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A B S T R A C T 

Intrinsic alignments between galaxies and the large-scale structure contaminate galaxy clustering analyses and impact constraints 
on galaxy bias and the growth rate of structure in the Universe. This is the result of alignments inducing a selection effect on 

spectroscopic samples which is correlated with the large-scale structure. In this work, we quantify the biases on galaxy bias 
and the growth rate when alignments are neglected. We also examine different options for the mitigation of alignments by 

considering external priors on the effect and different probe combinations. We find that conservative analyses that restrict to 

k max = 0.1 Mpc −1 are not significantly af fected. Ho we ver, analyses that aim to go to higher wave numbers could evidence a 
significant contamination from alignments. In those cases, including a prior on alignment amplitude, or combining clustering 

with the position-intrinsic shape correlation of galaxies, can reco v er the same e xpected constraining power, or even inform bias 
and growth rate measurements. 

Key words: cosmological parameters – large-scale structure of Universe. 
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 I N T RO D U C T I O N  

urv e ys of the extragalactic Universe aim to constrain the cosmo-
ogical model by measuring the growth rate of structure at different 
pochs. This is quantified by the parameter 

 = 

d ln D 

d ln a 
, (1) 

here D is the linear growth rate of the matter density contrast, and a
s the scale factor. Deviations from general relativity can be identified 
rom the scaling of this parameter with a or with redshift, z. 

Constraints on f are obtained thanks to the sensitivity of the 
eculiar velocities of galaxies to the growth of structure. These 
eculiar v elocities hav e an impact on the observed galaxy redshift.
his translates into anisotropic ‘redshift-space distortions’ (RSDs; 
aiser 1987 ) on the clustering statistics (see Perci v al & White 2009

or a re vie w), which can be measured with great precision (e.g. Alam
t al. 2021 ). In practice, such clustering statistics constrain the combi-
ation of f σ 8 (growth rate and amplitude of matter fluctuations). This
an also be extrapolated from the best-fitting � CDM model of the
osmic microwave background (CMB) data from the Planck mission 
Planck Collaboration VI 2020 ). The current literature displays some 
igns of tension with respect to the growth predictions extrapolated 
rom the CMB. Many authors report significantly discrepant values 
2–3 σ ) for f σ 8 (e.g. d’Amico et al. 2020 ; Chapman et al. 2021 ; Ivanov
021 ; Kobayashi et al. 2022 ; Yuan et al. 2022 ; Zhai et al. 2022 ), while
thers are in better agreement with Planck (e.g. Beutler et al. 2012 ;
eid et al. 2014 ; Alam et al. 2017 ; Bautista et al. 2021 ; de Mattia et al.
021 ; Chen, Vlah & White 2022 ; Lange et al. 2022 ; Philcox & Ivanov
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022 ; Zhang et al. 2022 ). The analyses are performed under a variety
f conditions: different sample selections and redshifts, different 
cales and thus modelling methods. If a low f σ 8 is confirmed, it could
mply deviations from General Relativity (Jain & Zhang 2008 ). 

Hirata ( 2009 ) demonstrated that certain measurements of the 
rowth rate are expected to be contaminated by intrinsic alignments. 
alaxy intrinsic alignments are physical correlations between galaxy 

hapes and orientations and the large-scale structure, caused, for 
xample, by tidal interactions (Catelan, Kamionkowski & Blandford 
001 ). The contamination of RSD measurements comes about 
ecause the orientation of galaxies often determines their detection 
robability. Galaxies aligned along the line of sight are more likely
o be detected than those aligned across the line of sight. (Detections
ased on model or Petrosian magnitudes are not affected; but cases
here magnitudes come from isophotal or fixed-aperture measure- 
ents will suffer from contamination because a larger proportion of 

heir flux lies within a fixed aperture.) 
Martens et al. ( 2018 ) attempted to measure the impact of align-
ents on RSD directly by comparing clustering measurements in 

wo samples of galaxies selected by their sizes. According to Hirata
 2009 ), the observed radius of a galaxy depends on its orientation.
ecause this orientation is correlated with the tidal field, the observed

ize is biased with respect to the original one. The sizes of elliptical
alaxies are measured with respect to a scaling relation known as the
Fundamental Plane’ (Djorgovski & Davis 1987 ). Using data from 

he Baryon Oscillation Spectroscopic Surv e y (BOSS; Da wson et al.
013 ), Martens et al. ( 2018 ) assumed that populations abo v e or below
he plane would have different orientations with respect to the line of
ight. They found a 2–3 σ difference in the clustering properties of
he two samples, which they ascribed to intrinsic alignment bias. A
ey assumption behind the work of Martens et al. ( 2018 ) is that size
eviations from the Fundamental Plane can be solely attributed to the
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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mpact of alignments on the observed radii of galaxies. The detection
s also contingent on combining the two main spectroscopic samples
f the BOSS surv e y and not in each sample alone. Singh, Yu &
eljak ( 2021 ) pointed out that the deviations from the Fundamental
lane can also receive significant contributions from other physical
rocesses or observational systematics, complicating the picture and
uggesting that intrinsic alignments are not inducing any detectable
election effects on the BOSS samples analysed by Martens et al.
 2018 ). This was confirmed in Zhang et al. ( 2022 ), where the
ontamination of intrinsic alignments was explicitly modelled when
btaining cosmological constraints from galaxy clustering (see their
ppendix D). At what level one should expect the effect proposed by
irata ( 2009 ) to be present in upcoming surv e y data remains unclear,

nd the effect is probably dependent on the galaxy sample. Agarwal
t al. ( 2021 ) demonstrated that the deterioration of constraints on the
rowth rate can be severe for upcoming surveys such as Euclid if this
ype of systematics are neglected. 

In this work, we explore different scenarios for the impact of
ntrinsic alignments on the growth rate. We consider a case where the
ffect of intrinsic alignments is completely neglected, and other cases
here intrinsic alignment observables are used in combination with
alaxy clustering measurements. We focus on luminous red galaxies,
or which there is ample observational evidence supporting a linear
lignment with the tidal field on large scales (Mandelbaum et al.
006 ; Hirata et al. 2007 ; Joachimi et al. 2011 ; Singh, Mandelbaum &
ore 2015 ; Johnston et al. 2019 ; Fortuna et al. 2021b ). We perform

ur analysis in a set-up that matches the expected survey properties of
he 4MOST spectroscopic instrument’s Cosmology Redshift Surv e y
Richard et al. 2019 ), assuming it to be complemented by galaxy
hapes from the Le gac y Surv e y of Space and Time (LSST) o v er
he same area (Ivezi ́c et al. 2019 ). Nevertheless, our method is
eneral and can be applied to any other surv e y combination. All
n all, we demonstrate that the inclusion of alignment observables
an mitigate several σ biases on the growth rate, or ev en impro v e its
onstraints. 

This paper is organized as follows. Section 2 presents the mod-
lling and forecasting formalism and describes the fiducial modelling
ssumptions. Section 3 summarizes our results. The conclusions are
resented in Section 4 . Appendix A provides auxiliary calculations
o Section 2 . 

 FORMALISM  

e assume that the cosmological information is encoded in the power
pectra between two observable fields, X and Y , given by P XY ( k , μ).
his is a function not only of the wavenumber but also μ = k z / k ,
here ̂  z is the line of sight direction. We summarize this information

n a set of multipoles by expanding the power spectra as 

 XY ( k, μ) = 

∞ ∑ 

l= 0 

P 

l 
XY ( k) L l ( μ) , (2) 

here L l ( μ) are Legendre polynomials. Each multipole is then given
y 

 

l 
XY ( k) = 

2 l + 1 

2 

∫ 1 

−1 
dμP XY ( k, μ) L l ( μ) . (3) 

In principle, all power spectra and multipoles are redshift-
ependent. For simplicity, we will work at a fixed mean redshift
pecified for each surv e y in Section 2.4 . 
NRAS 516, 787–793 (2022) 
.1 Galaxy clustering 

alaxy redshifts are affected by large-scale motions (Kaiser 1987 )
nd their velocities grow with the build-up of structure. This induces
n angular dependence to the galaxy clustering power spectrum. In
 linear bias model, this is given by 

 gg ( k, μ) = ( b g + f μ2 ) 2 P δ( k) , (4) 

here b g = δg / δ is the linear galaxy bias, P δ is the linear matter
ower spectrum, and f is the logarithmic growth rate. 
In the presence of intrinsic alignments, equation ( 4 ) is modified to

Martens et al. 2018 ) 

 gg ( k, μ) = 

[
b g − A 

3 
+ ( f + A ) μ2 

]2 

P δ( k) , (5) 

here A is the dimension-less amplitude that is related to the strength
f alignment of the specific galaxy population, and to how their
rientation determines their selection probability. This expression
s only valid at linear level (Hirata 2009 ). From equation ( 5 ), we
ee that if alignments are neglected, galaxy clustering surv e ys are
f fecti vely measuring ˜ b g = b g − A/ 3 and ˜ f = f + A . To break the
e generac y between these parameters and obtain an unbiased growth
ate measurement, we would need an additional source of information
n A . This could be an intrinsic alignment observable, as we will
escribe in the following subsections. 
Notice that because we work at a fixed redshift, we will report

he contamination on f directly. Ho we ver, as Hirata ( 2009 ) points
ut, if the matter power spectrum is normalized at high redshift by
onstraints obtained from the CMB, then RSD measurements truly
onstrain f ( z ) D ( z ). 

It can be easily verified that for P gg ( k , μ), the only non-zero
ultipoles are the monopole ( l = 0), the quadrupole ( l = 2), and

he hexadecapole ( l = 4). Most of the signal-to-noise is contained in
he lowest order multipoles. We will, as it is often done (e.g. Blake,
arter & Koda 2018 ), neglect the information in the hexadecapole.
he expressions for the multipoles are presented in Appendix A . 

.2 Galaxy shapes 

n photometric surv e ys, the shapes of galaxies are measured in
rojection on the sky and modelled as ellipses. To describe a shape,
e thus need two numbers: the axial ratio ( q = a / b ) and the orientation
f the ellipse ( φ). We can then estimate the two-component shape
s: 

 e + 

, e ×) = 

1 − q 2 

1 + q 2 
( cos (2 φ) , sin (2 φ)) . (6) 

rom the theory point of view, the effects that contribute to the mea-
ured shapes are: random noise, gravitational lensing, and intrinsic
physical) alignments between galaxies and the matter field. The
hapes are also most often modelled in Fourier space, transforming
 e + 

, e ×) into ( γ E , γ B ) in analogy with the E , B decomposition tradi-
ional of CMB polarization literature (Kamionko wski, Koso wsky &
tebbins 1997 ; Zaldarriaga & Seljak 1997 ). 
In this work, we will focus mostly on the E -modes of the

ntrinsic alignment ( I ) component of the shape, thus equating the
bserved γ obs 

E = γ I 
E + γrnd , where the second term is the noise. In

rinciple, gravitational lensing also correlates the observed shapes of
alaxies with the large-scale density field (responsible for perturbing
hoton geodesics) and with one another (i.e. two galaxies being
ensed by the same structure). Ho we v er, we omit an y gravitational
ensing contributions to our observables as Taruya & Okumura
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 2020 ) suggested these are negligible in our context. The reasons
ehind these simplifications are as follows. In measuring cross- 
orrelations of galaxy positions and shapes from spectroscopic data, 
ne would expect to be able to isolate close pairs of galaxies along
he line of sight. Such procedure would down-weight the lensing 
ontribution significantly, which peaks when the distance between 
he source and the observer is twice of the distance between the
bserver and the lens. In the case of shape–shape correlation, the 
vailability of accurate redshifts is not enough to remo v e the lensing
ontribution, since galaxies at the same redshift are lensed by the 
ame structure. Ho we ver, Taruya & Okumura ( 2020 ) estimated this
ould be negligible in our setup. 
We also do not consider intrinsic alignment B -modes. These have 

een shown to be absent at the linear level both in alignment and
ensing statistics. In the position–shape statistics, they cannot arise 
nless there is a breaking of parity. In shape–shape statistics, B -modes
an arise at the quasi-linear (Blazek et al. 2019 ; Vlah, Chisari &
chmidt 2020 ) or non-linear level (Hui & Zhang 2002 ). Because we
ork at the linear level in this work, we do not account for B -modes.

.2.1 Intrinsic alignments 

alaxy alignments are thought to be induced by gravitational tides. 
t lowest order in gravitational observables, the intrinsic shapes of 
alaxies are proportional to the tidal field (Catelan et al. 2001 ) the
linear alignment model’. As a result, shapes become correlated with 
he density field. In particular, there is a correlation between E -modes
f galaxy shapes, γ E , and the linearly biased galaxy o v erdensity
Hirata & Seljak 2004 ; Taruya & Okumura 2020 ), which in the
inear alignment model is given by 

 gE ( k, μ) = − ˜ C 1 (1 − μ2 ) 
(
b g + f μ2 

)
P δ( k) , (7) 

here ˜ C 1 is the linear bias of galaxy shapes with respect to the tidal
eld. Notice that our definition of ˜ C 1 is slightly different from the 
ore commonly adopted C 1 in the literature (Singh et al. 2015 ), and

hat the two are connected by ˜ C 1 = A I C 1 ρcrit 	m 

/D( z) , where ρcrit is
he critical density of the Universe today and A I and C 1 are constants.

In the linear alignment model, the autocorrelation of E -modes is 

 EE ( k, μ) = 

[
˜ C 1 (1 − μ2 ) 

]2 
P δ( k) . (8) 

or simplicity, we will work only with the lowest order multipoles of
 gE ( k , μ) and P EE ( k , μ), i.e. their monopoles, given in Appendix A .

n principle, we would also need to include the selection effect 
rom alignments in equation ( 7 ). This can be done, for example,
ollowing Singh et al. ( 2021 ). However, we checked that such a term
s subdominant in our results. 

.2.2 Relation between A and ˜ C 1 

reaking the de generac y between b g , A and f making use of alignment
easurements of P gE ( k , μ) and P EE ( k , μ) is only possible if we have
 relation between A and ˜ C 1 . Hirata ( 2009 ) suggests one can interpret
 as a multiplicative relation between the alignment bias, which is

eferred to as B , and a selection bias, ( ηχ ) eff : 

 = 2( ηχ ) eff B. (9) 

 ηχ ) eff ef fecti vely represents the change in the number of galaxies
ith respect to a change in their radial orientation. In particular, η

s the slope of the cumulative luminosity function of the population 
f observed galaxies, and χ is a number that depends on the method
sed for computing fluxes and on the typical surface brightness 
rofiles of the sample. Hirata ( 2009 ) showed that the selection effects
nduced by intrinsic alignments on clustering measurements are only 
ensitive to the combination of η and χ . More specifically, ( ηχ ) eff in
quation ( 9 ) represents the ef fecti ve response over the whole sample
f observ ed galaxies. Notice, moreo v er, that the relation between
lignment amplitude given in equation ( 9 ) is fully deterministic. 

Martens et al. ( 2018 ) connect B to the more typical parameters used
n observational works (e.g. C 1 or A IA ; Singh et al. 2015 ). Simply
ccounting for our different definition of the alignment amplitude, 
˜ 
 1 , we find that B = −1 . 74 ̃  C 1 . The connection is established by

ealizing that our parameter ˜ C 1 is also equal to −b κ , a parameter
sed in Martens et al. ( 2018 ) and originally defined in Bernstein
 2009 ). This shows that the factor of 1.74 also represents the shear
esponsivity, i.e. the response of measured galaxy shapes to a shear
nduced by weak gravitational lensing. 

We can then finally write A in terms of ˜ C 1 as A = −3 . 48( ηχ ) eff ˜ C 1 .
otice a ne gativ e A implies that neglecting alignments in RSD
easurements will result in an inferred lower growth rate according 

o equation ( 5 ). 

.3 Forecasting 

e forecast the uncertainty on the growth rate and galaxy bias using
he Fisher matrix formalism. To estimate the uncertainties in the 
osmological parameters, we need the covariance of the multipoles, 
iven by Taruya, Saito & Nishimichi ( 2011 ) as 

ov [ P 

l 
XY ( k ) , P 

l ′ 
WZ ( k )] = 

(2 l + 1)(2 l ′ + 1) 

4 

×
∫ 1 

−1 
dμL l ( μ) L l ′ ( μ) Cov [ P XY ( k, μ) , P WZ ( k, μ)] , (10) 

here Cov[ P XY , P WZ ] = P XW 

P YZ + P XZ P YW 

is the usual power
pectrum covariance and where we omitted the k and μ dependences 
or simplicity. Notice any autospectra include the shot or shape noise
ontributions: n −1 

g and σ 2 
γ n −1 

g , respectively, where n g is the number
ensity of galaxies and σγ the dispersion in their ellipticities per 
omponent. F or e xample, while P EE is an autocorrelation of galaxy
hapes and subject to both cosmic variance and Poissonian shape 
oise, P gE only suffers from cosmic variance and is in practice a
uch more precise probe of galaxy alignments [see e.g. Blazek, 
cQuinn & Seljak ( 2011 ) for an observational demonstration]. 
The Fisher matrix of the cosmological or nuisance parameters of 

nterest, in our case θi = { b g , f , ˜ C 1 } , is given by 

 ij = 

V s 

4 π2 

∫ k max 

k min 

dk k 2 
∑ 

a,b 

∑ 

l ,l ′ 

∂P 

l 
a ( k) 

∂θi 

[ Cov −1 ] | ab,l l ′ 
∂P 

l ′ 
b ( k) 

∂θj 

, (11) 

here a and b run o v er the different elements of the data vectors,
.e. the multipoles considered, and V s is the surv e y volume. The
ncertainties in the parameters δθ i are given by F 

−1 / 2 
ii (assuming 

erfect knowledge of all other parameters) or ( F 

−1 ) 1 / 2 ii (marginalizing
 v er all other parameters). By default, we will report the marginalized
ncertainties in Section 3 . We will also consider the impact of an
xternal prior on the alignment amplitude. This can be included in
he Fisher matrix by simply adding σ−2 

˜ C 1 
to the corresponding diagonal 

lement. 
We also quantify the constraining power for different probe 

ombinations and settings by calculating the figure of merit (FoM; 
lbrecht et al. 2006 ) in the ( b g , f ) parameter space. This is given
y FoM = π / S , where S is the area of the ellipse corresponding to
8 per cent confidence level constraints on the parameters. In our 
MNRAS 516, 787–793 (2022) 
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ase, the two parameters of interest are ( b g , f ). The larger the FoM,
he better the constraint in this combination of parameters. 

It is also possible to extend this formalism to compute the
arameter bias in the case that the data are analysed with the wrong
odel (Taylor et al. 2007 ; Amara & R ́efr ́egier 2008 ). By analogy
ith equations ( 7) and (8) of Amara & R ́efr ́egier ( 2008 ), in our case,

he bias in a model parameter, θ i , is given by 

[ θi ] = ( F 

−1 ) ij B j , (12) 

here 

 j = 

V s 

4 π2 

∫ k max 

k min 

dk k 2 
∑ 

a,b 

∑ 

l ,l ′ 
P 

l, sys 
a ( k )[ Cov −1 ] | ab,l l ′ 

∂P 

l ′ 
b ( k ) 

∂θj 

, (13) 

here P 

l, sys 
a ( k) is the contribution from the missing systematic in the

odel. In our case, this is computed as the difference between the
ultipoles with and without intrinsic alignments in the model. 

.4 Fiducial model 

e perform our forecasts for the Luminous Red Galaxy sample
xpected from the 4MOST Cosmology Redshift Survey (Richard
t al. 2019 ). Our set-up follo ws similar choices to v an Gemeren &
hisari ( 2021 ). The mean redshift of the targets is expected to be
 z〉 = 0.55 with an average number density of n g = 2.9 × 10 −4 

pc −3 . We assume that shapes for this sample will be delivered by
he LSST (Ivezi ́c et al. 2019 ) over the overlapping area (7500 sq.
eg.). We assume a dispersion in intrinsic ellipticities of σγ = 0.3. 
The volume of the surv e y ( � 10 10 Mpc 3 ) determines the mini-
um wavenumber: k min = 2 π/V 

1 / 3 
s Mpc −1 . We vary the maximum

avenumber among from k max = 0.1 Mpc −1 to k max = 0.3 Mpc −1 in
rder to assess the sensitivity of our results to this choice. 
We use the CORE COSMOLOGY LIBRARY V2.3 (Chisari et al. 2019 )

o compute the power spectrum. This relies on the Boltzmann code
LASS (Blas, Lesgourgues & Tram 2011 ). We adopt the following
hoice of parameters for a flat, neutrino-less, � CDM cosmology:
 	cdm 

= 0.27, 	b = 0.045, h = 0.67, A s = 2.1 × 10 −9 , n s = 0.96 } .
t the mean redshift of the 4MOST + LSST sample, we expect f =
.777 and adopt this as fiducial value. For the clustering bias, we
dopt a value consistent with the estimate for the LOWZ sample of
he BOSS surv e y (Singh et al. 2015 ): b g = 1.77 ± 0.04. Following
hat work, we take ˜ C 1 � 0 . 026 as our fiducial alignment amplitude,
ith a 10 per cent uncertainty. We also use η = 4 and χ = 0.06 based
n Hirata ( 2009 ), which implies ( χη) eff = 0.24. We take this value
s fixed. In practice, this will be dependent on the selection function
f the surv e y and should be estimated with dedicated simulations. 

 RESULTS  

e present the expected constraints on b g , f , and ˜ C 1 in this section.
e also present results for the FoM in the ( b g , f ) parameter space.
ur main results are condensed in Table 1 and we will discuss them

hroughout this section. We discuss first the results for k max = 0.3
pc −1 , but we vary this choice towards the end of the section. 
We first calculate the potential constraints on b g and f from the

lustering monopole P 

(0) 
gg and quadrupole P 

(2) 
gg if intrinsic alignments

ere not present in the Universe nor in the model. For this idealized
ase, we find that the expected 1 σ (68 per cent confidence level)
ncertainties in the parameters are of the order of 0 . 087 per cent
nd 0 . 47 per cent for b g and f , respectively. These are, of course,
orrelated, which can be seen in the hatched ellipse in Fig. 1 . Such
cenario provides us with a benchmark against which to compare the
NRAS 516, 787–793 (2022) 
alues of the FoMs presented in Table 1 . For k max = 0 . 3 h 

−1 Mpc ,
he FoM is 110 × 10 3 . 

Secondly, we use equations ( 12 ) and ( 13 ) to estimate, as a sanity
heck, the bias in b g and f from neglecting the selection effect induced
y intrinsic alignments in the clustering signal. We confirm that
eglecting intrinsic alignments in the model, while they are present
n the data, results in the estimated bias being ˆ b g � b g − A/ 3, and
he growth rate being ˆ f � f + A (where A is a ne gativ e number),
s we anticipated in Section 2.1 . This is shown by the pink ellipse in
ig. 1 . 
Next, we include the selection effects induced by intrinsic align-
ents in the clustering measurements, and combine the clustering
onopole P 

(0) 
gg and quadrupole P 

(2) 
gg once again to obtain constraints

n the bias and the growth rate. When including a prior on ˜ C 1 from
ingh et al. ( 2015 ), the expected marginalized 1 σ uncertainties in this
ase are 0 . 098 per cent and 0 . 53 per cent for b g and f , respectively.
his case is shown in the light blue contour in Fig. 1 . Fig. 2 also shows

he de generac y between b g and ˜ C 1 . The size of the light blue contour
s largely driven by the ˜ C 1 prior ( ∼ 10 per cent ). Importantly, this
cenario is not completely realistic because the prior on ˜ C 1 comes
rom measuring projected correlation functions of galaxy alignments
nd galaxy clustering in Singh et al. ( 2015 ) and these would not be
ndependent of the observables we consider. Nevertheless, one might
ave access to an external prior from other observables or from
imulations, so it is still a useful scenario to consider. The inclusion
f intrinsic alignments degrades the FoM, reducing it to 99 × 10 3 . 
There is more to be gained from the joint modelling of alignments

nd clustering multipoles. If we remo v e the prior and instead consider
 data vector comprised of { P 

(0) 
gg , P 

(2) 
gg , P 

(0) 
gE } , the marginalized 1 σ

ncertainties are comparable to those in the idealized case (black
atched ellipse in Fig. 1 ). Similarly, for our fiducial noise model, we
ee that this scenario reco v ers the same FoM as the no alignment
cenario: 110 × 10 3 . The reason is that depending on the number
ensity of galaxies, P 

(0) 
gE can add information on b g and f . We verified

his by varying the number density and confirming that lo wer v alues
ecrease the FoM compared to the idealized case, while higher values
orrespondingly increase it. 

Finally, we assess the constraining power in P 

(0) 
EE by considering

he combination { P 

(0) 
gg , P 

(2) 
gg , P 

(0) 
EE } . Due to the increased noise in

 

(0) 
EE compared to P 

(0) 
gE , the constrains here are not as good as in

he previous case: 0 . 096 per cent and 0 . 52 per cent for b g and f ,
espectiv ely. The F oM is also reduced in this case (100 × 10 3 )
ompared to the target scenario of no alignments. Similarly, we
nd that the combination { P 

(0) 
gg , P 

(2) 
gg , P 

(0) 
gE , P 

(0) 
EE } does not increase

he constraining power significantly o v er the case where the shape–
hape monopole is excluded. This is to be expected given that P 

(0) 
gE 

s not affected by the noise contribution coming from the intrinsic
ispersion of galaxy ellipticities, and has thus increased constraining
ower o v er P 

(0) 
EE . This f act is also, in f act, convenient from the point

f view of lensing contamination. It is easy to isolate the alignment
ignal in P 

(0) 
gE through restrictions in the relative distance between the

alaxies. In the case of P 

(0) 
EE , restricting the redshift range between

alaxy pairs cannot remo v e the lensing contamination. Galaxies at
he same redshift would be indeed lensed by the same foreground
tructures and their shapes would be correlated. In this case, both
ensing and alignments would have to be modelled jointly. 

.1 Impact of parameter choices 

he impact of varying k max is significant in the analysis, given that
he number of modes increases as ∝ k 3 . For a conserv ati ve choice
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Table 1. Estimated 1 σ uncertainties in the parameters of interest, marginalized o v er all 
other parameters, and FoM in the ( b g , f ) parameter space for different choices of k max . 
The first line corresponds to an idealized case of no alignments in the Universe, nor in the 
model. The second line includes a prior on ˜ C 1 from Singh et al. ( 2015 ). The subsequent 
lines combine the clustering multipoles with different alignment observables. 

Study case σb g /b g σ f / f σ ˜ C 1 
/ ̃  C 1 Figure of merit 

k max = 0.1 Mpc −1 

{ P 

(0) 
gg , P 

(2) 
gg } no IA 3.1 × 10 −2 1.8 × 10 −2 – 8300 

{ P 

(0) 
gg , P 

(2) 
gg } , ˜ C 1 prior 3.1 × 10 −2 1.8 × 10 −2 1.1 × 10 −1 8200 

{ P 

(0) 
gg , P 

(2) 
gg , P 

(0) 
gE } 3.1 × 10 −2 1.8 × 10 −2 2.6 × 10 −2 8300 

{ P 

(0) 
gg , P 

(2) 
gg , P 

(0) 
EE } 3.1 × 10 −2 1.8 × 10 −2 1.2 × 10 −1 8200 

k max = 0.2 Mpc −1 

{ P 

(0) 
gg , P 

(2) 
gg } no IA 1.3 × 10 −3 7.2 × 10 −3 – 49 × 10 3 

{ P 

(0) 
gg , P 

(2) 
gg } , ˜ C 1 prior 1.4 × 10 −3 7.6 × 10 −3 1.1 × 10 −1 46 × 10 3 

{ P 

(0) 
gg , P 

(2) 
gg , P 

(0) 
gE } 1.3 × 10 −3 7.2 × 10 −3 1.6 × 10 −2 49 × 10 3 

{ P 

(0) 
gg , P 

(2) 
gg , P 

(0) 
EE } 1.4 × 10 −3 7.6 × 10 −3 1.0 × 10 −1 48 × 10 3 

k max = 0.3 Mpc −1 

{ P 

(0) 
gg , P 

(2) 
gg } no IA 8.7 × 10 −4 4.7 × 10 −3 – 110 × 10 3 

{ P 

(0) 
gg , P 

(2) 
gg } , ˜ C 1 prior 9.8 × 10 −4 5.3 × 10 −3 1.1 × 10 −1 99 × 10 3 

{ P 

(0) 
gg , P 

(2) 
gg , P 

(0) 
gE } 8.8 × 10 −4 4.7 × 10 −3 1.3 × 10 −2 110 × 10 3 

{ P 

(0) 
gg , P 

(2) 
gg , P 

(0) 
EE } 9.6 × 10 −4 5.2 × 10 −3 9.5 × 10 −2 100 × 10 3 

Figure 1. Expected parameter constraints (68 per cent confidence level) on 
b g and f from different probe combinations when k max = 0.3 Mpc −1 . The 
hatched contour indicates an idealized case of no alignments in the Universe, 
and none in the model. The pink ellipse is shifted to the inferred ( b g − A /3, 
f + A ) when alignments are missing in the model (notice A is ne gativ e). 
Other ellipses consider cases where alignments are included in the model. 
The light blue contour considers an analysis of the clustering monopole and 
quadrupole with a prior for ˜ C 1 . The dark blue contour includes the position–
shape monopole. The orange contour includes the shape–shape monopole 
instead of position–shape. 
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Figure 2. Expected parameter constraints (68 per cent confidence level) on 
b g and ˜ C 1 from different probe combinations when k max = 0.3 Mpc −1 . In all 
cases, alignments are included in the model. The light blue contour considers 
an analysis of the clustering monopole and quadrupole with a prior for ˜ C 1 

coming from observations (Singh et al. 2015 ). The dark blue contour includes 
the position–shape monopole. The orange contour includes the shape–shape 
monopole instead of position–shape. 
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f k max = 0.1 Mpc −1 , we find that intrinsic alignments have little
mpact on the ( b g , f ) FoM. The bias in the estimated parameters
s also significantly reduced and it o v erlaps at < 1 σ with the true
arameters. Table 1 shows also an intermediate case with k max = 0.2
pc −1 . Moreo v er, Fig. 3 shows the fractional uncertainty in f as a

unction of k max for our different analysis scenarios. In all cases, the
ncertainty is smaller than the expected bias. It also decreases with 
 max , as expected due to the inclusion of more modes in the analysis.
esults should be interpreted with caution, since our methodology 

elies on a fully linear model. At the moment, this is the only model
vailable that can at the same time account for IA and RSD. 
We proceed to keep k max = 0.3 Mpc −1 constant and explore the
ensitivity of our results to the choice of other parameters in our
nalysis. Varying 	cdm 

has an impact on the deri ved gro wth rate f
nd the expected uncertainties only for the case where a prior on ˜ C 1 

s considered. Mainly, if the prior remains constant, a decrease in f
esults in the data having more difficulties in constraining it. Changes
n 	cdm 

of the order of < 10 per cent result in a few per cent changes
n the fractional uncertainty on f . When clustering and alignments
re combined, this limitation is lifted since the alignment amplitude 
s constrained jointly with f . 

On the other hand, increasing the prior information on ˜ C 1 impro v es
he expected constraints on f . But to achieve the same constraining
ower as when P gE (0) is included, we need to impro v e the knowledge
MNRAS 516, 787–793 (2022) 
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M

Figure 3. Expected fractional uncertainty in f (at the 68 per cent confidence 
level) for various choices of k max between 0.1 and 0.4 Mpc −1 . The marginal- 
ized uncertainty is al w ays significantly smaller than the expected bias if 
alignments are neglected. This is exacerbated for increasing k max due to the 
enhanced constraining power brought in by the inclusion of more modes. 
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f the prior by a factor of ∼5. This result highlights the advantage of
ombining probes versus simply relying on a prior for ˜ C 1 . 

Finally, we have looked at the impact of ( ηχ ) eff on our results.
ecause the connection between ˜ C 1 and A is deterministic, we can

tate that the expected bias in f if alignments are neglected grows
inearly with ( ηχ ) eff . We have also estimated the value of ( ηχ ) eff 

t which the expected bias and uncertainty in f are the same. This
ccurs when ( ηχ ) eff � 0.05, which is a factor of 5 below our currently
dopted value. Clustering multipoles are thus v ery sensitiv e to the
election effects induced by alignments: to the point that only a factor
 decrease in our assumed ( ηχ ) eff could make the bias comparable
o the statistical uncertainty. 

 C O N C L U S I O N S  

ntrinsic alignments can cause several σ biased constraints on the
ias of galaxies and the growth rate depending on the maximum
avenumber of the analysis. Conserv ati ve analyses up to k max = 0.1
pc −1 will not suffer an impact, but extending the analysis to higher

cales will result in a significant bias compared to the measurement
ncertainties. 
Adding a prior on the alignment amplitude can mitigate the impact

f alignments. A better alternative is to add the position-intrinsic
hape monopole to the data vector. This serves not only to mitigate
he impact of alignments, but to also inform parameter constraints
epending on the number density of galaxies. The sensitivity to the
nderlying cosmology is smaller when P 

(0) 
gE is added, compared to

he case of using a prior on ˜ C 1 . 
Some assumptions made in this analysis should be explored

urther to fit to the needs of spectroscopic experiments. In taking
ur fiducial ˜ C 1 value from Singh et al. ( 2015 ), we are extrapolating
heir measurements to a higher mean redshift, neglecting a potential
uminosity and redshift evolution of alignments and neglecting small
ariations in the underlying cosmological model between that work
nd ours. Among these, the strongest assumption is the absence of
edshift and luminosity evolution in ˜ C 1 . However, such behaviour is
ifficult to predict, since it also depends on the fraction of satellites
n the galaxy sample (Fortuna et al. 2021a ). We thus decided not to
nclude it at this stage. 
NRAS 516, 787–793 (2022) 
In the future, we plan to expand our work to make the analysis
nd model set-up more realistic in the quasi-linear and non-linear
egimes. This can be done, for example, by employing perturbative
odels for galaxy alignments and galaxy clustering (Blazek et al.

019 ; Vlah et al. 2020 ; Zhang et al. 2022 ) or by using a halo
odel approach (Fortuna et al. 2021a ). More realistic estimates

f contamination would have to be tailored to specific surveys by
eans of mock catalogues and by sampling the likelihood of the

osmological and nuisance parameter space. Although this work
as focused on spectroscopic samples, photometric ones might also
e affected by the selection effects presented here. We expect this
ould be at a lower level, since redshift uncertainties coming from
hotometric data complicate potential constraints on the growth rate.
Degeneracies between b g and f can be broken by the addition

f higher order statistics (e.g. Verde et al. 2002 ; Gil-Mar ́ın et al.
017 ). Hence, it would also be interesting to consider the impact of
lignment contamination to such probe combinations and whether
igher order clustering or alignment statistics could also mitigate
his scenario or even add information (Agarwal et al. 2021 ; Pyne &
oachimi 2021 ). We should also note that in this work we chose not
o marginalize o v er the amplitude of fluctuations in the density field
oday (typically parametrized by σ 8 or A s ). This choice could be
elaxed in future work, and the degeneracy between b g , f , and σ 8 

roken by combining with other probes, such as cosmic shear. 
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PPENDI X  A :  CLUSTERI NG  A N D  A L I G N M E N T  

ULTI POLES  

sing equation ( 3 ), we can compute the multipole power spectra
or our observables of interest. The two lowest order multipoles for
alaxy clustering (equation 5 ) are 

 

(0) 
gg ( k) = 

[
b 2 g + 

2 

3 
b g f + 

1 

5 
f 2 + 

4 

45 
( R ̃

 C 1 ) 
2 + 

8 

45 
f R ̃

 C 1 

]
P δ( k) , 

(A1) 

 

(2) 
gg ( k) = 

[
4 

3 
b g f + 

4 

7 
f 2 + 

8 

63 
( R ̃

 C 1 ) 
2 

+ 

4 

3 
b g R 

˜ C 1 + 

44 

63 
f R 

˜ C 1 

]
P δ( k) , (A2) 

here for simplicity we defined R = −3.48( ηχ ) eff . And the lowest
rder multipoles for the cross-correlation of galaxy positions and 
ntrinsic shapes (equation 7 ), and the autocorrelation of galaxy shapes 
equation 8 ) are, respectively, 

 

(0) 
gE ( k) = − ˜ C 1 

[
2 

3 
b g + 

2 

15 
f 

]
P δ( k) (A3) 

 

(0) 
EE ( k) = 

8 

15 
˜ C 

2 
1 P δ( k) . (A4) 

ecause we stay at linear order, all these expressions are analytically
ifferentiable with respect to the parameters θi = { b g , f , ˜ C 1 } . Such
eri v ati ves are needed to compute the Fisher matrix in equation ( 11 ).
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