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Abstract: 

The Internet along with innovations in technology have inspired an industry focused on designing portable devices, 
known as wearables that can track users’ personal activities and wellbeing. While such technologies have many 
benefits, they also have risks (especially regarding information privacy and security). These concerns become even 
more pronounced with healthcare-related wearables. Consequently, users must consider the benefits given the risks 
(privacy calculus); however, users often opt for wearables despite their disclosure concerns (privacy paradox). In this 
study, we investigate the multidimensional role that privacy (and, in particular, the privacy calculus and the privacy 
paradox) plays in consumers’ intention to disclose their personal information, whether health status has a moderating 
effect on the relationship, and the influence of privacy on acceptance. To do so, we evaluated a research model that 
explicitly focused on the privacy calculus and the privacy paradox in the healthcare wearables acceptance domain. We 
used a survey-oriented approach to collect data from 225 users and examined relationships among privacy, health, and 
acceptance constructs. In that regard, our research confirmed significant evidence of the influence of the privacy 
calculus on disclosure and acceptance as well as evidence of the privacy paradox when considering health status. We 
found that consumers felt less inclined to disclose their personal information when the risks to privacy outweighed 
benefits; however, health status moderated this behavior such that people with worse health tipped the scale towards 
disclosure. This study expands our previous knowledge about healthcare wearables’ privacy/acceptance paradigm and, 
thus, the influences that affect healthcare wearables’ acceptance in the privacy context. 
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1 Introduction 

Wearables refer to portable computing devices that users wear and that have specific and/or specialized 
functions (Jayden, 2018). More specifically, healthcare-related wearables refer to wearables that support 
one’s health and wellbeing as opposed to wearables that do not provide any health-related functionality 
(see Figure 1). Healthcare-related wearables typically come in two types: 1) fitness wearable devices and 
2) medical wearable devices (Gao et al., 2015). The former supports users’ basic fitness via monitoring data 
such as exercise and sleep, whereas the latter addresses specific health-related conditions and illnesses 
such as high blood pressure and diabetes. Healthcare-related wearables provide many benefits; for 
example, they can improve one’s health and wellbeing (Jayden, 2018), encourage physical activity (Meyer 
et al., 2015), allow healthcare practitioners to remotely monitor one’s health (Nadeem et al., 2015), and 
provide chronic-illness support (Nadeem et al., 2015). As a result, healthcare wearables can provide users 
with a better quality of life, reduce their medical costs, and help them recognize events before they occur 
(Anaya et al., 2018). 

 

Figure 1. Wearable System Architecture (Adapted from Hassija et al., 2021) 

One can classify wearables as consumer wearables or special-purpose wearables (Perez & Zeadally, 
2018)) and, further, into several different categories such as smartwatches (Kritzler et al., 2015), body 
motion trackers (Yang et al., 2016), implantables, performance monitors, heart rate monitors (Muaremi et 
al., 2013), pedometers (Zenonos et al., 2016), and blood pressure monitors (Nadeem et al., 2015). 
Wearables accommodate diverse body placements, such as the wrist, chest, stomach, arm, head, thigh, 
waist, knee, ankle, back, finger, neck, pocket, and over the body (Jayden, 2018). Special-purpose wearables 
include Internet of things (IoT)-enabled baby clothes designed to monitor a child’s temperature, respiration, 
and activity levels (GAO, 2017). These adaptable characteristics solicit various uses and promise significant 
appeal for years to come.   

While we can attribute definite health benefits to wearables, they also come with substantial risks, especially 
in the privacy and security realm. Merriam-Webster defines privacy as “freedom from unauthorized intrusion” 
(“Privacy”, 2017). When applied to personal privacy, we can restate this definition as one’s control over 
disclosing their personal information (Bélanger & Crossler, 2011). More specifically, it refers to the authority 
that one has over their personal information regarding how, when, and to what extent others will distribute 
it (Romano & Fjermestad, 2007). The concern about privacy rises to the surface considering that wearables 
frequently lack designs that protect users’ information or that do so poorly (Wei & Piramuthu, 2014). The 
issue becomes even more prominent when one considers that compromised health-oriented devices such 
as implantable medical devices (IMDs) could threaten people’s life or wellbeing (Zhou et al., 2019). For 
example, in 2007, United States Vice President Dick Cheney reportedly requested his physician to disable 
Internet access to his pacemaker due to assassination concerns (Hassija et al., 2021).  
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In the wearable context, data is particularly at risk for two reasons. First, before transmission, wearable 
devices store data in them; and, as we note above, they often lack sufficient security features (Wei & 
Piramuthu, 2014). Second, once a wearable has transmitted data, it resides in a vendor and/or cloud 
environment, which the vendor and/or other third-party entities can access (Padyab & Ståhlbröst, 2018). 
Considering a wearable device’s context and purpose, the information stored will include personal 
information (Padyab & Ståhlbröst, 2018). At minimum, the information will represent monitored activities; 
however, it could also include personally identifiable information (PII) and health-related data that the user 
may not want others to know.  

The decision process to adopt wearables involves many facets. Users must weigh benefits against risks, 
which researchers recognize as the privacy calculus (Smith et al., 2011). While benefits entice individuals 
to pursue the technology, risks can prevent them from doing so. Many individuals recognize the potential 
for others to misuse their private information. For example, over 94 percent of Americans have reportedly 
exhibited such concerns (Malhotra et al., 2004), and 43 percent of consumers have acknowledged 
discomfort with sharing any personal data (Perez, 2018). Often, although concerned with their privacy, users 
will openly opt to use a wearable and relinquish concerns with whether it or third parties will disclose their 
information, which researchers recognize as the privacy paradox (Barth & de Jong, 2017; Norberg et al., 
2007; Spiekermann et al., 2001). The privacy paradox combines averseness to disclose with acceptance to 
disclose.  

While past research focused on privacy in the wearable technology domain (e.g., Lehto & Lehto, 2017; Vitak 
et al., 2018; Meyer et al., 2015; Preusse et al., 2017) have investigated reasons and benefits for accepting 
the technology, we lack research that has examined the multi-dimensional role that privacy plays in the 
decision-making process and, in particular, the impact that the privacy calculus has on the intention to 
disclose private information and the downstream effect regarding (healthcare-related) wearables’ 
acceptance and use. Accordingly, in this study, we explore constructs and relationships related to the 
privacy calculus to determine how those constructs in aggregate influence (or fail to influence) a person’s 
inclination to adopt a healthcare wearable device. Specifically, we address the following research questions 
(RQ): 

RQ1: To what extent does the privacy calculus impact people’s intention to disclose information when 
adopting healthcare wearables?  

The privacy calculus represents the cost/benefit decision or privacy trade-off (Kehr et al., 2015) process that 
users make to choose whether to disclose their personal information (Wilson & Valacich, 2012). Based on 
prior research, we conclude that this process imposes consequences towards intentions to use a wearable 
device (Smith et al., 2011). Thus, we also address: 

RQ2: To what extent can one observe the privacy paradox in people’s decisions to adopt healthcare 
wearables? 

The privacy paradox characterizes a situation where users contradict expressed concerns regarding privacy 
(Wilson & Valacich, 2012). In other words, in reference to the privacy calculus, users reveal a net concern 
about disclosing their personal information while still opting to disclose. Researchers have ascribed this 
apparent paradox to moderating situational dynamics that override users’ general privacy concerns, which 
results in the decision to disclose (Wilson & Valacich, 2012). To examine whether the privacy paradox 
manifested in healthcare-related wearables, we sought to measure the moderating effect that perceived 
health status has on intention to disclose. Perceived health status characterizes a person’s assessment 
towards their illness level and wellness (Kim et al., 2015). Some research has discovered personal 
perception to moderate privacy/disclosure relationships (e.g., Zhang et al., 2018). Consequently, we 
postulate a similar moderating effect in our research. 

Overall, our research contributes to explaining the privacy paradox’s potential to act as a sponsor for people 
to disclose their private information and accept and use wearable devices. With respect to practice, our 
study informs manufacturers and healthcare professionals about the privacy/acceptance relationship and 
encourages them to focus on security matters in both design and use, which can increase consumers’ 
confidence in the effectiveness of wearables and, thus, lead to increased use (Shim et al., 2020). 
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We structure the paper as follows: in Section 2, we discuss related research in the literature. In Section 3, 
we present the theoretical background. In Section 4, we propose our research model and hypotheses. In 
Section 5, we discuss our research methodology. In Section 6, we present and analyze our results. In 
Section 7, we discuss our findings. Finally, in Section 8, we conclude the paper. 

2 Related Work 

Based on reviewing privacy-related research literature, Bélanger and Crossler (2011) summarized privacy 
as the autonomy that people have over their own personal information. Romano and Fjermestad (2007) 
describe personal information as the authority people have over their personal information regarding how, 
when, and to what extent it may be distributed. While one may attribute the term “personal information” to 
static information that organizations generally employ to identify a person such as name, birthdate, and 
social security number, regarding wearables, we argue the term expands to include biophysical 
characteristics and personal behavior. When articulating an argument for legislative intervention regarding 
protection of privacy on the Internet, Clarke (1999) identified four dimensions of privacy that include person, 
personal behavior, personal communications, and personal data, which all encapsulate the various kinds of 
data that wearables might capture and synthesize. Clarke (1999) conducted his research because of the 
potential for consumers to lack “trust in the information society” due to cyberspace’s encroachment into 
individuals’ private lives with little or no protections regarding privacy (1999, p. 1). 

Privacy’s importance in the wearable technology domain has spurred multiple studies. Vitak et al. (2018) 
researched the impact that concerns about privacy and user-generated data have on how users perceive 
personal fitness information privacy and observed a positive relationship between a user’s concern for 
privacy and the value a user attributes to fitness data. Although this study and others have made substantial 
contributions to the privacy and wearable technology domain, they have offered little in identifying the effect 
that privacy has on technology acceptance. 

Gao et al. (2015) performed an empirical study on the adoption of healthcare wearable technologies. In their 
empirical quest to discover and test antecedents to healthcare wearable device adoption, they discovered 
that hedonic motivation, functional congruence, social influence, perceived privacy risk, and perceived 
vulnerability to a health risk influenced fitness device users the most. In contrast, they found that perceived 
expectancy, self-efficacy, effort expectancy, and perceived health risk severity influenced medical device 
users the most. Pulipaka (2019) examined the impact that privacy concerns and user perceptions have on 
healthcare wearable devices and discovered that performance expectancy, effort expectancy, facilitating 
conditions, and trust strongly predicted device usage intentions. Harper (2016) explored the role that 
security awareness plays in consumers’ decision to adopt IoT devices and found that awareness had a 
significant influence; however, it did not emerge as the primary factor that led to adoption. Lehto and Lehto 
(2017) considered the extent to which users perceive their health information as sensitive and their 
willingness to share it with appropriate parties. They discovered that users in general lacked concerns that 
wearables collected information about them as they perceived it as unimportant and not private. 
Consequently, they appeared to base decisions to accept and use wearables not on concerns about privacy; 
however, the small sample size (i.e., 10 individuals) and the deficiency of statistical analysis in the study 
prompts concern for further research. Finally, Scott (2020) examined smartwatch acceptance and use in 
correlation with privacy concerns and found that privacy awareness significantly contributed to smartwatch 
adoption and that privacy concerns posed a negative influence on intention to use. 

The above studies focused on privacy in the wearable technology domain, and four of the six studies 
specifically targeted healthcare devices. While they have contributed to the conversation on privacy and the 
factors that influence whether consumers accept and use wearables, a gap regarding the role that the 
privacy calculus and other factors play in the decision-making process remains. Of the four studies targeting 
healthcare devices, none specifically examined the role that the privacy calculus and the privacy paradox 
play in the decision-making process to accept and use healthcare-related wearables. In addition, while Gao 
et al. (2015) did consider the influence that perceived health threat has on the intention to adopt, none of 
the acceptance-related studies considered the impact that perceived health status has on the relationship 
between perceived privacy risk and intention to disclose.  

Considering the potential for healthcare-related wearable devices to contribute to improved health and 
wellbeing, we need to comprehensively consider the effect that privacy has on adoption. We also need to 
consider the role that one’s health status plays in the decision to disclose the information acquired when 
using the wearable device (Zhang et al., 2018). We focus on filling that gap in this study by investigating 
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constructs and relationships related to the risk calculus, the privacy calculus, health status, and the privacy 
paradox in combination with other acceptance-related constructs, in determining how these constructs in 
aggregate influence (or fail to influence) a person’s readiness to use healthcare wearable devices. 

3 Theoretical Background 

Research has revealed that wearable device consumers do care about their privacy and the necessity for 
organizations to solicit their informed consent before sharing it with other third-party entities (Anaya et al., 
2018). Multiple factors influence privacy concerns, such as privacy experiences, privacy awareness, 
demographic differences, personality differences, culture, organizational trust, and state-based regulations 
(Smith et al., 2011). These factors inform how wearable users determine risk regarding divulging their 
personal information. The perceived sensitivity and vulnerability of one’s information and one’s confidence 
level to effectively respond to corresponding threats also play a noteworthy role in determining risk (Kehr et 
al., 2015). Researchers refer to this threat assessment and the perceived capacity to cope as the risk 
calculus (Zhang et al., 2018), which the protection motivation theory (PMT) of threat and coping appraisals 
informs (Li, 2012). Perceived privacy risk (net risks) represents the conclusion of this appraisal process. 

However, in addition to the risks associated with disclosing personal data, users also perceive accepting 
and using healthcare wearables to have benefits. These benefits include fitness activity tracking (Meyer et 
al., 2015), heart rate monitoring (Muaremi et al., 2013), blood pressure monitoring (Nadeem et al., 2015), 
and other health-related activities focused on an individual’s health and wellbeing. Researchers refer to the 
process in which one weighs the costs/risks associated with disclosure against these benefits as the privacy 
calculus (Smith et al., 2011). As we note in Section 1, the privacy calculus expresses the privacy trade-off 
(Kehr et al., 2015) process that users make to elect whether to disclose their personal information (Wilson 
& Valacich, 2012). Researchers refer to the risk calculus and privacy calculus theories in combination as 
the dual-calculus model, which conceptualizes intentions to disclose (Li, 2012). 

Privacy theory research is not limited to the protection and disclosure of PII but to personal health 
information (PHI) as well. Shen (2019) created the content-validated ehealth trust model in response to an 
investigation regarding the antecedents to trust, structural assurance, and a patient’s privacy perspective 
along with the impact that trust and the privacy calculus (perceived benefit and perceived risk) have on 
behavior. Zhang et al. (2018) integrated the dual-calculus model and PMT to explore the antecedents to 
and consequences of PHI privacy concerns in online health communities. In addition to discovering the 
negative effects that response efficacy and self-efficacy and the positive effects that perceived vulnerability 
and severity had on privacy concerns, they discovered that perceived health status (PHS) had a moderating 
effect on the relationship between perceived benefits and the intention to disclose PHI and the relationship 
between perceived risks and the intention to disclose PHI. They found that PHS weakened the influence 
that the perceived benefits of informational and emotional support had on PHI disclosure intention and 
strengthened the influence that perceived risk of health information privacy concerns had on PHI disclosure 
intention. 

Although consumers might often proclaim privacy’s importance (Rainie et al., 2013), behavioral observance 
suggests that many willingly surrender their privacy despite concerns about their personal data (Williams et 
al., 2016). The reasons why people use wearable devices despite having a risk-oriented intention has been 
rather allusive (Gerber et al., 2018); however, Williams et al. (2016) recognized five categories of 
antecedents that contribute to the privacy paradox: 1) education and experience, 2) usability and design, 3) 
privacy risk salience, 4) social norms, and 5) policies and configurations. Turow et al. (2015) observed that 
acquiescence to losing autonomy over personal privacy contributes to the privacy paradox.  

Various technology acceptance models, the protection motivation theory (PMT), the health belief model 
(HBM), and various privacy calculus theories inform our research model’s theoretical basis. Technology 
acceptance models focus on forecasting whether individuals will use technology-based systems (Davis et 
al., 1989). Researchers have developed many models and theories over the past several decades to 
describe acceptance, three of which have garnered substantial status in technology acceptance research. 

First, the technology acceptance model (TAM), which Davis (1986) developed based on Fishbein’s and 
Ajzen’s (1975) theory of reasoned action (TRA), hypothesizes that perceived usefulness (PU) and attitude 
(AT) influences one’s behavioral intention (BI) to use a technology, which, in turn, affects their actual usage 
(AU). Also, both PU and the determinant perceived ease of use (PEOU) influence AT. In turn, other external 
variables impact PU and PEOS. Davis (1986) excluded the TRA construct subjective norm (SN) from the 
TAM model due to insufficient knowledge (at the time) about how to suitably place its effects. We note that, 
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after additionally evaluating and fine-tuning TAM, researchers reduced its constructs to PU, PEOS, and BI 
(Davis et al., 1989; Venkatesh et al., 2003). Furthermore, in TAM2, a later extension to the original model, 
researchers reassessed SN as a significant contributor to technology acceptance (Venkatesh & Davis, 
2000). 

Second, the unified theory of acceptance and use of technology (UTAUT), which Venkatesh et al. (2003) 
developed, draws on eight previous theories/models: TAM, TRA, the theory of planned behavior (TPB), the 
motivational model (MM), a model combining TAM with TPB (C-TAM-TPB), innovation diffusion theory 
(IDT), the model of personal computer utilization (MPCU), and social cognitive theory (SCT). In this way, 
the model emphasizes that performance expectancy (PE), effort expectancy (EE), and social influence (SI) 
inform BI and, furthermore, that facilitating conditions (FC) and BI inform AU. UTAUT also posits that gender 
(G), age (AGE), experience (EX), and voluntariness of use (VU) moderate all relationships except for the 
relationship between BI and AU. The authors obtained significant findings that resulted in an adjusted R2 of 
69 percent for their original test of the model (based on data from four organizations) and 70 percent for 
subsequent testing (based on data from two new organizations) (the authors reported both findings in the 
same paper), which demonstrates a significant increase in performance over the individual contributing 
models.  

Third, the extended UTAUT model (UTAUT2), which Venkatesh et al. (2012) developed, improves on the 
original UTAUT with three new constructs: hedonic motivation (HM), price value (PV), and habit (HT). The 
authors condensed the moderators to G, AGE, and EX (i.e., they removed VU from the model). The outcome 
exhibited an increase in explained variance in regards to behavioral intention (74% compared to 56% for 
UTAUT) and actual technology use (52% compared to 40% for UTAUT). We used this latter extended model 
to inform our research model. 

Often, threats associated with a technology’s adoption influence people’s decision to choose it (Gao et al., 
2015). Protection motivation theory (PMT) addresses this phenomenon by explaining one’s ability to cope 
and respond to a threat (Woon et al., 2005). A person’s response is based on the net effect of the person’s 
threat appraisal and coping appraisal. In the information systems (IS) context, PMT highlights threats to a 
person’s wellbeing resulting from using technology and the person’s willingness to adopt technology or 
technology-related practices and processes (Gao et al., 2015). We considered PMT in its application 
towards decisions to disclose one’s private information. 

4 Research Model 

Based on the theoretical background, our proposed research model (see Figure 2) depicts factors that we 
hypothesize to impact whether individuals will adopt and use healthcare-related wearables with a particular 
emphasis on the risk assessment (risk calculus), the balance between the risks and benefits of disclosure, 
and their impact on a user’s intention to disclose (privacy calculus). The model also depicts the moderating 
effect that perceived health status (perceived health vulnerability and perceived health severity) has on the 
relationship between perceived privacy and intention to disclose (privacy paradox). Overall, the model 
encompasses 16 different constructs (see Table 1). Among them include perceived threat vulnerability 
(PTV), perceived threat severity (PTS), response efficacy (REF), task self-efficacy (SEF), perceived privacy 
risk (PPR), hedonic motivation (HMO), performance expectancy (PEX), effort expectancy (EEX), social 
influence (SIN), technology self-efficacy (TSE), functional congruence (FCG), perceived health status 
(PHS), intention to disclose (ITD), perceived health vulnerability (PHVU), perceived health severity (PHSE), 
and intention to adopt (ITA) healthcare wearable devices. Our model extends Gao et al.’s (2015) conceptual 
model, which they established to review factors related to adopting healthcare wearable devices, and Zhang 
et al.’s (2018) conceptual model, which they established to review factors that impact health information-
related privacy concerns. 

Adopted from PMT, perceived threat vulnerability (PTV) refers to the degree to which individuals assess 
themselves as vulnerable to succumbing to privacy threats (Zhang et al., 2018). Higher PTV will result in 
higher concern for risks to privacy (Zhang et al., 2018). Thus, we hypothesize that: 

H1: Perceived threat vulnerability positively relates to an individual’s overall state of perceived 
privacy risk in the healthcare wearables domain. 

Adopted from PMT, perceived threat severity (PTS) refers to the degree to which individuals assess the 
consequences from succumbing to privacy threats as severe (Zhang et al., 2018). Higher PTS will result in 
higher concern for risks to privacy (Zhang et al., 2018). Thus, we hypothesize that: 
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H2:  Perceived threat severity positively relates to an individual’s overall state of perceived privacy 
risk in the healthcare wearables domain. 

Adopted from PMT, response efficacy (REF) refers to the degree to which individuals assess their current 
protective measures to prevent themselves from succumbing to privacy threats as effective (Zhang et al., 
2018). Higher REF will result in lower concern regarding risks to privacy (Zhang et al., 2018). Thus, we 
hypothesize that: 

H3:  Response efficacy negatively relates to an individual’s overall state of perceived privacy risk in 
the healthcare wearables domain. 

Adopted from PMT, task self-efficacy (SEF) refers to the degree to which individuals assess themselves as 
able to successfully implement suitable tasks to respond to privacy threats (Zhang et al., 2018). Higher SEF 
will result in lower concern regarding risks to privacy (Zhang et al., 2018). Thus, we hypothesize that: 

H4:  Task self-efficacy negatively relates to an individual’s overall state of perceived privacy risk in 
the healthcare wearables domain. 

 

Figure 2. Research Model (Adapted from Zhang et al., 2018; Gao et al., 2015) 

Perceived privacy risk (PPR) measures the privacy risk that an individual perceives in regards to using a 
wearable device. PPR rests on four dimensions of privacy concerns: collection, errors, secondary use, and 
unauthorized access to private information (Smith et al., 2011). Higher PPR will result in a lower intention 
to disclose private information as reflected in a user’s reluctance to adopt healthcare wearables (Gao et al., 
2015). Thus, we hypothesize that: 

H5: Perceived privacy risk negatively relates to an individual’s intention to disclose privacy information 
in the healthcare wearables domain. 
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Adopted from UTAUT2, hedonic motivation (HMO) refers to the intrinsic motivation that users experience 
(Venkatesh et al., 2012). Intrinsic motivation relates to the pleasure someone experiences from using a 
wearable device (Brown, 2005). Higher HMO will result in a higher intention to disclose private information 
and a higher intention to adopt healthcare wearables (Gao et al., 2015). Thus, we hypothesize that: 

H6: Hedonic motivation positively relates to an individual’s intention to disclose privacy information in 
the healthcare wearables domain. 

H7: Hedonic motivation positively relates to an individual’s intention to adopt healthcare wearables. 

Adopted from UTAUT, performance expectancy (PEX) refers to how much benefit users expect to gain from 
using a wearable device (Venkatesh et al., 2003). Higher PEX will result in a higher intention to disclose 
private information and a higher intention to adopt healthcare wearables (Gao et al., 2015). Thus, we 
hypothesize that: 

H8: Performance expectancy positively relates to an individual’s intention to disclose privacy 
information in the realm of healthcare wearables. 

H9: Performance expectancy positively relates to an individual’s intention to adopt healthcare 
wearables. 

Adopted from UTAUT, effort expectancy (EEX) refers to a user’s perception of the complexity and ease of 
use of a wearable device (Venkatesh et al., 2003). Higher EEX will result in a higher intention to adopt 
healthcare wearables (Gao et al., 2015). Thus, we hypothesize that: 

H10:  Effort expectancy positively relates to an individual’s intention to adopt healthcare wearables. 

Table 1. Model Variables 

Latent 
Variable 

Name Definition 

PTV 
Perceived threat 

vulnerability 
Vulnerability to succumb to privacy threats (Zhang et al., 2018). 

PTS Perceived threat severity 
Severity of consequences due to succumbing to privacy threats (Zhang et 
al., 2018). 

REF Response efficacy 
Effectiveness of current measures to prevent succumbing to privacy 
threats (Zhang et al., 2018). 

SEF Task self-efficacy 
Ability to implement suitable tasks essential to responding to privacy 
threats (Zhang et al., 2018). 

PPR Perceived privacy risk 
Measurable representation of the privacy risk perceived (Smith et al., 
2011). 

HMO Hedonic motivation Intrinsic motivation experienced (Venkatesh et al., 2012). 

PEX Performance expectancy Degree of benefit expected (Venkatesh et al., 2003). 

EEX Effort expectancy 
Level of effort regarding ease of use/complexity expected (Venkatesh et 
al., 2003). 

SIN Social influence 
Perceived emphasis of others deemed important regarding use 
(Venkatesh et al., 2003). 

TSE Technology self-efficacy 
Perception or belief regarding ability to use particular functions (Gao et 
al., 2015). 

FCG Functional congruence 
Perceived appropriateness of device regarding function and needs (Gao 
et al., 2015). 

PHVU 
Perceived health 

vulnerability 
Perception regarding likelihood of succumbing to health threat(s) (Gao et 
al., 2015). 

PHSE Perceived health severity 
Perception regarding extant of health threat(s) responded to (Gao et al., 
2015). 

PHS Perceived health status Perception of illness and wellness (Kim et al., 2015) 

ITD Intention to disclose Intentions to disclose private information as required (Zhang et al., 2018). 

ITA Intention to adopt Intentions to adopt a healthcare wearable device (Gao et al., 2015). 
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Adopted from UTAUT, social influence (SIN) refers to the perceived emphasis of others, who are deemed 
important to a user, regarding the use of a wearable device (Venkatesh et al., 2003). Higher SIN will result 
in a higher intention to adopt healthcare wearables (Gao et al., 2015). Thus, we hypothesize that: 

H11:  Social influence positively relates to an individual’s intention to adopt healthcare wearables. 

Technology self-efficacy (TSE) refers to the degree to which users perceive or believe themselves as able 
to use a wearable device’s particular functions (Gao et al., 2015). Although researchers dropped TSE from 
the UTAUT model in regards to general technology acceptance, they have confirmed that it impacts one’s 
intention to adopt emerging health technologies (Sun et al., 2013). Thus, we hypothesize that: 

H12:  Technology self-efficacy positively relates to an individual’s intention to adopt healthcare 
wearables. 

Adapted from self-congruency theory (Huber et al., 2010), functional congruence (FCG) captures the degree 
to which users perceive a wearable device as appropriate to satisfy their expectations in regards to their 
functional and basic product-related needs (Gao et al., 2015; Wenling et al., 2015). In contrast to PEX, 
which refers to the degree to which individuals perceive a device as able to fulfill its specified purpose at a 
basic level, FCG captures the device’s quality in aggregate (i.e., how comfortable one finds it to wear, its 
durability, and how acceptable one finds its price) (Gao et al., 2015). In other words, although the wearable 
device may perform as expected (PEX), it must also satisfy practical and applicable expectations given how 
a user uses it. Thus, we hypothesize that: 

H13:  Functional congruence positively relates to an individual’s intention to adopt healthcare 
wearables. 

Informed by PMT, perceived health vulnerability (PHVU) refers to the degree to which users perceive 
themselves as likely to succumb to health threat(s) that a wearable device directly or indirectly addresses 
(Gao et al., 2015). Higher PHVU will result in a lower perceived health status. Thus, we hypothesize that: 

H14:  Perceived health vulnerability negatively relates to an individual’s overall state of perceived 
health status in the healthcare wearables domain. 

Informed by PMT, perceived health severity (PHSE) refers to the user’s perception regarding the austerity 
of the health threat(s) that a wearable device directly or indirectly addresses (Gao et al., 2015). Higher 
PHSE will result in a lower perceived health status. Thus, we hypothesize that: 

H15:  Perceived health severity negatively relates to an individual’s overall state of perceived health 
status in the healthcare wearables domain. 

Perceived health status (PHS) refers to the degree to which individuals perceive themselves as healthy 
(Kim et al., 2015), which research has found to moderate privacy/disclosure relationships (Zhang et al., 
2018). Therefore, we postulate a similar moderating effect in the current model. Informed by HBM (Janz & 
Becker, 1984), which emphasizes that increases in perceived risk inspire self-protective behavior (Deng & 
Liu, 2017), we hypothesize that PHS is an antecedent to intention to adopt, which emphasizes that higher 
PHS (better health) has a negative impact on whether users adopt healthcare wearables. Thus, we 
hypothesize that: 

H16:  Perceived privacy risk has a stronger influence on intention to disclose when an individual has 
a high perceived health status. 

H17:  Hedonic motivation has a weaker influence on intention to disclose when an individual has a 
high perceived health status. 

H18:  Performance expectancy has a weaker influence on intention to disclose when an individual 
has a high perceived health status. 

H19:  Perceived health status negatively relates to an individual’s intention to adopt healthcare 
wearables. 

Intention to disclose (ITD) refers to a user’s intention to disclose private information as required when using 
a healthcare wearable device (Zhang et al., 2018). Higher ITD will result in a higher intention to adopt 
healthcare wearables. Thus, we hypothesize that: 
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H20:  Intention to disclose positively relates to an individual’s intention to adopt healthcare 
wearables. 

Intention to adopt healthcare wearables (ITA) characterizes a user’s intention to adopt a healthcare 
wearable device (Gao et al., 2015). 

5 Research Methodology 

5.1 Survey Instrument 

The instrument comprised 58 measurements: 52 Likert-based questions, one interval-based measurement, 
and five demographics (see Appendix A). We measured items on a seven-point Likert scale where one 
represented “strongly disagree” and seven represented “strongly agree” (Dittrich et al., 2007) except for 
PHS, which we measured based on one question that asked whether the participant perceived their health 
to be “very poor”, “poor”, “fair”, “good”, or “excellent”. Research has observed self-rated general health 
assessments to demonstrate noteworthy performance and to represent an acceptable alternative to multi-
item measurements (Zhang et al., 2018). Every question measured a specific model construct that past 
research has validated and verified. We needed to ensure that each question stood on its own without 
influence from other questions in order to circumvent common methods bias, a threat to construct validity 
(Straub et al., 2004). We also collected vital demographic information, such as gender, age range, 
education, and whether the wearable was recommended, mandated, or neither. 

5.2 Data Collection 

For our survey, we targeted individuals over 18 years old who had used, did use, or had considered using 
healthcare wearable devices. We did not target any specific demographics. In addition, we did not collect 
any personally identifiable information in order to ensure participants’ anonymity. We disseminated the 
survey via social media, email, and related discussion board forums such as Facebook, Twitter, LinkedIn, 
Reddit, and Pinterest.  We used Qualtrics to build, test, and distribute the survey to the target audiences.  

We focused on querying a large enough sample to ensure we could generalize our findings to the general 
population (Roberts, 2012). As such, we sought 200 responses at minimum, which is sufficient for PLS-
SEM analysis when estimating models with a maximum of ten exogenous variables pointing to a single 
endogenous variable and seeking a statistical power of 80 percent, a significance level of 0.01, and a 
minimum coefficient of determination (R2) of 0.100 (Hair et al., 2017). We used IBM SPSS to handle missing 
values and for outlier analyses. For missing values, we used mean replacement provided that the number 
of missing values did not exceed the recommended threshold (i.e., 5%) (Hair et al., 2017). We considered 
outliers for removal only if we could identify a plausible explanation for them (e.g., entry errors) (Hair et al., 
2017). 

5.3 Data Analysis 

We selected the partial least squares structural equation modeling (PLS-SEM) method for this research 
effort due to its recognized ability towards exploratory research in the social science sciences and for its 
resilience towards estimating causative relationships between constructs (Hair et al., 2017). In contrast, 
confirmation-based research often uses covariance-based SEM (CB-SEM) to test existing theories. CB-
SEM favors large sample sizes and normally distributed data, whereas PLS-SEM can handle smaller 
sample sizes and makes no assumptions towards data distribution (Wong, 2013). We selected SmartPLS 
version 3.3.3 (Ringle et al., 2015) as the tool for PLS-SEM estimation due to its acceptance among the 
academic community (Wong, 2019) and for its graphical interface, ease of use, and efficiency in estimation.  

6 Results 

We collected 225 responses in total. Three of the cases included missing values for all indicators for one or 
more constructs. We eliminated these cases due to our inability to measure specific constructs for those 
specific cases. For the 222 remaining cases, we identified one case with two missing values (separate 
constructs) (4% of the cases) and 11 cases with one missing value each (2% of each case). As such, the 
entire dataset had 13 missing values (0.11% of total). The maximum number of missing values for any 
particular indicator was 0.9 percent. Consequently, we chose mean replacement as the preferred method 
for missing value replacement during PLS-SEM analysis since 0.9 percent falls well below the 
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recommended 5 percent threshold (Hair et al., 2017). We identified outliers for 22 of the 53 indicators. 
However, we did not adjust or delete these outliers since we had no plausible explanation for them (e.g., 
entry errors). The fact that our model estimation completed in three iterations, significantly less than the 300 
iterations configured as the stop criterion (Wong, 2019), later reinforced that decision. Furthermore, it 
confirmed the resultant sample size (i.e., 222) (Hair et al., 2017). Table 2 exhibits the central tendency and 
dispersion statistical measures for the demographic-related data. Figures 3 and 4 graphically represent the 
data’s distribution. 

Table 2. Statistical Measures of Central Tendency and Dispersion: Demographics 

Demographic Description N Min Max Mean StdDev 

USE Use recommended, mandated, or neither 222 1 3 2.78 0.617 

CHC Current chronic health condition 221 1 2 1.77 0.419 

GDR Gender 221 1 2 1.60 0.492 

AGE Age 220 1 6 3.17 1.347 

EDU Education 222 2 7 4.61 1.484 

 

 

Figure 3. Sample Distribution: USE, CHC, GDR, and AGE 

 

 

Figure 4. Sample Distribution: EDU, PHS 
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Table 3 exhibits the central tendency and dispersion statistical measures for the measurement instrument. 
Except for PHS, all construct measurements involved multiple indicators based on a seven-point Likert scale 
with one representing “strongly disagree” and seven representing “strongly agree” (Dittrich et al., 2007). We 
measured the construct PHS based on one question that asked participants whether they perceived their 
health to be “very poor”, “poor”, “fair”, “good”, or “excellent. The statistical measures in Table 3 include the 
latent variable and corresponding indicators, sample size (which varied due to missing values), minimum 
and maximum values, mean, standard deviation, and skewness and kurtosis.  

Table 3. Statistical Measures of Central Tendency and Dispersion: Measurement Instrument 

Latent 
variable 

Indicator N Min Max Mean StdDev 
Skewness Kurtosis 

Statistic StdErr Statistic StdErr 

PTV 

PTV1 222 1 7 4.14 1.854 -0.169 0.163 -1.143 0.325 

PTV2 222 1 7 3.97 1.780 0.007 0.163 -1.087 0.325 

PTV3 222 1 7 4.85 1.732 -0.737 0.163 -0.398 0.325 

PTV4 222 1 7 4.36 1.821 -0.292 0.163 -1.064 0.325 

PTS 

PTS1 222 1 7 3.75 1.782 0.183 0.163 -1.037 0.325 

PTS2 222 1 7 4.04 1.843 -0.012 0.163 -1.217 0.325 

PTS3 222 1 7 4.20 1.840 -0.135 0.163 -1.180 0.325 

PTS4 222 1 7 4.40 1.902 -0.335 0.163 -1.185 0.325 

REF 

REF1 222 1 7 4.13 1.545 -0.407 0.163 -0.580 0.325 

REF2 222 1 7 4.00 1.518 -0.282 0.163 -0.632 0.325 

REF3 222 1 7 4.39 1.508 -0.537 0.163 -0.166 0.325 

SEF 

SEF1 222 1 7 4.05 1.511 -0.299 0.163 -0.383 0.325 

SEF2 221 1 7 4.12 1.629 -0.377 0.164 -0.820 0.326 

SEF3 222 1 7 4.02 1.625 -0.202 0.163 -0.990 0.325 

SEF4 222 1 7 4.01 1.648 -0.253 0.163 -0.893 0.325 

PPR 

PPR1 222 1 7 3.55 1.682 0.552 0.163 -0.763 0.325 

PPR2 222 1 7 3.35 1.618 0.425 0.163 -0.564 0.325 

PPR3 222 1 7 4.65 1.811 -0.577 0.163 -0.588 0.325 

HMO 

HMO1 222 1 7 5.46 1.175 -1.069 0.163 1.770 0.325 

HMO2 222 1 7 5.45 1.209 -1.093 0.163 1.599 0.325 

HMO3 222 1 7 5.16 1.328 -0.820 0.163 0.608 0.325 

HMO4 222 1 7 5.32 1.273 -0.885 0.163 0.692 0.325 

PEX 

PEX1 221 1 7 5.26 1.312 -0.959 0.164 1.138 0.326 

PEX2 222 1 7 5.60 1.163 -1.115 0.163 1.895 0.325 

PEX3 222 1 7 5.49 1.199 -1.116 0.163 1.621 0.325 

EEX 

EEX1 222 1 7 5.90 1.059 -1.531 0.163 3.324 0.325 

EEX2 222 1 7 5.82 1.078 -1.276 0.163 2.240 0.325 

EEX3 220 1 7 5.83 1.144 -1.345 0.164 2.109 0.327 

EEX4 222 1 7 5.82 1.106 -1.329 0.163 2.144 0.325 

SIN 

SIN1 221 1 7 4.24 1.534 -0.379 0.164 -0.327 0.326 

SIN2 221 1 7 4.12 1.491 -0.262 0.164 -0.386 0.326 

SIN3 222 1 7 4.05 1.497 -0.264 0.163 -0.341 0.325 

TSE 

TSE1 221 1 7 5.71 1.048 -1.408 0.164 3.722 0.326 

TSE2 220 1 7 5.84 0.965 -1.418 0.164 4.651 0.327 

TSE3 222 1 7 5.64 1.156 -1.273 0.163 2.288 0.325 
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Table 3. Statistical Measures of Central Tendency and Dispersion: Measurement Instrument 

FCG 

FCG1 222 1 7 5.67 1.019 -1.082 0.163 1.797 0.325 

FCG2 222 1 7 5.07 1.375 -0.776 0.163 0.389 0.325 

FCG3 222 1 7 4.83 1.438 -0.645 0.163 -0.209 0.325 

FCG4 221 1 7 5.41 1.246 -1.248 0.164 1.758 0.326 

PHVU 

PHVU1 222 1 7 3.13 1.662 0.579 0.163 -0.651 0.325 

PHVU2 222 1 7 3.11 1.617 0.619 0.163 -0.569 0.325 

PHVU3 222 1 7 3.45 1.711 0.323 0.163 -1.010 0.325 

PHSE 

PHSE1 222 1 7 3.87 1.655 -0.050 0.163 -0.866 0.325 

PHSE2 222 1 7 3.97 1.683 -0.181 0.163 -0.904 0.325 

PHSE3 221 1 7 4.04 1.738 -0.199 0.164 -1.015 0.326 

ITD 

ITD1 222 1 7 4.92 1.743 -0.947 0.163 -0.262 0.325 

ITD2 221 1 7 4.71 1.851 -0.732 0.164 -0.705 0.326 

ITD3 222 1 7 5.05 1.789 -1.087 0.163 0.033 0.325 

ITA 

ITA1 222 1 7 5.64 1.466 -1.442 0.163 1.922 0.325 

ITA2 221 1 7 5.11 1.761 -0.839 0.164 -0.311 0.326 

ITA3 222 1 7 5.55 1.515 -1.389 0.163 1.583 0.325 

ITA4 222 1 7 5.02 1.892 -0.907 0.163 -0.393 0.325 

PHS PHS 222 2 5 3.86 0.688 -0.400 0.163 0.373 0.325 

Skewness measures asymmetry and Kurtosis measures a distribution’s “peakedness” relative to a normal 
distribution (Hae-Young, 2013, p. 2). Although PLS-SEM makes no assumptions in regards to distribution 
(Wong, 2013) and can better tolerate concerns of normality (Hair et al., 2017), one still needs to consider 
its presence during the analysis process (Hair et al., 2017). Researchers consider an absolute skewness 
value and/or kurtosis value greater than 1 as departure from normality (Hair et al., 2017). Using this criterion, 
we identified some concerns regarding skewness and kurtosis for some or all indicators for the variables 
PTV, PTS, HMO, PEX, EEX, TSE, FCG, PHVU, PHSE, ITD, and ITA. 

6.1 Measurement Model Testing 

Table 4 summarizes the results we obtained from assessing the measurement model’s quality, which 
included tests for convergent validity, internal consistency reliability, and discriminant validity using a 0.05 
significance level (alpha) and bias correction (BC) for interval analysis. All loadings, except for three 
indicators, exceeded the recommended value 0.70 and accounted 50 percent at minimum of the variance 
regarding the related constructs (Gao et al., 2015). Of the three loadings that fell below, PPR3 and ITA4 
measured just under the 0.70 minimum (Hair et al., 2017) at 0.678 and 0.677, respectively, and PTS4 
measured significantly under the recommended minimum at 0.443. Table 5 shows measurement model’s 
significance after bootstrapping. 

To guarantee adherence to the recommended minimum for loadings, we removed the three indicators with 
loadings less than 0.70. After doing so, we noted an increase in AVE and internal consistency reliability 
values, which confirmed our decision (Hair et al., 2017). Figure 5 shows the research model post analysis 
using SmartPLS (Ringle et al., 2015).  

AVE values for all latent variables exceeded the recommended minimum 0.50 (Hair et al., 2017), which 
confirmed convergent validity. We measured internal consistency against the accepted values 0.60 and 
0.70 for Cronbach’s alpha and composite reliability (CR), respectively. All model constructs passed, which 
indicated no concerns with internal consistency (Hair et al., 2017). Finally, we used two heterotrait-monotrait 
(HTMT) criteria to measure discriminant validity: 1) an HTMT ratio of correlations score below the cutoff of 
0.85 (Hair et al., 2020) and 2) an HTMT interval not containing the value of 1 (considering a confidence level 
of 95%) (Hair et al., 2017; Wong, 2019). We found all constructs to pass both criteria, which confirmed 
discriminant validity. Referring to Table 5, all tests exhibited significance at the 0.05 level.  
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Table 4. Measurement Model Test Summary 

Latent 
variable 

Indicator 

Convergent validity 
Internal consistency 

reliability 
Discriminant validity 

Loadings 
Indicator 
reliability 

AVE 
Cronbach’s 

alpha 
Composite 
reliability 

HTMT 

> 0.70 > 0.50 > 0.50 > 0.60 > 0.70 < 0.85 

HTMT 
confidence 
level (BC) 
does not 
include 1 

PTV 

PTV1 0.901 0.812 

0.815 0.924 0.946 Yes Yes 
PTV2 0.921 0.848 

PTV3 0.885 0.783 

PTV4 0.902 0.814 

PTS 

PTS1 0.938 0.880 

0.723 0.851 0.907 Yes Yes 
PTS2 0.951 0.904 

PTS3 0.953 0.908 

PTS4 0.443 0.196 

REF 

REF1 0.934 0.872 

0.786 0.864 0.916 Yes Yes REF2 0.948 0.899 

REF3 0.765 0.585 

SEF 

SEF1 0.905 0.819 

0.860 0.946 0.961 Yes Yes 
SEF2 0.939 0.882 

SEF3 0.940 0.884 

SEF4 0.924 0.854 

PPR 

PPR1 0.840 0.706 

0.641 0.715 0.841 Yes Yes PPR2 0.870 0.757 

PPR3 0.678 0.460 

HMO 

HMO1 0.952 0.906 

0.823 0.927 0.949 Yes Yes 
HMO2 0.943 0.889 

HMO3 0.878 0.771 

HMO4 0.851 0.724 

PEX 

PEX1 0.837 0.701 

0.793 0.869 0.920 Yes Yes PEX2 0.918 0.843 

PEX3 0.915 0.837 

EEX 

EEX1 0.928 0.861 

0.866 0.948 0.963 Yes Yes 
EEX2 0.950 0.903 

EEX3 0.907 0.823 

EEX4 0.936 0.876 

SIN 

SIN1 0.952 0.906 

0.931 0.963 0.976 Yes Yes SIN2 0.973 0.947 

SIN3 0.969 0.939 

TSE 

TSE1 0.930 0.865 

0.785 0.864 0.916 Yes Yes TSE2 0.910 0.828 

TSE3 0.814 0.663 

FCG FCG1 0.850 0.723 0.613 0.790 0.863 Yes Yes 
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Table 4. Measurement Model Test Summary 

FCG2 0.783 0.613 

FCG3 0.740 0.548 

FCG4 0.755 0.570 

PHVU 

PHVU1 0.924 0.854 

0.859 0.918 0.948 Yes Yes PHVU2 0.950 0.903 

PHVU3 0.906 0.821 

PHSE 

PHSE1 0.955 0.912 

0.942 0.970 0.980 Yes Yes PHSE2 0.987 0.974 

PHSE3 0.970 0.941 

PHS PHS1 1.000 1.000 1.000 1.000 1.000 Yes Yes 

ITD 

ITD1 0.883 0.780 

0.790 0.867 0.919 Yes Yes ITD2 0.907 0.823 

ITD3 0.875 0.766 

ITA 

ITA1 0.930 0.865 

0.693 0.847 0.899 Yes Yes 
ITA2 0.895 0.801 

ITA3 0.806 0.650 

ITA4 0.677 0.458 

 

Table 5. Measurement Model Significance 

Latent 
variable 

Indicator 

Convergent Validity Internal consistency reliability 

Loadings AVE Cronbach’s alpha Composite reliability 

Confidence 
interval (BC) 

P-value 
Confidence 

interval 
(BC) 

P-
value 

Confidence 
interval 

(BC) 
p-value 

Confidence 
interval 

(BC) 
p-value 

PTV 

PTV1 (0.851, 0.937) 0.000 

(0.772, 
0.855) 

0.000 
(0.902, 
0.944) 

0.000 
(0.931, 
0.959) 

0.000 
PTV2 (0.895, 0.942) 0.000 

PTV3 (0.844, 0.917) 0.000 

PTV4 (0.868, 0.928) 0.000 

PTS 

PTS1 (0.913, 0.956) 0.000 

(0.687, 
0.764) 

0.000 
(0.809, 
0.887) 

0.000 
(0.886, 
0.926) 

0.000 
PTS2 (0.930, 0.969) 0.000 

PTS3 (0.937, 0.965) 0.000 

PTS4 (0.255, 0.596) 0.000 

REF 

REF1 (0.907, 0.953) 0.000 
(0.727, 
0.834) 

0.000 
(0.814, 
0.900) 

0.000 
(0.887, 
0.938) 

0.000 REF2 (0.926, 0.964) 0.000 

REF3 (0.652, 0.839) 0.000 

SEF 

SEF1 (0.868, 0.930) 0.000 

(0.819, 
0.893) 

0.000 
(0.926, 
0.960) 

0.000 
(0.948, 
0.971) 

0.000 
SEF2 (0.915, 0.956) 0.000 

SEF3 (0.917, 0.957) 0.000 

SEF4 (0.869, 0.955) 0.000 

PPR 

PPR1 (0.770, 0.886) 0.000 
(0.582, 
0.693) 

0.000 
(0.631, 
0.775) 

0.000 
(0.803, 
0.871) 

0.000 PPR2 (0.820, 0.901) 0.000 

PPR3 (0.564, 0.764) 0.000 

HMO 
HMO1 (0.930, 0.966) 0.000 (0.771, 

0.867) 
0.000 

(0.899, 
0.948) 

0.000 
(0.931, 
0.963) 

0.000 
HMO2 (0.917, 0.960) 0.000 
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HMO3 (0.822, 0.915) 0.000 

HMO4 (0.777, 0.904) 0.000 

PEX 

PEX1 (0.742, 0.893) 0.000 
(0.725, 
0.848) 

0.000 
(0.808, 
0.910) 

0.000 
(0.887, 
0.944) 

0.000 PEX2 (0.867, 0.947) 0.000 

PEX3 (0.878, 0.940) 0.000 

EEX 

EEX1 (0.882, 0.956) 0.000 

(0.817, 
0.905) 

0.000 
(0.926, 
0.965) 

0.000 
(0.947, 
0.975) 

0.000 
EEX2 (0.916, 0.969) 0.000 

EEX3 (0.839, 0.945) 0.000 

EEX4 (0.894, 0.961) 0.000 

SIN 

SIN1 (0.922, 0.971) 0.000 
(0.898, 
0.953) 

0.000 
(0.947, 
0.976) 

0.000 
(0.963, 
0.984) 

0.000 SIN2 (0.952, 0.984) 0.000 

SIN3 (0.952, 0.980) 0.000 

TSE 

TSE1 (0.885, 0.956) 0.000 
(0.699, 
0.856) 

0.000 
(0.788, 
0.916) 

0.000 
(0.873, 
0.947) 

0.000 TSE2 (0.850, 0.947) 0.000 

TSE3 (0.644, 0.908) 0.000 

FCG 

FCG1 (0.765, 0.917) 0.000 

(0.542, 
0.690) 

0.000 
(0.719, 
0.847) 

0.000 
(0.825, 
0.901) 

0.000 
FCG2 (0.665, 0.864) 0.000 

FCG3 (0.572, 0.832) 0.000 

FCG4 (0.605, 0.850) 0.000 

PHVU 

PHVU1 (0.805, 0.964) 0.000 
(0.796, 
0.908) 

0.000 
(0.881, 
0.945) 

0.000 
(0.923, 
0.968) 

0.000 PHVU2 (0.874, 0.972) 0.000 

PHVU3 (0.789, 0.964) 0.000 

PHSE 

PHSE1 (0.355, 0.986) 0.000 
(0.812, 
0.966) 

0.000 
(0.955, 
0.980) 

0.000 
(0.930, 
0.989) 

0.000 PHSE2 (0.854, 0.994) 0.000 

PHSE3 (0.839, 0.998) 0.000 

PHS PHS (1.000, 1.000) 0.000 
(1.000, 
1.000) 

0.000 
(1.000, 
1.000) 

NA 
(1.000, 
1.000) 

NA 

ITD 

ITD1 (0.818, 0.924) 0.000 
(0.724, 
0.847) 

0.000 
(0.811, 
0.910) 

0.000 
(0.887, 
0.943) 

0.000 ITD2 (0.867, 0.938) 0.000 

ITD3 (0.809, 0.916) 0.000 

ITA 

ITA1 (0.906, 0.948) 0.000 

(0.628, 
0.751) 

0.000 
(0.791, 
0.887) 

0.000 
(0.868, 
0.923) 

0.000 
ITA2 (0.859, 0.921) 0.000 

ITA3 (0.689, 0.875) 0.000 

ITA4 (0.549, 0.778) 0.000 
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Figure 5. Research Model (Loadings > 0.70) 

6.2 Structural Model Testing 

We estimated the model using the PLS algorithm with complete bootstrapping using the bias-corrected 
confidence interval method, two-tailed test, 5,000 subsamples, and mean replacement for missing values. 
Table 6 summarizes the model estimation results pertaining specifically to the endogenous variables. We 
note the explained variances of 39.6 percent (moderate) for PPR, 3.2 percent (very weak) for PHS, 24.1 
percent (weak) for ITD, and 38.3 percent (moderate) for ITA (Hair et al., 2011); however, the significance 
level (p-value) for PHS was notably larger than 0.05, which casts doubt on the  explained variance. We used 
the blindfolding method with a 7 omission distance (OD) to calculate Stone-Geisser’s Q2, which determines 
a model’s predictive relevance (Wong, 2019). We identified a weak predictive relevance for PHS, better 
than moderate relevance for PPR and ITA, and moderate relevance for ITD. 

Table 6. Endogenous Variable Summary 

Endogenous 
latent variable 

Coefficient of determination (R2) R2 adjusted 
Predictive 

relevance Q2 Value 
Confidence 
interval (BC) 

P-value Value 
Confidence 
interval (BC) 

P-value 

PPR 0.396 (0.285, 0.485) 0.000 0.385 (0.272, 0.476) 0.000 0.306 

PHS 0.032 (0.004, 0.084) 0.227 0.023 (-0.005, 0.076) 0.385 0.014 

ITD 0.241 (0.116, 0.336) 0.000 0.216 (0.088, 0.315) 0.000 0.170 

ITA 0.383 (0.203, 0.511) 0.000 0.360 (0.173, 0.492) 0.000 0.287 
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6.2.1 Moderator Analysis 

H16, H17, and H18 hypothesized that PHS had a moderating effect on the relationships between the 
exogenous variables PPR, HMO, and PEX and the endogenous variable ITD. Regarding moderator 
analysis, the path coefficient represents the interaction term. Using the two-stage approach for creating the 
interaction terms, the graphs in Figures 6, 7, and 8 represent the results of the slope analysis of the 
moderating effect of PHS on the exogenous/endogenous relationships. The x-axis signifies the exogenous 
variable and the y-axis signifies the ITD endogenous variable. The red line signifies the effect of PHS at 
mean, the blue line at -1 standard deviation (SD), and the green line at +1 SD.  

Regarding PPR (see Figure 6), which we discovered to normally have a negative impact on ITD, we found 
a decrease in the negative influence that it had on ITD with a lower PHS (blue line) and an increase in the 
negative influence that PPR had on ITD with a higher PHS (green line). The interaction term path coefficient 
of -0.116 reflects this finding and supports H16. When analyzing moderators, a 0.005, 0.01, and 0.25 effect 
size (f2) constitutes a small, medium, and large effect, respectively (Hair et al., 2017; Kenny, 2018). 
Accordingly, we note that PHS had a somewhat large effect (0.014) on the PPR→ITD relationship, though 
the p-value 0.116 means it fell just outside the bounds for statistical significance at the 10 percent level. 

Regarding HMO (see Figure 7), which we discovered to normally have a positive influence on ITD, we found 
a significant increase in the positive impact that it had on ITD with a lower PHS (blue line) and a decrease 
in the positive impact with a higher PHS (green line). The interaction term of -0.155 reflects this finding and 
supports H17. We found that PHS had a somewhat large effect (0.021) on the HMO→ITD relationship. 

Regarding PEX (see Figure 8), which we discovered normally has a positive impact on ITD, we found an 
increase in the positive influence that it had on ITD with a lower PHS (blue line) and a decrease in the 
positive influence with a higher PHS (green line). The interaction term of 0.059 reflects this finding and 
supports H18. However, since PHS had a very small effect (0.003) on the PEX→ITD relationship, we 
determined that it lacked significance and, thus, we did not find support for H18. 

 

Figure 6. Moderating Effect that PHS had on PPR→ITD 
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Figure 7. Moderating Effect that PHS Had on HMO→ITD 

 

 

Figure 8. Moderating Effect that PHS had on PEX→ITD 

6.2.2 Structural Model Test Summary 

Figure 9 represents the final model after testing. We show strongly supported relationships/hypotheses in 
black, reservedly confirmed relationships/hypotheses in purple, and notably insignificant 
relationships/hypotheses in red. 

Sorted by hypotheses, Table 7 summarizes the effect that the exogenous variables had on their 
corresponding endogenous variables (including the moderating effect of PHS). Considering the VIF values 
did not surpass 5.0, we note that multicollinearity did not pose a concern for all hypothesized relationships 
(Hair et al., 2013). Based on path coefficients and significance, we found support for H2, H3, H5, H8, H9, 
and H20 at the 0.01 alpha level (***); for H7, H14, and H17 at the 0.05 alpha level (**); and for H4 at the 
0.10 alpha level (*). We did not find support for H6, H11, and H16 (0.105, 0.114, and 0.116 alpha levels, 
respectively). H1 somewhat surpassed acceptable significance levels. 
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We found that H10, H12, H13, H15, H18, and H19 well surpassed acceptable significance levels, which 
means we failed to deduce any effect in the relationships between latent constructs. Effect size (f2) signifies 
the impact that exogenous variables have on endogenous variables with 0.02, 0.15, and 0.35 being criteria 
for a small, medium, and large impact, respectively (Hair et al., 2013). Of the significant relationships 
identified, H2, H9, and H20 had a somewhat medium impact, while the others had a somewhat small impact. 

 

Figure 9. Research Model After Testing 

 

Table 7. Structural Model Test Summary 

H Relationship 
VIF 

< 5.0 
Path coefficient 

Confidence 
interval (BC) 

p-value 
Effect size 

(f2) 

H1+ PTV -> PPR 1.817 0.118 (-0.030, 0.274) 0.135  0.013 

H2+ PTS -> PPR 1.375 0.301 (0.187, 0.410) 0.000 *** 0.109 

H3- REF -> PPR 2.380 -0.209 (-0.362, -0.049) 0.009 *** 0.030 

H4- SEF -> PPR 2.347 -0.148 (-0.312, 0.017) 0.079 * 0.016 

H5- PPR -> ITD 1.112 -0.205 (-0.340, -0.061) 0.004 *** 0.050 

H6+ HMO -> ITD 1.503 0.124 (-0.023, 0.280) 0.105  0.014 

H7+ HMO -> ITA 1.688 0.182 (0.028, 0.349) 0.026 ** 0.032 

H8+ PEX -> ITD 1.585 0.265 (0.094, 0.417) 0.001 *** 0.058 

H9+ PEX -> ITA 2.356 0.363 (0.156, 0.560) 0.001 *** 0.091 

H10+ EEX -> ITA 1.831 -0.020 (-0.170, 0.117) 0.780  0.000 
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Table 7. Structural Model Test Summary 

H11+ SIN -> ITA 1.272 0.098 (-0.024, 0.219) 0.114  0.012 

H12+ TSE -> ITA 2.038 -0.066 (-0.257, 0.113) 0.490  0.003 

H13+ FCG -> ITA 1.690 -0.095 (-0.253, 0.023) 0.171  0.009 

H14- PHVU -> PHS 1.137 -0.172 (-0.313, -0.038) 0.018 ** 0.027 

H15- PHSE -> PHS 1.137 -0.018 (-0.134, 0.167) 0.811  0.000 

H16+ PPR*PHS -> ITD 1.305 -0.116 (-0.246, 0.037) 0.116  0.014 

H17- HMO*PHS -> ITD 2.069 -0.155 (-0.314, -0.010) 0.048 ** 0.021 

H18- PEX*PHS -> ITD 2.054 0.059 (-0.094, 0.208) 0.438  0.003 

H19- PHS -> ITA 1.063 0.000 (-0.108, 0.111) 0.993  0.000 

H20+ ITD -> ITA 1.259 0.296 (0.137, 0.458) 0.000 *** 0.113 

7 Discussion 

Our research model emphasizes the multi-dimensional role that privacy plays in regards to whether users 
accept healthcare-related wearable devices. To develop our model, we adapted well-established theories 
in the technology acceptance and privacy domain. Our results afford noteworthy evidence that privacy truly 
poses a serious concern for potential users and that, when joined with benefits to disclosure, an individual’s 
perceived health status moderates it. Specific to the research questions guiding this research endeavor, we 
found significant evidence in regards to the impact that the privacy calculus has on intentions to disclose 
information on the decision process to adopt healthcare wearables (RQ1). In addition, we observed 
evidence of the privacy paradox in the context of healthcare wearables acceptance (RQ2). The following 
narrative explains our findings. 

PTV had a somewhat inconclusive effect on PPR with the p-value 0.135; however, PTS had the highest 
significant positive effect, REF had a significant negative effect, and SEF had a somewhat negative effect 
on PPR. We may ascribe the inconclusiveness effect that PTV had on PPR to insufficient knowledge among 
survey participants in regards to threats to privacy specific to wearables, an emerging health technology 
(Sun et al., 2013). Even so, that we found support for H2 through H4 supports the reality of the risk calculus 
where balancing threats with the ability to cope determines one’s concerns about privacy (Zhang et al., 
2018). PPR had a significant negative effect on ITD, which means that threats to one’s privacy and the 
ability to respond impacts one’s concern with privacy and one’s inclination to disclose personal information. 

We found HMO to have a somewhat significant positive effect on ITD. We also found it to have a significant 
positive effect on ITA. However, we found PEX to have the greatest significant positive effect on both ITD 
and ITA. Accordingly, we understand that the pleasure of using a wearable device and the expectation that 
the device will deliver the expected benefit inspires one to disclose one’s private information and accept 
wearables.  

In reference to RQ1, our findings that support H5, H6, and H8 offers evidence of the privacy calculus, which 
conceptualizes the privacy trade-off process where users evaluate privacy risks in light of the benefits 
associated with disclosure (Kehr et al., 2015). These results align with other health/privacy-oriented 
research (Zhang et al., 2018). In addition, the net confirmation of H2 through H8 provides support regarding 
the dual-calculus model, which contemplates both the risk calculus and the privacy calculus in the disclosure 
decision process (Li, 2012). 

Among the four constructs EEX, SIN, TSE, and FCG, only SIN had a somewhat significant positive impact 
on ITA. Accordingly, we did not find support for H10, H12, and H13 but found partial support for H11. We 
can conclude that the effort required, a person’s confidence in their ability to use the device, and the 
perceived suitability to satisfy expectations have no significant effect on adopting a wearable device; 
however, other people somewhat influences wearable adoption but only at minimal levels. This finding 
corresponds to past wearable research, such as Patton (2018), that has also discovered inconclusive 
evidence about similar constructs to ITA. We may explain these results based on the fact that our sample 
contained an evenly distributed age range between 24 and 64 (see Table 2 above), which could also explain 
the decreased levels of normality that we discovered for the noted constructs. Research has shown age to 
significantly affect factors related to technology acceptance (Morris & Venkatesh, 2000; Venkatesh et al., 
2012) and to potentially skew results when corporately examined.  



Transactions on Human-Computer Interaction 512  

 

Volume 14   Issue 4  

 

Another possible reason for why EEX, TSE, and FCG did not perform well concerns the category of the 
wearable device (whether one uses it for a specific medical condition or for general fitness). In our study, 
96 percent of the survey participants reported being in fair to excellent health, 88 percent reported that a 
physician had neither recommended nor mandated them to use a device, and 77 percent had no chronic 
condition, which signifies a fairly healthy pool of respondents. Thus, overall, we conclude that study 
participants mostly focused on using fitness-oriented devices in our survey. Prior research (Gao et al., 2015) 
has identified fitness wearable device users as more anxious about privacy and about the value others place 
on using a wearable device. Research has also found age to be an extenuating factor (Gao et al., 2015), 
possibly because an older population generally has more health concerns and might be more likely to 
pursue a healthcare-oriented wearable device to address a specific medical issue. Accordingly, we 
recognize that the type of device considered and/or a participant’s age might also explain why EEX, TSE, 
and FCG performed poorly and why SIN performed somewhat better. 

We found PHVU to have a significant negative influence on PHS, which confirms H14; however, PHSE did 
not have a significant negative influence on PHS, which does not support H15. We conclude that 
vulnerability to health issues does negatively affect one’s perceived health status. H16, H17, and H18 focus 
on the moderating influence that individuals’ perceived health status has on their intention to disclose private 
information. We found that a higher PHS had a somewhat significant positive effect on the influence that 
PPR had on ITD at a significance level just above 0.10, which means that upsurges in how one perceives 
one’s health increases the effect that their privacy risk perceptions have on one’s intention to disclose private 
information, which somewhat affirms H16. Regarding healthcare wearables, people care more about the 
cost or risks associated with disclosing their private information when they have a higher perceived health 
status (i.e., perceive themselves as healthier). We also found that a higher PHS had a significant negative 
impact on the influence that HMO had on ITD, which confirms H17. People place less importance on 
pleasure when they have a higher perceived health status. Finally, we perceived that PHS had no significant 
impact on PEX, which does not support H18. We can conclude that, with a higher PHS, people’s concern 
for privacy has a higher negative influence on their intention to disclose, while the expected enjoyment they 
expect to receive from using a healthcare-related wearable device only has a small positive influence on 
their decision to disclose their personal information. In reference to RQ2, we found perception of one’s 
health status does moderate the disclosure decision process, which confirms that the privacy paradox 
exists. 

We found that PHS had no significant influence on ITA, which does not support H19. However, we did find 
that ITD had a significant positive effect on ITA, which supports H20. We can conclude that people’s 
intentions to disclose private information does affect whether or not they intend to adopt a wearable device. 
This conclusion aligns with Gao et al. (2015) who found that the single construct privacy significantly 
contributed to explaining wearable acceptance. In our study, we extended the privacy construct in order to 
capture the complex behavioral progressions surrounding its presence, which we conceptualized via the 
risk calculus, the privacy calculus, and the privacy paradox. Not only did the results correlate with Gao et 
al’s (2015), but we also perceived a greater influence in that ITD explained 29.6 percent of the variance of 
ITA in our study compared to the 21.5 percent that the singular privacy constructed account for in Gao et 
al. (2015). 

8 Conclusion 

The process to accept healthcare wearable devices features numerous influences and thought processes, 
which we can partially attribute to the sensitive information that these devices capture. While past research 
has fixated on specific privacy and acceptance aspects (Gao et al., 2015; Harmon, 2019; Scott, 2020), a 
gap remained in that we lacked work that comprehensively examined privacy in the healthcare-related 
wearable domain. Based on recognized research in the technology acceptance area, PMT, HBM, and 
privacy calculus theories, we contribute to filling that gap in this study by conceptualizing these influences 
and thought processes into a research model that we could measure and evaluate with a representative 
sample of the populace. In particular, we focused on examining privacy in the form of the privacy calculus 
(RQ1) and the privacy paradox (RQ2) in the wearable device acceptance domain. Using survey research 
and PLS-SEM analyses, we found evidence for both theories in wearable acceptance. 

Our study meaningfully expands what we presently know about the healthcare wearables’ 
privacy/acceptance paradigm. In particular, we expand previous efforts (e.g., Gao et al., 2015; Li et al., 
2016; Zhang et al., 2018) that have focused on specific research domains of the wearables paradigm and/or 
health privacy by combining antecedents to privacy disclosure with antecedents to technology acceptance. 
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Additionally, we introduced the construct perceived health status to capture how people feel about their 
health and how that perception contributes to whether they accept technology. Accordingly, this study helps 
more holistically explain the decision processes intrinsic to using an emerging technology, such as 
wearables, that has seemingly proven itself to add significance and practical value to those who use it.  

Wearable devices no longer constitute a fad that people use for curiosity’s sake; indeed, some sources 
expect wearables sales to reach US$189.9 million in 2022 (Ubrani et al., 2018). Consumers continue to 
discover genuine value in their use, especially in the health-related wearables domain, which offers 
increased management and support of one’s health and wellbeing. However, using wearable devices comes 
with some (particularly privacy-related) risks. Researchers, manufactures, and healthcare organizations 
must comprehend the role that the risk calculus, the privacy calculus, and the privacy paradox play in 
regards to the decision-making process that consumers go through to decide whether to disclose or not to 
disclose personal information. The issue becomes particularly pronounced with healthcare wearable 
devices due to their potential negative impact on individuals’ health and wellbeing (should they opt to avoid 
the technology) and the risk the devices pose to individuals’ privacy (should they opt to accept it). By 
recognizing privacy’s importance to consumers, manufacturers, in concert with healthcare professionals, 
can emphasize security in designing and implementing wearables and, thus, increase user confidence in 
whether wearable devices protect their personal information.  

For researchers, our findings add to our knowledge about the role that the privacy calculus theories play in 
the acceptance of healthcare-related wearables. This increased knowledge will enhance future research 
endeavors in the same space, especially in the realm of the privacy paradox, which a cloak of obscurity 
continues to surround (Gerber et al., 2018; Kokolakis, 2017). For wearable manufacturers, designing 
security-oriented devices will raise user confidence and help ensure that people use them (Shim et al., 
2020). For healthcare organizations, who continue to increase deployment of wearables as a part of patient 
care, understanding and addressing privacy concerns and barriers to disclosure and acceptance will 
increase confidence in wearables and thus utilization by their patients. Understanding also highlights the 
importance of transparency and ethics in regards to what information is captured and what parties will have 
access to it. This study further informs privacy and the healthcare-related wearable space, enhancing the 
value proposition of this recent and promising area of technology. 

Of course, as with any study, ours has several limitations. First, we examined healthcare wearable devices 
in general without consideration as to how different types of wearable devices might influence the 
privacy/disclosure decision process. Second, we did not consider specific health concerns; rather, we only 
considered users’ general health status. Third, no respondent in our sample reported very poor health. 
Accordingly, our study does not adequately consider the full health-status spectrum. Fourth, we found a 
similar inadequacy for education given that our sample lacked respondents without a degree. 

Our work opens up several opportunities for future research. First, researchers could resample the 
population and perform a similar analysis with the intent to address this study’s deficiencies in regards to 
health status, device type, and education. Health status and device type would be particularly useful in order 
to shed light on our hypotheses that lacked support. Second, we perceive an opportunity related to 
categorical moderation analysis (PLS-MGA) (Wong, 2019) based on participant demographics such as 
usage, chronic health condition, age, and education. A focus on participant demographics would offer a 
significant opportunity to compare the moderating effect in the context of each category. Lastly, researchers 
have an opportunity to adjust our research model (based on our findings) and focus on specific types of 
wearables in order to analyze and further understand the role of the privacy calculus and privacy paradox 
in the context of specific types of wearables. 
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Appendix A: Research Model Constructs Measurements 

Seven-point Likert scale 

Perceived threat vulnerability (PTV) (Zhang et al., 2018) 

PTV1. My information privacy is at risk of being invaded. 

PTV2. It is likely that my information privacy will be invaded. 

PTV3. It is possible that my information privacy will be invaded. 

PTV4. My information privacy is not safe from being invaded. 

Perceived threat severity (PTS) (Zhang et al., 2018) 

PTS1. If my information privacy is invaded, it would be severe. 

PTS2. If my information privacy is invaded, it would be serious. 

PTS3. If my information privacy is invaded, it would be significant. 

PTS4. If my information privacy is invaded, it would not be irrelevant. 

Response efficacy (REF) (Zhang et al., 2018) 

REF1. The privacy protection measures provided by healthcare wearable manufacturers are suitable 
for protecting my personal information. 

REF2. The privacy protection measures provided by healthcare wearable manufacturers can 
effectively protect my personal information. 

REF3. My personal information is more likely to be protected when using privacy protection measures 
provided by healthcare wearable manufacturers. 

Task self-efficacy (SEF) (Zhang et al., 2018) 

SEF1. Protecting my information privacy is easy for me when using healthcare wearable devices. 

SEF2. I have the capability to protect my information privacy when using healthcare wearable 
devices. 

SEF3. I am able to protect my information privacy without much effort when using healthcare 
wearable devices. 

SEF4. Protecting my information privacy is not difficult when using healthcare wearable devices. 

Perceived privacy risk (PPR) (Zhang et al., 2018) 

PPR1. I believe that submitting health and other privacy information for the purpose of using wearable 
devices is not advisable at all. 

PPR2. Health and other privacy information submitted for the purpose of using wearable devices will 
be abused for sure once submitted. 

PPR3. Health and other privacy information submitted for the purpose of using wearable devices 
could be shared or sold to others once submitted. 

Hedonic motivation (HMO) (Gao et al., 2015) 

HMO1. Healthcare wearable devices are fun to use. 

HMO2. Healthcare wearable devices are enjoyable to use. 

HMO3. Healthcare wearable devices are entertaining to use. 

HMO4. Healthcare wearable devices are not boring to use. 

Performance expectancy (PEX) (Gao et al., 2015) 

PEX1. Healthcare wearable devices add value to my personal life. 

PEX2. Using healthcare wearable devices helps me to achieve my healthcare goals more quickly. 
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PEX3. Using healthcare wearable devices enhances the quality of my daily healthcare requirements. 

Effort expectancy (EEX) (Gao et al., 2015) 

EEX1. It is easy for me to learn how to use healthcare wearable devices. 

EEX2. Healthcare wearable devices are easy to use. 

EEX3. Becoming skillful at using healthcare wearable devices is easy for me. 

EEX4. Healthcare wearable device are not difficult to use. 

Social influence (SIN) (Gao et al., 2015) 

SIN1. Others who are important to me would feel that I should use a healthcare wearable device. 

SIN2. Others who influence me would feel that I should use a healthcare wearable device. 

SIN3. Others whose opinions I value would prefer that I should use a healthcare wearable device. 

Technology self-efficacy (TSE) (Gao et al., 2015) 

TSE1. Using wearable devices make it easy for me to self-monitor my health-related conditions. 

TSE2. I am capable to use healthcare wearable devices to self-monitor my health-related conditions. 

TSE3. It takes little effort to use healthcare wearable devices to self-monitor my health-related 
conditions. 

Functional congruence (FCG) (Gao et al., 2015) 

FCG1. Healthcare wearable devices are anticipated to be comfortable to use. 

FCG2. Healthcare wearable devices are anticipated to be fashionable. 

FCG3. Healthcare wearable devices are anticipated to be priced appropriately according to device 
quality. 

FCG4. Healthcare wearable devices are not anticipated to be unpleasant to use. 

Perceived health vulnerability (PHVU) (Gao et al., 2015) 

PHVU1. I am at risk of suffering one or more of the following concerns: having little knowledge about 
self-healthcare, monitoring personal daily healthcare, and/or suffering health-related diseases. 

PHVU2. It is likely that I will suffer one or more of the following concerns: having little knowledge 
about self-healthcare, monitoring personal daily healthcare, and/or suffering health-related diseases. 

PHVU3. It is possible for me to suffer one or more of the following concerns: having little knowledge 
about self-healthcare, monitoring personal daily healthcare, and/or suffering health-related diseases. 

Perceived health severity (PHSE) (Gao et al., 2015) 

PHSE1. It would be severe if I suffered one or more of the following concerns: having little knowledge 
about self-healthcare, monitoring personal daily healthcare, and/or suffering health-related diseases. 

PHSE2. It would be serious if I suffered one or more of the following concerns: having little knowledge 
about self-healthcare, monitoring personal daily healthcare, and/or suffering health-related diseases. 

PHSE3. It would be significant if I suffered one or more of the following problems: having little 
knowledge about self-healthcare, monitoring personal daily healthcare, and/or suffering health-
related diseases. 

Intention to disclose (ITD) (Zhang et al., 2018) 

ITD1. I am likely to provide general personal information in the use of healthcare wearable devices 
(e.g., such as name, email, profile image, etc.). 

ITD2. I am likely to provide specific personal information in the use of healthcare wearable devices 
(e.g., such as DOB, gender, ethnicity, race, etc.). 

ITD3. I am likely to provide personal fitness and health information in the use of healthcare wearable 
devices (e.g., such as fitness activity, exercise routines, medications, health history, vital signs, etc.). 
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Intention to adopt healthcare wearable devices (ITA) (Gao et al., 2015) 

ITA1. I anticipate using a healthcare wearable device in the future. 

ITA2. I have plans to use a healthcare wearable device whenever possible. 

ITA3. I foresee increasing use of healthcare wearable devices in the future. 

ITA4. I do not anticipate avoiding the use of healthcare wearable devices in the future. 

Interval scale measurements 

Perceived health status (PHS) (Kim et al., 2015) 

1) Very poor 

2) Poor 

3) Fair 

4) Good 

5) Excellent 

Demographic 

Use recommended, mandated, or neither (USE) 

1) Recommended 

2) Mandated 

3) Neither 

Current chronic health condition (CHC) 

1) Yes 

2) No 

Gender (GDR) 

1) Male 

2) Female 

Age (AGE) (Malhotra et al., 2004). 

1) 24 or under 

2) 25-34 

3) 35-44 

4) 45-54 

5) 55-64 

6) 65 or older 

Highest level of education completed (EDU) (Malhotra et al., 2004) 

1) Some school, no degree 

2) High school graduate 

3) Some college, no degree 

4) Bachelor’s degree 

5) Master’s degree 

6) Professional degree 

7) Doctoral degree 
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