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A B S T R A C T   

Urinary Tract Infections (UTIs) are among the most frequently occurring infections in the hospital. Urinalysis and 
urine culture are the main tools used for diagnosis. Whereas urinalysis is sufficiently sensitive for detecting UTI, 
it has a relatively low specificity, leading to unnecessary treatment with antibiotics and the risk of increasing 
antibiotic resistance. We performed an evaluation of the current diagnostic process with an expert-based label for 
UTI as outcome, retrospectively established using data from the Electronic Health Records. We found that the 
combination of urinalysis results with the Gram stain and other readily available parameters can be used 
effectively for predicting UTI. Based on the obtained information, we engineered a clinical decision support 
system (CDSS) using the reliable semi-supervised ensemble learning (RESSEL) method, and found it to be more 
accurate than urinalysis or the urine culture for prediction of UTI. The CDSS provides clinicians with this pre
diction within hours of ordering a culture and thereby enables them to hold off on prematurely prescribing 
antibiotics for UTI while awaiting the culture results.   

1. Introduction 

Urinary Tract Infections (UTIs) comprise a large part of all bacterial 
infections [1], causing serious health problems for patients as well as 
imposing a significant workload on diagnostic laboratories [2–4]. In 
women, cystitis (lower-UTI) is the most common cause for a visit to the 
general practice in the Netherlands [5] and UTIs are the fifth most 
common healthcare-associated infection in the United States [6]. 

Although definitions of UTI vary internationally [7,8], predomi
nantly one or more associated signs or symptoms of UTI accompanied by 
the presence of bacteria in the urine (bacteriuria) are required. Antibi
otics are effective and indicated in case of a diagnosis of UTI [2]. 

In the hospital, the diagnosis of UTI is often difficult. Clinicians 
frequently have to decide on day one whether to start antibiotics, at 
which time only the signs and symptoms and the urinalysis results may 
be available. Symptoms can be nonspecific for UTI [9,10] and although 
urinalysis is highly sensitive for UTI, it has low specificity [11]. The 

detection and identification of uropathogens by urine culture provide 
vital information for the diagnosis of UTI, but it can take up to three days 
before the results are available. This uncertain process predisposes to the 
unnecessary use of antibiotics. 

Unnecessary treatment in the context of UTI diagnosis is an impor
tant part of inappropriate antibiotic administration and its prevention is 
a crucial element of modern antibiotic stewardship programs [12]. 
Inappropriate and unnecessary administration of antibiotics, estimated 
to occur in 20–50% of all hospital prescriptions [13], are the main 
drivers of increased antibiotic resistance. The increase in antibiotic 
resistance among pathogenic microorganisms in recent years is of 
growing concern [14,15]. The use of a predictive system which is able to 
accurately assess whether a patient is at high or low risk of having a UTI 
at an early stage in the diagnostic process could support the clinician in 
deciding not to start antibiotics. Thereby unnecessary antibiotic 
administration can be reduced. 

In this paper, we report on the design and evaluation of a clinical 
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decision support system (CDSS) to predict UTI before the urine culture 
results are available. An expert panel enriched our data set with a label 
for UTI, which we use as the target variable for a prediction model, 
rather than the urine culture result. This label is a more suitable 
endpoint for our goal of reducing unnecessary administration of anti
biotics, as the presence of uropathogens in the urine in absence of 
symptoms, i.e. asymptomatic bacteriuria, generally does not require 
treatment with antibiotics. We first analyze the current diagnostic pro
cess using this expert-based label as reference, examining the predictive 
value of urinalysis screening and the Gram stain results. Based on the 
insights from this analysis the CDSS is constructed, using a two-step 
approach. In the first step the CDSS identifies cases with a negative 
urinalysis screening (based on leukocyte esterase and nitrite) as this 
reliably excludes UTI. In the second step the system estimates the risk of 
UTI for the remaining cases by using a predictive model based on uri
nalysis, Gram stain and other readily available parameters. This pro
vides the clinician with an accurate prediction around the same time the 
urinalysis is available, while the culture results take one or several more 
days. In step two, an automated pipeline is used to first optimize feature 
subsets and hyperparameters and then to train and validate different 
models. The reliable semi-supervised ensemble learning (RESSEL) [16] 
method is then used to enrich these models using unlabeled data to 
further increase their predictive performance, since labeled data is 
scarce while a substantial amount of unlabeled data is available. Next, 
the performance of the CDSS as a whole is calculated for all included 
cases as well as different patient subgroups. Finally, we provide a po
tential impact analysis, estimating the reduction in the number of un
necessary antibiotic prescriptions that could be achieved by using the 
predictive framework. 

2. Related work 

Although UTIs have been studied extensively, the number of works 
describing the design or evaluation of predictive CDSSs is limited. 
Possibly the first work describing the use of a model for predicting urine 
culture results in patients with suspected UTI stems from 1985 by 
Wigton [17]. They use Discriminant Analysis to obtain the coefficients 
used in a linear equation to obtain a final score which translates to a 
range of possible decision rules, depending on which cutoff value is 
used. 

Most retrospective cohort studies over large patient populations into 
UTI prediction use the urine culture as outcome instead of UTI, as the 
absence of structured data on symptoms or suspicion of UTI makes 
retrospective classification of UTI as outcome difficult on a large scale. 
Kim et al. [18] conducted such a study in a large hospital in Korea. 
Similar to the research by Wigton, they developed a prediction algo
rithm for culture outcome, the UTOPIA score. The coefficients included 
in the score were obtained by using multivariate binary logistic 
regression. Burton et al. [19] designed and successfully implemented a 
machine learning system to predict urine culture results in a routine 
clinical microbiology lab, significantly reducing the workload while 
retaining high sensitivity. 

A number of studies have been performed in which patients were 
included based on being symptomatic and the culture result was used as 
outcome. These studies were generally performed on smaller pop
ulations. Heckerling et al. [20] employed genetic algorithms in order to 
search for valuable combinations of input features to a neural network. 
Another study [21] focused on feature selection, having available both 
clinical markers as well as immunological biomarkers. In contrast, 
Taylor et al. [22] were able to include a large number of patients pre
senting to the emergency departments at several hospital sites, by using 
regular expressions to find UTI related symptoms in clinical notes. 
Additionally, they compared the model outcomes to an alternative label 
based on antibiotic administration and documented diagnosis. 

Additionally, many studies were conducted where the outcome was 
defined as UTI by the combination of inclusion via symptoms and a 

positive urine culture, but decision rules were constructed by specifying 
thresholds based on univariate relationships between predictors and the 
target variable. Little et al. [11] conducted such a study, reporting on all 
stages from development of the scores, to their validation, both retro
spectively and prospectively, to the measurement of their impact on 
antibiotic administration along with the economic impact of the scores. 
In a meta-analysis [23] pooling the results of four previous studies, the 
authors compute the diagnostic accuracy of urinalysis results as well as 
the added value of history and physical examination for uncomplicated 
UTI. 

Rather than using traditional predictors, from urinalysis or patient 
symptoms, some studies have focused on alternative approaches for 
detecting UTI. Li et al. [24] developed a model to predict positive urine 
culture in stroke patients who presented with symptoms, based on a 
stroke scale score and serum biomarkers. In another study [25], targeted 
at patients who suffer from dementia, the authors combine sensory de
vice readings with bidaily physiological recordings to monitor changes 
in activity patterns from which they generate alarms signaling high 
probability of UTI. Other studies have researched alternative manners 
for analyzing urine. Turra et al. [26] employ hyperspectral image 
analysis using machine learning models in order to distinguish different 
potential uropathogens, reducing the time to outcome compared to the 
urine culture. Kodogiannis et al. [27] have researched the use of 
gas-sensing technology, or electronic nose, to extract sensor parameters 
from the urine samples on the basis of which a UTI prediction was made. 

3. Methods 

3.1. Study design and data collection 

This retrospective single center study was conducted in cooperation 
with the antibiotic stewardship program of the University Medical 
Center Utrecht (UMCU) as part of the former Applied Data Science in 
Medicine (ADAM) project, currently the Digital Health Department. 
Routine care data from inpatients of the UMC Utrecht were included 
from January 2017 to December 2018. The use of these data for research 
purposes was approved by the Medical Research Ethics Commission 
(MREC) to be exempt from the Medical Research Involving Human 
Subjects Act (dutch: WMO), and the study adheres to the UMCU data 
management policy for Non-WMO Research. The data were obtained 
from the Research Data Platform that extracts data from the Electronic 
Health Records and the laboratory information management system 
GLIMS. 

3.2. Data inclusion and patient subgroups 

3.2.1. Data inclusion 
A description of the data inclusion process is shown in Fig. 1. In total, 

data from 16,987 urine cultures from 7737 patients were collected. 
Cultures with non-standardized, missing or multiple conflicting results 
and those that could not be interpreted by the lab due to contamination 
(more than two micro-organisms in the urine other than Enterobacteri
aceae en Pseudomonas aeruginosa) were discarded, as well as those which 
were not ordered for the purpose of finding pathogenic micro-organisms 
(PMO). Cultures for which either the admission data or basic patient 
characteristics (sex, age) were not available, were excluded. Another 
filtering was applied to respect the UMCU opt-out policy, which enables 
patients to prevent their data from being used for research purposes. 
This resulted in a “Useable Data Set” containing 13,286 cultures of 7295 
patients. 

After these filter steps a further exclusion occurred based on the 
treating specialism and admission ward, followed by the exclusion of 
neutropenic patients. Cultures from patients that were under care of the 
hematologist (664) or patients that resided on the adult (486) or pedi
atric (494) intensive care units were excluded because of the complex 
population, the high level of antibiotic prophylaxis use and the low- 
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threshold antibiotic prescribing. Cultures from neutropenic patients 
(296) were left out since these patients have a shortage of leukocytes by 
definition, while the presence of leukocytes in urine plays an important 
role in UTI detection [28,29]. Patients were defined as neutropenic if 
their neutrophil count was < 0.5⋅109/L on the day of the culture, or both 
the day before and after [30]. Furthermore, cultures from a small 
number of other departments where cultures would normally be ordered 
for a different purpose than UTI detection were excluded (173). 

The “Complete Data Set” remaining after these steps contained 
11,367 cultures from 6464 patients. 

Finally, during the labeling procedure of the urine cultures, 
described in detail in Section 3.3, cultures that were used for screening 
purposes before an urological procedure were removed, as these serve a 
different purpose from regular UTI diagnosis and no reduction in 
administration of antibiotics is to be expected. Similarly, cultures ob
tained from pregnant women were excluded, as the guidelines prescribe 
treating asymptomatic bacteriuria in this group, making a prediction 
model for UTI obsolete in the presence of a culture result. 

3.2.2. Patient subgroups 
We identified four patient groups that we suspected could differ from 

the overall population to the extent that a model might underperform for 
them: immunosuppressed patients (as defined in Section 3.4), elderly 
(≥75), children (< 18) and urological patients. They were not excluded 
up-front, but instead model performance was monitored separately for 
these groups. The number of patients corresponding to these groups in 
the data set is shown in Table 1. 

3.3. Expert panel labeling 

Even though the urine culture is the main diagnostic tool in detecting 
UTI, the culture result alone is insufficient for the diagnosis of UTI, 
mostly due to the existence of asymptomatic bacteriuria that does not 
require antibiotic treatment, with some exceptions e.g. pregnant women 
and before certain urological procedures [31]. Therefore, an expert 
panel, consisting of an infectious disease specialist, a fellow medical 

microbiologist, a pediatrician-infectious disease specialist and a fellow 
infectious disease specialist, provided 906 cultures from 810 patients 
with a UTI label. The process by which the experts decided upon this 
label is described in the following. 

A detailed sheet of information was provided to the experts, con
taining for each patient all information about the variables listed in 
Tables B.14, B.15, B.16 and B.17 in Appendix B. These data were 
collected from 7 days prior to the date of the culture order to 7 days after 
and included results of the corresponding urinalysis, urine culture, Gram 
stain, laboratory test and any previous cultures as well as registered 
antibiotics started, stopped or active during this period. Importantly, the 
clinical notes were available, to provide the necessary context such as 
signs, symptoms and alternative diagnoses. Since these data were only 
available in unstructured format, they were not suitable for use in the 
prediction models without the application of sufficiently reliable text 
mining methods. 

Along with the UTI label, each expert provided a confidence score 
ranging from 1 to 10. If the experts were not sufficiently confident, i.e. a 
score of 6 or below, the case was discussed further with another expert 
until consensus was reached. During this process, any pre-operative 
screening cultures for urological procedures and cultures of pregnant 
patients were removed from the set as described in Section 3.2.1. 

Cultures were selected for labeling using stratified random sampling 
to preserve the distribution of the corresponding patients over the 
different departments of the Complete Data Set. The distributions of the 
data before and after labeling are shown in Table 2. 

3.4. Predictor variables 

A selection of variables to include for predictive modeling was made 
based on prior literature and clinical experience. An overview of all of 
the variables that we considered can be found in Tables B14, B15, B16 
and B.17 in Appendix B. Only data that were available on the day of the 
culture order were included as the model will be used to make a 

Fig. 1. Patient inclusion flowchart. PMO stands for pathogenic micro-organisms.  

Table 1 
Number of included patients per (sub)group.  

Patient group Cultures % Labeled % 

Immunosuppressed 4452 39.2 345 38.1 
Elderly 2285 20.1 181 20.0 
Children 1440 12.7 168 18.6 
Urology 975 8.6 93 10.3 
Other 3599 31.7 256 28.3 
Total 11367 100.0 906 100.0  

Table 2 
Number of included cultures per department. Other medical wards include e.g. 
cardiology, respiratory and neurology wards.  

Department Labeled % Total % 

Surgical 198 21.9 2730 24.0 
Internal medicine 177 19.5 2231 19.6 
Emergency 172 19.0 1888 16.6 
Pediatric 121 13.4 1240 10.9 
Other medical wards 111 12.3 1707 15.0 
Urological 93 10.3 975 8.6 
Gynecological 34 3.8 596 5.2 
Total 906 100.0 11367 100.0  
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prediction at that point in time. 
The data included the patient characteristics sex and age, whether 

the urine was extracted midstream or via catheter, urinalysis (nitrite, 
leukocytes, erythrocytes, protein, glucose, pH), urine sediment micro
scopy (hyaline/granular casts), clinical chemistry urine measurements 
(sodium, osmolality, creatinine, urea, potassium), Gram stain mea
surements (Gram-negative/-positive rods/cocci, leukocytes, epithelial 
cells), inflammation parameters in the blood (CRP, leukocytes, neutro
phils), temperature measurements and whether a chest X-ray was per
formed as an indication of a broader search for infection. 

Patient characteristics, the method by which the urine was collected 
and the Gram stain results were available for every culture included in 
the Complete Data Set. The availability of the other variables varied and 
has been reported in Appendix B. The data from the laboratory as well as 
the temperature were considered up to 4 days prior to the culture order. 
Previous urine cultures were included up to 7 days prior to culture 
ordering. Leukocytes and neutrophils from blood were included up to 14 
days before the culture order. For all of these the last measured value 
was used if multiple measurements were present. The occurrence of a 
chest X-ray was considered up to 14 days prior to the culture order. 

Furthermore, we include diabetes and immunosuppression as pre
dictors by processing prescribed medication data: A patient was 

classified as diabetic if any medication with an Anatomical Therapeutic 
Chemical (ATC) code [32] starting with A10 was administered in the 
year previous to the culture order. A patient was classified as immu
nosuppressed if any medication with an ATC code starting with A07E, 
A14A, H02, L01 or L04 was administered in the previous 90 days. 

Antibiotic prescriptions were taken into account as well. Antibiotics 
were categorized into three classes: UTI specific (U) [5], Broad-spectrum 
(B) and Not for UTI (N). The exact classifications can be found in 
Table C.18 in C. Whether a patient was on any of the specific types of 
antibiotics on the day of the culture order was available as a feature in 
the model, in addition to whether the patient was on any antibiotics 
regardless of type. 

The culture result itself was not included as a predictor, as it becomes 
available at a much later stage in the diagnostic process than the other 
variables. 

3.5. Model development 

3.5.1. Preprocessing 
In order to transform the collected data into a suitable format for 

machine learning models to handle, the data had to be preprocessed. As 
we are interested in building a model which is applicable in clinical 

Fig. 2. Experimental setup.  

S. de Vries et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 146 (2022) 105621

5

practice every time a UTI is suspected, given the patient meets the in
clusion criteria, a record in our data set represents an episode corre
sponding to a single urine culture. This episode contained all 
information that was available within a couple of hours after the culture 
order, thus including the urinalysis and Gram stain results, but not the 
culture result itself. 

Four of the features in the data set were filled using imputation when 
they were missing: temperature, CRP and blood leukocytes and neu
trophils. These were imputed with their respective median values over 
the population as a whole. Other missing values were set to 0 and an 
additional dummy variable was introduced for the model to distinguish 
their missingness. This distinction in method of imputation was made 
based on the difference in the availability of the features, as seen in 
Table B.14 in Appendix B. 

3.5.2. Experimental setup 
We constructed a prediction pipeline to optimize, train and validate 

prediction models, depicted in Fig. 2. The steps in the pipeline are 
explained in the following. 

The first step was to take a subset of the complete data if required for 
the current experiment, e.g. cultures associated with positive urinalysis. 

Next, the predictors were standardized (Z-score normalization) to 
make them suitable for each of the different classifiers tested. 

Then, a distinction is made depending on the type of machine 
learning used to train the models: supervised learning (i.e. training using 
only the labeled data) was applied in every experiment, while semi- 
supervised learning (i.e. training using the unlabeled data as well) was 
only applied to the subpopulation that was ultimately selected as the 
target population for which a model would be most effective if imple
mented in clinical practice. 

We opted to employ a repeated re-sampling strategy as part of our 
experimental setup: the Labeled Data Set was repeatedly split into a 
separate training set, consisting of 80% of the data, and a test set, con
sisting of 20% of the data. This split was constructed by random sam
pling without replacement and the process was repeated 100 times to 
obtain 100 different train/test splits. The 20% data in the test set was set 
apart and only used to evaluate model performance during the final step 
of the experimental pipeline. All tuning of the hyperparameters and 
variable selection was limited to the training set. The experiments that 
included both supervised and semi-supervised models employed the 
same random split, to allow for a fair comparison of the calculated 
metrics on an identical test set. 

The supervised part of the pipeline consists of the following steps:  

1. Preliminary hyperparameter selection using 5-fold cross validation 
within the train set on the full feature set. The Area Under the 
Receiver Operating Characteristic Curve (AUC) was used as the 
metric to optimize at this stage, as we believe it would be most 
beneficial to first optimize the predictive power of the model over the 
entire range of cutoff points in the early steps of the pipeline. The 
accuracy is maximized for the threshold which will be used by the 
model in practice in the final optimization step of the pipeline.  

2. From the candidate features described in Section 3.4, the most 
informative were selected using sequential backward feature selec
tion on the train set, as implemented by Mlxtend [33], with floating 
enabled. The hyperparameters selected in the previous step were 
used. This entailed using 5-fold cross validation while removing 
features in turn, training the model on the reduced feature sets and 
measuring the performance. Three feature subsets resulted from this 
selection procedure: a Fixed feature set was predefined by the expert 
panel to include the features that were deemed very likely to be of 
predictive value and whose exclusion might lead to decreased trust 
in the system: any active antibiotics at time of culture, urine nitrite, 
urine leukocytes, Gram positive cocci, Gram negative rods, urine 
collection method, age and sex. Furthermore, the feature set which 
was found to have optimal cross validated AUC, was selected. We 

observed this often resulted in features being included that resulted 
in minimal increases in performance, which we suspected could be 
attributed to the randomness in the train-test split. Therefore a third, 
Sparse set was retained as well, which was restricted to be the 
smallest number of features for which the cross validated perfor
mance was within 0.25 times the standard error of the optimal result. 
This threshold was established by visually inspecting the feature 
subset performance figures (see Fig. 3 for an example) and found to 
be a good trade-off between performance and sparsity. 

3. For each of the three reduced feature sets another round of hyper
parameter optimization followed, as the optimal setting may vary 
between the different feature sets. The target metric was set to ac
curacy at this stage, as we will be using the model with a single cutoff 
point and want its accuracy to be maximized.  

4. The predictive performance of these supervised classifiers, with 
optimized feature sets and hyperparameters, was measured on the 
data in the test set of the corresponding train/test split. The final 
supervised models were trained on the entire training set consisting 
of 80% of the data using the optimized reduced feature sets and 
corresponding hyperparameter values. 

If the experiment included semi-supervised learning to further enrich 
the models by including the unlabeled data, the following additional 
steps were appended to the pipeline:  

1. The models were refined using the unlabeled records through semi- 
supervised learning, using the RESSEL method. The feature subsets 
and hyperparameter values found in the supervised steps were 
maintained. These models were then evaluated on the test set.  

2. The hyperparameters were optimized in a separate 5-fold cross 
validation for each of the feature subsets on the training data. Again, 
as this is the last step in the optimization, accuracy was chosen as the 
metric to optimize.  

3. The models were retrained on the train set using the optimized 
hyperparameter values for each feature subset. The performance of 
the semi-supervised models was measured on the test set of the 
corresponding train/test split. 

The results over the 100 train/test splits were averaged to obtain 
robust estimates of the predictive performance of the different models. 

Fig. 3. Sequential Feature Selection. The red line indicates the cutoff for the 
Sparse feature set. The leftmost blue lines indicates the number of features that 
was included in the Sparse feature set. The rightmost blue line indicates the 
number of features for which the best cross-validated accuracy was found, i.e. 
the size of the Selected feature set. 
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3.5.3. Supervised models 
We compared a total of five different supervised classifiers imple

mented in the Scikit-learn package [34]: Logistic Regression (LR), 
Support Vector Machine (SVM), Random Forest (RF), eXtreme Gradient 
Boosting (XGB) and k-Nearest Neighbors (NN). 

The hyperparameter settings for these models, as well as the ranges 
of the pre-specified grids used in hyperparameter selection by means of a 
cross-validated grid search, are shown in Table A.12 in Appendix A. 

3.5.4. RESSEL 
In addition to the (n = 906) Labeled Data Set, a large number of 

unlabeled cultures (n = 10, 461) was available. In order to achieve the 
best predictive accuracy, we applied the reliable semi-supervised 
ensemble learning (RESSEL) [16] method to improve upon the super
vised models. 

RESSEL is an ensemble based wrapper method and as such it takes a 
collection of trained classifiers and uses the available unlabeled data to 
attempt to improve their predictive performance. These classifiers are 
initially trained on bootstrap samples of the labeled training data, 
setting apart the out-of-bag samples. Each classifier is then individually 
enhanced using a portion of the unlabeled data by applying the semi- 
supervised self-training technique. During this process the out-of-bag 
error is monitored, thus assuring the accuracy can at most deteriorate 
to the extent that the out-of-bag samples are not representative of the 
overall data. The resulting classifiers are used to make an ensemble 
prediction. 

The ensemble benefits from the diversity introduced through the 
bootstrapping as well as self-training procedures, while the early- 
stopping mechanism based on the error measurements as well as the 
merging of the individual classifiers into an ensemble provide the 
necessary robustness to the collective. 

In previous work we found RESSEL to improve predictive perfor
mance for a wide range of data sets by using unlabeled data [16], while 
no explicit checking of difficult assumptions on underlying problem 
structure is required. The method was therefore deemed a good fit for 
the current problem of predicting UTI from limited labeled and a large 
amount of unlabeled examples. For an in-depth description of the 
method as well as the algorithmic details, we refer the reader to the 
original paper [16]. 

The RESSEL method required a number of hyperparameter settings 
to be specified. The settings used in our experiments are shown in 
Table A.13 in Appendix A. 

3.5.5. Modeling process 
The following sections are structured such as to reflect the process we 

followed in developing the CDSS, as depicted in Fig. 4: First, we per
formed a traditional analysis of the study population, compared the 
expert panel label to the culture result and determined the effectiveness 

of different thresholds for a urinalysis screening rule in Section 4. Based 
on the insights generated by these analyses, we determined the popu
lation for which a model would be the most effective in reaching our 
goal of reducing the administration of unnecessary antibiotics, as 
described in Section 5. The decision for the use of a two-step approach in 
the CDSS was made, the first part of which is a urinalysis screening rule 
and the second part consisting of a predictive model for patients who 
had a positive urinalysis result. The predictive values of both the semi- 
supervised RESSEL model and the CDSS as a whole are then reported 
in Section 6. 

4. Clinical findings 

4.1. Description of the study population 

A total of 906 cultures from 810 patients were included in the 
Labeled Data Set, which forms the base set for the supervised training of 
the prediction models, as shown in Fig. 2. The Complete Data Set con
sisting of 11,367 cultures from 6464 patients is used for semi-supervised 
learning to further enhance the supervised models. Descriptive statistics 
for the predictor variables that were included into the models by default, 
i.e. the Fixed set, are shown in Table 3 for the Labeled Data Set. 

The median age at the time of a urine culture was slightly lower (57.0 
years) in the non UTI group, than it was for the UTI group (63.0 years). 
The percentage of cultures that corresponds to a UTI is higher for women 
than for men (33.4%–25.3%). Most urine was collected as midstream 
clean-catch urine (58.3%), with the remainder collected via a catheter 
(41.7%). Those patients from whom the urine was collected via a 
catheter had a higher chance of having a UTI compared to the midstream 
group (32.3%–27.3%). The percentage of cultures with the UTI label 
was lower (24.6%) for patients who were already on antibiotics of any 
kind than for those who were not (32.3%). We observe 191 out of the 
906 patients (21.1%) did not have a urinalysis performed in the days up 
to the culture order. Finally, we observe that the percentage of cultures 
with a UTI label increases as more Gram-negative rods/-positive cocci 
are detected in the corresponding urine. 

A more detailed report on the variables not included in the Fixed set 
can be found in Appendix B, with a description of the binary variables, 
numerical variables, results from the urinalysis and the variables per
taining to the culture shown in Tables B.15, B.14, B.16 and B.17 
respectively. The results of the urine culture of interest itself are further 
discussed in the following section. 

4.2. Accuracy of the urine culture for detecting UTI 

We evaluated the effectiveness of the culture result for detecting UTI 
as labeled by the expert panel. A positive culture was defined as the 
growth of ≥ 104 colony forming units (cfu)/mL of a common 

Fig. 4. Modeling Process. The order of the different actions depicted from left to right corresponds to the order in which development took place. A cogwheel 
indicates the training and evaluation of a model. 
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uropathogen in case of a midstream urine sample, or the growth of ≥
103 cfu/mL in catheter samples or midstream samples specifically if the 
patient was female and the uropathogen found was Escherichia coli. The 
isolation of more than two organisms may suggest contamination and 
such cultures were classified as negative. The comparison is shown in 
Table 4. 

The culture was found to be 77.3% accurate in detecting UTI using 
the expert panel labeling as gold standard. Cohen’s kappa was found to 
be 0.51, which can be seen as moderate agreement. The largest 
discrepancy was found for the positive cultures, which if the culture was 
used directly for UTI detection would lead to false positives 157 out of 
374 times (42.0%) corresponding to a PPV of 58.0%. These false posi
tives are cases of asymptomatic bacteriuria, i.e. the presence of uro
pathogens in the urine in absence of symptoms, and are therefore not 
classified as UTI. The number of false negatives found was 49 out of 532 
(9.2%) corresponding to a NPV of 90.8%. The culture was found to have 
a sensitivity of 81.6% and a specificity of 75.5%. These false negatives 
could for example be due to a uropathogen being detected for which the 

number of cfu/mL was below the threshold or the culture being deemed 
negative as per the contamination criterion, while the patient was 
determined to have an UTI. 

4.3. Predictive value of the urinalysis 

An important tool in the process of UTI diagnosis is the urinalysis. 
The measurements include: the number of leukocytes and erythrocytes, 
the presence of nitrite and glucose, the amount of protein and the pH of 
the urine. Especially the presence of nitrite and/or leukocytes are strong 
predictors of UTI and their combination is regularly used as a screening 
test in the current diagnostic process in the hospital. 

The predictive values associated with the decision rules based on the 
different possible cut-off value combinations of the nitrite and leukocyte 
values are shown in Table 5. 

In total, data from 715 cultures, belonging to 659 patients are shown 
in this table. Combining the different thresholds to calculate the AUC of 
a rule based classifier based on the aforementioned definitions results in 
an AUC of 85.84. 

We observe that a high sensitivity is achieved by some of the 
threshold combinations, with the most conservative decision rule 
achieving a sensitivity of 93.94%. Since the urinalysis results are used as 
a screening test, a high sensitivity is necessary. The increased sensitivity 
logically comes at the cost of a reduced specificity. For the rules to be 
effective in ruling out UTI, it is important to have reasonable specificity 
as well. We observe a shift to the second tier of leukocytes (from ca. 25 to 
ca. 75 leukocytes) results in a loss in sensitivity of 4.33% (10 additional 
false negatives), but in a gain of the specificity of 11.37% (55 fewer false 
positives), and the rule overall is found to be 6.29% more accurate. As 
sensitivity remains high, this is the level we believe to be most effective 
in achieving our goal of reducing unnecessary antibiotic prescriptions 
while preserving patient safety. In the remainder of this work, we use the 
latter threshold to define positivity, i.e. the screening is positive if either 
nitrite is positive or ca. 75 leukocytes or more were found, and refer to 
the resulting decision rule as the urinalysis screening rule, which forms 
the first step of the CDSS. 

5. Target population specification 

5.1. Target population selection 

A number of different candidate populations for which a prediction 
model could be deployed can be distinguished, as seen in Fig. 5. 

Our aim was to decide which model would be most likely to have an 
impact on clinical practice. In order to make this decision, we weighted 
both model performance and the ease of integration into the current 
work process. 

In the following we describe the considerations for each of the 
candidate groups for which a model could be developed and ultimately 
for the selection of the positive urinalysis group. The accuracies referred 
to are shown in Table 6.  

1. Culture Obtained. This group consists of all cultures included in the 
Labeled Data Set. The increase in accuracy found in this group 
compared to the distribution of UTI (29.4%–70.6%) can be 
completely explained by the weighted combination of the accuracies 
of the models of its subgroups, the No Urinalysis and Urinalysis 
groups, i.e. (715 ⋅ 84.38 + 191 ⋅ 82.47)/906 = 83.98%, compared to 
84.01% found for the Culture Obtained group. 

2. No Urinalysis. This group of cultures was not accompanied by uri
nalysis results. The predictive models achieved an accuracy not 
much better than the percentage of negative cultures in this group. A 
model predicting no UTI for every culture would thus have nearly 
equal performance and the added value of a model on this group is 
negligible. This confirms the urinalysis is an essential part of the 

Table 3 
Description of the predictor variables included in the Fixed set.  

Variable Value Number 
(%) 

No UTI(% or 
IQR) 

UTI(% or IQR) 

Age Years 906 
(100.0) 

57.0 
(27.8–71.0) 

63.0 
(38.0–74.0) 

Sex Female 452 
(49.9) 

301 (66.59) 151 (33.4) 

Male 454 
(50.1) 

339 (74.67) 115 (25.3) 

Collection 
method 

Catheter 378 
(41.7) 

256 (67.72) 122 (32.3) 

Midstream 528 
(58.3) 

384 (72.73) 144 (27.3) 

Any antibiotics No 564 
(62.3) 

382 (67.73) 182 (32.3) 

Yes 342 
(37.7) 

258 (75.44) 84 (24.6) 

Urine 
leukocytes 

Not 
Measured 

191 
(21.1) 

156 (81.68) 35 (18.32) 

(/μL) Negative 304 
(33.6) 

287 (94.41) 17 (5.6) 

Ca. 25 70 (7.7) 57 (81.43) 13 (18.6) 
Ca. 75 71 (7.8) 49 (69.01) 22 (31.0) 
Ca. 250 36 (4.0) 20 (55.56) 16 (44.4) 
Ca. 500 234 

(25.8) 
71 (30.34) 163 (69.7) 

Urine nitrite Not 
Measured 

191 
(21.1) 

156 (81.68) 35 (18.32) 

Negative 628 
(69.3) 

466 (74.2) 162 (25.8) 

Positive 87 (9.6) 18 (20.69) 69 (79.3) 
Gram negative Negative 528 

(58.3) 
461 (87.31) 67 (12.7) 

rods (/1000x) <1 69 (7.6) 59 (85.51) 10 (14.5) 
1–5 91 (10.0) 63 (69.23) 28 (30.8) 
6–30 87 (9.6) 28 (32.18) 59 (67.8) 
>30 131 

(14.5) 
29 (22.14) 102 (77.9) 

Gram positive Negative 648 
(71.5) 

480 (74.07) 168 (25.9) 

cocci (/1000x) <1 74 (8.2) 57 (77.03) 17 (23.0) 
1–5 90 (9.9) 67 (74.44) 23 (25.6) 
6–30 55 (6.1) 21 (38.18) 34 (61.8) 
>30 39 (4.3) 15 (38.46) 24 (61.5)  

Table 4 
The culture result compared to the expert panel labels.    

UTI  Metrics 

No Yes 

Culture Negative 483 49 NPV: 90.8% Specificity: 75.5% 
Positive 157 217 PPV: 58.0% Sensitivity: 81.6%  
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diagnostic process surrounding UTIs and is required for the model to 
have sufficient predictive performance.  

3. Urinalysis. For this group, a lot of additional diagnostic information 
is available from the urinalysis results. In clinical practice, this in
formation is already used effectively to rule out UTI based on the 
presence of nitrite and leukocyte counts. The use of such a cutoff 
rule, as seen in Table 5 achieves high predictive accuracy by itself 
(77% for our previously selected threshold, at most 82%). While the 
use of a prediction model for the entire group can further improve 
this accuracy to 84.4%, a divergence from such an established rule 
might lead to resistance. Furthermore, in the negative urinalysis 
group, very few positives remain (6.6%), indicating the good pre
dictive performance is due to distinctions being made in the positive 
group.  

4. Urinalysis Negative. The patients corresponding to the cultures in 
this group were found overwhelmingly not to have a UTI (93.4%). 
Model accuracy was found to be similar, effectively on par with a 

model classifying every culture in this group as negative. This could 
in part be because the data set is very imbalanced, a known difficulty 
when training classifiers, and the use of over- or undersampling 
techniques might further improve accuracy. On the other hand, the 
low number of positive samples in this group (24) limits the potential 
impact of a model, even if it was further improved. Simply using the 
urinalysis rule as a screening rule, as is current practice, is already 
very effective.  

5. Positive Urinalysis. This group consists of patients for whom the 
urinalysis decision rule was positive. When the urinalysis results are 
in the clinician is often faced with the decision whether to prescribe 
antibiotics or wait for the culture result, which will take at least 
another day even if it was ordered at the same time as the urinalysis. 
From our analysis, we observe that in 41% of cases patients in this 
group have no UTI, however. A model which uses the Gram stain 
results for this group increases the accuracy from 67.56% to 75.63% 
compared to a model without the Gram stain results. With the inci
dence of UTI at 59% for this group, we conclude that the model that 
includes the Gram stain is able to provide important additional in
formation to the clinician at this stage in the diagnostic process 
which can be used to indicate the absence of UTI, allowing for 
postponement of treatment. 

The model for the positive urinalysis group was found to have large 
improvement of accuracy over the baseline distribution of UTI and 
thereby the potential for delay and prevention of antibiotics pre
scriptions. Furthermore, it was found to be a good fit into the current 
diagnostic process, as clinicians already use the urinalysis to base 
treatment decisions on. Therefore, we suspected a model for this group 
was most likely to be of added value in clinical practice. 

5.2. Predictive value of the Gram stain in different candidate groups 

The Gram stain is not commonly used in the diagnostic process for 
UTI, as it is not routinely measured in every hospital. In the analysis of 
the predictive results for the different candidate populations, shown in 

Table 5 
Predictive values for different cut-off value combinations for leukocytes and nitrite measured during urinalysis. The decision rule corresponding to a combination of a 
selected nitrite and leukocyte value is to predict negative if the nitrite value is less than or equal to its selected value (with negative defined as less than positive) AND 
the number of leukocytes is less than or equal to its selected value as well.  

Urinalysis Leukocytes (/μL) UTI Yes (%) Total Metrics Sensitivity Specificity Accuracy 

Nitrite No (%) PPV NPV 

Negative 0 285 (95) 14 (5) 299 52.16 95.32 93.94 58.88 70.21 
ca. 25 55 (85) 10 (15) 65 58.97 93.41 89.61 70.25 76.50 
ca. 75 48 (76) 15 (24) 63 66.67 90.87 83.12 80.17 81.12 
ca. 250 19 (56) 15 (44) 34 69.69 88.29 76.62 84.09 81.68 
ca. 500 59 (35) 108 (65) 167 79.31 74.20 29.87 96.28 74.83 

Positive 0 2 (40) 3 (60) 5 52.07 94.41 92.64 59.30 70.07 
ca. 25 2 (40) 3 (60) 5 58.94 91.98 87.01 71.07 76.22 
ca. 75 1 (12) 7 (88) 8 66.30 88.31 77.49 81.20 80.00 
ca. 250 1 (50) 1 (50) 2 69.66 85.86 70.56 85.33 80.56 
ca. 500 12 (18) 55 (82) 67 - - - - - 

Total  484 (68) 231 (32) 715 - - - - -  

Fig. 5. Candidate populations for model development.  

Table 6 
Different candidate groups for UTI prediction. In the Accuracy column the highest accuracy found among the different supervised classifiers for the corresponding 
candidate group is shown. The Accuracy without Gram stain column describes the best accuracy found by the supervised models without using the features from the 
Gram stain.  

Candidate group Total Labeled Positive (%) Negative (%) Accuracy Accuracy without 

Gram stain  

1. Culture obtained 11,367 906 266 (29.36) 640 (70.64) 84.01 81.23  
2. No Urinalysis 2823 191 35 (18.32) 156 (81.68) 82.47 81.74  
3. Urinalysis 8544 715 231 (32.31) 484 (67.69) 84.38 80.62  
4. Negative Urinalysis 4647 364 24 (6.59) 340 (93.41) 93.40 93.82  
5. Positive Urinalysis 3897 351 207 (58.97) 144 (41.03) 75.63 67.56  
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Table 6, we found that for some of these groups the Gram stain features 
played a significant role in the classification of UTIs. This can be seen 
from the differences in accuracy between the Accuracy and the Accuracy 
without Gram Stain column. The latter shows for each group the pre
dictive accuracy found by the best model from which all the variables 
pertaining to the Gram measurement (negative/positive rods/cocci, 
leukocytes, epithelial cells) were removed. 

We observe no noteworthy difference in predictive power for two of 
the five groups when comparing the model with the Gram stain pre
dictors to the model without these predictors: the group without uri
nalysis (2) and the group with a negative urinalysis result (4). For these 
groups, no meaningful distinction could be made on the basis of the 
other variables available, likely due to the large class imbalance and the 
most informative predictor (the urinalysis) already being factored out. 

An increase in predictive performance can be observed for the three 
other groups, however. For the group for which the culture was obtained 
(1), the group for which urinalysis was available (3) and the group with 
positive urinalysis (5). It is important to note, that group 5 is in its en
tirety a subgroup of group 3, which in turn is a subgroup of group 1, as 
shown in 6. When we take the accuracy increase from adding the Gram 
stain variables to the model in group 5, measured to be 8.07%, and scale 
it by 351/715 and 351/906, we obtain an increase of 3.96% and 3.13% 
respectively. The advantages found in groups 3 and 1 were measured to 
be 3.76% and 2.78%. We hypothesize these differences can thus be 
entirely explained by the increased predictive performance in the posi
tive urinalysis group. 

The Gram stain is found to be of value in the group where the 
screening step based on urinalysis is already determined to be positive 
and the risk of UTI relatively high. 

6. Predictive results 

6.1. Supervised model performance for cultures with positive urinalysis 
screening 

In Table 7 the predictive power of the different supervised models 
applied to cultures that were found positive by the urinalysis screening is 
shown. These models used the predictor variables of the Fixed feature 
set, as this set performed better than the Sparse and Selected sets (see 
Section 6.5). The Fixed feature set includes: any active antibiotics at 
time of culture, urine nitrite, urine leukocytes, Gram positive cocci, 
Gram negative rods, urine collection method, age and sex. 

From these results, we observe that the best accuracy is obtained by 
the RF classifier, while the best AUC is achieved by the SVM classifier. 
The sensitivity and specificity of RF for predicting UTI in cultures with 
positive urinalysis were 80.18% and 69.73% respectively. 

6.2. Semi-supervised model performance for cultures with positive 
urinalysis screening: RESSEL 

To further improve upon the results obtained by the supervised 
classifiers, the RESSEL method was applied. In addition to the 351 
labeled data points, the 3546 unlabeled data points from the positive 
urinalysis group were used to increase predictive performance. The re
sults for each of the different supervised classifiers in combination with 
RESSEL are shown in Table 8. 

We observe the maximum accuracy is once more obtained by the RF 
model and has further improved by 1.14 to be 76.77%. The AUC of the 
SVM and RF models decreased, while that of the XGB, NN and LR 
classifiers increased. We are most interested in the accuracy, however, 
as in practice a single cutoff for prediction will be used. For this reason, 
the models were optimized for maximum accuracy in the final hyper
parameter optimization step as explained in Section 3.5.2. The sensi
tivity and specificity of the RF-RESSEL model are increased to 81.28% 
and 70.75% respectively. 

In Table D.19 in Appendix D the culture results for the positive uri
nalysis group are compared to the UTI label assigned by the expert 
panel. We observe the accuracy for the culture for this group is found to 
be 76.35. This accuracy is well within the 95% Confidence Interval of 
the RF-RESSEL classifier and a one sample t-test finds a t-statistic of 
0.851 and corresponding p-value = 0.396. The sensitivity and specificity 
of the culture for detecting UTI are found to be 82.61% and 67.36% 
respectively. 

6.3. Predictive performance by patient subgroup 

In Section 3.2.2 we distinguished four subgroups for which we sus
pected model performance might be worse than for the overall popu
lation: immunosuppressed patients, elderly (≥75), children (<18) and 
urological patients. For each of these patient groups, we recorded the 
predictions made during the test set evaluation. The resulting predictive 
values for patients in these groups who also had a positive urinalysis 
screening result, are described in Table 9. 

The predictive accuracy of the model for each of these subgroups was 
lower than that of the model on the entire subpopulation with a positive 
urinalysis screening test. We observe the confidence intervals associated 
with each of these patient groups were much larger, however, as each of 
the subsets was by definition smaller than the full set. The differences 
found were sufficiently small as not to necessitate the exclusion of one or 
more of these groups from application of the model. 

6.4. Performance of the clinical decision support system 

The clinical decision support system as a whole, consisting of the 
screening step based on the urinalysis results, followed by the prediction 
by the RF - RESSEL model, was found to predict UTI with an accuracy of 
85.24% and a specificity and NPV of 91.30% and 87.46% respectively, 

Table 7 
Prediction results of supervised models on the cultures that are accompanied by 
a positive urinalysis result. The number within parenthesis represents the 95% 
Confidence Interval.   

Accuracy Sensitivity Specificity PPV NPV AUC 

Classifier 
SVM 74.86 

(±0.87) 
79.57 
(±1.24) 

68.66 
(±1.50) 

78.10 
(±1.22) 

70.55 
(±1.87) 

80.43 
(±0.95) 

XGB 75.41 
(±0.87) 

79.44 
(±1.13) 

69.96 
(±1.55) 

79.02 
(±1.15) 

70.42 
(±1.57) 

79.87 
(±1.06) 

RF 75.63 
(±0.86) 

80.18 
(±1.27) 

69.73 
(±1.70) 

78.99 
(±1.28) 

71.26 
(±1.71) 

80.22 
(±0.97) 

NN 73.57 
(±0.84) 

74.38 
(±1.16) 

72.72 
(±1.31) 

79.49 
(±1.14) 

66.46 
(±1.50) 

78.11 
(±0.97) 

LR 65.36 
(±1.55) 

71.77 
(±2.37) 

55.80 
(±3.43) 

71.36 
(±1.64) 

57.58 
(±2.39) 

69.86 
(±1.81)  

Table 8 
Prediction results of supervised models enhanced through RESSEL on the cul
tures that are accompanied by a positive urinalysis result.The number within 
parenthesis represents the 95% Confidence Interval.   

Accuracy Sensitivity Specificity PPV NPV AUC 

Classifier 
SVM 74.51 

(±0.99) 
78.83 
(±1.31) 

69.07 
(±1.57) 

78.01 
(±1.38) 

69.98 
(±1.88) 

78.20 
(±0.96) 

XGB 76.23 
(±0.88) 

80.01 
(±1.14) 

70.94 
(±1.47) 

79.73 
(±1.05) 

71.27 
(±1.60) 

80.05 
(±1.08) 

RF 76.77 
(±0.97) 

81.28 
(±1.16) 

70.75 
(±1.85) 

79.76 
(±1.35) 

72.51 
(±1.64) 

80.02 
(±1.00) 

NN 73.77 
(±0.85) 

75.33 
(±1.15) 

71.84 
(±1.33) 

79.15 
(±1.14) 

66.94 
(±1.52) 

78.59 
(±1.03) 

LR 73.87 
(±0.94) 

75.44 
(±1.31) 

71.72 
(±1.67) 

79.88 
(±1.28) 

66.43 
(±1.42) 

77.47 
(±1.06)  

S. de Vries et al.                                                                                                                                                                                                                                 



Computers in Biology and Medicine 146 (2022) 105621

10

as shown in Table 10. The system provides similar predictive accuracy 
for the subgroups of children and patients on immunosuppressants, 
while it is less accurate for the elderly and urological patients. These 
results demonstrate the effectiveness of the system for predicting UTI for 
cultures that had urinalysis results available, i.e. 715 out of 906 labeled 
cultures (78.92%). 

To determine the effectiveness of the clinical decision support sys
tem, we established the negative predictive values of the screening step 
and combined them with the prediction results from the models seen in 
Tables 8 and 9 in the following manner: 

Accuracy = NPV − ⋅
N −

N
+ Acc+⋅

N+

N
, (1)  

Sensitivity = Sensitivity+⋅
N+

Pos

NPos
, (2)  

Specificity =
Specificity+⋅N+

neg + N −
neg

Nneg
, (3)  

PPV = PPV+, (4)  

NPV = NPV − ⋅
N −

negpred

Nnegpred
+ NPV+⋅

N+
negpred

Nnegpred
, (5)  

where the superscript (− ) indicates the value is associated with the 
cultures classified negative by the screening step, the superscript (+) 
indicates the value is associated with the cultures that were classified as 
positive in the screening step and thus presented to the model, N is the 
number of labeled cultures in the group, NPos the number of UTI positive 
labeled cultures, Nneg the number of UTI negative labeled cultures and 
Nnegpred the number of cultures which were predicted to be negative. 

While the number of cultures that was found to be UTI positive or 
negative in each of the two groups was constant, the number of positive 
and negative predictions differed per iteration. N−

negpred is constant 
however, as it is equal to N− , as all cultures with negative screening 
result are predicted to be negative. Nnegpred can be calculated from 
Nnegpred = N−

negpred + N+
negpred, so it suffices to calculate an average N+

negpred 

to calculate the average NPV of the system as a whole. N+
negpred can be 

calculated as: 

Acc − PPV
− PPV + NPV

, (6)  

given − PPV ∕= NPV. All of these quantities are known for the group with 
positive screening result, and therefore the total NPV can be calculated. 

The results of these calculations are shown in Table 10. 
The predictive values of the culture for the UTI label are shown in 

Table D.20 in Appendix D. Compared to the CDSS, the culture has 
significantly lower accuracy: 77.90% compared to 85.24%. This is also 
true for its PPV (62.05%–79.76%) and specificity (76.24%–91.30%). In 
terms of sensitivity, however, the culture outperforms the pipeline for 
the thresholds selected (81.39%–72.84%) and for NPV as well (89.56%– 
87.46%). 

6.5. Model optimization: variable selection 

As part of model optimization, variable selection was applied as 
described in Section 3.5.2. As each experiment consisted of 100 repeti
tions, each variable presented to the model was selected between 0 and 
100 times during these experiments. 

We visualize the selection frequencies of the variables for the RF and 
SVM classifiers in Fig. 6. The variables contained in the Fixed set were: 
any active antibiotics at time of culture, urine nitrite, urine leukocytes, 
Gram positive cocci, Gram negative rods, urine collection method, age 
and sex. These were included by default. The number of times that a 
feature was included in the Selected set is shown in blue, the number of 
times it was included in the Sparse set is shown in orange. Although the 
Sparse set is by definition smaller or equal to the Selected set in size for 
each iteration, the number of times an individual feature was included 
overall in the Sparse set can be larger than the number of times it was 
included in the Selected set due to the floating option of Mlxtend. 

We observe the total number of features included was much larger 
for the SVM classifier (2007 Selected, 1443 Sparse) than for RF (1466 
Selected, 1251 Sparse), for both the Sparse and Selected sets. Interest
ingly, none of the optional features was consistently selected over the 
100 iterations. The most frequently selected feature for RF was potas
sium in the urine (45 times), followed by whether blood leukocytes were 
measured (40 times) and active non-UTI antibiotics (both 46 times). In 
the Sparse set these same three variables were the most included, with 
29, 32 and 30 inclusions respectively. In case of the SVM classifier, the 
most frequently selected features was leukocytes - Gram (71 times), 
followed by blood neutrophils (70 times) and potassium in the urine (68 
times). The most frequently selected features for the Sparse set were 
leukocytes - Gram (56 times), whether blood neutrophils were measured 
(46 times) and potassium in the urine (42 times). 

In Fig. 7 the relative performance of the different feature subsets is 
shown for each of the classifiers included in the experiments. In Fig. 7a 
the results for the supervised models are shown, in Fig. 7b the results for 
RESSEL are depicted. Feature set selection was limited to the supervised 
part of the pipeline as discussed in Section 3.5.2. 

Table 9 
Predictive performance of the best performing semi-supervised model (RF enhanced with RESSEL) for different patient groups on the positive urinalysis group.   

Accuracy Sensitivity Specificity PPV NPV AUC 

Patient group 
Immunosuppressed 75.24 (±1.51) 80.75 (±1.81) 68.06 (±2.83) 77.48 (±1.84) 71.43 (±2.68) 79.88 (±1.55) 
Elderly 73.96 (±1.99) 84.89 (±2.32) 59.92 (±3.53) 73.21 (±2.74) 76.32 (±3.81) 75.77 (±2.43) 
Children 76.15 (±2.36) 80.75 (±3.06) 70.56 (±4.49) 79.54 (±2.86) 70.84 (±4.64) 78.79 (±2.88) 
Urological 75.11 (±2.74) 73.50 (±4.16) 73.47 (±6.02) 83.79 (±3.85) 64.01 (±4.75) 81.91 (±3.65)  

Table 10 
Predictive performance of the Clinical Decision Support System for patients for whom urinalysis results were available. The results shown represent the combined 
performance of the urinalysis screening step with the RF - RESSEL model.   

NPV− N−
neg N−

pos N+
neg N+

pos Accuracy Sensitivity Specificity PPV NPV 

Patient group 
All 93.41 340 24 144 207 85.24 72.84 91.30 79.76 87.46 
Immunosuppressed 94.12 144 9 54 77 84.38 72.30 89.73 77.48 87.70 
Elderly 87.04 47 7 38 49 78.97 74.28 82.08 73.21 84.04 
Children 91.67 66 6 27 36 84.43 69.21 91.45 79.54 86.37 
Urological 88.24 15 2 15 25 79.03 68.06 86.74 83.79 75.93  
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We observe that for each of the classifiers, the best results are ob
tained from the Fixed feature set. The performance of the Sparse and 
Selected sets is comparable, although the Sparse set performs slightly 
better. We hypothesize the most predictive features are already included 
in the Fixed set. While there may be some predictive value in the in
clusion of additional individual features, the inclusion of an additional 
set based on cross validation AUC is not beneficial. 

This may be due to the relatively small size of the labeled positive 
urinalysis data set (n = 351), causing a feature to perform better on the 
train set, be selected and not perform as well on the test set. Further
more, if any individual feature had been a strong predictor, we would 
expect it to be included more frequently in the Selected and Sparse sets. 

6.6. Model optimization: hyperparameter selection 

The predictive pipeline depicted in Fig. 2 includes a separate 
hyperparameter selection for the supervised and semi-supervised parts 
of the pipeline. RESSEL is a computationally heavy method [16], since it 
both combines multiple classifiers into an ensemble and repeatedly 
re-trains the individual classifiers during its self-training process. The 
hyperparameter optimization step further increases the training time, 
scaling linearly with the number of feature combinations tried and the 
number of cross validation folds, e.g. a 12 ⋅ 12 ⋅ 5 = 720 times increase in 
time spent for the SVM classifier with the settings used in the experi
ments compared to a single fit with preset features on a data set of equal 

size. 
We investigate the performance difference of using the hyper

parameter settings found earlier, in the supervised hyperparameter se
lection step, to the use of a separate step for RESSEL. The results for 
using the supervised hyperparameters are shown in Table 11. 

We compare to the results of using a separate hyperparameter tuning 
step in combination with RESSEL, shown in Table 8. Overall, results are 
very similar. In terms of both accuracy and AUC, differences are well 
within each other’s confidence intervals. Therefore, at least on this data 
set, the additional step is not demonstrably of added value and can be 
omitted to reduce computational costs. 

Fig. 6. Number of times a particular feature was selected through Sequential Feature Selection for the Sparse and Selected feature sets for the (a) RF and (b) SVM 
classifiers. All features that were selected 100 times belong to the Fixed set and were included by default. 

Fig. 7. Accuracies for all of the classifiers trained using the different feature sets using (a) supervised and (b) semi-supervised learning.  

Table 11 
Predictive performance of the classifiers enhanced with RESSEL using the best 
hyperparameters found during supervised optimization.   

Accuracy AUC 

Classifier 
SVM 74.83 (±0.95) 78.74 (±0.98) 
XGB 75.93 (±0.86) 79.10 (±0.98) 
RF 76.90 (±0.80) 79.82 (±0.98) 
NN 73.60 (±0.86) 78.66 (±1.04) 
LR 73.83 (±0.95) 77.28 (±1.06)  
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7. Discussion 

7.1. Safety 

In current practice the clinician has to decide whether to start anti
biotics based on the clinical picture and urinalysis. The CDSS we 
developed provides the clinician with a prediction for UTI at a stage of 
the diagnostic process at which currently no additional quantitative 
information becomes available until the culture results are in, at least a 
day later. We show the addition of this system, consisting of a screening 
step based on the urinalysis followed by a machine learning model, leads 
to a desirable situation in terms of both safety and potential reduction of 
inappropriate antibiotic prescriptions: at the time the Gram stain results 
are in, the system is run and provides a prediction as to whether a patient 
has a UTI with high accuracy and NPV of 85.24% and 87.46% respec
tively (Table 10). This enables the health care provider to confidently 
hold off on prescribing antibiotics in case of a no UTI prediction, unless 
there is another indication that warrants the use of antibiotics. For the 
population with positive urinalysis result, who are most at risk of UTI 
and for whom the model is used, we found there to be no statistically 
significant different in accuracy between our model and the urine cul
ture for predicting UTI, with a p-value of 0.40. In the worst case scenario, 
the system falsely predicts no UTI, resulting in delayed treatment. In 
clinical practice, however, if patient health deteriorates antibiotics will 
likely be administered, regardless of the previously predicted outcome 
by the system. 

7.2. Potential impact estimation 

The primary aim of the implementation of a system such as we 
propose in this paper is to lead to a reduction in the inappropriate 
prescription of antibiotics. In the following, we analyze the current state 
of antibiotic use surrounding urine cultures and estimate the size of the 
impact our system might have. 

In order to be able to carry out such an analysis we have had to make 
some assumptions that we were not able to verify as the data required 
was not available. The largest assumption is that broad-spectrum anti
biotics will be halted in case no UTI is predicted. In practice, these an
tibiotics will frequently be continued in case of systemic illness, albeit 
for a different focus. Although this analysis thus provides us with an 
upper limit to the possible effect size, an early prediction of no UTI does 
provide the added benefit of aiding the search for an alternative 
diagnosis. 

In the following analysis we make use of three categories of antibi
otics, further specified in Table C.18 in Appendix C:  

● UTI specific (U): antibiotics within this category are solely used to 
treat a UTI and are never prescribed for a different focus.  

● Broad-spectrum (B): these antibiotics may be prescribed when UTI is 
suspected, but could also be prescribed for a different focus. 

● Not for UTI (N): these should, with few exceptions, never be pre
scribed if the focus is UTI. 

In measuring the impact the application of our system could have on 
the reduction of unnecessary antibiotics, we are mostly interested in the 
UTI specific and Broad-spectrum categories. We assume the Other 
category was not prescribed for suspected UTI and therefore a reduction 
in its use is not within the scope of this work. It is included in the 
remainder of this section, however, to provide context. 

An overview of the current situation with regard to antibiotic pre
scriptions surrounding the urine culture, for the group of patients who 
have had urinalysis performed, is shown in Fig. 8 with respect to UTI and 
Figure E.9 in Appendix E with respect to the culture result as the UTI 
label is not available for the majority of the cultures. 

Of the 715 labeled cultures included in this group, only 148 did not 
have any active antibiotic prescriptions registered in the 7 days before or 
after the date of the culture. Of the 567 that did have a prescription in 
this time span, 185 (32.63%) were already on antibiotics at the date of 
the urine culture. 

The use of the predictive system proposed in this paper would be able 
to reduce the antibiotic prescriptions in the group where no antibiotics 
were active before the culture order, so the 382 cultures. Of these, 261 
(68.32%) were prescribed antibiotics on the day of the culture, while 
only about half end up having a UTI according to the expert labeling. 
More precisely, of those patients for whom we are certain they were 
prescribed antibiotics specifically for a UTI (U: 34), 32.35% ended up 
not having a UTI after all. For the patients who were prescribed anti
biotics for which it is uncertain if they were prescribed for a UTI (E: 212) 
50.47% ended up not having a UTI. 

To provide a rough estimate of the potential in antibiotic reduction, 
we take the specificity of 91.3% found for the CDSS and multiply it by 
the percentage of cultures that were ultimately not corresponding to a 
UTI. Given this specificity, the 32.35% of cultures (11 total) which were 
falsely prescribed antibiotics of type U could potentially be reduced to 
2.81% (~1). The 50.47% of cultures (107 total) which were falsely 
prescribed antibiotics of type B could potentially be reduced to 4.39% 
(~9). 

Next we apply the same calculations to all culture data within our 
target population collected in two years, as shown in Figure E.9 in Ap
pendix E, but assuming an equal percentage of UTI as in the labeled data. 
We assume 32.35% of cultures would be falsely started on antibiotics of 
type U (~134 out of 413 in total), which could potentially be reduced to 
~12. Assuming again 50.47% of cultures (~1293 out of 2561 in total) 
were falsely prescribed antibiotics of type E, the total number of cultures 
accompanied by inappropriately started antibiotics could potentially be 
reduced to ~112. 

Fig. 8. Analysis of antibiotic (AB) prescriptions surrounding the culture order with UTI as outcome. The percentage indicates the percentage of the corresponding 
group who was labeled as having an UTI. Antibiotic prescriptions are defined into the classes UTI specific (U), Broad-spectrum (B) and Not for UTI (N). 
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In total, this would mean inappropriate antibiotic prescriptions could 
be avoided with high certainty for 134 − 12 = 122 cultures, in addition 
to possibly avoiding prescriptions for 1293 − 112 = 1181 cultures. 
Combined, these add up to 1303 cultures over the two years of data, out 
of a total of 8544 cultures that qualify to participate in the CDSS, i.e. a 
potential reduction of up to 15.2%. In clinical practice this number will 
be lower, mainly due to antibiotics in the Broad-spectrum category, 
which might have been prescribed for a different focus, but a significant 
reduction could be achieved nonetheless. 

These rough estimates assumes equal predictive performance for 
each subgroup antibiotic prescription type, which is an over
simplification. Nevertheless, it is clear that the use of such a system has 
great potential for the reduction of unnecessarily prescribed antibiotics. 
Additionally, some cases which are found to be a UTI would be missed 
by the system. As stated before, however, the culture result will still 
follow between one and three days after the prediction and the condition 
of the patient will be monitored during this time as well. Therefore, we 
believe antibiotic treatment might be slightly delayed, but will seldom 
be completely discarded in case there is a UTI present. 

7.3. Limitations 

This research has a number of limitations. First of all, the models are 
developed and tested on a large part of the hospital population, but we 
opted to exclude some specific types of patients beforehand. The 
inability to use the model for every type of patient might hinder its 
adoption. Additionally, as the system is developed for the specific pop
ulation of the University Medical Center Utrecht, which has a more 
complex patient population than the average hospital, it is uncertain 
how well the model performance will generalize to other medical 
centers. 

Another limiting factor is that the Gram stain is required. While a 
Gram stain is routinely performed for each urine culture in our labora
tory, currently the workflow is not designed to have it performed 
immediately after the culture order, causing the time before the results 
are in to vary. For the predictive system described in this work to be 
effective, the Gram stain needs to be processed more consistently, so 
health care professionals can rely upon the system to make a prediction 
within a set time frame after the culture order. Moreover, the Gram stain 
not routinely performed in every hospital, preventing the application of 
system as reported in this work. 

Furthermore, the number of labeled samples is limited, especially for 
the group of patients with positive urine screening result. A lot of the 
labeled data used in this research was used in data analysis from which 
we came to the conclusion a predictive model for the screening positive 
group was most advantageous. If the model is to be further improved, a 
new labeling can focus entirely on this sub group such that every 
additional label is used for model development. Finally, there was no 

structured information available about the signs and symptoms. We 
believe their inclusion would lead to greater predictive accuracy in 
detecting UTI. 

8. Conclusion 

In this work we present a study of urinary tract infections (UTI) in an 
academic center. We use the presence of UTI, established through expert 
panel review, as gold standard. We compare the culture result with this 
label and find that the two are only moderately in agreement with each 
other within the hospital population as a whole, thereby confirming the 
added value of this more informative study outcome. 

We demonstrate the benefit of using the Gram stain results, showing 
that its predictive value for UTI is increased in patients with positive 
urinalysis who have previously been deemed to have relatively high risk 
of a UTI. We then propose a two-step clinical decision support system 
(CDSS), using a screening step based on the urinalysis followed by a 
prediction model for high risk patients. We show that a number of su
pervised models have good accuracy for detecting UTI in this subgroup 
and that this accuracy can be further improved upon by using the reli
able semi-supervised ensemble learning (RESSEL) method to learn from 
the unlabeled data. 

The model used in the second part of the CDSS is evaluated and found 
to be as accurate as the urine culture is for predicting the expert label for 
UTI in patients with a positive urinalysis result. The system provides the 
clinician with this prediction at an earlier stage in the diagnostic pro
cess. This enables the clinician to withhold the administration antibi
otics, to look for other causes of infection or to recognize asymptomatic 
bacteriuria in case no UTI is predicted. In an exploratory analysis, we 
combine the predictive performance of the CDSS as a whole with an 
analysis of antibiotic prescriptions surrounding urine cultures to provide 
an estimate of the potential impact the system might have on prevention 
of inappropriate prescription of antibiotics. We calculated that the use of 
the system could result in a reduction of antibiotic prescriptions of up to 
15.2% for the target population in our setting, although this number is 
expected be lower in clinical practice. 

Future research directions include the inclusion of signs and symp
toms from clinical notes, which would require the application of Text 
Mining techniques. Our next step is to implement and to validate this 
model and to measure the clinical benefits as well as the risks prospec
tively in an impact study. 
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Appendix A. Hyperparameter Settings  

Table A.12 
Base classifier hyperparameter settings.  

Classifier (parameter) Value 

XGB 
η [0.1, 0.25, 0.4, 0.55, 0.7, 0.85, 1] 
col sample by tree [0.2,0.4,0.6,0.8,1] 
Features [1, all] 

SVM 
Kernel rbf 
C 1E[-2, 0.5, 12 steps] 
γ 1E[-2.5, 0, 12 steps] 

NN 
Neighbors [1,25] 

RF 

(continued on next page) 
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Table A.12 (continued ) 

Classifier (parameter) Value 

Depth [1,10] 
Features [1, all] 

LR 
Implementation SGD 
Loss log 
Penalty [L1, L2, elasticnet]   

Table A.13 
RESSEL hyperparameter settings.  

Setting Value 

Unlabeled fraction 0.35 
Ensemble size 25 
Bootstrap True 
Stratify False  

Appendix B. Clinical Findings  

Table B.14 
Numerical predictors used in the modeling process.   

N (%) No UTI UTI 

Variable 
Age (years) 906 (100.0) 57.0 (27.8–71.0) 63.0 (38.0–74.0) 
CRP (mg/L) 729 (80.5) 52.0 (15.0–126.0) 55.0 (16.0–116.0) 
Blood leukocytes (x109/L) 780 (86.1) 10.7 (7.5–14.2) 11.3 (8.4–15.9) 
Blood neutrophils (x109/L) 359 (39.6) 8.4 (5.0–11.8) 8.5 (4.8–12.4) 
Temperature (◦C) 811 (89.5) 37.7 (37.1–38.6) 37.9 (37.2–38.8) 
Sodium urine (mmol/L) 97 (10.7) 44.0 (23.0–91.0) 40.5 (29.8–62.0) 
Osmolality urine (mOsmol/kg) 54 (6.0) 505.5 (377.2–631.2) 345.0 (268.5–393.5) 
Creatinine urine (mmol/L) 106 (11.7) 5.8 (3.6–9.9) 7.0 (4.9–9.4) 
Urea urine (mmol/L) 52 (5.7) 197.0 (117.0–245.5) 164.0 (113.8–210.8) 
Potassium urine (mmol/L) 40 (4.4) 30.0 (20.0–52.5) 33.0 (23.0–57.0)   

Table B.15 
Binary predictors used in the modeling process.  

Variable Value N (%) No UTI UTI 

Sex Female 452 (49.9) 301 (66.59) 151 (33.4) 
Male 454 (50.1) 339 (74.67) 115 (25.3) 

Collection method Catheter 378 (41.7) 256 (67.72) 122 (32.3) 
Midstream 528 (58.3) 384 (72.73) 144 (27.3) 

Chest X-ray performed No 577 (63.7) 385 (66.72) 192 (33.3) 
Yes 329 (36.3) 255 (77.51) 74 (22.5) 

Immunosuppressed No 561 (61.9) 392 (69.88) 169 (30.1) 
Yes 345 (38.1) 248 (71.88) 97 (28.1) 

Diabetic No 707 (78.0) 497 (70.3) 210 (29.7) 
Yes 199 (22.0) 143 (71.86) 56 (28.1) 

UTI specific antibiotics No 828 (91.4) 588 (71.01) 240 (29.0) 
Yes 78 (8.6) 52 (66.67) 26 (33.3) 

Broad-spectrum antibiotics No 685 (75.6) 469 (68.47) 216 (31.5) 
Yes 221 (24.4) 171 (77.38) 50 (22.6) 

Non-UTI antibiotics No 788 (87.0) 546 (69.29) 242 (30.7) 
Yes 118 (13.0) 94 (79.66) 24 (20.3) 

Any antibiotics No 564 (62.3) 382 (67.73) 182 (32.3) 
Yes 342 (37.7) 258 (75.44) 84 (24.6)   
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Table B.16 
Predictors from urinalysis used in the modeling process.  

Variable Value N (%) No UTI UTI 

Leukocytes Not Measured 191 (21.1) 156 (81.68) 35 (18.32) 
(/microL) Negative 304 (33.6) 287 (94.41) 17 (5.6) 

ca. 25 70 (7.7) 57 (81.43) 13 (18.6) 
ca. 75 71 (7.8) 49 (69.01) 22 (31.0) 
ca. 250 36 (4.0) 20 (55.56) 16 (44.4) 
ca. 500 234 (25.8) 71 (30.34) 163 (69.7) 

Nitrite Not Measured 191 (21.1) 156 (81.68) 35 (18.32) 
Negative 628 (69.3) 466 (74.2) 162 (25.8) 
Positive 87 (9.6) 18 (20.69) 69 (79.3) 

Protein Not Measured 191 (21.1) 156 (81.68) 35 (18.32) 
(g/L) Negative 215 (23.7) 176 (81.86) 39 (18.1) 

Trace 96 (10.6) 71 (73.96) 25 (26.0) 
ca. 0.15 3 (0.3) 1 (33.33) 2 (66.7) 
ca. 0.20 97 (10.7) 64 (65.98) 33 (34.0) 
ca. 0.30 62 (6.8) 39 (62.9) 23 (37.1) 
ca. 0.50 53 (5.8) 29 (54.72) 24 (45.3) 
ca. 0.70 61 (6.7) 36 (59.02) 25 (41.0) 
ca. 1.00 43 (4.7) 19 (44.19) 24 (55.8) 
ca. 1.50 22 (2.4) 12 (54.55) 10 (45.5) 
ca. 2.00 20 (2.2) 11 (55.0) 9 (45.0) 
>2.00 43 (4.7) 26 (60.47) 17 (39.5) 

Erythrocytes Not Measured 191 (21.1) 156 (81.68) 35 (18.32) 
free Hb Negative 316 (34.9) 258 (81.65) 58 (18.4) 
(/mircoL) ca. 10 73 (8.1) 48 (65.75) 25 (34.2) 

ca. 20 54 (6.0) 29 (53.7) 25 (46.3) 
ca. 30 64 (7.1) 38 (59.38) 26 (40.6) 
ca. 60 72 (7.9) 34 (47.22) 38 (52.8) 
ca. 150 55 (6.1) 33 (60.0) 22 (40.0) 
ca. 300 42 (4.6) 23 (54.76) 19 (45.2) 
>300 39 (4.3) 21 (53.85) 18 (46.2) 

Glucose Not Measured 191 (21.1) 156 (81.68) 35 (18.32) 
Negative 628 (69.3) 421 (67.04) 207 (33.0) 
Trace 16 (1.8) 12 (75.0) 4 (25.0) 
Positive 18 (2.0) 15 (83.33) 3 (16.7) 
Strong Positive 53 (5.8) 36 (67.92) 17 (32.1) 

pH Not Measured 191 (21.1) 156 (81.68) 35 (18.32) 
5.0 12 (1.3) 11 (91.67) 1 (8.3) 
5.5 300 (33.1) 208 (69.33) 92 (30.7) 
6.0 202 (22.3) 132 (65.35) 70 (34.7) 
6.5 102 (11.3) 64 (62.75) 38 (37.3) 
7.0 66 (7.3) 46 (69.7) 20 (30.3) 
7.5 24 (2.6) 20 (83.33) 4 (16.7) 
8.0 7 (0.8) 3 (42.86) 4 (57.1) 
9.0 2 (0.2) 0 (0.0) 2 (100.0) 

Hyaline casts Not Measured 742 (81.9) 531 (71.56) 211 (28.44) 
1–2 37 (4.1) 20 (54.05) 17 (45.9) 
>2 127 (14.0) 89 (70.08) 38 (29.9) 

Granular casts Not Measured 799 (88.2) 560 (70.09) 239 (29.91) 
None 5 (0.6) 3 (60.0) 2 (40.0) 
1–2 49 (5.4) 36 (73.47) 13 (26.5) 
>2 53 (5.8) 41 (77.36) 12 (22.6)   

Table B.17 
Predictors from urine culture and Gram stain used in the modeling process.  

Variable Value N (%) No UTI UTI 

Culture result Negative 532 (58.7) 483 (90.79) 49 (9.2) 
Positive 374 (41.3) 157 (41.98) 217 (58.0) 

Number of bacteria 1 755 (83.3) 555 (73.51) 200 (26.5) 
2 126 (13.9) 68 (53.97) 58 (46.0) 
3 19 (2.1) 13 (68.42) 6 (31.6) 
4 5 (0.6) 3 (60.0) 2 (40.0) 
5 1 (0.1) 1 (100.0) 0 (0.0) 

Leukocytes Gram Not Measured 2 (0.2) 2 (100.0) 0 (0.0) 
staining (/100x) <1 323 (35.7) 288 (89.16) 35 (10.8) 

1–9 211 (23.3) 166 (78.67) 45 (21.3) 
10–25 147 (16.2) 92 (62.59) 55 (37.4) 
>25 223 (24.6) 92 (41.26) 131 (58.7) 

Squamous cells Not Measured 25 (2.8) 18 (72.0) 7 (28.0) 
Gram staining (/100x) <1 664 (73.3) 485 (73.04) 179 (27.0) 

1–9 171 (18.9) 109 (63.74) 62 (36.3) 

(continued on next page) 
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Table B.17 (continued ) 

Variable Value N (%) No UTI UTI 

10–25 25 (2.8) 16 (64.0) 9 (36.0) 
>25 21 (2.3) 12 (57.14) 9 (42.9) 

Gram negative Not Measured 528 (58.3) 461 (87.31) 67 (12.7) 
rods (/1000x) <1 69 (7.6) 59 (85.51) 10 (14.5) 

1–5 91 (10.0) 63 (69.23) 28 (30.8) 
6–30 87 (9.6) 28 (32.18) 59 (67.8) 
>30 131 (14.5) 29 (22.14) 102 (77.9) 

Gram negative Not Measured 901 (99.4) 638 (70.81) 263 (29.2) 
cocci (/1000x) <1 1 (0.1) 1 (100.0) 0 (0.0) 

1–5 1 (0.1) 0 (0.0) 1 (100.0) 
6–30 1 (0.1) 0 (0.0) 1 (100.0) 
>30 2 (0.2) 1 (50.0) 1 (50.0) 

Gram positive Not Measured 818 (90.3) 580 (70.9) 238 (29.1) 
rods (/1000x) <1 27 (3.0) 21 (77.78) 6 (22.2) 

1–5 38 (4.2) 24 (63.16) 14 (36.8) 
6–30 16 (1.8) 10 (62.5) 6 (37.5) 
>30 7 (0.8) 5 (71.43) 2 (28.6) 

Gram positive Not Measured 648 (71.5) 480 (74.07) 168 (25.9) 
cocci (/1000x) <1 74 (8.2) 57 (77.03) 17 (23.0) 

1–5 90 (9.9) 67 (74.44) 23 (25.6) 
6–30 55 (6.1) 21 (38.18) 34 (61.8) 
>30 39 (4.3) 15 (38.46) 24 (61.5) 

Previous culture Not Measured 721 (79.6) 517 (71.71) 204 (28.29) 
(common uropathogens, No Relevant Bacteria 101 (11.1) 83 (82.18) 18 (17.8) 
cfu) < 103 2 (0.2) 2 (100.0) 0 (0.0) 

103 2 (0.2) 1 (50.0) 1 (50.0) 
104 15 (1.7) 9 (60.0) 6 (40.0) 
105 65 (7.2) 28 (43.08) 37 (56.9)  

Appendix C. Antibiotic Classes  

Table C.18 
Antibiotic Classes. The different antibiotic classes are defined as: UTI specific (U), Broad- 
spectrum (B) and Not for UTI (N).  

ATC code name class 

J01EA01 trimethoprim U 
J01XE01 nitrofurantoin U 
J01XX01 fosfomycin U 
J01CR02 amoxicillin and beta-lactamase inhibitor B 
J01EE01 sulfamethoxazole and trimethoprim B 
J01MA02 ciprofloxacin B 
J01DD04 ceftriaxone B 
J01GB03 gentamicin B 
J01DH02 meropenem B 
J01DH51 imipenem and cilastatin B 
J01CR05 piperacillin and beta-lactamase inhibitor B 
J01DC02 cefuroxime B 
J01MA06 norfloxacin B 
J01MA01 ofloxacin B 
J01DH03 ertapenem B 
J01DI54 ceftolozane and beta-lactamase inhibitor B 
J01AA12 tigecycline B 
J01DD08 cefixime B 
J01FA10 azithromycin N 
J01CA04 amoxicillin N 
J01DB04 cefazolin N 
J01XA01 vancomycin N 
J01FA01 erythromycin N 
J01XD01 metronidazole N 
J01CF05 flucloxacillin N 
J01DD02 ceftazidime N 
J01FF01 clindamycin N 
J01XB01 colistin N 
J01AA02 doxycycline N 
J01GB01 tobramycin N 
J01CE05 pheneticillin N 
J01DD01 cefotaxime N 
J01CE01 benzylpenicillin N 
J01MA14 moxifloxacin N 
J01MA12 levofloxacin N 
J01XA02 teicoplanin N 
J01DB01 cefalexin N 

(continued on next page) 
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Table C.18 (continued ) 

ATC code name class 

J01FA09 clarithromycin N 
J01DD14 ceftibuten N 
J01DF01 aztreonam N 
J01DC04 cefaclor N 
J01GB06 amikacin N 
J01CE02 phenoxymethylpenicillin N 
J01CE08 benzathine benzylpenicillin N 
J01AA08 minocycline N 
J01XX09 daptomycin N 
J01XX08 linezolid N 
J01XX05 methenamine N 
J01XC01 fusidic acid N 
J01EC02 sulfadiazine N 
J01DI02 ceftaroline fosamil N  

Appendix D. Culture Results  

Table D.19 
Culture result compared to UTI label for all cultures with positive associated urinalysis.  

UTI Neg Pos All P (%) N (%) PPV NPV Sensitivity Specificity Accuracy 

Culture 
Neg 97 36 133 27.07 72.93 78.44 72.93 82.61 67.36 76.35 
Pos 47 171 218 78.44 21.56 - - - - - 
All 144 207 351 58.97 41.03 - - - - -   

Table D.20 
Culture result compared to UTI label for all cultures with associated urinalysis.  

UTI Neg Pos All P (%) N (%) PPV NPV Sensitivity Specificity Accuracy 

Culture 
Neg 369 43 412 10.44 89.56 62.05 89.56 81.39 76.24 77.9 
Pos 115 188 303 62.05 37.95 - - - - - 
All 484 231 715 32.31 67.69 - - - - -  

Appendix E. Antibiotic Impact Analysis - Culture as Outcome

Figure E.9. Analysis of antibiotic (AB) prescriptions surrounding the culture order with the urine culture as outcome. The percentage indicates the percentage of the 
corresponding group who was labeled as having an UTI. Antibiotic prescriptions are defined into the classes UTI specific (U), Broad-spectrum (B) and Not for UTI (N). 
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