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Flow over a pipe or an elongated cylinder is widely applied in many engineering processes 
like wire coating and pipe coating. This encourages the present study to examine the fluid 
flow and heat transfer over a horizontal stretching cylinder with the impact of 
temperature-reliant thermal conductivity and thermal radiation. The influence of heat 
generation is also considered. The Carreau rheology model is applied to represent the 
liquid coating. The similarity technique is used to simplify the developed governing 
equations and then solved by the homotopy analysis method. The effects of the pertinent 
parameters such as the thermal conductivity parameter and Weissenberg number on the 
fluid field and heat transfer are studied by applying the calculated series of analytical 
solutions, which are scrutinized through graphs and tables. The Nusselt number has a 
negative function with the radiation and thermal conductivity parameters. Furthermore, 
the Weissenberg number affects the velocity and temperature profiles differently in 
conditions n < 1 and n ≥ 1, respectively. The present results are essential in optimizing 
the pipe coating process. 
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1. Introduction 
 

Carreau fluid has recently been concerned by plenty of researchers due to its importance in the 
coating process, polymeric suspensions, food processing, wire coating, and chemical engineering. 
The Carreau model incorporates the Newtonian model and the power-law model. It was proposed 
by Carreau [1] to overcome the inadequate power-law constitutive relation while predicting the 
viscosity with an extremely huge or extremely small shear rate. El Misery et al., [2] deliberated the 
separation flow of a Carreau fluid that is incompressible in a uniform tube through peristaltic motion. 
A similar problem was considered by Akbar et al., [3] by including the impact of mass and thermal 
transfer. Akbar et al., [4] scrutinized the boundary layer stagnation-point flow of Carreau liquid over 
a shrinking sheet in the presence of a magnetic field. Two different sets of numerical solutions were 
obtained, and the effect of the shrinking parameter, magnetic number, and Weissenberg number, 
on the fluid flow was analyzed. Further, Hayat et al., [5] elucidated the impact of the Newton 
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boundary conditions on a Carreau fluid flow past through a stretched sheet. The authors observed 
that the velocity and temperature profiles have an opposite behavior under the effect of the power-
law index.  

Khan [6] emphasized the consequence of nonlinear stretching surface on the Carreau boundary 
layer fluid flow and heat transmission. Hayat et al., [7] discussed the properties of Soret and Brownian 
motion on the nanofluid with Carreau rheology toward a heated elongating plane. The three-
dimensional Carreau fluid flow and heat transmission through a bidirectional elongating sheet were 
scrutinized by Khan et al., [8]. The consequence of irregular thermal radiation was also considered. 
The authors found that the shear-thickening fluid and shear-thinning fluid provide a conflicting 
behavior on the velocity distribution for the various value of the Weissenberg number.  

Many industrial or manufacturing procedures involve flow over a stretching cylinder such as 
paper construction, pipe coating, polymer, crude oil refinement, glass fiber production, photographic 
films, and drawing wire. Generally, the flow over a cylinder is assumed to be axisymmetric, resulting 
in the governing equations containing a transverse curvature term. This term has a significant 
influence on the velocity field. In view of this, Wang [9] theoretically discussed a viscous, 
incompressible, and steady fluid flows over a stretching tube. This pioneering work has inspired some 
researchers to investigate the Carreau fluid flow which has been induced by a stretching or shrinking 
tube. Salahuddin [10] elucidated the flow of Carreau fluid toward a stretching cylinder. The impact 
of the various embedding parameters such as the power-law index, Weissenberg value, and 
curvature parameter on the fluid movement was discussed. However, in the study, only the shear-
thickening fluid is focused on.  

Moreover, the heat transfer in Carraeu fluids over a stretched cylinder has relevant applications 
in sciences and engineering. Thus, Khan et al., [11] have studied the impact of the melting heat 
phenomenon, and the stretching rate on the Carreau liquid flows over a cylinder. The finding shows 
that the boundary layer thickness of the momentum is getting larger. Salahuddin et al.,[12] 
constructed a study on Carreau nanofluid near a linear enlarging cylinder with the effect of slip flow, 
chemical reaction, and magnetic field. The authors concluded that the fluid flows have a higher 
velocity, concentration, and temperature than the fluid through a stretching sheet. Hayat et al., [13] 
studied the consequence of Newtonian heating and thermal radiation on a Carreau fluid movement 
induced by a stretching plane with a chemical reaction. The authors detected that the temperature 
distribution is enhanced for larger radiation parameters and smaller Weissenberg numbers. Khan et 
al., [14] highlighted the significance of the magnetic field and Ohmic heating on the thermal and mass 
transmission of nano-Carreau fluid through a sloping heated elongating cylinder. 

The impact of the curvature parameter, power-law index, and Weissenberg number on the rate 
of heat transfer was discussed. Gangadhar et al., [15] presented the effect of temperature jump, and 
slip boundary conditions on the MHD Carreau Cattaneo-Christov heat fluid over a stretching cylinder. 
The reflection of the velocity and temperature profile for the various value of the Biot number was 
graphically displayed and analyzed. Gopal and Kishan [16] numerically elaborated the unsteady flow 
of Carreau fluid past a shrinking cylinder. The impact of the unsteadiness, thermal relaxation 
parameter, and Wiesenberger number on the distribution of fluid motion and heat was analyzed. 
Recently, Song et al., [17] analyzed the impact of the melting heat phenomenon and bioconvection 
on a nano-Carreau fluid flow driven by a nonuniform stretching cylinder. Akram et al., [18] 
acknowledged the significance of the abnormal heat generation on Carreau fluid that contains 
nanoparticles. Besides, the authors have also considered the same configuration as concerned by 
Song et al., [17]. The effect of the nonlinear stretching and shrinking rate of a cylinder on an MHD 
non-Newtonian fluid was discussed by  Kardri et al., [19]. The influence of the heat source and viscous 
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dissipation have been considered, the author found that the shear stress and heat transmission are 
enhanced by the curvature of the cylinder.  

So far, all the aforementioned literature has treated the thermal conductivity of the ambient fluid 
to be constant. However, in real-world circumstances, such properties demand variable 
characteristics. The thermal conductivity of liquid metals is approximated to be directly proportional 
to the temperature from 0 °F to 400 °F [20-25]. Recently, Khan et al., [26] investigated the effect of 
combined electrical and MHD fields on the flowing of nano-Carreau fluid passing a stretching 
oscillatory porous surface in the existence of temperature-dependent thermal conductivity. The 
authors observed that a high conduction process is produced when the parameter for thermal 
dependence conductivity is increased. Furthermore, Abbas et al., [27] acknowledged the 
characteristic of the MHD Carreau fluid with variable thermal conductivity under the influence of 
variable viscosity toward a permeable sheet that is stretched. The heat transport with convective 
heat flux was discussed. The characteristics of the velocity, concentration, and heat fields under the 
impact of diverse fluid parameters such as the suction parameter, Weissenberg number, Lewis 
number, and magnetic parameter were analyzed graphically. Recently, the effect of the modification 
in thermal conductivity on a bioconvection non-Newtonian fluid movement was studied by Yin et al., 
[28]. The flow was assumed across a stretching tube, and the results revealed that the variable 
thermal conductivity parameter increases the rate of heat exchange. Furthermore, Nabwey et al., 
[29] investigated the bioconvection of the nanofluid with Carreau rheology behavior. The impact of 
the sloping stretchable cylinder and the variable conductivity in thermal on the fluid properties was 
discussed. More relevant investigations about the significance of the inconstant thermal conductivity 
that is dependent on the temperature can be found in Hayat et al., [30], Jain et al., [31], Salahuddin 
et al., [32], Malik et al., [33], Rangi et al., [34], Ewis [35].    

To the best of the author’s knowledge, the research on the impact of stretching rate, heat 
generation, and thermal radiation on the fluid field and heat transmission of a Carreau fluid passing 
a cylinder under the influence of temperature-reliant thermal conductivity has not been conducted 
in the literature yet. Hence, the objective of the current investigation is to explore the behavior of 
the heat transport and Carreau fluid flow through a stretching cylinder in attendance of temperature-
dependent conductivity, heat source, and thermal radiation. Due to the effectiveness of the HAM in 
solving highly non-linear differential equations, HAM is applied in the current study. The developed 
Mathematica solver by Liao [36-38], which is named BVPh2.0, is utilized to compute the solutions. 
 

 

Fig. 1. Schematic diagram of fluid flow over a stretching pipe under the effect of heat source and 
thermal radiation  
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2. Methodology 
2.1 Mathematical Formulation 
 

An incompressible axisymmetric flow of steady two-dimensional Carreau fluid toward an 
elongating cylinder is studied in the present research. The r-axis is determined along the radial 
direction and the x-axis is measured along the axial direction, as presented in Figure 1. A cylinder 
with radius R and l characteristic length is considered. 𝑈!	is the reference velocity, and the cylinder 
is stretched with a velocity	𝑈!𝑥/𝑙. 𝑇" is the temperature at the surface of the cylinder and 	𝑇# is 
assumed to be the ambient temperature. Carreau fluid model is applied to model the rheology of the 
fluid flow. The Cauchy stress tensor for Carreau fluid is written as [3, 5, 10, 12] 

 
 (1) 

 
With 
 

 (2) 

 
Where the first kind Rivlin-Erickson tensor 𝐑, the infinite-shear-rate viscosity	𝜇#,	the viscosity of the 
shear rate μ, the power-law index n, 	the viscosity of the zero-shear rate 𝜇!, 	and the material time 
constant Γ. χ	is the shear rate and is expressed as  
 

 (3) 

 
where the second invariant strain tensor is denoted by Δ. The current study deliberates the case for 
𝜂# = 0	and		𝛤𝜒 < 1, in the constitutive Equation (1) thus by binomial expansion, Equation (2) 
become 
 

 (4) 

 
Substitute Equation (4) into (1), and the stress tensor can be exhibited as  
 

 (5) 
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where the kinematic viscosity is denoted by υ. The considered boundary conditions are 
 

 
 

(8) 

 
The energy equation of the Carreau fluid in the presence of temperature generation and thermal 
radiation on the stretching tube is given by  
 

 (9) 

 
with the density ρ, the thermal conductivity α, the thermal radiation 𝑞$, the specific heat	𝑐%, and the 
heat source 𝑄!. Equation (9) is subjected to boundary conditions as 
 

 (10) 

 
The Rosseland approximation is applied to approximate the derivative of the thermal radiation. 
Following [28, 31, 39, 40], we have  
 

 (11) 

 
Where 	𝜎∗	defines the Stefan-Boltzmann constant and the mean absorption coefficient is denoted by 
	𝑘∗. Substitutes Equation (11) into Equation (9), thus obtaining  
 

 (12) 

 
In the range between -17.78°C to 204.444°C, the thermal conductivity is linearly proportional to the 
temperature and can be assumed as	𝛼 = 	𝛼#(1 + 𝜀𝜃) [30, 32, 34]. 𝛼# is the constant thermal 
conductivity at 𝜂 → ∞ and ε is the small quantity. 
 
2.2. Similarly Transformation 
 

Equations (12) and (6)-(7) are transformed into ordinary differential equations by utilizing the 
subsequent similarity variables[10, 32] 
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Substitute Equations (13) into Equations (6), (7), and (12). Equation (6) is automatically satisfied, and 
Equations (7) and (12) reduce to 
 

 (14) 

 (15) 

 
with boundary conditions 
 

 (16) 

 
where the prime indicates differentiation with respect to η, the curvature parameter λ, We is the 
Weissenberg number, the heat generation parameter Q, the Prandtl number is defined by Pr, and 
the radiation number Rd. These parameters are defined by 
 

 (17) 
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conductivity has also been taken into consideration. The guessed and selected initial estimates and 
the linear operator are  

 
 (20) 

 (21) 
 
The above auxiliary linear operator has the following properties:  
 

 (22) 
 
Where 𝑎(, 𝑎), 𝑎0, 𝑎1, and	𝑎2	are arbitrary constants. The kth deformation equations for Equations 
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The established BVPh 2.0 (a Mathematica package) by [38] has been employed to calculate 	𝜃5 and 
𝑓5 for k ≥ 1 and then the solutions of the governing equations. The convergence control 
parameters		ħ*	and ħ3	are introduced to assure the convergence of the series solutions. The average 
residual error technique calculates the optimal kth-order approximation convergence control 
parameters. The residual error for 		ħ*	and ħ3	 are defined as  
 

   (27) 

   (28) 
 
Where the step size δη, Z is an integer and		𝜂6 = 𝑖(δη). For further information, the explanation and 
application of the HAM in different fields can be referred to in the book by [38]. the optimal values 
at the kth-order approximation of the convergence control (ħ*	and ħ3	) are calculated by the 
minimum of the total error 𝐸5789:/(ħ* , ħ3).  
 
3. Results and Discussions 
 

The optimal convergence control parameters of momentum and energy equation for λ = We = 
0.1, Pr =0.7, ε = Q = 0.2, Rd = 1, and n = 1.2, from 1st order up to the 6th- order of estimation is 
showed in Table 1 respectively. Table 1 demonstrates that the total error reduces to 7.77228 × 10,0 
from 	3.62064 × 10,) as increasing the order of approximations. The 6th-order optimal 
approximations convergence-control parameters are ħ* =	−1.48981		and		ħ3 =	−0.557282.  

Table 1 shows the series of analytical solutions converging in 	−1.48981 ≤ ħ* ≤ −0.809868	 for 
velocity profile and 	−0.557282 ≤ ħ3 ≤ −0.323611	 for temperature profile. For generality, the 3rd 
order of approximation of		ħ* =	−1.29224		and		ħ3 =	−0.47300	 (see Table 1) is chosen to 
calculate the results for the following analysis. In this way, the profile and total error residual against 
the order of calculation of the series solution for λ = We = 0.1, ε = Q = 0.2, Pr =0.7, Rd = 1, and n = 1.2, 
are exhibited in Figure 2 and Table 2 respectively. The total residual error is indeed diminishing as 
the order of calculation increases (see Table 2 and Figure 2). 
 
 

 
Fig. 2. The total error profile with ħ! =	−1.27994		and		ħ" =	−0.481381	for λ = We = 0.1, ε = Q 
=0.2, Rd = 1, Pr =0.7, and n = 1.2. 
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Table 3 displays that the current results are in outstanding agreement with the former numerical 
results. For different values of λ in limiting cases, Table 3 compares the obtained solutions in a 
published journal paper with the present computed skin friction coefficient to validate the 
determined series solution. Furthermore, Table 4 presents that the present solutions for the local 
Nusselt number are well in agreement with the output given in [41] and [42]. The comparison for the 
local Nusselt number −𝜃;(0) is made for various magnitudes of Pr at n = 1 and We =λ= Rd = ε = Q =0. 
This has enhanced our confidence in the solutions determined in the present study.  
 

Table 1  
kth- orders of optimal approximation value of ħ!		and ħ" for λ = We = 0.1, ε = Q = 0.2, Rd = 1, Pr =0.7, and 
n = 1.2 

k 𝐸#$%&'( ħ) ħ* 
1 3.62064 × 10+, -0.809868 -0.323611 
3 1.31479 × 10+, -1.29224 -0.47300 
6 7.77228 × 10+- -1.48981 -0.557282 

 
Table 2  
The results of the square residual errors of the kth-orders series solutions for Pr =0.7, λ = We = 0.1, ε = Q 
= 0.2, Rd = 1, and n = 1.2 

k 𝐸#
) 𝐸#* 𝐸#$%&'( time-consuming (s) 

10 8.39599 × 10+. 6.39686 × 10+- 6.40526 × 10+- 104.845 
20 4.40212 × 10+. 4.68824 × 10+- 4.69264 × 10+- 2154.28 
30 3.00318 × 10+. 4.00734 × 10+- 4.01034 × 10+- 14720.7 

 
Table 3  
The results of the 𝐶!/𝑅𝑒$ in [11], [15], [43], and the present result for a range of values of 
curvature number λ with n = 1 and We = 0 

λ [11] [43] [15] Present 
0.1 -1.03698 -1.03698 -1.03698 -1.03989 
0.3 -1.11117 -1.11114 -1.11115 -1.11881 
0.7 -1.25705 -1.25701 -1.25702 -1.27297 
1.0 -1.45337 -1.36387 -1.36387 -1.38641 

 
Table 4  
The results of the 𝑁𝑢//𝑅𝑒$ in [41], [42] and the present result for a range of 
values of Pr with n = 1 and λ  = Q =We = Rd = ε =0 

Pr [41] [42] Present 
1 0.5832 0.5830 0.5835 
10 2.3080 2.3080 2.3095 

 
Figure 3 depicts an increment in the velocity when a higher number of λ, the curvature 

parameter, is applied. This is because the cylinder radius is negatively proportional to the curvature 
parameter λ. A bigger curvature number λ gives a smaller diameter of the cylinder, consequently 
reducing the touching region of the fluid with the cylinder surface. Hence, the resistive force 
generated by the surface of the tube reduces the fluid velocity.  

Additionally, the curvature λ has caused the decline of the temperature at the exterior of the tube, 
as described in Figure 4, since less conduction of heat from the tube to the ambient fluid is allowed 
due to the narrow contact surface. While the λ increases the temperature distribution in the region 
far away from the pipe (cylinder). 
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Fig. 3. 𝑓%(𝜂) against η for numerous magnitudes of λ with n = 1.2 and We = 0.1 

 
 

 
Fig. 4. 𝜃(𝜂) against η for various magnitudes of λ with n = 1.2, We = 0.1, Pr = 0.7, Rd = 1, and ε = Q = 0.2 
 
The space in the fluid is uplifted as the power-law index n has been improved. As a result, the 

velocity of the liquid is raised as seen in Figure 5. The larger n has made the momentum boundary 
layer becomes thicker. As n approaches 1, the fluid will behave Newtonian characteristics, leading to 
a decline in velocity as bigger viscosity is produced. The temperature distribution is diminished 
regarding the high value of the n, as illustrated in Figure 6.  

Figure 8 demonstrates that the velocity profile of 𝑛 > 1 (shear-thickening fluid), is positively 
proportional to the Weissenberg number We. Contradictory, there is a decrease in the velocity 
distribution for 𝑛 < 1	(shear − thinning	fluid),	as illustrated in Figure 7. Physically, We is linearly 
dependent on 𝛤 (the fluid relaxation time) as given in Equation (17). Accordingly, we assume 𝛤�̇� <
1, thus the shear rate decreases, which results in 𝑛 < 1 fluid with high viscosity but 𝑛 > 1	fluid with 
low viscosity. In contrast, the shear-thinning fluid	temperature increase for a larger number of the 
We (see Figure 9). However, a conflicting tendency is illustrated in Figure 10 for the shear-thickening 
fluid.  

Figure 11 interprets that increment enhances the heat transfer in radiation parameters. An alike 
phenomenon is detected in Figure 12. The heat source parameter Q improves the thermal boundary 
layer. An improvement in temperature distribution is also achieved by increasing the ε parameter as 
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established in Figure 13. The thermal conductivity parameter ε increases the α of the fluid. Thus, 
more thermal is transported from the pipe (tube) to the Carreau fluid and thus induces an increment 
in kinetic energy of the fluid in particles which enhances the variation of thermal behavior.  

 
Fig. 5. 𝑓%(𝜂) against η for numerous magnitudes of n with We = λ =0.1 

 

 
Fig. 6. 𝜃(𝜂) against η for various magnitudes of n with λ = We = 0.1, Rd = 1, Pr = 0.7, and ε = Q = 0.2 

 
The behavior of local skin friction and local Nusselt number for a range of pertinent parameters 

Pr, λ, ε, n We, Q, and Rd are directed in Tables 5 and 6, respectively. When n =1.2, the We number 
increases the local skin friction. An opposite trend is noticed when n =0.5 is applied. The curvature 
and power-law index, respectively, has enhanced the skin friction coefficient, as indicated in Table 5.  
Furthermore, the local Nusselt number |𝜃;(0)| is increased by the value of λ, Pr, We, and n, but a 
decrease happens when n = 0.5 for increasing the number of We. A decline is observed in the local 
Nusselt number |𝜃;(0)| when ε, Rd, and Q is enhanced respectively. 
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Fig. 7. 𝑓%(𝜂) against η for various magnitudes of We with n = 0.5 and λ =0.1 
 

 
Fig. 8. 𝑓%(𝜂) against η for several values of We with n = 1.2 and λ =0.1 

 

 
Fig. 9. 𝜃(𝜂) against η for various magnitudes of We with n = 0.5, Pr = 0.7, Rd = 1, λ = 0.1, and ε = Q = 0.2 
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Fig. 10. 𝜃(𝜂) against η for various magnitudes of We with n = 1.2, Pr = 0.7, λ =0.1, Rd = 1, and ε = Q = 0.2 
 

 
Fig. 11. 𝜃(𝜂) against η for different magnitudes of Rd with n = 1.2, ε = Q = 0.2, Pr = 0.7, and λ = We = 0.1 
 

 
Fig. 12. 𝜃(𝜂) against η for different magnitudes of Q with λ = 0.1, Rd = 1, We = 0.1, Pr = 0.7, n = 1.2, and ε = 
0.2. 
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Fig. 13. 𝜃(𝜂) against η for different magnitudes of ε with n = 1.2, ε = 0.2, Pr = 0.7, Rd = 1, and λ = We = 0.1 

 
Table 5  
The results of the 𝐶!/𝑅𝑒$ for a range of values of We, n, and λ 

We n λ Cf/Re 
0.1 0.5 0.1 -1.03890 
0.5 - - -1.01732 
0.8 - - -0.956351 
0.1 1.2 0.1 -1.04012 
0.5 - - -1.04782 
0.8 - - -1.05928 
0.1 1.4 0.1 -1.04045 
- 1.6 - -1.04078 
0.1 1.2 0.5 -1.19653 
- - 1.0 -1.38680 

 
Table 6  
The results of the 𝑁𝑢//𝑅𝑒$		for a range of values of Rd, Pr, ε, Q, We, n, and λ 
Rd Pr ε Q λ We n Nu/Re 
1 0.7 0.2 0.2 0.1 0.1 1.2 -0.278256 
2 - - - - - - -0.266297 
3 - - - - - - -0.261270 
1 1 0.2 0.2 0.1 0.1 1.2 -0.288260 
- 2 - - - - - -0.338026 
1 0.7 0.0 0.2 0.1 0.1 1.2 -0.285406 
- - 0.4 - - - - -0.272009 
1 0.7 0.2 0.0 0.1 0.1 1.2 -0.346583 
- - - 0.4 - - - -0.241521 
1 0.7 0.2 0.2 0.5 0.1 1.2 -0.387327 
- - - - 1.0 - - -0.506564 
1 0.7 0.2 0.2 0.1 0.5 1.2 -0.278624 
- - - - - 0.8 - -0.279249 
1 0.1 0.2 0.2 0.1 0.1 1.4 -0.278271 
- - - - - - 1.6 -0.278287 
- - - - - 0.1 0.5 -0.278201 
- - - - - 0.5 - -0.277169 
- - - - - 0.8 - -0.274279 
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4. Conclusions 
 

The thermal and Carreau fluid characteristic passing a horizontal stretching cylinder have been 
concerned, and the influence of thermal radiation and heat source are included. Furthermore, to be 
more realistic, the thermal conductivity of the Carreau fluid is taken to be dependent on the 
temperature of the fluid. The similarity conversion technique is utilized to convert the momentum 
and energy equations into nonlinear ordinary differential equations. Then, the homotopy analysis 
scheme approximates the analytical solutions of the similarity-transformed governing equations. The 
method is verified by comparing the current results with the existing solutions for a limiting case in 
the literature. The method is found appropriate for solving the proposed problem. The effects of the 
Weissenberg number, heat generation parameter, radiative number, curvature number, and 
temperature-dependent thermal conductivity on the fluid movement and thermal distribution are 
discussed. From this investigation, we can conclude: 

• The HAM is appropriate to be used to solve the developed highly non-linear ordinary 
governing equations.  

• Q, λ, ε, and Rd accelerate the thermal distribution. In contrast, the n and Pr reduce the 
temperature.  

• A conflict behavior is identified on the temperature profiles due to the Weissenberg number. 
The temperature shows an increasing function at 𝑛 = 0.5 when We is increased but an 
opposite tendency is detected when 𝑛 = 1.2.  

• For the velocity profiles, the magnitude is enhanced when We is amplified for 𝑛 = 1.2. 
Contradicting, the momentum thickness is reduced when 𝑛 = 0.5 and We is enhanced.  

• The velocity profile is improved by the λ and n. 
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