
	2.1 The PILLAR Model
	2.2 An Overview of an O(k4)-Time Algorithm for Pattern Matching with Edits in the PILLAR Model

	Part I: From NewPeriodicMatches to DynamicPuzzleMatching
	3 The NewPeriodicMatches Problem
	3.1 Computing Occurrences in the Periodic Case: Preprocessing and Simplifications
	3.2 A First Algorithm for NewPeriodicMatches

	4 Using DynamicPuzzleMatching for Algorithms for NewPeriodicMatches
	4.1 Special Puzzle Pieces and How to Compute Them Efficiently
	4.2 Solving NewPeriodicMatches via DynamicPuzzleMatching: A Warm-up Algorithm
	4.3 Solving NewPeriodicMatches via DynamicPuzzleMatching, Improvement 0: Replacing Pair Substitutions with Pair Insertions and Pair Deletions
	4.4 Solving NewPeriodicMatches via DynamicPuzzleMatching, Improvement 1: Trimming Long Perfectly Periodic Segments

	5 Faster NewPeriodicMatches: Additional Combinatorial Insights
	5.1 Locked Fragments and their Properties
	5.2 Analyzing the Text Using Locked Fragments

	6 A Faster Algorithm for NewPeriodicMatches
	6.1 Computing Occurrences Starting at Heavy Positions
	6.2 Computing Occurrences Starting at Light Positions
	6.3 Combining the Partial Results: Faster NewPeriodicMatches

	7 Faster Approximate Pattern Matching in Important Settings
	7.1 An Algorithm for the Standard Setting
	7.2 An Algorithm for the Dynamic Setting
	7.3 An Algorithm for the Fully Compressed Setting

	Part II: Seaweeds
	8 The Seaweed Monoid of Permutation Matrices
	8.1 Alignment Graphs and Distance Matrices
	8.2 Restriction of Permutation Matrices
	8.3 Computing the Seaweed Matrix

	9 Applications of Seaweeds
	References
	A Notation Overview for Part I
	B Notation Overview for Part II

