
 

GEOSPATIAL-BASED DATA AND KNOWLEDGE DRIVEN APPROACHES 

FOR BURGLARY CRIME SUSCEPTIBILITY MAPPING 

IN URBAN AREAS  

 

  

 

 

 

 

 

 

 

SUZANNA NOOR AZMY 

 

 

 

 

 

 

 

A thesis submitted in fulfilment of the  

requirements for the award of the degree of 

Doctor of Philosophy 

 

 

Faculty of Built Environment and Surveying 

Universiti Teknologi Malaysia 

 

 

 

 

 

 

NOVEMBER  2020 



iv 

DEDICATION 

 

 

 

 

 

This thesis is dedicated to the awesome parent that I have: 

Ayah, Noor Azmy Zainaabidin who never considered financial disabilities as 

an end to higher education. To Mama, Siti Zurina Mohd Zulkifli that always 

understands my difficulties by being there for Noah.  

To my better half: 

Ahmad Fakhruddin - for believing in me, and willingly becoming my shoulder 

to cry on. Thanks for all the emotional support and encouragement.  

To my siblings – Mohd Sabri, Suhana Iryani and Syafierul Asraf for support 

and sometimes, a loan.  

Last but not least, my two PhD babies –  

Noah Hamzah and Indah Hifza.  

   



v 

ACKNOWLEDGEMENT 

In preparing this thesis, I was in contact with many people, researchers, 

academicians, and practitioners. They have contributed towards my understanding and 

thoughts. In particular, I wish to express my sincere appreciation to my main thesis 

supervisor, Dr Muhammad Zulkarnain Bin Abd Rahman, for encouragement, 

guidance, critics and cooperation. I am also very thankful to my co-supervisor Dr 

Shahabuddin Bin Amerudin and Dr Othman Bin Zainon for their support, advice and 

motivation. Without their continued support and interest, this thesis would not have 

been the same as presented here.I also would like to thanks Dr Mohammad Zakri Bin 

Tarmidi and Dr Mohd Faisal Bin Abdul Khanan for their opinion and pitched ideas in 

improving my research.  

I am also indebted to Universiti Teknologi Malaysia (UTM) and Ministry of 

Higher Education for funding my Ph.D study. Polis Diraja Malaysia also deserves a 

special thanks for the effort and cooperation given in numerous series of data 

collection. I would like to convey a special thanks to ASP Mohd Sofian Bin Redzuan, 

ACP Mohd Soaihami Bin Hj Rahim and the police officers and staff at Johor Bahru 

Utara District Head Office (IPD Johor Bahru Utara). Along with that, I also like to 

proclaim a million thanks to other data providers such as PlanMalaysia, DOSM, DBKL 

and MaCGDI for the geospatial data provided.  

My fellow postgraduate student should also be recognised for their support. 

My sincere appreciation also extends to all my colleagues and others who have 

provided assistance at various occasions, especially my TropicalMap Lab buddies who 

also lend an ear and piece of ideas on my academic rants and conversation – Atikah, 

Asraf, Ayong, Radhie, Raisha, Jah, Naza and Tam. I am also grateful to be in this  

journey with Malyn KZ and Jac Paska which very helpful since the first day I’m 

joining the lab until the day that I submitted this hardbound. I would like to convey 

my gratitude on my postgraduate buddies that shared the same struggle that direct and 

indirectly help me with my studies. Their views and tips are useful indeed. 

Unfortunately, it is not possible to list all of them in this limited space. I am grateful 

to all my family member for continuous support, patience and understanding. 

   



vi 

ABSTRACT 

The Damansara-Penchala region in Malaysia, is well-known for its high frequency 

of burglary crime and monetary loss based on the 2011-2016 geospatial burglary data 

provided by the Polis Diraja Malaysia (PDRM). As such, in order to have a better 

understanding of the components which influenced the burglary crime incidences in this 

area, this research aims at developing a geospatial-based burglary crime susceptibility 

mapping in this urban area. The spatial indicator maps was developed from the burglary 

data, census data and building footprint data. The initial phase of research focused on the 

development of the spatial indicators that influence the susceptibility of building towards 

the burglary crime. The indicators that formed the variable of susceptibility were first 

enlisted from the literature review. They were later narrowed down to the 18 indicators 

that were marked as important via the interview sessions with police officers and burglars. 

The burglary susceptibility mapping was done based on data-driven and knowledge-driven 

approaches. The data-driven burglary susceptibility maps were developed using bivariate 

statistics approach of Information Value Modelling (IVM), machine learning approach of 

Support Vector Machine (SVM) and Artificial Neural Network (ANN). Meanwhile, the 

knowledge-driven burglary susceptibility maps were developed using Relative 

Vulnerability Index (RVI) based on the input from experts. In order to obtain the best 

results, different parameter settings and indicators manipulation were established in the 

susceptibility modelling process. Both susceptibility modelling approaches were 

compared and validated with the same independent validation dataset using several 

accuracy assessment approaches of Area Under Curve - Receiver Operator Characteristic 

(AUC-ROC curve) and correlation matrix of True Positive and True Negative. The matrix 

is used to calculate the sensitivity, specificity and accuracy of the models. The 

performance of ANN and SVM were found to be close to one another with a sensitivity of 

91.74% and 88.46%, respectively. However, in terms of specificity, SVM had a higher 

percentage than ANN at 57.59% and 40.46% respectively. In addition, the error term in 

classifying high frequency burglary building was also included as part of the 

measurements in order to decide on the best method. By comparing both classification 

results with the validation data, it was found that the ANN method has successfully 

classified buildings with high frequency of burglary cases to the high susceptibility class 

with no error at all, thus, proving it to be the best method. Meanwhile, the output from 

IVM had a very moderate percentage of sensitivity and specificity at 54.56% and 46.42% 

respectively. On the contrary, the knowledge-driven susceptibility map had a high 

percentage of sensitivity (86.51%) but a very low percentage of specificity (16.4%) which 

making it the least accurate model as it was not able to classify the high susceptible area 

correctly as compared to other modelling approaches. In conclusion, the results have 

indicated that the 18 indicators used in this research could be employed to successfully 

map the burglary susceptibility in the study area. Furthermore, it was also found that 

residential areas within the vicinity of Brickfields, Bangsar Baru, Hartamas and Bukit 

Pantai are consistent to be classified as high susceptible areas, meanwhile areas of Jalan 

Duta and Taman Tunku are both identified as the least susceptible areas across the 

modelling methods. 
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ABSTRAK 

Kawasan Damansara-Penchala di Malaysia, diketahui dengan kekerapan jenayah 

pecah rumah berserta kerugian kewangan yang tinggi berdasarkan data geospatial pecah 

rumah yang diperolehi daripada Polis Diraja Malaysia (PDRM) untuk tahun 2011-2016. 

Dengan itu, dalam usaha untuk meningkatkan kefahaman tentang komponen yang 

mempengaruhi kejadian jenayah pecah rumah di kawasan ini, kajian ini bertujuan untuk 

membangunkan pemetaan kecenderungan jenayah pecah rumah dalam kawasan 

perbandaran. Peta penunjuk spatial telah dibangunkan daripada data pecah rumah, data 

banci dan data tapak bangunan. Peringkat awal kajian difokuskan kepada pembangunan 

penunjuk spatial yang mempengaruhi kecenderungan sesuatu bangunan kepada jenayah 

pecah rumah. Penunjuk yang membentuk pembolehubah kecenderungan diperolehi 

terlebih dahulu daripada kajian literatur. Ianya kemudian disenarai pendek kepada 18 jenis 

penunjuk yang ditandakan sebagai penting melalui proses temu bual bersama pegawai 

polis dan pelaku pecah rumah. Pemetaan kecenderungan ini telah dibangunkan berasaskan 

data dan pengetahuan. Peta berasaskan data telah dibangunkan menggunakan teknik 

statistik Pemodelan Nilai Maklumat (IVM) dan pendekatan pembelajaran mesin – Mesin 

Sokongan Vektor (SVM) dan Rangkaian Neural Buatan (ANN). Manakala, peta 

kecenderungan pecah rumah berasaskan pengetahuan dibangunkan menggunakan formula 

Indeks Kerentanan Relatif (RVI) berdasarkan input daripada pakar. Bagi memperoleh 

hasil terbaik, pelbagai tetapan parameter dan manipulasi penunjuk telah diwujudkan dalam 

proses pemodelan kecenderungan. Kedua-dua kaedah pemodelan dibandingkan dan 

disahkan dengan set data pengesahan bebas yang sama menggunakan beberapa kaedah 

penilaian daripada Luas dibawah Lengkung-Ciri Operator Penerima (AUC-ROC) dan 

matriks korelasi bagi Positif Benar dan Negatif Benar. Matriks ini digunakan untuk 

mengira kepekaan, ketentuan dan ketepatan setiap model. Prestasi bagi ANN dan SVM 

adalah lebih kurang sama iaitu dengan nilai kepekaan masing-masing sebanyak 91.74% 

dan 88.46%. Walaubagaimanapun, daripada segi ketentuan, SVM memperoleh peratusan 

yang lebih tinggi berbanding ANN iaitu masing-masing 57.59% dan 40.46%. Selain 

daripada itu, selisih dalam pengelasan kekerapan pecah rumah bangunan yang tinggi 

sebagai kecederungan tinggi juga dipertimbangkan dalam memilih kaedah terbaik. 

Melalui perbandingan hasil pengelasan dengan data daripada set data pengesahan, didapati 

kaedah ANN berjaya mengelaskan bangunan dengan kekerapan kes pecah rumah yang 

tinggi kepada kelas kecenderungan tinggi dengan tiada langsung selisih, lalu dipilih 

sebagai kaedah terbaik. Sementara itu, hasil daripada kaedah IVM berprestasi sederhana 

dengan nilai kepekaan dan ketentuan sebanyak 54.56% dan 46.42%. Sebaliknya, kaedah 

pemetaan menggunakan pendekatan berasaskan pengetahuan mempunyai kepekaan yang 

tinggi (86.51%), tetapi peratusan ketentuannya terlalu rendah (16.4%) yang 

menjadikannya model yang kurang tepat berikutan ianya gagal untuk mengkelaskan 

kawasan berkecenderungan tinggi dengan tepat berbanding kaedah pemodelan lain. 

Kesimpulannya, keputusan mendapati kesemua 18 penunjuk yang dikenal pasti dalam 

kajian ini boleh digunakan bagi memetakan kecenderungan jenayah pecah rumah dalam 

kawasan kajian. Seterusnya, kawasan perumahan di sekitar Brickfields, Bangsar Baru, 

Hartamas dan Bukit Pantai dikenal pasti secara konsisten sebagai kawasan 

berkecenderungan tinggi manakala perumahan di sekitar Jalan Duta dan Taman Tunku 

telah dikenal pasti sebagai kawasan berkecenderungan rendah melalui kesemua kaedah 

yang telah digunakan.  
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CHAPTER 1  

 

 

INTRODUCTION 

1.1 Background Study 

Crime is a serious problem faced by every nation worldwide, regardless of the 

economic and political status. The unsettled crime issues entanglement with human 

life is critical that it is described as “a part of our way of living” by Brantingham and 

Brantingham (1995). Crime evolves through years, mostly with the economic 

revolution. This claim is supported by Zhong, Yin, Wu, Yao, Wang and Yu (2011) as 

they found that the crime rate in Shanghai, China has increased 50 times in 1970 

compared to the crime rate in 1960 and 1950. The economic revolution has increased 

the population density and the concentration of human activities in Shanghai as the 

city centre (Zhong et al., 2011). The good economic condition has also added the 

attractiveness for the crime to be inflicted. Meanwhile, the highly concentrated 

population has created the instability of socioeconomic gaps which increases the 

motivation for crime to be committed. The same traits can be seen in the rapid 

development of urban cities in Malaysia. The rapidly growing city has higher crime 

offending due to high population density especially in the working-class 

neighbourhood (Marzbali, Abdullah, Razak and Tilaki, 2011b; Yaakob, Masron and 

Masami, 2012).  

With the increasing number of crime committed annually, the authority has 

conducted many efforts to deter crime. The most primitive effort to prevent the 

occurrence of crime includes  patrols by the neighbourhood watch at  in places with 

frequent crime occurrence. The basic idea of crime prevention through environmental 

design was pitched by Enrico Ferri as early as 1899 commented on the character of 

spatial features which makes it prone to crime and outlines several features that 

discourage the crime offence (Nicotri, 1929). Later in 1971, the term “environmental 

criminology” was coined by Jeffery (1971) but were ignored by the authority since the 
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early studies of crime tend to focus on three elements of crime that consists of the 

victim (what makes some people more susceptible to crime than others), the law (how 

laws affect crime) and offenders (what makes some people commit crime) (Jeffery, 

1971). During this era, the theory of crime is being actively produced. Some of the 

examples of theories include Routine Activity Theory (Cohen and Felson, 1979) 

followed by Geometric Theory of Crime (Brantingham and Brantingham, 1993, 1995), 

Rational Choice Theory (Clarke and Cornish, 1985) and others. The underlying 

dynamics of  crime occurrence location were proven empirically a long time ago by 

researches conducted by Quetelet (1831) and Mayhew (1861) as reported by Beirne 

(1986). Since then, the criminology research involving the elements of geography in 

crime has been expanded with the improvement of data scale, from county to census 

tract to smaller unit, and today, to individual level of data such as building unit or land 

parcel. The improvement of technology indeed has enhanced the human capability in 

collecting, gathering and analysing data in a more accurate manner.  

Crime in Malaysia is not a heterodox problem. According to the index crime 

statistics by Numbeo (2016) as shown in Figure 1.1, Malaysia is ranked 15th place 

with a crime rate of 65.56 crimes per 100,000 population. To be placed between the 

highly populous countries such as Jamaica, Bangladesh and Brazil, this is not to be 

proud of since Malaysia’s population is much smaller compared to the other listed 

countries.  However, in the same webpage, Malaysia is surprisingly ranked third (3rd) 

place for the highest crime index in Asia region for the year 2016 after Bangladesh 

and Syria, beating Indonesia. This sort of information will outturn a negative 

connotation to people regarding safety, alas the potential tourist or business 

collaboration which will indirectly affect the economy of Malaysia. 

In general, crime can be categorized into violent crime, property crime and 

cyber-crime (Brown, Gunderson and Evans, 2000). In Malaysia, property crimes are 

reported to make up about 90% of the crime's occurrence for 24 years dated from 1980 

to 2004 (Johar, Hosni and Zulkarnain., 2005; Marzbali, Abdullah, Razak and Tilaki., 

2012; Sidhu, 2005). Property crimes include those offences involving the loss of 

property has no engagement of violence by the perpetrators (Che Soh, 2012; Johar et 

al., 2005). Even though property crime primarily occurs with property loss without 
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involving violence, it still put the risk on the presence victims. Burglary and robbery 

are another two different types of property crimes which usually mistakenly 

understood. Robbery is defined as “the taking of money and goods in the possession 

of another, from his or her person or immediate presence, by force and intimidation” 

by Gale Encyclopedia of American Law (2010). Robbery involves the threat of force 

or actual use of force in connection with a theft and with the presence of victim (Gale 

Encyclopedia of American Law, 2010). Meanwhile, burglary crime is defined as “the 

criminal offence of breaking and entering the building illegally for the purpose of 

committing a crime” (Gale Encyclopedia of American Law, 2010). Differs from 

robbery, in order for a burglary to occur, a victim does not have to be present. The 

unlawful entry can be any type of buildings including business office, personal home 

and even garden sheds can also be considered as breaking and entry (West’s 

Encyclopedia of American Law, n.d.)  

Figure 1.1: The Worldwide Crime Rate Ranking (After Numbeo, 2016) 

 

Property crime in the Malaysian law context includes various theft cases such 

as robbery and burglary (night time and day time burglary) (PDRM, 2016). Burglary 

is a serious crime occurrence in Malaysia as it has been mentioned as one of the major 

security threats in Malaysia 2015 Crime and Safety Report by United States 
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Department of State Diplomatic Security (OSAC, 2015). Due to the seriousness of the 

burglary occurrence, various techniques of deterring crime have been designed. The 

designed techniques can be a straightforward solution to physically preventing the 

entrance of burglar or it can be a psychological solution to create the fear inside a 

motivated offender from committing burglary. The straightforward solution can be in 

form of the usage of deadbolt locks, grill and door bars. Meanwhile, the psychological 

solution includes the installation of surveillance cameras and the implementation of 

Crime Prevention through Environmental Design (CPTED) elements in the house 

design and neighbourhood. CPTED encourages natural surveillance to occur by 

placing the right element at the right place which is able to deter the occurrence of 

crime (Jeffery, 1971).  

Burglary in Malaysia is a serious problem as the monetary loss from burglary 

has reached RM 17, 974 per premise on the average while the cost to manage the crime 

are estimated around RM 742 per convict (Goh, 2006). According to Goh (2006), 

alone, the total cost of property loss from burglary crime in 2004 alone is estimated at 

around 1,492 million Ringgit (RM 1,492,000,000). Whilst, in the United States, the 

government’s expenditure on prison is six times higher than the expenditure for higher 

education (Mcmillon, Simon and Morenoff, 2014). To make the matter worst, the cost 

of crime is not only limited to monetary losses, but it also affected the social values of 

the local resident (Abdullah, Marzbali, Bahauddin and Tilaki, 2012; Sakip, Abdullah 

and Mohd Najib, 2013; Johar et al., 2005; Shihadeh, 2009; Sakip and Abdullah, 2008). 

The emotional impact on victims of modern-day residential burglary can reflect similar 

concerns about security, victims reporting fear, a sense of violation and no longer 

feeling safe in their own homes; it is this, rather than the scale of financial loss, that 

motivates judges to continue to pass relatively heavy sentences on burglars (Maguire, 

Wright and Bennet, 2010). High crime in the neighbourhood elevates the fear of crime 

and the feeling of safety among the resident and later lead to community isolation 

(Skogan, 1986). The community isolation will create a crime-concentrated zone such 

as ghetto area which will lead to other problems related to social disorganization 

(Shihadeh, 2009).  
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Supporting this burglary-deterrent plan, various field of researches have been 

conducted to understand the burglary crime better. Local studies conducted in 

Malaysia are also on board in defining the factors that contribute to crime in various 

approaches. Univariate forecasting based on 10-years of historical time series data has 

been conducted by Noor, Retnowardhani, Abd and Saman (2013); Talib, Sallehuddin 

and Hassan (2006) using ARIMA intent to predict the future occurrence of burglary. 

Considering the restrictive ability of univariate forecasting method, the studies on 

bivariate analysis have been ventured by researchers to find the dual correlation 

between factors and the crime. One example of such research was conducted by 

Mulok, Kogid, Lily and Asid (2016); Habibullah, Baharom, Din, Muhammad and 

Ishak (2014); and Baharom and Habibullah (2009). In addition to this, various 

statistical relationship studies have been established to find the significant factor 

encouraging burglary in local scale to enhance the knowledge of resident towards the 

burglary crime occurrence. Example of the local studies that majoring in defining the 

factors of crime are as conducted by Zakaria (2014); Zakaria and Rahman (2015); Zaki 

and Abdullah (2012a, 2012b) and Zulkifli, Razali, Masseran and Ismail (2015). 

Despite many researches that have been conducted previously, there are still gaps to 

fill in, such as in terms of model parameterization which involves multiple aspects 

contributing to burglary susceptibility, not limited to socioeconomy factors, and as 

modelled in  geospatial approach. Besides that, the potential of improving the scale of 

burglary modelling using the individual occurrences of burglary cases located on each 

building is possible, compared to the utilization of the statistical or aggregated spatial 

boundary data as adapted by the previous studies.  

The technique of deterring crime has improved greatly with the enhancement 

of technology and sufficient knowledge possession. The study to understand crime 

mechanisms has become the research focus and the relationship between the factors 

that possibly contribute to crime offence has been proven through mathematical, 

statistics and spatial approaches. Recently, the crime prevention agenda has moved to 

a new chapter, targeting to achieve the future crime prediction, based on vulnerability 

and temporal pattern of the spatial data (Almanie, Mirza and Lor, 2015; Lopez, 2015; 

Li, Haining, Richardson and Best, 2014; Wolff and Asche, 2009; Thornley, 2004; 

Sorensen, 2003; Townsley, Homel and Chaseling, 2000).  The criminologist believes 

that the authority and community can deter the crime effectively by possessing some 
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degree of understanding in the tactical strategies of the potential offender (D. Canter, 

2004; P. Canter, 1994; Yokota and Canter, 2004). Parallels to this belief, this research 

is motivated to achieve the understanding of burglary crime occurrences by developing 

a model that comprises components that make up the crime such as the susceptibility 

factors and the preferences of the offender towards the target. The opportunity of crime 

can be in the form of guardianship absence and surveilability, lack of security or the 

perceptive wealth of the victim from the offender’s point of view. Hence, this study 

targetting to model and classify the burglary crime susceptibility from the data, without 

neglecting the burglars’ behaviour point of view in terms of target selection.  

Burglary crime is chosen as the main focus of crime type due to its close 

relationship with spatial placement and derivative opportunity and attractiveness. With 

this security wariness, this research has been designed to aid the proposal of burglary 

crime prevention by the authority by identification of highly susceptible areas towards 

burglary occurrence, by using four mapping approaches which derived using two 

comparative approaches of data-driven and knowledge-driven. The indicators 

contributing to burglary occurrence in spatialsocio-demography setting was identified 

beforehand to develop the susceptibility map.  

In this research, two approaches of data-driven and knowledge-driven has been 

adapted in developing the model. As shown in Figure 1.2, the list of all possible 

indicators was filtered and narrowed down after the process of interview with police 

officers and burglars. This finalization of indicators allows the preparation of spatial 

data as the template for both model development and further down to the preparation 

of data according to approach. The output of interviews with police officers and 

burglars has been used in designing the questionnaire for knowledge-driven data 

collection to yield the score and weightage of each indicator and sub-indicator from 

the expert’s point of view. This scoring and weight values will be analyzed and become 

the input for knowledge-driven susceptibility map development. Meanwhile, for the 

data-driven, the spatial data were divided into portion of training and testing data 

which is elaborated in Section 3.5.3 for data-driven map development. All these maps 

were validated to compare their findings and performance.  
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Figure 1.2: The simplification of the research component and aim 

 

Building a model of areas with high crime concentration (hotspot) is the normal 

practice of common crime analysis. This research aims to develop a comprehensive 

model of burglary susceptibility modelling through the indicator establishment which 

comprises the physical building properties, the socio-demography factor, the element 

of surveillance and the adjacency to crime generators area. Apart from modelling the 

susceptibility based on data-driven approach, one of the research deliverables is 

adapting the knowledge-driven indicator scoring input to incorporate the 

“behavioural” element in susceptibility mapping techniques.  

In general, the collected and gathered data in this research are in the form of 

qualitative and quantitative. The quantitative data is the reported burglary data (in form 

of spatial points) and questionnaire feedbacks, meanwhile the qualitative data is the 

thematic-extracted data of expert judgments which comprises of interview sessions 

with the burglars who are also  former drug addict and the police officers from Jabatan 

Pencegahan Jenayah dan Keselamatan Komuniti (Department of Crime Prevention 
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and Community Safety), JPJKK. Both sources of data collection are processed in 

geospatial setting to map and define burglary susceptibility of buildings inside the 

study area.   

1.2 Problem Statement 

As mentioned in Section 1.1, the main issues of burglary crime are monetary 

loss including the cost of personal loss, as well as the cost of managing the crime itself, 

and the degradation of social values that affect the perception of safety among the 

residents. Entails, there are variety crime deterring approaches has been developed, 

including the crime prevention agenda such as Defensible Space (Newman, 1996), 

CPTED (Jeffery, 1971) and UNHabitat initiative (Andersson et al., 2014). UNHabitat 

initiative combining the input from Defensible Space and CPTED, while improving 

other features accordingly to suit in becoming a nation-scale programme. These 

initiatives were accompanied with the physical implementation to enhance security 

features, along with the development of digital models, with intention to understand 

the crime dynamics better, and this information can be manipulated into the designing 

of crime prevention strategies.  

Modelling of crime can be divided into mathematical model, geospatial model 

and knowledge-driven model. Mathematical model mostly focused on the 

establishment of empirical relationship/ bivariate relationship between the burglary 

crime incidences with the factors as mentioned in the works by Ajimotokin, Haskins 

and Wade (2015); Johnson and Summers (2015); Yearwood and Koinis (2011), 

Dritsakis and Gkanas (2009); Edmark (2003); Felson and Poulsen (2003); Fajnzylber, 

Lederman and Loayza (2002); Papps and Winkelmann (2000); Kapuscinski, 

Braithwaite and Chapman (1998); Rattner (1990). Mathematical model is the essence 

of knowledge of other advance model, but it is lacking in terms of local-based accuracy 

and has the tendency to generalize the relationship. It is important to note that one 

mathematical formula is insufficient to represent the burglary scenario for a state in 

the whole, instead it varies depending on the underlying characteristics of the local 

features.  
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With the technological advancement, this gap has been filled with the approach 

of geospatial integrated model. The geospatial based model provides a multifaceted 

view of crime modelling. The dynamics of relationship between the burglary and the 

parameters can be seen changing, moving from hotspot and coldspot, crime number 

can be seen varies with the characteristics of places, varies of location-based analysis 

and tools has been used to predict crime and many others. One of the example of 

geospatial-based burglary crime research are as cited in the works by  Borg, Boldt, 

Lavesson, Melander and Boeva (2014); Chainey et al. (2008); Fitterer, Nelson and 

Nathoo (2016); Furtado, Melo, Coelho, Menezes and Perrone (2009); Kim and Shin 

(2014); Liu (2016); Malleson, Happenstall and See (2010a); Wang, Ding, Lo, 

Stepinski, Salazar and Morabito (2013). Seeing the data-driven mapping as one-

dimensional output, some researchers incorporated the input from burglar and translate 

the thematic input into the geospatial parameters to develop the knowledge-driven 

model. The research that adapting this concept are Bernasco and Block (2013); 

Bernasco and Nieuwbeerta (2005); Vandeviver, Neutens, Daele, Van Geurts and 

Vander (2015). 

Apart from modelling approach, another important features for developing a 

model is the parameter chosen to represent the phenomenon, in this case, the parameter 

that significantly contributes to burglary crime susceptibility. From the literature, the 

researcher will collectively use the parameters from the categories of socioeconomic 

(Ajimotokin et al., 2015; Baharom and Habibullah, 2009; Bernasco and Nieuwbeerta, 

2005; Chiu and Madden, 1998; Choe, 2008; Dahlberg and Gustavsson, 2008; De Maio, 

2007; Demombynes and Berk, 2005; Dritsakis and Gkanas, 2009; Edmark, 2003; 

Fajnzylber et al., 2002; Nilsson, 2004a; Zakaria, 2014; Zhong et al., 2011), 

demography (Chen, Kurland and Shi, 2019; Fajnzylber et al., 2002; Justus et al., 2015; 

Metz and Burdina, 2016; Peterson and Krivo, 2009; Pettiway, 1982; Shihadeh, 2009; 

Sidhu, 2005), Spatial features or POI (Mohd Shamsuddin et al., 2009; Marzbali et al., 

2011; Kadar and Pletikosa, 2018; Lee, 2016; Nguyen, Hatua and Sung, 2017; 

Rummens, Hardyns and Pauwell, 2017; Bogomolov et al., 2014), temporal features 

(Lauritsen and White, 2014; Sorensen, 2003; Sakip and Abdullah, 2008) or the 

combination of each categories. In regards to the scale of model, most researcher use 

the scale of district, meanwhile others use the grid-base boundary to predict the 

burglary susceptibility.  
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To mitigate the burglary situation, it is crucial to find the contributing factors 

and the classification of susceptibility in spatial space of concern. An ideal burglary 

model supposedly comprises of the spatial criminogenic properties, the social factor, 

the demographic profile of the place and the behavioural element from the burglar 

actor itself (Malleson et al., 2010a; Entorf and Spengler, 2000). Western studies have 

far more advanced in dynamically modelling the burglary crime ranging from non-

spatial mathematical model according to Ajimotokin et al. (2015); Johnson and 

Summers (2015); Yearwood and Koinis (2011), Dritsakis and Gkanas (2009); Edmark 

(2003); Felson and Poulsen (2003); Fajnzylber (2002); Papps and Winkelmann (1999); 

Kapuscinski et al. (1998); Rattner (1990); to geospatial element integration embedded 

in the model (Borg et al., 2014; Chainey et al., 2008; Fitterer et al., 2016; Furtado et 

al., 2009; Kim and Shin, 2014; Liu, 2016; Malleson et al., 2010a; D. Wang et al., 2013) 

as well as incorporating the knowledge-driven input from the burglar insight in order 

to produce a more sensible model (Bernasco and Nieuwbeerta, 2005; Block and 

Bernasco, 2009; Vandeviver et al., 2015). 

Based on the literature review, a summary of the extent to which research has 

been conducted compared to the improvisation are tabulated in Table 1.1. Primarily, 

the improvements that have been made in this research focus on parameterization 

model tailored to local condition and combinations of several categories of indicators 

to represent comprehensibility in describing the criminogenic of burglary 

phenomenon, which previously has been modelled separately on a rather generalized 

scale in small-scale mapping. 

Table 1.1: The thesis improvisation to the body of knowledge 

No. Features of previously conducted 

studies 

Improvisation 

1 The largest scale of model in 

representing the burglary 

prediction and susceptibility are 

only limited to scale of district, 

town or grid-based.  

Instead defining susceptibility in form 

of hotspot or as a group of grids, this 

study represents the class of burglary 

susceptibility by the individuals 

building unit.  
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2 Previous researchers adapting and 

combining parameters from the 

category of sociodemography, 

Point of Interest (POI) or street 

layout as indicator to burglary 

susceptibility.  

Apart from using parameters from the 

group of sociodemography, POI and 

street layout, this study also includes 

the building characteristics as one of the 

model components in contributing the 

crime susceptibility. 

3 Previously, only the method of 

IVM was applied to classify the 

landslide vulnerability.  

This research attempt on applying IVM 

to classify the building’s burglary 

susceptibility.  

4 Unavailability of knowledge-

driven model for burglary 

susceptibility in Malaysia. 

Developing the knowledge-driven 

model customized with the 

characteristics of urban areas in 

Malaysia 

 

The first gap that has been improved in this study is in the form of the results’ 

scale by defining the susceptibility according to the building individuals. Previous 

studies has only deduced the susceptibility to the extent of  District / municipality level  

(Vandeviver et al. 2015; Poulsen and Kennedy, 2004; Zakaria and Rahman, 2016) and 

grid (Devia and Weber, 2013a; Lin, Yen and Yu, 2018; Rummens et al., 2017; Yu, 

Ding, Chen and Morabito, 2014). The susceptibility of the place has been found not 

only depending on its sociodemography features and the spatial features such as crime 

generators, but the vulnerability of a building based on physical characteristics also 

need to be considered (Agarbati et al., 2015). Representing the susceptibility custom 

to each building characteristics with other contextual factor is definitely improving the 

accuracy of the real-world representation.  

Another improvement of burglary modelling component is in term of 

parameterization. Instead of using the socioeconomic and spatial feature (POI, crime 

generators, land-use) separately or as combination in model development, this research 

has also included the physical building characteristics which elevated the vulnerability 

towards burglary from the expert point of view as group of indicators. This element is 

important for areas with mixed building types whereby, even it is located on the same 
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locality, it is not accurate to assume the susceptibility is similar due to adjacency factor 

alone. The risk of boost and flag undeniably exist, but the physical building 

characteristics is another factor which need to be considered during the target selection 

by burglars which defines the perception of easiness of entrance, accessibility and 

limited surveillance (Agarbati et al., 2015). 

Apart from adapting the element of expert judgement as mapping methods, this 

study also developed a bivariate statistical model as one of the comparative methods. 

Comparing several methods for crime modelling is a common practice of experiment. 

However, for crime, usually the statistical method of logistic regression (Chen et al., 

2019; Rummens et al., 2017) or Naïve Bayesian (Almanie et al., 2015; Boldt et al., 

2018) are applied. For the sake of experimenting, the bivariate statistics method of 

IVM has been used in one of the model developments of this research. IVM method 

was selected for its performance in classifying the landslide susceptibility (Ba, Chen, 

Deng, Wu, Yang and Zhang, 2017; van Westen, 1997, 2016).  

Last but not least, the unavailability of knowledge-driven model and sources 

for burglary tendency for Malaysia were seen as the biggest gap that have been fulfilled 

by this study. To date, there is no single study conducted found aims to record the 

burglar’s point of view in target selection and vulnerability for burglary crime as 

conducted in other countries such works by Bernasco (2005), Y. Chun and Lee (2013b) 

and Nee and Taylor (1988). In this study, the output of interview with burglary 

offenders were reported with hope to become a pioneer to more similar resources in 

the future.  

In accomplishing the objective and aims of this research, several contributions 

on research novelty have been achieved as listed below: 

i. The establishment of local burglary factors and indicators for Malaysia. 

ii. Inclusion of geospatial-based indicator in modelling development. 

iii. The micro-scale model development, utilizing the functional spatial unit of the 

building individuals.  
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iv. Improving the crime prediction parameterization by including the physical 

building characteristics as the indicator describing the burglary susceptibility 

along with other factors such as crime generator area (spatial POI), the social-

demography profile and the surveillance element.  

 

In terms of methodology, this study compares the model output which 

developed using the knowledge-driven approach and the data-driven approach. The 

modelling techniques of bivariate statistics (Information Value Modelling, IVM) and 

machine learning (Support Vector Machine, SVM and Artificial Neural Network, 

ANN) will be adapted in data-driven model development. The experimental approach 

of modelling burglary using IVM has been attempted in this study, since this 

aforementioned method was previously used widely in landslide modelling, but not in 

any crime modelling. Meanwhile, machine learning techniques are known as a well-

established method in its ability of improving the accuracy of burglary modelling 

compared to statistical method as proven by Kadar and Pletikosa (2018); Lin et al. 

(2018); Stalidis, Semertzidis and Daras (2018), however, for all its worth, currently 

there are still very limited studies applying this method for burglary modelling in 

Malaysian context.  

1.3 Aims and Objectives 

This research aims to develop a geospatial-based burglary crime susceptibility 

modelling in urban areas of Damansara - Penchala region. To achieve the aim, four 

objectives have been outlined to guide the phase of the study: 

1. To identify and produce geospatial-based burglary crime indicator maps for 

urban areas in Malaysia, particularly in Damansara-Penchala region. 

2. To develop the burglary susceptibility model based on knowledge-driven 

approach. 
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3. To develop the burglary susceptibility model based on data-driven bivariate 

statistics and machine learning approaches. 

4. To evaluate the performance of data-driven and knowledge-driven approaches 

in modelling the burglary susceptibility.   

 

1.4 Research Questions 

Objective 1: To identify and produce geospatial-based burglary crime predictor maps 

for urban areas in Malaysia, particularly in Damansara-Penchala zone. 

i. What are the indicators that contribute to burglary crime in the study area? 

ii. What is the relevant method to be adapted in order to identify the indicators? 

iii. How to produce the geospatial-based burglary crime indicator from the 

available data source? 

 

 

Objective 2:  To develop the burglary susceptibility model based on knowledge-

driven approach. 

i. How does burglary crime occur from the perspective of a burglar? 

ii. What does the burglary preferences or cue on selecting the target? 

iii. How much does the local preference differ to compare with the perspective of 

the burglar in Western’s studies? 

iv. What is the best approach in gathering the preference in a sufficient sample? 

v. How to spatially model the burglar preference from the collected data? 
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Objective 3: To develop the burglary susceptibility model based on data-driven 

bivariate statistics and machine learning approach. 

i. How to prepare the identified indicator of burglary crime into a spatial data 

format based on the available data? 

ii. How to evaluate the accuracy of the developed model? 

iii. Which is the best fit model in describing the susceptibility of burglary events 

based on the historical burglary records? 

 

Objective 4: To evaluate the performance of data-driven and knowledge-driven 

approach in modelling the burglary susceptibility. 

i. How to evaluate the output of susceptibility models? 

ii. Which validation method that is relevant to compare the performance of both 

modelling approaches? 

iii. Which is the most suitable modelling approaches to model the burglary 

susceptibility of the study area? 

iv. How much the knowledge-driven model and data-driven model does reflect on 

the susceptibility results of each other? 

v. What are the most important and the least important indicator in each model? 

vi. Does the developed model good enough to predict burglary susceptibility? 
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1.5 Study Area 

The study area, Damansara-Penchala is an area located at the side of Kuala 

Lumpur City with the size of 45.18 km2. There are 226 residential areas comprises of 

various typology from traditional Malay settlement, to land-based and high-rise 

planned residential development bounded inside this region. Damansara-Penchala is 

an official strategic zoning demarcated by Kuala Lumpur City Hall (Dewan Bandaraya 

Kuala Lumpur) for strategic planning and urban development under the Kuala Lumpur 

Structure Plan 2020 (DBKL, 2015).  Figure 1.3 depicts the location of the study area 

at the edge of Kuala Lumpur and Selangor boundary.  

This area was chosen as the study area due to the highest association of 

burglary incidences and detriment value. Figure 1.4 shows the top ten list of residential 

areas with the highest detriment value caused by burglary crime in Kuala Lumpur. 

Two highest committed incidence and loss values are from the residential area in the 

region of Damansara-Penchala. Based on  the data obtained from PDRM, the total 

detriment value from the burglary crime offences in this area were summed up to RM 

54,418,062 (RM 54 million), meanwhile for the area of Damansara Heights alone 

accounted to RM 15,796,027.00 (RM 15 million) with 270 burglary incidence 

accumulated from 2011 – 2016, with the mean of RM 58,503.80 for each offend 

(PDRM, 2016). Apart from monetary loss, burglary also affected the social values of 

the society and in terms of the perception of safe living.  
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Figure 1.3: The study area of Damansara-Penchala  

 

  

Figure 1.4: The top ten burglary incidence and corresponding detriment value 

according to the residential area in Kuala Lumpur (PDRM, 2016) 

 

293 274 270

205 201 190 181 177 175

0
50

100
150
200
250
300
350

Ta
m

an
 T

u
n

 D
r

Is
m

ai
l P
u

d
u

D
am

an
sa

ra
 H

e
ig

h
ts

K
u

al
a 

Lu
m

p
u

r

Ta
m

an
 S

er
i P

et
al

in
g

Ta
m

an
 M

al
u

ri

K
u

ch
ai

 L
am

a

Ta
m

an
 D

es
a

K
ep

o
n

g 
B

ar
u

0
2000000
4000000
6000000
8000000
10000000
12000000
14000000
16000000
18000000

IN
C

ID
EN

C
E

R
M

Top Ten Burglary Incidence with The Detriment 
Value

Detriment Burglary Incidence



 

18 

The variety of social and demography make up of Damansara-Penchala zone 

is also another factor for the site selection. This area is inhabited by 41% of Malay, 

23% Chinese, 13% Indian and 18% of immigrant (non-Malaysian). With regard to 

housing typography, this area comprises of various house types which reflect the 

socioeconomic gaps (Seo and Omar, 2011). Affluence and inequality are some of the 

reasons that attract the offending of burglary (Bernasco and Nieuwbeerta, 2005; Chiu 

and Madden, 1998). In this study context, the affluence level is represented by the type 

of house which portrayed in the form of house design, size and residential area types. 

Figure 1.5 shows the distribution of building types in the study area as well as the 

distribution of burglary incidence.  

 

Figure 1.5: The distribution of burglary incidence in the area of Damansara-Penchala 

(PDRM, 2016) 
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1.6 Significance of Study 

The contribution of this research to the existing body of knowledge will be in 

terms of the framework of spatial indicators in defining the burglary crime 

susceptibility for the urban region in Malaysia. Besides the development of the 

burglary susceptibility mapping and the sets of burglary indicators establishment, this 

research also contributes to the methodological procedures of translating the social 

factor of crime into spatial implementation. This study also incorporates the element 

of human behavioural in modelling the burglary susceptibility which believed to 

elevate the representation of real-world interaction in geospatial research. In terms of 

local scale contribution, the outcome of this study has identified the spatially projected 

indicator to determine the susceptibility of burglary in urban areas and the burglar 

preferences on selecting the burglar target specifically from the local perspective.  

The deliverables of this research focusing on becoming an aid to authority in 

preventing the burglary occurrences are as stated below:  

i. The list of indicators contributing to burglary susceptibility in urban areas. 

ii. The characteristics of location with high susceptibility towards burglary crime.  

iii. The location of high burglary susceptibility buildings produced based on data-

driven approach. 

iv. The location of high burglary susceptibility buildings produced based on 

knowledge-driven approach. 

v. The burglar preference in target selection. 

vi. The bi-variate model of burglary susceptibility. 

vii. The machine learning model of burglary susceptibility. 

viii. The expert judgment model of burglary susceptibility. 
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These deliverables will benefit Polis Diraja Malaysia (PDRM) and 

PlanMalaysia in becoming the aid of burglary crime prediction and prevention. The 

results and methodological adapted in this research have the potential to be applied as 

an add-on tool to Sistem Pemantauan Bandar Selamat (SPBS) in mitigating the 

susceptibility of crime occurrences. On the bigger view, these deliverables are believed 

to contribute in aiding the local authority to designing a comprehensive crime 

prevention plan by taking into consideration of the highlighted burglary indicators of 

social-spatial placement apart from crime prevention through environmental design as 

a reference. 

1.7 Scope of Study 

This study is conducted on burglary incidences occurred in  Damansara-

Penchala region focusing on finding the contribution of each indicator’s attribute in 

determining the level of burglary susceptibility for each building in the study area. The 

data of burglary occurrences used in this study are dated from January 2011 to 

December 2016 obtained from the JPJKK of PDRM through the data extraction from 

SPBS system which will be used as the spatial distribution of active sites of burglary 

crime, meanwhile the other eighteen (18) indicators to burglary susceptibility are 

extracted from census 2010 data from Jabatan Statistik Malaysia (Department of 

Statistics Malaysia, DOSM), Building footprint data of 2013 from Dewan Bandaraya 

Kuala Lumpur (Kuala Lumpur City Hall, DBKL), Demarcation data from Malaysia 

Centre of Geospatial Data Infrastructure (MaCGDI) and Google Street Image as the 

source for physical building parameters. These 18 indicators were verified to be 

significant as they are the consideration factors during the target selection from the 

burglar and expert point of view.  

In regard to burglar behaviour, this research incorporated the knowledge-

driven modelling approach which involves the expert opinion in the scoring of target 

preferences of the burglary through  distribution of questionnaires. The indicators and 

sub-indicators mainly consist of house characteristics generally in terms of location, 

physical appearance and social make ups of the house owner. From the interview, the 
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burglars are grouped into four (4) categories based on similarity of the answer and the 

key factor of decision making and traits of target. This interview output was used in 

the questionnaire design and further verified by 60 respondents of policemen in 

ranking placement of each characteristics describing vulnerability based on the burglar 

selection trend.  

The limitation of the data could be in terms of location and attributive accuracy 

which entails by: 

i. The location of burglary incidences is assumed to have been verified by the 

data manager for SPBS system. 

ii. The data for burglary only concerns the location, but do not include the details 

of offenders such as their age, race, education background and etc. Separated 

surveys are required in order to develop the profiling and behaviour modelling 

of the burglar.  

iii. Number and sample size obtained during a burglar behaviour survey is very 

limited. The offender is not properly distributed in terms of race, whereby all 

the respondents are Malay.  

iv. The different year on supporting spatial data are considered relevant to be used 

with burglary data. The socio-demography data extracted from 2010 census 

data, meanwhile the building data was collected in 2013.  

v. The aggregation of census data from Blok Perhitungan, the unofficial boundary 

of census into the Taman (Residential Area) are assumed to be correct.  

vi. The aggregation of burglary points on the nearest building footprint are 

assumed to be correct.  

vii. The burglary crime susceptibility in this study excludes the dependent on 

temporal factor such as seasonal holiday celebration due to data constraint. 

Burglary susceptibility is assumed to be uniform at all times. The burglary data 

were treated uniformly, without slicing based on temporal properties.  
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viii. The model was developed in micro-scale, in which event each classes of 

susceptibility represented by each building as spatial unit in the study area.  

 

1.8 Thesis Outline 

This thesis comprised of five (5) chapters. Chapter 1 shed on the research 

problems and the background of the research which form the research structure. 

Meanwhile, chapter 2 reviewed previous studies which aided in the designing of the 

methodology of this study, especially in forming the indicators and the component of 

burglary crime itself. Chapter 3 embarks on the methodology concept and workflow 

which covers the study area, the data collection, data pre-processing and processing 

which has been enforced in this research to achieve the aim of the study. Subsequently, 

Chapter 4 will report and discuss the findings of the research results where the burglary 

susceptibility model was developed based on knowledge-driven approach, bivariate 

statistics of IVM and machine learning. Finally, Chapter 5 will conclude the findings 

of the research and recommending the future works on how this research can be 

extended. 
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