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ABSTRACT

Intrinsic alignments between galaxies and the large-scale structure contaminate galaxy clustering analyses and impact constraints
on galaxy bias and the growth rate of structure in the Universe. This is the result of alignments inducing a selection effect on
spectroscopic samples which is correlated with the large-scale structure. In this work, we quantify the biases on galaxy bias
and the growth rate when alignments are neglected. We also examine different options for the mitigation of alignments by
considering external priors on the effect and different probe combinations. We find that conservative analyses that restrict to
kmax = 0.1 Mpc~! are not significantly affected. However, analyses that aim to go to higher wave numbers could evidence a
significant contamination from alignments. In those cases, including a prior on alignment amplitude, or combining clustering
with the position-intrinsic shape correlation of galaxies, can recover the same expected constraining power, or even inform bias

and growth rate measurements.
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1 INTRODUCTION

Surveys of the extragalactic Universe aim to constrain the cosmo-
logical model by measuring the growth rate of structure at different
epochs. This is quantified by the parameter

_dlnD
~ dlna’

where D is the linear growth rate of the matter density contrast, and a
is the scale factor. Deviations from general relativity can be identified
from the scaling of this parameter with a or with redshift, z.
Constraints on f are obtained thanks to the sensitivity of the
peculiar velocities of galaxies to the growth of structure. These
peculiar velocities have an impact on the observed galaxy redshift.
This translates into anisotropic ‘redshift-space distortions’ (RSDs;
Kaiser 1987) on the clustering statistics (see Percival & White 2009
for a review), which can be measured with great precision (e.g. Alam
etal. 2021). In practice, such clustering statistics constrain the combi-
nation of fo g (growth rate and amplitude of matter fluctuations). This
can also be extrapolated from the best-fitting ACDM model of the
cosmic microwave background (CMB) data from the Planck mission
(Planck Collaboration VI 2020). The current literature displays some
signs of tension with respect to the growth predictions extrapolated
from the CMB. Many authors report significantly discrepant values
(2-30) for fog (e.g.d’ Amico et al. 2020; Chapman et al. 2021; Ivanov
2021; Kobayashi et al. 2022; Yuan et al. 2022; Zhai et al. 2022), while
others are in better agreement with Planck (e.g. Beutler et al. 2012;
Reidetal. 2014; Alam et al. 2017; Bautista et al. 2021; de Mattia et al.
2021; Chen, Vlah & White 2022; Lange et al. 2022; Philcox & Ivanov
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2022; Zhang et al. 2022). The analyses are performed under a variety
of conditions: different sample selections and redshifts, different
scales and thus modelling methods. If a low fog is confirmed, it could
imply deviations from General Relativity (Jain & Zhang 2008).

Hirata (2009) demonstrated that certain measurements of the
growth rate are expected to be contaminated by intrinsic alignments.
Galaxy intrinsic alignments are physical correlations between galaxy
shapes and orientations and the large-scale structure, caused, for
example, by tidal interactions (Catelan, Kamionkowski & Blandford
2001). The contamination of RSD measurements comes about
because the orientation of galaxies often determines their detection
probability. Galaxies aligned along the line of sight are more likely
to be detected than those aligned across the line of sight. (Detections
based on model or Petrosian magnitudes are not affected; but cases
where magnitudes come from isophotal or fixed-aperture measure-
ments will suffer from contamination because a larger proportion of
their flux lies within a fixed aperture.)

Martens et al. (2018) attempted to measure the impact of align-
ments on RSD directly by comparing clustering measurements in
two samples of galaxies selected by their sizes. According to Hirata
(2009), the observed radius of a galaxy depends on its orientation.
Because this orientation is correlated with the tidal field, the observed
size is biased with respect to the original one. The sizes of elliptical
galaxies are measured with respect to a scaling relation known as the
‘Fundamental Plane’ (Djorgovski & Davis 1987). Using data from
the Baryon Oscillation Spectroscopic Survey (BOSS; Dawson et al.
2013), Martens et al. (2018) assumed that populations above or below
the plane would have different orientations with respect to the line of
sight. They found a 2-3¢ difference in the clustering properties of
the two samples, which they ascribed to intrinsic alignment bias. A
key assumption behind the work of Martens et al. (2018) is that size
deviations from the Fundamental Plane can be solely attributed to the
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impact of alignments on the observed radii of galaxies. The detection
is also contingent on combining the two main spectroscopic samples
of the BOSS survey and not in each sample alone. Singh, Yu &
Seljak (2021) pointed out that the deviations from the Fundamental
Plane can also receive significant contributions from other physical
processes or observational systematics, complicating the picture and
suggesting that intrinsic alignments are not inducing any detectable
selection effects on the BOSS samples analysed by Martens et al.
(2018). This was confirmed in Zhang et al. (2022), where the
contamination of intrinsic alignments was explicitly modelled when
obtaining cosmological constraints from galaxy clustering (see their
appendix D). At what level one should expect the effect proposed by
Hirata (2009) to be present in upcoming survey data remains unclear,
and the effect is probably dependent on the galaxy sample. Agarwal
etal. (2021) demonstrated that the deterioration of constraints on the
growth rate can be severe for upcoming surveys such as Euclid if this
type of systematics are neglected.

In this work, we explore different scenarios for the impact of
intrinsic alignments on the growth rate. We consider a case where the
effect of intrinsic alignments is completely neglected, and other cases
where intrinsic alignment observables are used in combination with
galaxy clustering measurements. We focus on luminous red galaxies,
for which there is ample observational evidence supporting a linear
alignment with the tidal field on large scales (Mandelbaum et al.
2006; Hirata et al. 2007; Joachimi et al. 2011; Singh, Mandelbaum &
More 2015; Johnston et al. 2019; Fortuna et al. 2021b). We perform
our analysis in a set-up that matches the expected survey properties of
the 4MOST spectroscopic instrument’s Cosmology Redshift Survey
(Richard et al. 2019), assuming it to be complemented by galaxy
shapes from the Legacy Survey of Space and Time (LSST) over
the same area (Ivezi¢ et al. 2019). Nevertheless, our method is
general and can be applied to any other survey combination. All
in all, we demonstrate that the inclusion of alignment observables
can mitigate several o biases on the growth rate, or even improve its
constraints.

This paper is organized as follows. Section 2 presents the mod-
elling and forecasting formalism and describes the fiducial modelling
assumptions. Section 3 summarizes our results. The conclusions are
presented in Section 4. Appendix A provides auxiliary calculations
to Section 2.

2 FORMALISM

We assume that the cosmological information is encoded in the power
spectra between two observable fields, X and Y, given by Pyy(k, ).
This is a function not only of the wavenumber but also u = k. /k,
where 7 is the line of sight direction. We summarize this information
in a set of multipoles by expanding the power spectra as

Pyy(k, 1) =Y Py (L), 2)

1=0
where £;(u) are Legendre polynomials. Each multipole is then given
by

204+1 (!
Pry() = =—— [ dp Pxylk, iLi(). 3)
1

In principle, all power spectra and multipoles are redshift-
dependent. For simplicity, we will work at a fixed mean redshift
specified for each survey in Section 2.4.
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2.1 Galaxy clustering

Galaxy redshifts are affected by large-scale motions (Kaiser 1987)
and their velocities grow with the build-up of structure. This induces
an angular dependence to the galaxy clustering power spectrum. In
a linear bias model, this is given by

Pyo(k, ) = (by + fu*)* Ps(k), )

where b, = §,/§ is the linear galaxy bias, P; is the linear matter
power spectrum, and fis the logarithmic growth rate.

In the presence of intrinsic alignments, equation (4) is modified to
(Martens et al. 2018)

A 2
Pog(k, p) = by — =+ (f + Ap*| Pk, (&)

where A is the dimension-less amplitude that is related to the strength
of alignment of the specific galaxy population, and to how their
orientation determines their selection probability. This expression
is only valid at linear level (Hirata 2009). From equation (5), we
see that if alignments are neglected, galaxy clustering surveys are
effectively measuring Eg =b, — A/3 and f = f + A.To break the
degeneracy between these parameters and obtain an unbiased growth
rate measurement, we would need an additional source of information
on A. This could be an intrinsic alignment observable, as we will
describe in the following subsections.

Notice that because we work at a fixed redshift, we will report
the contamination on f directly. However, as Hirata (2009) points
out, if the matter power spectrum is normalized at high redshift by
constraints obtained from the CMB, then RSD measurements truly
constrain f(z)D(z).

It can be easily verified that for Pg(k, 1), the only non-zero
multipoles are the monopole (I = 0), the quadrupole (/ = 2), and
the hexadecapole (/ = 4). Most of the signal-to-noise is contained in
the lowest order multipoles. We will, as it is often done (e.g. Blake,
Carter & Koda 2018), neglect the information in the hexadecapole.
The expressions for the multipoles are presented in Appendix A.

2.2 Galaxy shapes

In photometric surveys, the shapes of galaxies are measured in
projection on the sky and modelled as ellipses. To describe a shape,
we thus need two numbers: the axial ratio (¢ = a/b) and the orientation
of the ellipse (¢). We can then estimate the two-component shape
as:

1— q2 X
(er,ex) = W(COS(M), sin(2¢)). (6)

From the theory point of view, the effects that contribute to the mea-
sured shapes are: random noise, gravitational lensing, and intrinsic
(physical) alignments between galaxies and the matter field. The
shapes are also most often modelled in Fourier space, transforming
(e4, ex) into (g, ¥ p) in analogy with the E, B decomposition tradi-
tional of CMB polarization literature (Kamionkowski, Kosowsky &
Stebbins 1997; Zaldarriaga & Seljak 1997).

In this work, we will focus mostly on the E-modes of the
intrinsic alignment (/) component of the shape, thus equating the
observed y2% = y/ + yina, where the second term is the noise. In
principle, gravitational lensing also correlates the observed shapes of
galaxies with the large-scale density field (responsible for perturbing
photon geodesics) and with one another (i.e. two galaxies being
lensed by the same structure). However, we omit any gravitational
lensing contributions to our observables as Taruya & Okumura
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(2020) suggested these are negligible in our context. The reasons
behind these simplifications are as follows. In measuring cross-
correlations of galaxy positions and shapes from spectroscopic data,
one would expect to be able to isolate close pairs of galaxies along
the line of sight. Such procedure would down-weight the lensing
contribution significantly, which peaks when the distance between
the source and the observer is twice of the distance between the
observer and the lens. In the case of shape—shape correlation, the
availability of accurate redshifts is not enough to remove the lensing
contribution, since galaxies at the same redshift are lensed by the
same structure. However, Taruya & Okumura (2020) estimated this
would be negligible in our setup.

We also do not consider intrinsic alignment B-modes. These have
been shown to be absent at the linear level both in alignment and
lensing statistics. In the position—shape statistics, they cannot arise
unless there is a breaking of parity. In shape—shape statistics, B-modes
can arise at the quasi-linear (Blazek et al. 2019; Vlah, Chisari &
Schmidt 2020) or non-linear level (Hui & Zhang 2002). Because we
work at the linear level in this work, we do not account for B-modes.

2.2.1 Intrinsic alignments

Galaxy alignments are thought to be induced by gravitational tides.
At lowest order in gravitational observables, the intrinsic shapes of
galaxies are proportional to the tidal field (Catelan et al. 2001) the
‘linear alignment model’. As a result, shapes become correlated with
the density field. In particular, there is a correlation between E-modes
of galaxy shapes, y g, and the linearly biased galaxy overdensity
(Hirata & Seljak 2004; Taruya & Okumura 2020), which in the
linear alignment model is given by

Pop(k, ) = —Ci(1 — u?) (by + fu?) Ps(k), (7

where C; is the linear bias of galaxy shapes with respect to the tidal
field. Notice that our definition of C is slightly different from the
more commonly adopted C in the literature (Singh et al. 2015), and
that the two are connected by C,=A,C Perit 2m/ D(z), where pg 1S
the critical density of the Universe today and A; and C; are constants.
In the linear alignment model, the autocorrelation of E-modes is

Prrlk, ) = [C(1 — )]’ Py(k). ®)

For simplicity, we will work only with the lowest order multipoles of
Pgg(k, ) and Pgg(k, ), i.e. their monopoles, given in Appendix A.
In principle, we would also need to include the selection effect
from alignments in equation (7). This can be done, for example,
following Singh et al. (2021). However, we checked that such a term
is subdominant in our results.

2.2.2 Relation between A and C,

Breaking the degeneracy between b,, A and fmaking use of alignment
measurements of Pgg(k, i) and Pge(k, w) is only possible if we have
arelation between A and €. Hirata (2009) suggests one can interpret
A as a multiplicative relation between the alignment bias, which is
referred to as B, and a selection bias, (X )eft:

A =2MX)ets B ©

(nx)etr effectively represents the change in the number of galaxies
with respect to a change in their radial orientation. In particular, n
is the slope of the cumulative luminosity function of the population
of observed galaxies, and x is a number that depends on the method
used for computing fluxes and on the typical surface brightness
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profiles of the sample. Hirata (2009) showed that the selection effects
induced by intrinsic alignments on clustering measurements are only
sensitive to the combination of 1 and x. More specifically, (1 )t in
equation (9) represents the effective response over the whole sample
of observed galaxies. Notice, moreover, that the relation between
alignment amplitude given in equation (9) is fully deterministic.

Martens et al. (2018) connect B to the more typical parameters used
in observational works (e.g. C; or Aja; Singh et al. 2015). Simply
accounting for our different definition of the alignment amplitude,
C,, we find that B = —1.74C,. The connection is established by
realizing that our parameter C; is also equal to —b,, a parameter
used in Martens et al. (2018) and originally defined in Bernstein
(2009). This shows that the factor of 1.74 also represents the shear
responsivity, i.e. the response of measured galaxy shapes to a shear
induced by weak gravitational lensing.

We can then finally write A in terms of ClasA = —3.48(nx )eirC .
Notice a negative A implies that neglecting alignments in RSD
measurements will result in an inferred lower growth rate according
to equation (5).

2.3 Forecasting

We forecast the uncertainty on the growth rate and galaxy bias using
the Fisher matrix formalism. To estimate the uncertainties in the
cosmological parameters, we need the covariance of the multipoles,
given by Taruya, Saito & Nishimichi (2011) as

QI+ DRI+ 1)
4

1
></ dp Li(u)Ly(w)Covl Pyy(k, 1), Pwz(k, )], (10)
-1

Cov[PL, (k), Pl (k)] =

where Cov[Pxy, Pwz]l = PxwPyz + PxzPyw is the usual power
spectrum covariance and where we omitted the k and u dependences
for simplicity. Notice any autospectra include the shot or shape noise
contributions: n;l and ayzn;', respectively, where n, is the number
density of galaxies and o, the dispersion in their ellipticities per
component. For example, while Pgg is an autocorrelation of galaxy
shapes and subject to both cosmic variance and Poissonian shape
noise, P,z only suffers from cosmic variance and is in practice a
much more precise probe of galaxy alignments [see e.g. Blazek,
McQuinn & Seljak (2011) for an observational demonstration].

The Fisher matrix of the cosmological or nuisance parameters of
interest, in our case 6; = {b,, f, Ci},is given by

Vy o [l dP!(k aP) (k
[ ke 33 S ico i “EE an
ki

ij = ) ) :
47 Jiin P 00; 20;

where a and b run over the different elements of the data vectors,
i.e. the multipoles considered, and V; is the survey volume. The
uncertainties in the parameters 66; are given by FJI/ 2 (assuming
perfect knowledge of all other parameters) or (F~! ),-1 ,»/ ? (marginalizing
over all other parameters). By default, we will report the marginalized
uncertainties in Section 3. We will also consider the impact of an
external prior on the alignment amplitude. This can be included in
the Fisher matrix by simply adding %, % to the corresponding diagonal
element.

We also quantify the constraining power for different probe
combinations and settings by calculating the figure of merit (FoM;
Albrecht et al. 2006) in the (b, f) parameter space. This is given
by FoM = /S, where S is the area of the ellipse corresponding to
68 per cent confidence level constraints on the parameters. In our
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case, the two parameters of interest are (b, f). The larger the FoM,
the better the constraint in this combination of parameters.

It is also possible to extend this formalism to compute the
parameter bias in the case that the data are analysed with the wrong
model (Taylor et al. 2007; Amara & Réfrégier 2008). By analogy
with equations (7) and (8) of Amara & Réfrégier (2008), in our case,
the bias in a model parameter, 6, is given by

b[6;]1 = (F");;Bj, (12)

where

VS kmax aPl’ k
/ akk> 337 P aCov i P 13y
k

i =73 —,
472 Jkinin ab 1 39

where P!*$(k) is the contribution from the missing systematic in the
model. In our case, this is computed as the difference between the
multipoles with and without intrinsic alignments in the model.

2.4 Fiducial model

We perform our forecasts for the Luminous Red Galaxy sample
expected from the 4MOST Cosmology Redshift Survey (Richard
et al. 2019). Our set-up follows similar choices to van Gemeren &
Chisari (2021). The mean redshift of the targets is expected to be
(z) = 0.55 with an average number density of n, = 2.9 x 107*
Mpc—3. We assume that shapes for this sample will be delivered by
the LSST (Ivezi¢ et al. 2019) over the overlapping area (7500 sq.
deg.). We assume a dispersion in intrinsic ellipticities of o, = 0.3.

The volume of the survey (~10' Mpc?) determines the mini-
mum wavenumber: ki, = 27/ Vsl/ 3 Mpc~'. We vary the maximum
wavenumber among from kp,, = 0.1 Mpc_I to kpmax = 0.3 Mpc_l in
order to assess the sensitivity of our results to this choice.

We use the CORE COSMOLOGY LIBRARY V2.3 (Chisari et al. 2019)
to compute the power spectrum. This relies on the Boltzmann code
CLASS (Blas, Lesgourgues & Tram 2011). We adopt the following
choice of parameters for a flat, neutrino-less, ACDM cosmology:
{Qcim = 0.27, Q, = 0.045, h = 0.67, A, = 2.1 x 1077, n, = 0.96}.
At the mean redshift of the 4MOST + LSST sample, we expect f =
0.777 and adopt this as fiducial value. For the clustering bias, we
adopt a value consistent with the estimate for the LOWZ sample of
the BOSS survey (Singh et al. 2015): b, = 1.77 & 0.04. Following
that work, we take C; ~ 0.026 as our fiducial alignment amplitude,
with a 10 per cent uncertainty. We also use 7 =4 and x = 0.06 based
on Hirata (2009), which implies (x7)err = 0.24. We take this value
as fixed. In practice, this will be dependent on the selection function
of the survey and should be estimated with dedicated simulations.

3 RESULTS

We present the expected constraints on by, f, and C, in this section.
We also present results for the FoM in the (b,, f) parameter space.
Our main results are condensed in Table 1 and we will discuss them
throughout this section. We discuss first the results for k., = 0.3
Mpc~!, but we vary this choice towards the end of the section.

We first calculate the potential constraints on b, and f from the
clustering monopole P’ and quadrupole P} if intrinsic alignments
were not present in the Universe nor in the model. For this idealized
case, we find that the expected 1o (68 per cent confidence level)
uncertainties in the parameters are of the order of 0.087 per cent
and 0.47 per cent for b, and f, respectively. These are, of course,
correlated, which can be seen in the hatched ellipse in Fig. 1. Such
scenario provides us with a benchmark against which to compare the
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values of the FoMs presented in Table 1. For ky,, = 0.3 h! Mpc,
the FoM is 110 x 10°.

Secondly, we use equations (12) and (13) to estimate, as a sanity
check, the bias in b, and ffrom neglecting the selection effect induced
by intrinsic alignments in the clustering signal. We confirm that
neglecting intrinsic alignments in the model, while they are present
in the data, results in the estimated bias being Eg ~b, —A/3, and
the growth rate being f ~ f + A (where A is a negative number),
as we anticipated in Section 2.1. This is shown by the pink ellipse in
Fig. 1.

Next, we include the selection effects induced by intrinsic align-
ments in the clustering measurements, and combine the clustering
monopole P and quadrupole P{;’ once again to obtain constraints
on the bias and the growth rate. When including a prior on C, from
Singh et al. (2015), the expected marginalized 1o uncertainties in this
case are 0.098 per cent and 0.53 per cent for b, and f, respectively.
This case is shown in the light blue contour in Fig. 1. Fig. 2 also shows
the degeneracy between b, and C). The size of the light blue contour
is largely driven by the C; prior (~ 10 per cent). Importantly, this
scenario is not completely realistic because the prior on € comes
from measuring projected correlation functions of galaxy alignments
and galaxy clustering in Singh et al. (2015) and these would not be
independent of the observables we consider. Nevertheless, one might
have access to an external prior from other observables or from
simulations, so it is still a useful scenario to consider. The inclusion
of intrinsic alignments degrades the FoM, reducing it to 99 x 10°.

There is more to be gained from the joint modelling of alignments
and clustering multipoles. If we remove the prior and instead consider
a data vector comprised of { Péﬁg), P;?, P;%)}, the marginalized 1o
uncertainties are comparable to those in the idealized case (black
hatched ellipse in Fig. 1). Similarly, for our fiducial noise model, we
see that this scenario recovers the same FoM as the no alignment
scenario: 110 x 10°. The reason is that depending on the number
density of galaxies, Pg(%) can add information on b, and f. We verified
this by varying the number density and confirming that lower values
decrease the FoM compared to the idealized case, while higher values
correspondingly increase it.

Finally, we assess the constraining power in Pg)g by considering

the combination {P{, PP, P}}. Due to the increased noise in

P,(EOE) compared to P;g, the constrains here are not as good as in
the previous case: 0.096 per cent and 0.52 per cent for b, and f,
respectively. The FoM is also reduced in this case (100 x 10%)
compared to the target scenario of no alignments. Similarly, we
find that the combination {P&fo), Pé?, Pg(%), Péog} does not increase
the constraining power significantly over the case where the shape—
shape monopole is excluded. This is to be expected given that Pg((l)f>
is not affected by the noise contribution coming from the intrinsic
dispersion of galaxy ellipticities, and has thus increased constraining
power over Pg)E). This fact is also, in fact, convenient from the point
of view of lensing contamination. It is easy to isolate the alignment
signal in Pfg through restrictions in the relative distance between the
galaxies. In the case of Péog, restricting the redshift range between
galaxy pairs cannot remove the lensing contamination. Galaxies at
the same redshift would be indeed lensed by the same foreground
structures and their shapes would be correlated. In this case, both
lensing and alignments would have to be modelled jointly.

3.1 Impact of parameter choices

The impact of varying kp,y is significant in the analysis, given that
the number of modes increases as o k°. For a conservative choice
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Table 1. Estimated 1o uncertainties in the parameters of interest, marginalized over all
other parameters, and FoM in the (b, f) parameter space for different choices of kpax.
The first line corresponds to an idealized case of no alignments in the Universe, nor in the
model. The second line includes a prior on C from Singh et al. (2015). The subsequent
lines combine the clustering multipoles with different alignment observables.

Study case Ob, /bg oylf o¢, /C Figure of merit
kmax = 0.1 Mpc™!
(P, P2} no 1A 30 x 1072 1.8 x 1072 - 8300
(P, Py, Cyprior 3.1x1072  1.8x 1072  1.1x 107! 8200
[P P PO 30x1072 18x 1072 2.6 x 1072 8300
s s A x - 8 X o 2 X -
(P, P, P} 31%x1072  18x1072  12x 107! 8200
kmax = 0.2 Mpc™!
(P, P2} no 1A 13%x 1073 72 x 1073 - 49 x 10°
(P, Py, Cyprior  14x107°  7.6x 1077 11x 107! 46 x 10°
[P P PO 13x107%  72x107%  1.6x 1072 49 x 103
s s 4 % o .6 X o .0 % - X
(P, P, P} 14x107%  76x107%  1.0x 107! 48 x 103
kmax = 0.3 Mpc™!
(P, P2} no 1A 87 x 107 47 x 1073 - 110 x 10°
(P, Py, Cyprior 98 x107%  53x 1077  1.1x 107! 99 x 10°
[P P PO 88x 107  47x1073 13 x 1072 110 x 103
(P, P, P 96x 107  52x 1073  95x 1072 100 x 103
1.780 1.790
99(0) +gg(2) + €1 prior
17781 1785 | ™M g9(0) +9g(2) +gE(0)
99(0) +gg(2) + EE(0)
1.776 -
1.780 A
1.774 4
o 17721 175
1.770 A
7221 9g(0) +gg(2) no 1A 17701 ’
1.768 A 99(0) + gg(2) with 1A
99(0) +gg(2) + &1 prior 1.765 1
1.766 | mmm 99(0) + gg(2) + gE(0)
99(0) + gg(2) + EE(0)
1.760 T T T T T
1764 0.020 0.022 0.024 0.026 0.028 0.030 0.032

0.745 0.750 0.755 0.760 0.765 0.770 0.775 0.780 0.785

Figure 1. Expected parameter constraints (68 per cent confidence level) on
bg and f from different probe combinations when kpyax = 0.3 Mpc’]. The
hatched contour indicates an idealized case of no alignments in the Universe,
and none in the model. The pink ellipse is shifted to the inferred (b, — A/3,
[+ A) when alignments are missing in the model (notice A is negative).
Other ellipses consider cases where alignments are included in the model.
The light blue contour considers an analysis of the clustering monopole and
quadrupole with a prior for ;. The dark blue contour includes the position—
shape monopole. The orange contour includes the shape—shape monopole
instead of position—shape.

of kmax = 0.1 Mpc", we find that intrinsic alignments have little
impact on the (b,, f) FoM. The bias in the estimated parameters
is also significantly reduced and it overlaps at <lo with the true
parameters. Table 1 shows also an intermediate case with ky,x = 0.2
Mpc~!. Moreover, Fig. 3 shows the fractional uncertainty in f as a
function of ky.x for our different analysis scenarios. In all cases, the
uncertainty is smaller than the expected bias. It also decreases with
kmax, as expected due to the inclusion of more modes in the analysis.
Results should be interpreted with caution, since our methodology
relies on a fully linear model. At the moment, this is the only model
available that can at the same time account for IA and RSD.

¢

Figure 2. Expected parameter constraints (68 per cent confidence level) on
bg and C, from different probe combinations when kmax = 0.3 Mpc’l. In all
cases, alignments are included in the model. The light blue contour considers
an analysis of the clustering monopole and quadrupole with a prior for C;
coming from observations (Singh et al. 2015). The dark blue contour includes
the position—shape monopole. The orange contour includes the shape—shape
monopole instead of position—shape.

We proceed to keep kpyax = 0.3 Mpc™! constant and explore the
sensitivity of our results to the choice of other parameters in our
analysis. Varying Q.4 has an impact on the derived growth rate f
and the expected uncertainties only for the case where a prior on C|
is considered. Mainly, if the prior remains constant, a decrease in f
results in the data having more difficulties in constraining it. Changes
in Qcam of the order of < 10 per cent result in a few per cent changes
on the fractional uncertainty on f. When clustering and alignments
are combined, this limitation is lifted since the alignment amplitude
is constrained jointly with f.

On the other hand, increasing the prior information on C; improves
the expected constraints on f. But to achieve the same constraining
power as when Pgg(0) is included, we need to improve the knowledge
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Figure 3. Expected fractional uncertainty in f (at the 68 per cent confidence
level) for various choices of kpy,x between 0.1 and 0.4 Mpc_l . The marginal-
ized uncertainty is always significantly smaller than the expected bias if
alignments are neglected. This is exacerbated for increasing kmax due to the
enhanced constraining power brought in by the inclusion of more modes.

of the prior by a factor of ~5. This result highlights the advantage of
combining probes versus simply relying on a prior for C;.

Finally, we have looked at the impact of (1) )er On our results.
Because the connection between C; and A is deterministic, we can
state that the expected bias in f if alignments are neglected grows
linearly with (1 )etr. We have also estimated the value of (1) )es
at which the expected bias and uncertainty in f are the same. This
occurs when (17 )er 2 0.05, which is a factor of 5 below our currently
adopted value. Clustering multipoles are thus very sensitive to the
selection effects induced by alignments: to the point that only a factor
5 decrease in our assumed (77 x )esr could make the bias comparable
to the statistical uncertainty.

4 CONCLUSIONS

Intrinsic alignments can cause several ¢ biased constraints on the
bias of galaxies and the growth rate depending on the maximum
wavenumber of the analysis. Conservative analyses up to kpy,, = 0.1
Mpc~! will not suffer an impact, but extending the analysis to higher
scales will result in a significant bias compared to the measurement
uncertainties.

Adding a prior on the alignment amplitude can mitigate the impact
of alignments. A better alternative is to add the position-intrinsic
shape monopole to the data vector. This serves not only to mitigate
the impact of alignments, but to also inform parameter constraints
depending on the number density of galaxies. The sensitivity to the
underlying cosmology is smaller when P[f%) is added, compared to
the case of using a prior on C}.

Some assumptions made in this analysis should be explored
further to fit to the needs of spectroscopic experiments. In taking
our fiducial C; value from Singh et al. (2015), we are extrapolating
their measurements to a higher mean redshift, neglecting a potential
luminosity and redshift evolution of alignments and neglecting small
variations in the underlying cosmological model between that work
and ours. Among these, the strongest assumption is the absence of
redshift and luminosity evolution in C,. However, such behaviour is
difficult to predict, since it also depends on the fraction of satellites
in the galaxy sample (Fortuna et al. 2021a). We thus decided not to
include it at this stage.
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In the future, we plan to expand our work to make the analysis
and model set-up more realistic in the quasi-linear and non-linear
regimes. This can be done, for example, by employing perturbative
models for galaxy alignments and galaxy clustering (Blazek et al.
2019; Vlah et al. 2020; Zhang et al. 2022) or by using a halo
model approach (Fortuna et al. 2021a). More realistic estimates
of contamination would have to be tailored to specific surveys by
means of mock catalogues and by sampling the likelihood of the
cosmological and nuisance parameter space. Although this work
has focused on spectroscopic samples, photometric ones might also
be affected by the selection effects presented here. We expect this
would be at a lower level, since redshift uncertainties coming from
photometric data complicate potential constraints on the growth rate.

Degeneracies between b, and f can be broken by the addition
of higher order statistics (e.g. Verde et al. 2002; Gil-Marin et al.
2017). Hence, it would also be interesting to consider the impact of
alignment contamination to such probe combinations and whether
higher order clustering or alignment statistics could also mitigate
this scenario or even add information (Agarwal et al. 2021; Pyne &
Joachimi 2021). We should also note that in this work we chose not
to marginalize over the amplitude of fluctuations in the density field
today (typically parametrized by og or A;). This choice could be
relaxed in future work, and the degeneracy between b, f, and oy
broken by combining with other probes, such as cosmic shear.
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APPENDIX A: CLUSTERING AND ALIGNMENT
MULTIPOLES

Using equation (3), we can compute the multipole power spectra
for our observables of interest. The two lowest order multipoles for
galaxy clustering (equation 5) are

2 1 4 8
0 — 2 2 2
PO®K) = {bg + 3bef + 587+ 5(RC)’ + < fRC)| Py(h),

(AD)
4 4 8 ~
Oy — 2 2
PQ(k) = {gbgf + 5f + 6(RC1)
4 ~ 44 -
+ gbchl + @fRCl] Ps(k), (A2)

where for simplicity we defined R = —3.48(1 x )etr- And the lowest
order multipoles for the cross-correlation of galaxy positions and
intrinsic shapes (equation 7), and the autocorrelation of galaxy shapes
(equation 8) are, respectively,

POk = -C %b + if Ps(k) (A3)
gE M3Te sl e
PO (k) = iéf Py(k). (Ad)

15

Because we stay at linear order, all these expressions are analytically
differentiable with respect to the parameters 6; = {b,, f, C1}. Such
derivatives are needed to compute the Fisher matrix in equation (11).

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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