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Abstract. The circumference of a graph G is the length of a longest cycle in G, or +∞
if G has no cycle. Birmelé (2003) showed that the treewidth of a graph G is at most its
circumference minus one. We strengthen this result for 2-connected graphs as follows: If G is
2-connected, then its treedepth is at most its circumference. The bound is best possible and
improves on an earlier quadratic upper bound due to Marshall and Wood (2015).

1. Introduction

A classic upper bound on the treewidth of a graph is the following.

Theorem 1 (Birmelé [1]). Every graph has treewidth at most its circumference minus one.

Here, the circumference of a graph G is the length of a longest cycle in G, or +∞ if G has no
cycle. This bound is best possible, as witnessed by complete graphs. In this paper, we show
that ‘treewidth’ can be replaced with ‘treedepth’ in the above theorem, provided that G is
2-connected:

Theorem 2. Every 2-connected graph has treedepth at most its circumference.

Treedepth is a key invariant in the ‘sparsity theory’ for graphs initiated by Nešetřil and Os-
sona de Mendez [4], with several algorithmic applications. It is defined as follows. An elim-
ination forest of a graph G is a rooted forest consisting of trees T1, . . . , Tp such that the sets
V (T1), . . . , V (Tp) partition the set V (G) and for each edge xy ∈ E(G), the vertices x and y
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belong to one tree Ti and in that tree one of them is an ancestor of the other. The vertex-height
of an elimination forest is the maximum number of vertices on a root-to-leaf path in any of
its trees. The treedepth of a graph G, denoted td(G), is the minimum vertex-height of an
elimination forest of G, and an elimination forest realizing this minimum is called optimal.

It is well-known that every graph has treewidth at most its treedepth minus one. Also, it is
known that the treewidth of a graph is equal to the maximum treewidth of its blocks (see
Section 2 for the definition of blocks). Hence, Theorem 2 implies Theorem 1. It is also an
improvement on an earlier result of Marshall and Wood [3], who proved that every 2-connected
graph with circumference k has treedepth at most bk2c(k− 1)+ 1. The bound in Theorem 2 is
best possible, again because of complete graphs. The 2-connectivity assumption is essential,
because otherwise treedepth is not bounded by any function of the circumference.1

We conclude this introduction with an algorithmic application of our result. Given an integer
d > 1, Chen et al. [2] designed a data structure for maintaining an optimal elimination forest of
a dynamic graph G with worst case 2O(d2) update time, under the promise that the treedepth
of G never exceeds d. Here, the graph G is dynamic in the sense that edges can added or
removed, one at a time. An update time of 2O(d2) is a natural barrier in this context, because
the best known FPT algorithm for deciding whether an n-vertex graph G has treedepth at
most d runs in time 2O(d2) ·n, see [5]. Any improvement on the 2O(d2) update time would lead
to a corresponding improvement of the latter result, by adding all edges of G one at a time.

One application of the above result that is developed in [2] is as follows: Given an integer
k > 1, there is a data structure for answering queries of the following type on a dynamic graph
G: Does G contain a cycle of length at least k? Their data structure answers these queries in
constant time and has an amortized update time of 2O(k4) + O(k log n), assuming access to a
dictionary on the edges of G. (Note that here G is not required to have treedepth at most k,
it is an arbitrary graph.) As can be checked in their proof, it turns out that the 2O(k4) term in
the latter result comes from their 2O(d2) bound mentioned previously combined with the fact
that the treedepth d of a 2-connected graph with circumference k is O(k2). Using Theorem 2
instead in their proof reduces the amortized update time down to 2O(k2) + O(k log n). This
solves an open problem from [2].

2. Preliminaries

Let G be a connected graph with at least 2 vertices. A vertex x in G is called a cutvertex of
G if G− x is disconnected, and an edge e in G is called a bridge of G if G− e is disconnected.
The graph G is 2-connected if G does not have a cutvertex and G has at least three vertices.
A block of G is a maximal connected subgraph B ⊆ G such that B does not have a cutvertex.
Each block of G is either a bridge (together with its ends), or a 2-connected subgraph of G.
Every vertex of G that is not a cutvertex of G belongs to exactly one block of G. The block
tree of G is the tree whose nodes are the cutvertices and blocks of G, and in which two nodes
are adjacent if and only if one of them is a cutvertex x and the other is a block B such that x
is a vertex of B.

Note that for every x in G, we have td(G) 6 td(G− x) + 1 since we can obtain an elimination
forest of G from an optimal elimination forest of G−x by attaching x as a common root above
all trees in the forest. Moreover, a graph has treedepth at most 2 if and only if each of its

1If G is an n-vertex path to which an edge is added to create a triangle, then G has circumference 3 but
treedepth roughly log2 n.
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components is a star, i.e. a graph isomorphic to K1,n for some n > 0. Hence, every 2-connected
graph has treedepth at least 3.

3. The Proof

Lemma 3. Let G be a connected graph on at least two vertices and let x0 ∈ V (G). Then,
for some m > 0, there exist blocks B0, . . . , Bm and cutvertices x1, . . . , xm of G such that
B0x1B1x2 · · ·xmBm is a path in the block tree of G with x0 ∈ V (B0) and

m∑
i=0

td(Bi − xi) > td(G− x0).

Proof. Let T denote the block tree of G. We prove the lemma by induction on the number of
nodes in T . In the base case, T has just one node corresponding to the unique block B0 = G,
and the trivial path B0 satisfies the lemma. For the inductive step, assume that T has more
than one node. We split the argument depending on whether x0 is a cutvertex of G or not.

Suppose first that x0 is a cutvertex of G. Let T1, . . . , T` denote the components of the forest
T − x0. For each j ∈ {1, . . . , `}, let Gj denote the union of all blocks in Tj . Note that each Tj
is the block tree of Gj and has less nodes than T . Furthermore, the components of G− x0 are
G1−x0, . . . , G`−x0, so td(G−x0) = max16j6` td(Gj −x0). Let us fix an index j ∈ {1, . . . , `}
such that td(G− x0) = td(Gj − x0). By the induction hypothesis applied to Gj and x0, there
is a path B0x1B1 · · ·xmBm in Tj (and in T ) with x0 ∈ V (B0) and

m∑
i=0

td(Bi − xi) > td(Gj − x0) = td(G− x0),

so the path satisfies the lemma.

Next, suppose that x0 is not a cutvertex of G. Let B0 be the unique block of G containing x0.
Let T1, . . . , T` be the components of T − B0. For each j ∈ {1, . . . , `}, let yj be the neighbor
of B0 in T which belongs to Tj , and let Gj denote the subgraph of G obtained as the union
of all blocks in Tj . This way, each yj is the only common vertex of B0 and Gj , and the block
tree of Gj is either Tj or Tj − yj depending on whether yj has degree at least 3 in T or not.

We claim that
td(G− x0) 6 td(B0 − x0) + max

16j6`
td(Gj − yj).

We prove this by constructing an elimination forest of G− x0 whose vertex-height is at most
the right hand side of the above inequality. Take an optimal elimination forest for B0 − x0,
and for each j ∈ {1, . . . , `}, append all trees of an optimal elimination forest for Gj − yj right
below the vertex yj . The vertex-height of the resulting forest will be at most td(B0 − x0) +
max16j6` td(Gj − yj), and it will be indeed an elimination forest since the only vertex of B0

adjacent to vertices of Gj − yj is yj . Hence, the claimed inequality is satisfied.

Fix an index j ∈ {1, . . . , `} such that td(G− x0) 6 td(B0 − x0) + td(Gj − yj), let x1 = yj and
let the path B1x2 · · ·xmBm be the result of applying the induction hypothesis to Gj and x1.
Now, the path B0x1 · · ·xmBm satisfies the lemma; indeed, we have x0 ∈ V (B0) and

m∑
i=0

td(Bi−xi) = td(B0−x0)+

m∑
i=1

td(Bi−xi) > td(B0−x0)+ td(Gj − yj) > td(G−x0). �
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Lemma 4. Let G be a connected graph that does not have a cutvertex. If a and b are distinct
vertices of G, then there exists an a–b path in G of length at least td(G− b).

Proof. We prove the lemma by induction on the number of vertices in G. In the base case
|V (G)| = 2, G consists of a single edge between a and b, td(G− b) = 1, and G itself is an a–b
path of length 1, so the lemma holds. For the inductive step, suppose that G is a 2-connected
graph. Therefore, G − b is connected. Let the path B0x1 · · ·xmBm be the result of applying
Lemma 3 to the graph G− b with x0 = a. After possibly extending the path, we may assume
that Bm is a leaf in the block tree of G − b (after rooting the block tree at B0). Since G
is 2-connected, xm is not a cutvertex of G, so b has a neighbor in Bm − xm. Let xm+1 be
such a neighbor. Hence, for each i ∈ {0, . . . ,m}, xi and xi+1 are distinct vertices of Bi. By
induction hypothesis, for each i ∈ {0, . . . ,m} we can choose an xi–xi+1 path Pi in Bi with
|E(Pi)| > td(Bi − xi). By our choice of the path B0x1 · · ·xmBm, we have

m∑
i=0

|E(Pi)| >
m∑
i=0

td(Bi − xi) > td((G− b)− x0) = td(G− {a, b}) > td(G− b)− 1.

As x0 = a, the desired a–b path can be obtained as the union of the paths P0, . . . , Pm and the
edge xm+1b. �

Proof of Theorem 2. Let G be a 2-connected graph, and let ab be any edge of G. Since G is
2-connected, we have td(G) > 3. By Lemma 4, G contains an a–b path P of length at least
td(G− b) > td(G)− 1. Thus, P + ab is a cycle of length at least td(G), which witnesses that
circumference(G) > td(G). �
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