
Vol.: (0123456789)
1 3

Environ Monit Assess          (2023) 195:85  
https://doi.org/10.1007/s10661-022-10661-0

Combining statistical methods for detecting potential 
outliers in groundwater quality time series

Wilbert Berendrecht · Mariëlle van Vliet · 
Jasper Griffioen

Received: 13 September 2022 / Accepted: 18 October 2022 
© The Author(s) 2022

subsequent outlier detection is done in z-score space. 
Tuning parameters are used to attune the robustness 
and accuracy to the given dataset and the user require-
ments. The method has been applied to data from the 
Dutch national groundwater quality monitoring net-
work, which consists of approximately 350 monitor-
ing wells. It proved to work well in general, detecting 
outliers at the top and bottom of the regular measure-
ment range and around the detection limit. Given the 
diversity exhibited by measurement series, it is to be 
expected that the method does not give 100% satisfac-
tory results. Measured values identified by the method 
as potential outliers will therefore always need to be 
further assessed on the basis of expert knowledge, 
consistency with other measurement data and/or addi-
tional research.

Keywords  Outlier detection · Non-detects · 
Detrending · Monitoring networks · Groundwater 
quality data

Introduction

Monitoring is an indispensable part of the management 
of the availability or quality of water resources, whether 
surface water or groundwater. Monitoring comprises a 
series of steps that starts with definition of the moni-
toring objectives and finishes with the evaluation of 
the results and potential optimisation of the network if 
monitoring carries on as a continuous process (Rentier 
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filter out any temporal trends from the series. The 
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et al., 2006; Van Geer et al., 2008; Ward et al., 2004). 
An important step is the quality assurance and quality 
control. Quality assurance comprises the a priori pre-
vention of errors in installation, sampling, measure-
ment, etc.; quality control entails the a posteriori detec-
tion of such errors (Ferretti, 2009). Both are needed, as 
errors can never be excluded.

In water resources management, monitoring net-
works are commonly established by bodies such as 
water authorities or drinking water companies. A dis-
tinction is made between state monitoring and trend 
monitoring. In state monitoring, comparisons are only 
possible spatially, for a certain moment in time. Trend 
monitoring, however, enables intercomparison of 
individual measurements with preceding and subse-
quent measurements from the same observation point 
(Broers & Van der Grift, 2004). It is used, for exam-
ple, to distinguish seasonal trends from multi-annual 
trends in groundwater level and to investigate the effi-
ciency of measures for reducing water pollution. The 
monitoring frequency is determined by the temporal 
dynamics and cost. The highest frequencies are usu-
ally applied when monitoring river levels, as these 
have high temporal dynamics; the lowest frequencies 
are used to monitor the quality of deep groundwater, 
which has the lowest temporal dynamics. In general, 
groundwater quality monitoring networks have a rel-
atively low monitoring frequency, as sampling and 
analysis are expensive and the dynamics are usually 
not large. This implies that the data density will also 
be low.

Quality control of monitoring networks requires 
detection of artificial outliers, as they may indicate 
bad data and influence interpretation of the monitor-
ing data. The low temporal density of groundwater 
quality monitoring networks makes this a challenging 
task: these networks may be only a few decades old 
(exceptions are long-established monitoring networks 
at sites where groundwater is abstracted to provide 
drinking water) and their monitoring frequency may 
be annually or even less frequently for financial rea-
sons. Additionally, the measurements in groundwa-
ter quality monitoring are frequently below detection 
limit because of the limitations of the measurement 
process or analytical technique. These so-called non-
detects are too uncertain to be considered reliable.

An outlier could be generally defined as being 
a measurement (or subset of measurements) which 
appears to be inconsistent with the remainder of the 

dataset (Barnett & Lewis, 1994). Here, inconsistency 
can mean that the measurement is from a different dis-
tribution than the model or distribution considered to 
describe the data. But inconsistency could also mean 
that the presupposed model or distribution is not 
describing the data as well as was assumed (Zimek & 
Filzmoser, 2018). In terms of water quality data, the 
latter means that an analytically correct measurement 
could be identified as an outlier. For this reason, in 
this paper we apply outlier detection methods to iden-
tify potential outliers, i.e., measurements that are on 
some objective statistical criterion inconsistent with 
the rest of the sample. This enables us to perform 
quality control on large datasets in an automated pro-
cedure. Whether a potential outlier is a true outlier or 
not should then be decided based on additional infor-
mation or checks.

Tests that have been proposed for detecting outli-
ers consider a criterion based on (1) the interquartile 
range (Tukey, 1977), (2) the standard deviation or (3) 
a range defined by the median plus or minus a multi-
plication of the median absolute deviation (Hodge & 
Austin, 2004; Walfish, 2006). The first two types of 
tests assume normality, but groundwater quality data 
are often not normally distributed. The second type 
does not work properly for small datasets (Cous-
ineau & Chartier, 2010; Leys et  al., 2013). It does 
not assume normality and is commonly called the 
MAD or Hampel identifier test (Hampel, 1972). All 
these tests have difficulty handling series of analyses 
that lie close to 0, i.e. that vary around the analyti-
cal detection limit, which is typical for major redox-
sensitive ions such as iron and nitrate, and for trace 
elements and micro-organics. Tests designed specifi-
cally for small datasets, such as Dixon’s Q test (Dean 
& Dixon, 1951) and Grubbs’ test (Grubbs & Beck, 
1972), are sensitive for masking, which means that if 
several outliers are present, one may escape detection 
(Acuna & Rodriguez, 2004; Barnett & Lewis, 1994; 
Bendre & Kale, 1987). They are therefore especially 
suitable when only one outlier is present, but they 
cannot handle data with values below detection limit, 
which is a typical aspect of water analysis. Another 
major shortcoming is that Grubbs’ test assumes 
normality.

Reijnders et  al. (2004) describe a method to iden-
tify potential outliers in multi-annual time series 
(< 25 years) of the Dutch National Groundwater Qual-
ity Monitoring Network. Extreme values were detected 
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with a moving-average approach where every value 
was compared to the two surrounding values. This 
seems to be a fruitful approach for dealing with tempo-
ral trends. However, such a moving-average estimator 
is not robust in a sense that it is sensitive to extreme 
values (Hippke et  al., 2019). In addition, the method 
of Reijnders et al. (2004) cannot handle values below 
detection limit.

The objective of our study was to present a method 
to detect potential outliers by combining the moving-
window approach inspired by Reijnders et  al. (2004) 
with a method to handle values below varying detec-
tion limits (non-detects), and an outlier labelling 
method to flag potential outliers (Kannan et al., 2015). 
The moving-windows approach is based on Tukey’s 
biweight filter (Mosteller & Tukey, 1977; Stock & 
Watson, 2012), which was found to be an effective and 
robust filter for detrending by Hippke et  al. (2019). 
Non-detects are handled by applying a robust regres-
sion on order statistics (ROS) estimator as presented 
by Helsel (2005). The ROS estimator can deal with 
multiple detection limits and performs well for small 
data sets as well as large ones (Baccarelli et al., 2005; 
Helsel, 2006). We demonstrate the methodology 
established using a dataset obtained from the Dutch 
national groundwater quality monitoring network, 
which was set up in the early 1980s and consists of 
circa 350 wells spread across the Netherlands. Results 
show that the method identifies potential outliers well 
in the presences of trends and/or various detection 
limits.

Methods and materials

Starting points

Groundwater quality measurement series tend to have 
the following six properties: (1) they contain rela-
tively few measurement points (< 25); (2) trends may 
be present in the series; (3) the data are not normally 
distributed; (4) each series may contain an unknown 
number of outliers; (5) measured values may be 
below a detection limit (non-detects); and (6) detec-
tion limits vary over time. We have therefore devel-
oped a method for detecting an unknown number of 
outliers in data with possible trends and non-detects 
that take these six properties into account as well 
as possible. The method is based on (1) estimating 

values below detection limit; (2) log-transformation 
of the dataset to improve the symmetry of the distri-
bution; (3) removing trends in the measurement series 
by using a low-pass filter; (4) calculating the devia-
tions from the median for each measurement series; 
(5) merging data from multiple measurement series to 
produce more robust statistics; (6) including informa-
tion on detection limits when determining whether a 
measurement qualifies as a potential outlier; and (7) 
retrospectively assessing potential outliers using vis-
ual inspection and additional information.

Dealing with values below detection limit

Aqueous solutes may be present below the detection 
or reporting limits, resulting in values reported as a 
non-detect or less-than. As outlier detection methods 
are generally based on sample statistics, a method is 
required to replace a non-detect with a representative 
substitution enabling the calculation of statistics such 
as the mean, median and standard deviation. A widely 
applied method for estimating sample statistics in the 
presence of non-detects is the robust regression on 
order statistics (ROS) estimator (Helsel, 2005; Shum-
way et al., 2002). ROS is a semi-parametric method in 
which non-detects are replaced on the basis of least-
squares regression on a probability graph. The method 
divides non-detects with a common detection limit 
such that each is an equal part of the probability distri-
bution under the detection limit. For a detailed descrip-
tion of the methodology, see e.g. Helsel (2005) and 
Lee and Helsel (2005).

The ROS estimator is commonly recommended in 
the literature over the widely used direct substitution 
method (Helsel, 2006; Helsel & Cohn, 1988; Singh & 
Nocerino, 2002). The latter method replaces all non-
detects with, say, 0, the detection limit (DL), or half 
the detection limit DL/2 (Helsel, 1990). However, 
Sinha et al. (2006) recommends the ROS method only 
if less than 50% of the measurements are below the 
detection limit. The following two criteria were there-
fore chosen to determine whether to apply the ROS 
estimator for a measurement series:

1.	 The measurement series must contain at least five 
detected values

2.	 At least 50% of the measured values must have 
been detected
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If these two criteria are not met, we continue to use 
direct substitution (DL/2). After any non-detects have 
been replaced with an estimated value, the sequences 
are log-transformed.

Detrending

Measurement series of groundwater quality data may 
exhibit trends. This complicates the detection of out-
liers, because trends affect the statistical distribution 
around the mean or median. It is therefore better to 
remove the trend from the measurement series prior to 
outlier detection. One method of doing this is by esti-
mating a local mean for the measurement series. The 
outlier detection is then performed on the deviation 
from this local mean. Stock and Watson (2012) apply 
the biweight location as an estimator for the local aver-
age. The biweight location can be considered a low-
pass filter and is a robust statistic for determining the 
central location of a distribution. It is described as 
(Beers et al., 1990):

with xi the measurement data, M the sample median, 
and ui calculated as:

(1)ζbiloc = M +

∑
�ui�<1

��
xi −M

��
1 − u2

i

�2�

∑
�ui�<1

�
1 − u2

i

�2

with c the tuning constant and MAD the median abso-
lute deviation. If MAD is zero, the median is used as 
estimator for the central location. Typical values for 
c are 6.0 or 9.0. A lower c value yields a more robust 
estimate (less sensitive to outliers), a higher c value 
yields a more efficient estimate (better approximation 
of the maximum likelihood estimator). The essence 
of the biweight location estimator is that points fur-
ther from the sample median are given less weight, 
and values for a MAD > c are not included.

The biweight location is calculated across a central 
window of seven measured values, i.e. three meas-
urements on either side of the measurement itself are 
used. The calculation must be adjusted for measure-
ments at the beginning and end of the measurement 
series. For ti < t3 a window of t0,… , ti+2 is used, and 
the window for ti > tN−2 is ti−2,… , tN , where N is 
the number of measurements in the series. Since the 
monitoring networks for groundwater quality are gen-
erally sampled at regular intervals (e.g. annually), we 
opted not to take the actual time interval between the 
measurement points into account.

The deviation between the measured value vi at 
time ti and the local mean gi at time ti is now calcu-
lated as (see Fig. 1):

(2)ui =

(
xi −M

)

c ∗ MAD

Fig. 1   Calculation of 
deviation r = v − g relative 
to biweight location
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If the measured value vi lies below the detection 
limit, the imputed value is used.

Calculating modified z‑scores per measurement 
series

The modified z-score is a standardised score that 
measures outlier strength, i.e., how much a certain 
score differs from the typical score (Iglewicz & Hoa-
glin, 1993). The modified z-score is more robust than 
the standard z-score because it uses the median rather 
than the mean. The modified z-score for measured 
values i , Mi , is calculated here as the deviation of ri 
from the median of r , weighted by the series mean 
absolute deviation from the median and a scaling 
factor:

where r�
i
=
(
ri − r̃

)
 and r̃  is the median of r , and:

The scaling factor 1.2533 is such that for a large 
number of normally distributed measurements 
(whether or not they are log-transformed), the value 
MAD/scaling factor approaches the standard deviation 
of the measurements. In this paper, we have opted to 
work with the mean deviation rather than the median 
deviation from the series median. In series with a 
small number of measurements and/or series with 
little variation or many values below the detection 
limit, the median deviation tends to be too low, and 
hence the z-score of measured values soon becomes 
high, which results in relatively many measured val-
ues being marked as potential outliers. A disadvantage 
of basing the z-score on the mean deviation is that if 
a series has multiple outliers, it is more difficult to 
detect all of them.

For each measurement series k with at least seven 
detected values, the following typical series score sk 
is calculated:

(3)ri = vi − gi

(4)Mi =
r
�

i

1.2533 ∗ MAD

(5)MAD =
1

N

∑N

i

|||r
�

i

|||

(6)sk =
MADk

1.2533

If the values below the detection limit have been 
imputed using the ROS method, then all detects and 
non-detects are used to calculate the above score. If 
non-detects have been imputed as DL/2, then only the 
detected measurement values are included.

Detecting outliers by using the composite z‑score

When the measurement series consists of a small num-
ber of measurements, the z-score is sensitive to “coin-
cidences”. To increase the robustness of the z-score, 
the complete set of measurement series from a moni-
toring network is merged, per parameter, based on the 
calculated score sk . For this purpose, the data of all 
N measurement series are sorted by sk ( k = 1,… ,N) 
and divided into 10-percentile ranges (Reijnders et al, 
2004), i.e. P0-P10, P10-P20, P20-P30, etc. Next, the 
mean and standard deviation are calculated over all 
detrended values r′

k,i
 within a 10-percentile range. This 

yields a value for s, plus the corresponding standard 
deviation for r′ , �r′ for each 10-percentile range. These 
values are then plotted against each other in a graph. 
On the basis of the points, linear regression is then 
used to estimate a linear relationship between sk and 
the standard deviation �̂:

where a and b are linear regression parameters. 
Finally, a threshold value for �̂ , �min , is applied:

In this way, if the series has little temporal vari-
ation, a slightly different measurement will not 
already be considered a potential outlier. It may 
not necessarily be an outlier, as it might also result 
from variation in recharge conditions, hydrody-
namic dispersion along the flow path, noise in the 
lab analysis, etc. The height of the threshold value 
�min depends on the dataset and the extent to which 
small deviations within measurement series with 
limited fluctuations should be considered as poten-
tial outliers.

The “composite z-score” M∗
i
 now becomes:

(7)�̂ = a ∗ sk + b

(8)�̂
∗ = max

(
�̂, �min

)

(9)M∗
i
=

r
�

i

�̂∗
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A measured value is considered a potential outlier 
if the absolute value of M∗

i
 exceeds a predetermined 

threshold value Mcrit . A commonly used threshold 
for Mcrit is 3.5 (Iglewicz & Hoaglin, 1993).

Correcting for measurement values below the 
detection limit

The threshold value applied above concerns the 
variation in the measurement series (whether or 
not the series has been log-transformed) that is the 
result of natural, sampling and analytical variabil-
ity. However, for very low measurement values it is 
also desirable to apply a threshold in relation to one 
or more detection limits. For some parameters, the 
detection limit varies over time, with the result that 
a value detected at one measurement moment may 
be lower than the detection limit at another meas-
urement moment.

To prevent the method from detecting such low 
readings as outliers, a threshold value vDL is derived 
by making histograms of the detection threshold 
values per parameter. Based on these histograms, 
threshold values are chosen (Table  1). In most 
cases, the threshold value is the median value of 
all detection limits for a parameter. A value meas-
ured at time ti is not considered an outlier if both 
the measured value and the local mean at time ti are 
below this threshold value.

Data for validating the method

The method has been tested using data obtained from 
the Dutch national groundwater quality monitoring 
network, which was set up in the early 1980s and con-
sists of c. 350 wells spread across the Netherlands. 
The wells contain three screens, with the first at c. 
10 m depth, the second at c. 15 depth and the third 
screen at c. 25 depth (Broers, 2002; Van Duijven-
booden, 1993). Deviations in screen depth hold when 
clay layers were encountered at these depths during 
drilling.

Only the shallowest and deepest screens have been 
sampled. The middle screen is a back-up screen. 
Since 1997, a distinction in the strategy for sampling 
the screens has been made between one-, two- and 
4-year measurement cycles (Van Vliet et  al., 2012; 
Wever & Bronswijk, 1997). The pH, EGV, tempera-
ture, oxygen and bicarbonate (HCO3

-) are determined 
in the field during sampling (Van Vliet et al., 2010). 
Macro components (NO3, SO4, NH4, Cl, K, Na, Mg, 
Ca, Fe, Mn, Total-P, DOC, HCO3) and inorganic 
micro components (Ba, Sr, Zn, Al, Cd, Ni, Cr, Cu, As 
and Pb) were analysed in the laboratory. The test data 
used to validate the method were groundwater quality 
data measured from the start of the monitoring net-
work in 1984 up to the end of 2010.

Results and discussion

The parameter values used

The method has several parameters that need to be 
configured. This allows for tuning the desired behav-
iour of the method to properties of the dataset, mak-
ing the method flexible for practical application. The 
following parameters can be configured:

•	 The tuning constant c in Eq.  (2). This parameter 
determines the smoothness of the local mean and 
the impact of local extremes on the estimated 
trend. Various tests revealed that a value of c = 
9.0 for the test dataset generally produced the best 
results;

•	 The threshold value for the standard deviation �min 
in Eq.  (8). This prevents small deviations from 
being considered as potential outliers in series 
with little variation. For the dataset in this article, 

Table 1   Threshold values v
DL

 per parameter, based on com-
mon detection limits

Parameter Threshold 
value

Parameter Threshold 
value

Al 13.49 µg/l K 1.21 mg/l
As 0.15 µg/l Mg 0.882 mg/l
Ba 2.75 µg/l Mn 0.002 mg/l
Ca 2 mg/l NH4 0.014 mg N/l
Cd 0.045 µg/l NO3 0.1 mg N/l
Cl 0.11 mg/l Na 0.184 mg/l
Cr 0.7 µg/l Ni 0.88 µg/l
Cu 0.7 µg/l P-total 0.062 mg P/l
DOC 0.6 mg/l Pb 0.207 mg/l
Fe 0.011 mg/l SO4 0.1 mg/l
HCO3-field 0.25 mg/l Sr 0.5 µg/l
HCO3-lab 3 mg/l Zn 6.54 µg/l
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it was empirically determined that the standard 
deviation associated with the 50th percentile of s , 
�min = s

50
  gave satisfactory results;

•	 The threshold value of the z-score, Mcrit , as a 
measure for considering an extreme value to be 
a potential outlier. A value of 3.5 was chosen, as 
recommended by Iglewicz and Hoaglin (1993).

The results presented below are based on these 
configurations.

General results

The testing procedure was applied to the analyti-
cal data on principal solutes and trace metals from 
all observational filters of the national monitoring 
network. Table 2 gives an overview of certain basic 
data for each parameter and also shows how many 

measurement values were below the detection limit 
and how many potential outliers were detected. It can 
be seen that for a large number of trace metals includ-
ing Al, many values are below the detection limit. For 
example, about 2/3 of all values measured for Cd and 
Cu are below the detection limit. For redox-sensitive 
Fe, NO3 and NH4 and total-P there are also relatively 
high numbers of measurements with values below 
the detection limit. As a result, several measurement 
series contain too few (less than 7) measured values 
for an outlier analysis to be performed.

Table  2 shows that the number of outliers per 
parameter is always less than 1% of the total number 
of measurements for that parameter. The parameters 
NH4, Fe, Mn and Ba have relatively the most outliers: 
over 0.8% in each case. NO3, Al and the trace metals 
Cd, Cr, Cu, Ni, Pb and Zn have fewer outliers than the 
other parameters: below 0.2%. This may be related 
to the mostly low concentrations of these parameters 

Table 2   Data characteristics per parameter and number of potential outliers when Mcrit is 3.5

Parameter No. of wells No. of filters No. of 
measurements

No. below detection limit No. of outliers

Al 387 796 9894 3832 (38.73%) 13 (0.13%)
As 387 795 9279 2799 (30.16%) 46 (0.50%)
Ba 387 796 9851 40 (0.41%) 83 (0.84%)
Ca 397 838 14,231 64 (0.45%) 62 (0.44%)
Cd 387 793 9141 6341 (69.37%) 10 (0.11%)
Cl 397 838 14,234 5 (0.04%) 97 (0.68%)
Cr 387 788 7838 3004 (38.33%) 11 (0.14%)
Cu 387 793 9144 5920 (64.74%) 7 (0.08%)
DOC 396 809 8081 105 (1.3%) 54 (0.67%)
Fe 391 804 10,615 1272 (11.98%) 97 (0.91%)
HCO3-lab 397 827 9120 521 (5.71%) 54 (0.59%)
HCO3-field 363 732 5151 11 (0.21%) 22 (0.43%)
K 397 838 14,224 84 (0.59%) 45 (0.32%)
Mg 397 838 14,235 11 (0.08%) 85 (0.60%)
Mn 387 796 9854 364 (3.69%) 88 (0.89%)
NH4 397 835 13,530 2092 (15.46%) 130 (0.96%)
NO3 397 838 14,236 7773 (54.6%) 17 (0.12%)
Na 397 838 14,231 1 (0.01%) 84 (0.59%)
Ni 387 792 8561 3492 (40.79%) 15 (0.18%)
P-tot 397 838 13,513 3551 (26.28%) 86 (0.64%)
Pb 387 785 5167 2749 (53.2%) 3 (0.06%)
SO4 397 838 14,237 1598 (11.22%) 58 (0.41%)
Sr 387 796 9839 4 (0.04%) 60 (0.61%)
Zn 387 796 9851 5343 (54.24%) 8 (0.08%)
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and/or the large number of measured values that are 
below detection limit.

Examples illustrating the method’s effectiveness

The operation and effectiveness of the detection 
method are illustrated below with some examples. 
Figure  2 shows a measurement series for sulphate 
analyses. The series shows a jagged trend. The local 
mean follows the trend well, without being overly 
influenced by short-term variations. Also, due to the 
use of the biweight low-pass filter, the local mean is 
not affected by the highly anomalous value measured 
in 2003. Based on the deviations from the local mean, 
that measurement is detected as a potential outlier.

Figure  3 shows a measurement series of alu-
minium analyses with a detected potential outlier in 
1991. Several values in the measurement series are 
below the detection limit. The detection limits var-
ied over time and had values of 18.83, 13.49, 53.96 
and 10 µg/l. The measured values below the detection 
limit were imputed using the ROS method and are 
shown in the figure as hollow circles. The detected 
and imputed values were used to derive a local mean. 
Using the deviations from this local mean, the z-score 
was calculated. The resulting z-score for the 1991 

measurement was 5.5, so it has been flagged as a 
potential outlier.

In Fig. 4, a measurement series of nitrate is shown 
in which over 50% of the measured values are below 
the detection limit, even though the detection limit 
decreased substantially over time. In this case, the 
non-detects have been replaced by directly substitut-
ing half of the detection limit value. Consequently, as 
indicated in the “Detrending” section, the variation of 
the measurement series — and hence also the z-score 
— has been determined using only the detected meas-
ured values. If the non-detects had been used, the 
variation of the measurement series would have been 
greatly underestimated, thereby greatly increasing the 
likelihood that a measured value would be wrongly 
identified as a potential outlier.

Choosing to calculate the z-score by using the 
mean absolute deviation (MeanAD) rather than 
the median absolute deviation (MAD) makes the 
method robust. For short series with very little var-
iation, this prevents a small deviation from already 
being considered an outlier. However, there are 
also examples where this strategy is less success-
ful. Figure 5 shows a measurement series of ammo-
nium analyses with two clearly anomalous meas-
ured values. From the figure, it seems as though 

Fig. 2   Detection of outlier in a sulphate measurement series (well 85) with downward trend, after application of biweight low-pass 
filter



Environ Monit Assess          (2023) 195:85 	

1 3

Page 9 of 14     85 

Vol.: (0123456789)

both measurements are potential outliers, but the 
method flags only the first one. This is because the 
second measurement has a z-score of 3.2 and thus 

just fails to meet the outlier criterion of a z-score 
of 3.5.

Another tricky case is when the measurement 
series exhibits very little variation for most of the 

Fig. 3   Detection of an outlier in a series of aluminium analyses (well 20) with many measured values below detection limit, which 
have been imputed using the ROS method

Fig. 4   A measurement series of nitrate (well 48) in which over 50% of the values are below the detection limit. The z-score has been 
calculated using the detected measurements
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time. Figure 6 shows a measurement series for mag-
nesium analyses in which the measured values fluc-
tuate around 12 mg/l, with higher values of 18 mg/l 
and 19 mg/l only measured in respectively 2001 and 

2003. Due to the small variation, the standard devia-
tion is below the threshold value �min . The z-score has 
therefore been determined using the threshold value. 
Nevertheless, the 2003 measurement appears to have 

Fig. 5   Example of an ammonium series (well 99) where the use of the mean absolute deviation (MAD) is less successful: the sec-
ond low measurement in 1988 is not detected as an outlier, although from this graph it would be expected to be one

Fig. 6   Measurement series for magnesium (well 65) with low variation, as a result of which a small deviation is, rightly or wrongly, 
still considered an outlier
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a z-score just above 3.5 and so is identified as a poten-
tial outlier. The 2001 measurement is just below the 
threshold and is not flagged as an outlier. However, it 
is questionable whether the 2003 measured value is 
indeed an outlier. This will need to be determined on 
the basis of additional data and/or additional research.

Finally, Fig.  7 shows a measurement progression 
for magnesium that the method also has difficulty 
with. It concerns a rising trend at the end of a meas-
urement series (and a flat trend at the beginning of 
the measurement series). Because the local mean of 
the last measured value in a series is calculated using 
only the preceding measurements (and therefore is not 
central), it is less reliable, which increases the likeli-
hood that the last measurement will be flagged as an 
outlier even though it might not be one. It is therefore 
recommended to consider the last measurement in a 
measurement series as a provisional potential out-
lier. Whether it really is an outlier can be determined 
only after several subsequent measurements become 
available.

Discussion

The method presented in this paper provides a pro-
cedure for automatically checking large datasets of 
groundwater quality for potential outliers. It gives 

reliable results, not only for high outliers but also for 
more subtle outliers near the detection limit. The log-
transformation plays a crucial role here, enabling low 
concentrations with values of tenths and hundredths 
of mg/l or µg/l to be separated from each other. This 
gives the method added value over outlier detection 
methods that do not use log-transformation (Adikaram 
et al., 2015; Wang et al., 2020).

It is important to note that the method identifies 
potential outliers and that additional checks are often 
needed to formally designate them as “outliers” in 
a database of groundwater quality analyses. Once 
the potential outliers have been detected, additional 
checks can be performed for each potential outlier 
to determine whether it really is an outlier or that 
the measured value is correct. Additional indications 
include a significant difference in ion balance (elec-
troneutrality condition) or a significant difference 
between measured and calculated electrical conduc-
tivity, which are general indications of analysis errors. 
After considering such indicators, it is possible to be 
more certain which are the actual outliers. However, 
such checks do not work for trace elements that do 
not contribute substantially to the ion balance. In such 
cases, expert opinion is important, possibly supple-
mented by knowledge of the range in concentrations 

Fig. 7   Measurement series for magnesium (well 55), trending upwards at the end of the series
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within the monitoring area. Using the latter, only 
extreme outliers can be designated, however.

The decision to make the method robust has a 
downside: the method may miss out potential outli-
ers if the measurement series has multiple sequential 
outliers. Future research could aim to make further 
improvements in this regard. It is already possible to 
adjust the criteria defined in the “The parameter val-
ues used” section when applying the method. In this 
paper, a z-score criterion of 3.5 was used. Choosing a 
less stringent criterion would result in more measure-
ments qualifying as potential outliers, but then more 
emphasis would be placed on testing these outliers by 
e.g. visual inspection or ion balances.

Conclusions

A flexible method has been devised for detecting out-
liers in groundwater quality measurement series. It 
has been developed for datasets with a wide variety 
of measurement series. The concentrations in a series 
may vary widely or moderately, may or may not have 
a temporal trend, and the series may contain meas-
ured values below the detection limit. Moreover, the 
detection limit can vary over time. The method has 
proved to be sensitive and has detected outliers at 
the top and bottom of the regular measurement range 
and around the detection limit. Not unexpectedly, 
because it is able to analyse such a variety of meas-
urement series, the method does not give results that 
are 100% satisfactory. Measured values identified by 
the method as potential outliers will therefore always 
need to be further assessed based on expert knowl-
edge, consistency with other measurement data and/
or additional research. Furthermore, outliers at the 
end of a measurement series should always be consid-
ered “provisional” since an as yet unknown upward 
or downward trend may follow. Only after new meas-
urements become available can a final judgement be 
made. Potential outliers at the beginning of a meas-
urement series will need to be assessed by an expert 
using additional information.

Although developed for the analysis of groundwa-
ter quality data, the method presented in this paper 
can also be applied to other data with similar char-
acteristics (short series, presence of trends and non-
detects), in earth and environmental sciences or other 
sciences.
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