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Nutrition or nature: using elementary flux 
modes to disentangle the complex forces 
shaping prokaryote pan‑genomes
Daniel R. Garza1,2*, F. A. Bastiaan von Meijenfeldt3, Bram van Dijk4, Annemarie Boleij5, Martijn A. Huynen1 and 
Bas E. Dutilh1,6,7 

Abstract 

Background:  Microbial pan-genomes are shaped by a complex combination of stochastic and deterministic forces. 
Even closely related genomes exhibit extensive variation in their gene content. Understanding what drives this vari-
ation requires exploring the interactions of gene products with each other and with the organism’s external environ-
ment. However, to date, conceptual models of pan-genome dynamics often represent genes as independent units 
and provide limited information about their mechanistic interactions.

Results:  We simulated the stochastic process of gene-loss using the pooled genome-scale metabolic reaction net-
works of 46 taxonomically diverse bacterial and archaeal families as proxies for their pan-genomes. The frequency by 
which reactions are retained in functional networks when stochastic gene loss is simulated in diverse environments 
allowed us to disentangle the metabolic reactions whose presence depends on the metabolite composition of the 
external environment (constrained by “nutrition”) from those that are independent of the environment (constrained 
by “nature”). By comparing the frequency of reactions from the first group with their observed frequencies in bacterial 
and archaeal families, we predicted the metabolic niches that shaped the genomic composition of these lineages. 
Moreover, we found that the lineages that were shaped by a more diverse metabolic niche also occur in more diverse 
biomes as assessed by global environmental sequencing datasets.

Conclusion:  We introduce a computational framework for analyzing and interpreting pan-reactomes that provides 
novel insights into the ecological and evolutionary drivers of pan-genome dynamics.

Keywords:  Pan-genome evolution, Reactomes, Genome-scale metabolic models, Prokaryote evolution, Gene 
frequency distribution
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Background
In the evolution of microbial genomes, genes are gained 
and lost by mutations, insertions, deletions, duplications, 
and horizontal gene transfers (HGTs) [1–4]. As a result 
of these processes, gene content varies significantly even 

between closely related genomes [3, 5, 6]. Diverse gene 
repertoires give rise to microbial pan-genomes, which are 
defined as the complete set of non-redundant genes har-
bored by any monophyletic group of microbes [7]. The 
genes in a pan-genome exhibit a frequency distribution 
that can be estimated by comparing the gene content of 
many representative genomes from the same taxonomic 
level. Some genes are found in all representative genomes 
(called “core genes”), in only one or a few genomes 
(called “cloud genes”), or in an intermediate fraction 
of the genomes (called “shell genes”). The frequency 
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distribution of genes likely reflects the deterministic and 
stochastic drivers of evolution [8], but currently, there 
are insufficient theoretical frameworks that allow us to 
relate the empirical frequency of genes in pan-genomes 
with the ecologic and evolutionary processes that shape 
microbial genomes [9, 10].

Recent studies have attempted to transfer the concepts 
from population genetics to interpret the frequency dis-
tribution of genes in microbial pan-genomes [7, 8, 10, 
11]. This has been justified since pan-genomes, instead of 
populations, can be viewed as the key units of prokary-
ote evolution [3]. But the frequency of genotypes used 
by population genetics theory reflects different evo-
lutionary forces than the frequency of genes in pan-
genomes. While the former reflects mutation rates and 
effective population sizes, the latter reflects HGT rates 
and genomic adaptations to diverse environmental con-
ditions [5, 12–16]. Currently, there is a need to develop 
more realistic frameworks to model and explain gene fre-
quency in pan-genomes.

An important factor to consider when developing mod-
els for the distribution of genes in pan-genomes is that 
individual genes are not equally accessible to all genomes. 
In general, the probability that a recipient microbial 
genome will be capable of integrating foreign DNA 
increases exponentially with an increase in the similarity 
between the donor DNA and the recipient chromosome 
[17]. As a result, closely related genomes share more 
genes than distantly related ones [6, 18].

Another important factor to consider is that the acqui-
sition of new genes by genomes is counterbalanced by the 
frequent loss of genes [3, 19–21]. Gene loss is majorly a 
clock-like process, where genes under weak or no selec-
tion tend to be inactivated by random mutation and lost 
by deletion [19, 22, 23]. This process is widely observed 
across microbial genomes and virtually all species with 
genomes smaller than 2 Mb evolved from ancestors with 
substantially larger genomes [23–25]. Gene loss is also 
the major source of genomic variation of intracellular 
parasites that do not undergo extensive HGT [26] and 
of bacteria that are adapted to stable and nutrient-rich 
environments, such as host-associated microbiomes [24]. 
Based on the high rates of gene loss, it is reasonable to 
assume that genes that are not under selective pressure 
may eventually be lost.

The frequency distributions of the genes within pan-
genomes fit mathematical functions with regular and uni-
versal shapes [9, 27–29]. One example is the asymmetric 
U-shape that is observed for a broad range of prokary-
ote groups [30, 31]. Under this distribution, core and 
cloud genes are more frequent compared to shell genes. 
Pan-genome studies commonly conflate the frequency 
of a gene with its essentiality. In this view, core genes 

are considered essential under any condition, while the 
increasingly rare genes are considered increasingly dis-
pensable. But the characteristic U-shape distribution of 
gene frequency also emerges from simple neutral models 
that do not attribute different selective advantages to dif-
ferent genes [32–34].

The commonly used neutral and non-neutral models 
of pan-genome evolution are simplified ‘bag-of-genes’ 
models that do not explicitly consider gene functions 
and their interactions [9, 32, 34]. These models provide 
important insights into the evolutionary dynamics of 
pan-genomes, but ignore the functional forces driving 
gene frequencies and, more importantly, do not provide 
a mechanistic interpretation for the variation in gene 
content. In nature, selection acts on the phenotype, and 
microbes exhibit complex phenotypes that result from 
the combined action of multiple gene products. In many 
cases, phenotypes are dependent on the interactions of 
gene products with the environment.

A promising approach to integrating the functions and 
interactions of genes into models of genome evolution 
is to use the genome-encoded metabolic reactions, the 
reactome, as a proxy for the gene content of genomes. 
Reactions from the reactome can be integrated into a 
functional network (also referred to as a genome-scale 
metabolic model (GSMM)) that represents the geno-
type-to-phenotype map [35–38]. The molecular compo-
nents (protein-encoding genes) of reactomes are readily 
inferred from microbial genome sequences [36, 39, 40]. 
Similar to pan-genomes, pan-reactomes can be defined 
as the complete set of non-redundant metabolic reac-
tions that are harbored by a monophyletic microbial 
group. The pan-reactome may also be subdivided into 
the core, cloud, and shell pan-reactomes based on reac-
tion frequency. Networks derived from pan-reactomes 
are capable of simulating complex phenotypes, such as 
the conversion of energy and matter from diverse envi-
ronmental metabolites into sugars, nucleic acids, lipids, 
and proteins [36].

Here we used pan-reactomes as models to simulate 
and understand patterns in pan-genomes. To incorporate 
realistic features of pan-genome evolution, we used pan-
reactomes as proxies for pools of genes that are accessible 
to related strains by HGT. We then modeled alternative 
routes of gene loss by sampling minimal functional reac-
tion sets in diverse environment compositions. These 
minimal functional reaction sets have similar properties 
as the previously defined elementary flux modes (EFMs) 
used to identify functional pathways in reactomes [41], 
thus, we termed our sets panEFMS (pan-reactome 
elementary flux modes) and used them to distinguish 
two important drivers of reaction frequencies in pan-
reactomes, which we refer to as ‘nutrition’ and ‘nature’. 
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The frequency of reactions that are driven by nutrition 
depends on the environment composition, while the fre-
quency of reactions that are driven by nature does not 
depend on the environment composition. Our frame-
work mechanistically disentangles environment-driven 
from environment-independent reactions and uses their 
distribution in panEFMs to build a model that predicts 
the metabolite preferences of pan-reactomes from their 
environment-driven reactions. We applied this model to 
the pan-reactomes of 46 bacterial and archaeal families, 
allowing us to assess the patterns of microbial genome 
evolution that result from the function and interaction 
between metabolic genes.

Results
Functional reactomes of individual strains are samples 
from a pan‑reactome
Our model consists of directed bipartite graphs of reac-
tions and metabolites (Fig.  1A) derived from reactomes 
of related organisms (Fig. 1B) that together form a pan-
reactome (Fig. 1C). To illustrate the model in a tractable 
way, we use a toy model to illustrate how environment-
independent and environment-driven processes together 
shape the frequency distribution of reactions in pan-reac-
tomes (Fig. 1, Additional file 6: Table S1). We expand the 
detailed explanation of the model to the pan-reactome 
of the Aeromonadaceae family that was built based on 
the metabolic reactions encoded in the genomes of 135 
strains that belong to different Aeromonadaceae species 
(Additional file 7: Table S2). This family was chosen as an 
illustrative example applied to a natural pan-reactome in 
contrast to the artificial reactions found in the toy model. 
The same analysis was performed for the pan-reactomes 
of forty-six other bacterial and archaeal families (Addi-
tional file  7: Table  S2, see further results sections). The 
Aeromonadaceae pan-reactome network contains 1796 
reactions and 292 environment compounds (Additional 
file  8: Table  S3). These reactomes take up compounds 
from the external environment (MX_e metabolites in 
the toy model in Fig. 1) and convert them to synthesize 
metabolites required for biomass production (M10_i, 
M11_i, and M12_i). As described in the Introduction, 
evolutionary processes sample subsets of reactions from 
this pan-reactome to generate reactomes of individual 
strains. Strain reactomes are considered functional if 

they can synthesize all the biomass compounds and do 
not accumulate by-products. Metabolite M2 in the first 
reactome of Fig.  1B is an example of a byproduct that 
needs to be exported by reaction R10. Three examples 
of viable reactomes are shown in Fig. 1B and others can 
be formed. For the family Aeromonadaceae, significantly 
more viable reactomes can be formed than those of the 
135 sequenced strains (Additional file 7: Table S2), which 
together defined the family-level pan-reactome. Thus, 
a pan-reactome defines a space of potential functional 
reactomes, some of which are realized by actual strains 
in nature.

While evolutionary processes constrain the functional 
reactomes that can be sampled from a pan-reactome 
pool, the reactions that are selected in practice depend 
on the environment (environment-driven reactions, 
‘nutrition’) and the structure of the metabolic network 
(environment-independent reactions, ‘nature’). Using 
the toy model as an example, in Fig.  1C reactions R5, 
R9, R12, R13, and R14 are environment-independent 
reactions that are always required for biomass produc-
tion, they are irreplaceable in the synthesis of essential 
biomass precursors and are thus necessarily present in 
each functional reactome. In complex natural networks, 
some environment-independent reactions may also 
depend on the presence of other reactions in the net-
work, as we will see below. In contrast, the network may 
synthesize the biomass precursor M8_i by either using 
reactions R8, R7, or a combination of R6 and R11. In 
principle these three metabolic routes are equivalent, but 
the presence of external metabolites determines which 
ones are functional and these reactions are considered 
environment-driven.

Pan‑reactome elementary flux modes (panEFMs) predict 
reaction frequencies in the pan‑reactome
To explore the space of possible reactomes within a 
group of organisms that comprise a pan-reactome, we 
modelled functional reactomes under the hypothesis that 
evolution tends to lose non-essential reactions. A single 
panEFM consists of a group of reactions that together 
are functional in a defined environment, but the removal 
of any reaction makes the network non-functional. An 
example of a panEFM is shown in Fig.  1D (set S1). The 
number and composition of panEFMs depend on the 

Fig. 1  Toy model. A Example of a metabolic reaction. Reactants and products are depicted as circles and reactions as rectangles, respectively. 
Reaction directionality is indicated by the arrows. B Three functional reactomes derived from the toy model, each capable of synthesizing 
the biomass compounds M10_i, M11_i, and M12_i from the environmental precursors (‘MX_e’ compounds depicted with green circles). C 
Pan-reactome network aggregates reactions from the different reactomes into a single network. The “_e” and “_i” termination of metabolites denote 
external and internal metabolites, respectively. D An example of a panEFM. Each reaction in this network is essential since its removal would impair 
the synthesis of the biomass components. E Collection of all nine possible panEFMs that can be created from the reactions in this toy pan-reactome 
in a rich environment. Dark squares denote the presence of reactions. The frequency of reactions across the collection of panEFMs is shown in the 
last row

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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specific environment, with rich environments having 
more panEFMs. For example, our toy model has nine 
panEFMs (sets S1–9) in a rich environment where all 
external metabolites are available. The panEFMs from the 
pan-reactome allow us to generate an expected frequency 
of each reaction in the pan-reactome in the context of 
a defined metabolic environment. For example, given a 
rich environment, the bottom row of Fig.  1E shows the 
expected frequency of reactions in the lineage repre-
sented by the toy pan-reactome, given that in this model 
there is no selective advantage of using one pathway over 
another to synthesize a specific metabolite.

Due to the combinatorial explosion involved in extract-
ing all possible panEFMs from large pan-reactomes, for 
bacterial and archaeal families we used a random sam-
pling approach to approximate the space of all possi-
ble panEFMs. We first determined that fewer than 200 
panEFMs sampled in different random environments 
were sufficient for convergence to an average reaction 
frequency distribution with 99% reproducibility and a 
mean-squared error approaching zero (Additional file 1: 
Fig. S1). To reach this conclusion, we randomly sam-
pled an increasing number of panEFM sets across 1000 
random environments, performing such sampling inde-
pendently twice. We tested if each time the reaction 
frequency distribution converged to the same values. 
Depending on the sample size, the frequency distribu-
tions asymptotically converge to the same values and are 
already nearly identical for sample sizes that are greater 
than 200 (Additional file 1: Fig. S1). To be safe, we used 
sample sizes of 1000. We thus generated one million 
panEFMs for each family, including 1000 panEFMs sam-
pled in each of 1000 different random environments (see 
Methods).

Disentangling the forces driving the frequency of reactions 
in pan‑reactomes
To tease apart the forces that shape pan-reactome com-
position and infer to what extent the evolution of each 
reaction is driven by nature versus nutrition, we calcu-
lated an environment-driven score (EDS) that ranges 
from zero (environment-independent, frequency not 
dependent on the metabolic environment, nature) to 
one (environment-driven, frequency fully  dependent 
on the metabolic environment, nutrition). First, we cal-
culated the absolute difference between the predicted 
reaction frequency in one specific virtual environment 
and its mean frequency across all 1000 random virtual 
environments (see Methods, cf. last row in Fig.  1E), i.e. 
the residual. Because the latter value reflects the mean 
frequency overall, this residual quantifies the extent to 
which the frequency of a reaction is different in each 
specific environment. We calculated the EDS for each 

reaction as the scaled standard deviation of these residu-
als, as this reflects what extent the reaction varies across 
specific environments. We illustrate the EDS score in 
the toy model (Fig.  2A) where reactions R5, R9, R12, 
R13, and R14 are identified as environment-independ-
ent (EDS = 0.0), while the rest are environment-driven 
(EDS > 0). We used this approach to estimate EDSs for all 
reactions across forty-six bacterial and archaeal families 
(Additional file  9: Table  S4). For the Aeromonadaceae 
family, we found that the top environment-driven reac-
tions are reactions involved in the degradation of valine, 
leucine, and isoleucine (Additional file 9: Table S4).

Associating environment‑driven reactions 
to environmental metabolites
The EDS score identifies reactions that are environ-
ment-driven. Next, we focused on identifying the spe-
cific metabolites that drive these frequencies. Because 
the frequency of reactions in a pan-reactome depends 
on environmental metabolites in complex ways, we 
correlated the predicted reaction frequency across 
1000 virtual environments to the metabolite usage fre-
quency across those same environments (see Methods). 
This association, illustrated in Fig. 2B and C for the toy 
model, quantifies how external metabolite usage explains 
the frequency distribution of reactions in pan-reactomes. 
For instance, the frequency of reaction R8 that produces 
the biomass precursor M8_i is positively associated with 
the usage of metabolite M9_e (Fig.  2C) and negatively 
associated with the usage of the metabolites that enable 
alternative routes to produce M8_i (i.e. M6_e, M7_e, and 
M8_e; Fig. 1C). Note that the frequencies of reactions in 
the pan-reactome may thus reveal metabolite availability 
in the environment where the lineage evolved.

Predicting metabolite usage preferences from reaction 
frequencies in pan‑reactomes
Reaction frequencies may be readily observed in natu-
ral pan-reactomes by comparative genomics. To pre-
dict the metabolite preferences of prokaryotic families 
from these reaction frequencies, we trained an elastic 
net (EN) model on the reaction frequencies in the col-
lection of panEFMs to predict their metabolite usage 
profiles across the growth-supporting virtual environ-
ments (see sections “Reaction frequencies” and “Elastic 
net” in Methods). We confirmed the accuracy of the 
EN model for the toy model and the Aeromonadeceae 
pan-reactome by predicting the metabolic niche of 
reactomes whose evolution was simulated in a defined 
environment using a Moran-like process of gain and 
loss of genes [42] (see “Toy model” in the Methods). 
The EN model accurately predicted the metabo-
lite usage of resulting lineages of both the toy model 
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(Figs.  2D, r = 0.98, p < e−10) and the Aeromonadaceae 
pan-reactome (Figs.  2E, r = 0.98, p < e−71). Thus, we 
were confident that we could use the EN to predict the 
metabolic niche where a pan-reactome evolved based 

on the extant frequencies of its environment-driven 
reactions. As described above, these environment-
driven reactions are identified by sampling panEFMs 
across many different environments, so the metabolite 

Fig. 2  Identifying environment-reaction associations. A Residual reaction frequencies predicted from the collection of panEFMs that exist across 
the 208 environments that support the growth of the toy pan-reactome (Fig. 1C). The residuals are the difference between the average frequency 
over the collection of panEFMs defined within each environment and the average across all environments. Reactions along the x-axis are sorted by 
the environment-driven score (EDS), see text for details; B Metabolite-reaction association matrix defined by the pairwise correlation between the 
metabolites and reactions with non-zeros residuals; C Subnetworks generated from the rows of the metabolite-reaction association matrix (shown 
in B), showing the positive (+) and negative (−) associations between metabolite usage and reaction frequencies in panEFMs; D, E Elastic net 
prediction of the metabolite usage that evolved in a simulation of a Moran-like process. The evolved reaction frequencies were used to predict how 
the resulting strains use metabolites in their environments (y-axis) and compared to their usage in the simulated environment (x-axis)
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usage cannot be directly inferred from the extant reac-
tomes (networks in Fig. 1B or the 135 Aeromonadaceae 
GSMMs, Additional file  7: Table  S2) but requires the 
intermediate step of sampling panEFMs. We were able 
to compare evolved metabolite usage with the metab-
olite usage predicted by the EN because we simulated 
the evolutionary process in pre-defined environments 
and could then compute how the evolved reactomes 
utilize metabolites in these environments. Thus, we 
proposed an innovative approach to address the elusive 
question of the preferred metabolic niche of a micro-
bial lineage from the reaction frequencies in its pan-
reactome, which in turn can be readily inferred from 
genome sequences of related strains.

panEFMs delimit the space of possible pan‑reactomes
In the following sections, we will use the framework 
illustrated above for the toy model and the Aeromona-
daceae pan-reactome to analyze the pan-reactomes of 
46 prokaryote families, each containing more than 24 
sequenced genomes (Additional file 7: Table S2, see “Pan-
reactomes” in Methods).

Reaction frequencies of the collection of panEFMs 
obtained across random simulated environments reflect 
an evolutionary landscape of reactomes that could be 
derived from the family-level pan-reactome pools. Nota-
bly, we observed that this landscape exhibited clear fam-
ily-specific clusters when projected in two dimensions 
(Fig.  3A). The reaction frequencies of pan-reactomes 
derived from the sequenced genomes in a family (see 
“Reaction frequencies” in Methods), here referred to as 
the natural pan-reactome reaction frequencies (large 
points in Fig. 3A), were generally found to lie within these 
clusters, which were composed of the frequency of reac-
tions on panEFMs sampled across random environments. 
Thus, our approach of sampling a stochastic distribution 
of pan-reactomes represented the observed (realized) 
pan-reactome within this evolutionary landscape.

This landscape also reflects a metabolite usage land-
scape that is based on the frequency that metabolites 
are used by the sampled panEFMS across random simu-
lated environments. The metabolite usage landscape also 
exhibits family-specific clusters (Fig. 3B) and the family-
specific metabolite usage profiles that were predicted 

Fig. 3  Evolutionary landscape of possible pan-reactome reaction frequencies and metabolite usage profiles based on sampling panEFMs in 
1000 random environments. A UMAP projection of reaction frequencies in the collection of panEFMs sampled from different prokaryotic families 
(Table S2). Each smaller point represents the reaction frequency distribution calculated from 1000 panEFMs sampled in one random environment. 
The large dots are the frequencies observed in the natural pan-reactomes. B UMAP projection of the metabolite usage profiles obtained from 
the same panEFMs projected in A. The large dots are the elastic net (EN) predictions of these profiles that were predicted from the natural 
pan-reactomes reaction frequencies. The ENs were trained on the sampled panEFMs (Table S5)
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with an EN model (as explained above for the toy model 
and Aeromonadaceae pan-reactome) also behave as 
observed values (realizations) of the stochastic distribu-
tion covered by this evolutionary landscape (large points 
in Fig. 3B).

The observed strong separation of prokaryotic families 
reflects family-specific differences in reaction content 
and metabolite preferences. A bias may also be expected 
from the way we sampled panEFMs by defining strict 
family-specific pan-reactome reaction pools. In reality, 
reaction (gene) pools are not strictly confined to a family 
and horizontal gene transfer between different families 
may alleviate the separation between family-level pan-
reactomes, although we note that all reactions observed 
within the sequenced strains of a family were already 
included in the pan-reactome definition.

To get a better idea of how the reaction frequen-
cies of panEFMS sampled in random virtual environ-
ments compare to the natural reaction frequencies, we 
compared their distributions using kernel density plots 
(Additional file  2: Fig. S2). Although panEFMs were 
sampled in random virtual environments, we found that 
reactions with a high frequency in panEFMs are often 
universal among the strains of a pan-reactome (Dense 
regions in the top right corner of Additional file  2: Fig. 
S2). In contrast, there is significant variability in the fre-
quency of reactions that are rare among panEFMs (aver-
ages usually close to 0.50, see Additional file 2: Fig. S2). 
Thus, our computational approach to sampling panEFMs 
captures at least some of the dynamics of the natural 
pan-genomes, which we summarized by the following 
scenario: (i) Reactions with high frequency in panEFMs 
are environment-independent (EDS = 0, Additional file 3: 
Fig. S3, average of 6.6(± 2) % of total reactions) and uni-
versally essential (Additional file  2: Fig. S2) since across 
many environments it is statistically unlikely for evolu-
tion to form functional reactomes without them; (ii) 
Reactions with intermediate frequency in panEFMs are 
variable in pan-reactomes and are enriched for environ-
ment-driven reactions (EDS > 0, Additional file 3: Fig. S3, 
average of 50.5(± 6) % of total reactions) since only in a 
fraction of the sampled environments it is statistically 
unlikely for evolution to form functional reactomes with-
out them; (iii) Reactions with low frequency in panEFMs 
have high variability in their frequencies that are usually 
distributed as a U-shape (Additional file 2: Fig. S2, aver-
age of 48.9 (± 6) % of total reactions). Their presence or 
absence are not captured by the panEFMs and their fre-
quency could very well behave as the “bag of genes” mod-
els explained in the introduction [9, 32–34, 43], although 
we did not explore this any further.

Predicting metabolite‑reaction associations 
in the pan‑reactomes of 46 prokaryote families
Similar to what we observed for the toy model and the 
Aeromonadaceae pan-reactome, most reactions have a 
similar predicted frequency in panEFMs across all envi-
ronments (points that fall in the dense diagonal region 
of Additional file  4: Fig. S4, average Pearson r2 = 0.99; 
p < e−10), with some reactions exhibiting a significant 
environment-driven variation in frequency, quantified by 
the EDS and illustrated by the points that fall outside of 
dense diagonal line in Additional file 4: Fig. S4. To illus-
trate, we identified the two reactions that had the highest 
average EDS scores across all prokaryote families (Addi-
tional file 9: Table S4): Dihydroxy hydrolase (EC 4.2.1.9) 
and pyruvate decarboxylase (EC 2.2.1.6). Both reactions 
catalyze steps in the synthesis of the three branched-
chain amino acids (l-isoleucine, l-valine, and l-leucine) 
and are universally shared across bacterial reactomes 
[44]. These reactions are also part of the pantothenate 
and coenzyme A (CoA) biosynthesis pathway, where the 
product of the dihydroxy hydrolase (3-Methyl1-2-ox-
obutanoic acid) can either be used for the synthesis of 
l-valine or the synthesis of 2-Dehydropantoate, a precur-
sor for pantothenate and subsequently CoA. Pantothen-
ate and CoA are connected to the biosynthesis of several 
amino acids, which explains why reactions upstream 
of their synthesis would be essential or not depending 
on the availability of these amino acids in the external 
environment.

As explained above, we used the frequency of reac-
tions in panEFMs to train an EN model that predicts the 
metabolite niches of family-specific pan-reactomes from 
their natural reaction frequencies—these predictions are 
analogous to the predictions obtained from the Moran-
like process that was applied to the Aeromonadaceae 
pan-reactome (Fig. 2D) except that reaction frequencies 
are now derived from their actual distribution in the pan-
reactome (Additional file 7: Table S2) rather than from a 
simulated evolutionary process. In both cases, the model, 
was trained on the frequency of panEFMs sampled across 
random environments. The predicted metabolic niches 
are summarized in Additional file  10: Table  S5. Most 
reactomes require inorganic ions, such as Ca, Cl, Mn, Zn, 
K, Mg, and Fe, and some organic molecules such as heme 
are also widely required [45]. Different pan-reactomes 
require specific metabolites, making them distinguish-
able when projected in lower-dimensional space (large 
points in Fig.  3B). A more detailed characterization of 
metabolite preferences in pan-genomes can be of interest 
in future studies aimed at explaining the metabolic basis 
of genome evolution events.
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panEFMs are mechanistic predictors of patterns 
in pan‑reactome shape, size, and distribution
To further explore the evolutionary signals that can 
be extracted from family-specific pan-EFMs we com-
pared pan-reactomes and panEFMs using multiple 
variables (Table  1). We selected variables that are com-
monly used in pan-genome studies [7, 14, 46]. Figure  4 
displays the pairwise correlations between all variables 
across the 46 prokaryote families, detailed in Additional 
file  11: Table  S6. Larger pan-reactomes contain a larger 
set of reactions that may be integrated into panEFMs 
[Pearson r = 0.94; adj. p < e−20; variable ‘pan(pEFMs)’]. 
Notably, this variable correlates better with the size 
of the “shell” [Pearson r = 0.85; adj. p < e−11; variable 
‘shell(Reactomes)’] than with the size of the “core” [Pear-
son r = 0.24; adj. p = 0.154; variable ‘core(Reactomes)’] 
or the “cloud” [Pearson r = 0.38; adj. p = 0.016; vari-
able ‘cloud(Reactomes)’] of the pan-reactome. We also 
observed a significant spread in the average size of 
panEFMs (Additional file  5: Fig. S5), which correlates 
with the average reactome size of pan-reactomes [Pear-
son r = 0.82; adj. p < e−10; variable ‘size(Reactomes)’] and 
all the other variables have similar correlations to the 
average panEFM size as they have with the pan-reactome 
size (Fig. 4).

Correlation of panEFMs with global environmental 
sequencing data
Next, we evaluated whether the panEFMs and pan-
reactome variables correlate with the niche breadth 

of prokaryote families inferred from global environ-
mental sequencing datasets (Fig.  4; Table  1; variable 
‘NicheBreadth’). We inferred niche breadth scores for 
all families from thousands of metagenomic datasets 
that quantify the diversity of the environments where 
each family is found, and are a proxy for the breadth 
of their niche preferences across the planet (Von Mei-
jenfeldt et  al., manuscript in preparation, see Meth-
ods section “Niche breadth”). First, we found that the 
diversity between the reaction frequencies of panEFMs 
that were sampled from different environments posi-
tively and significantly correlated with the niche 
breadth of the bacterial and archaeal families [Pear-
son r = 0.42; adj. p < e−02; variable ‘diversity(pEFMs)’]. 
This confirmed that families whose strains occur in 
diverse environments tend to have more diverse envi-
ronment-driven reactions than families whose strains 
occur in uniform environments. Notably, families 
with a high panEFM fluidity, which is the pan-genome 
analog to mutation rates [46] and measures the aver-
age dissimilarity in the reaction content between ran-
dom pairs of reactomes across all environments, did 
not have a significantly higher niche breadth [Pearson 
r = 0.23; adj. p = 0.18; variable ‘fluidity(pEFMs)’]. This 
shows that families whose pan-reactome is capable of 
differentially adapting to different simulated environ-
ments may be observed in more diverse metagenomic 
datasets than families whose pan-reactome simi-
larly adapts to different environments. The two other 
variables that significantly correlated with the niche 

Table 1  Variables that were used to compare the panEFMs and pan-reactomes of 46 prokaryote families (Fig. 4, Table S6)

Variable Description

NicheBreadth Predicted niche breadth from global environmental sequencing datasets (see Methods)

diversity(panEFMs) The diversity between reaction frequency of panEFMs sampled in different virtual environments (Average squared 
pairwise Euclidean distance)

fluidity(panEFMs) The average dissimilarity between panEFMs independently of the random environments in which it was sampled

pan(panEFMs) Total reactions that are included in at least one of the panEFMs sampled in different virtual environments

pan(Reactomes) The number of reactions found in the pan-reactome of a prokaryote family

size(panEFMs) The average size of panEFMs sampled in different virtual environments

size(Reactomes) The average size of the natural reactomes from a prokaryote family

core(panEFMs) The number of reactions that are present in at least 98% of the panEFMs sampled in different virtual environments

core(Reactomes) The number of reactions present in at least 98% of the natural reactomes from a prokaryote family

shell(panEFMs) The number of reactions that are present in 3 to 98% of all the panEFMs sampled in different virtual environments

shell(Reactomes) The number of reactions that are present in 3 to 98% of the natural reactomes from a prokaryote family

cloud(panEFMs) The number of reactions present in up to 3% of the panEFMs sampled in different virtual environments

cloud(Reactomes) The number of reactions present in up to 3% of the natural reactomes from a prokaryote family

diversity(Metabs) The diversity between metabolite usage profiles of panEFMs sampled in different virtual environments (Average 
squared pairwise Euclidean distance)

EnvDReacs The number of reactions with an environment-driven score (EDS) EDS significantly > 0 (adj. p < 0.05 on a Z-test)

EnvDMetabs The number of metabolites that are significantly associated with reactions with a non-zero EDS
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breadth, namely (i) the number of metabolites that are 
significantly associated with environment-driven reac-
tions (reactions with and EDS significantly > 0, Pearson 
r = 0.46, adj. p = 0.003; variable ‘EnvDMetabs’) and 
(ii) the diversity of metabolite usage profiles between 
panEFMs sampled in different environments (Pearson 
r = 0.47; adj. p < e−03; variable ‘diversity(Metabs)’) 
further indicate that reactomes of families with larger 
niche breadths not only have more diverse environ-
ment-driven reactions but can also use more diverse 
metabolite compositions when constrained to diverse 
environments.

General pan‑reactome patterns
By evaluating the correlation of multiple variables from 
extant reactomes and the collection of panEFMs sampled 
across 1000 virtual environments (Table 1 and Additional 
file 11: Table S6) we propose a general scenario for pan-
reactome evolution. For this scenario, we consider that 
prokaryotic clades, such as the families described here, 
have access to a shared pool of reactions and that non-
essential reaction are frequently lost. Some pan-reac-
tomes have a large number of core reactions and also a 
large number of reactions that are present in all panEFMs 
(Pearson r = 0.62; adj. p < e−04; variable ‘core(pEFMs)’). 

Fig. 4  Correlation of the variables measured from panEFMs with reactomes and metagenomes across 46 prokaryotic families. Only significant 
values are shown. A description of the variables is available in Table 1. Detailed Pearson correlation values and adjusted p-values are available in 
Table S6
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The larger the core-reactome, the less diverse are reac-
tome pairs, measured by the fluidity (Pearson r = − 0.74; 
adj. p < e−07; variable ‘fluidity(pEFMs)’). The shell of 
panEFMs and the shell of pan-reactomes are significant 
predictors of ecological flexibility. Large shells imply 
larger pan-reactomes (Pearson r = 0.99; adj. p < e−46), 
more fluidity (Pearson r = 0.63; adj. p < e−04), and 
more environment-driven reactions (Pearson r = 0.94; 
adj. p < e−21) and metabolites (Pearson r = 0.77; adj. 
p < e−08). These scenarios are non-trivial properties of 
the pan-reactome composition, mechanistically identifi-
able in the collection of panEFMs, and suggest that the 
shape and size of the pangenomes reflect their evolution 
constrained to different environments.

Discussion
Diverse microbial clades have evolved specific sets of 
metabolic reactions to obtain their required energy and 
biomass. On average, more than 50% of the genes in 
microbial genomes code for metabolic functions [47], 
and metabolic genes are often found to be horizontally 
transferred [48]. The different sets of metabolic reac-
tions used in different contexts by microbes reflect pat-
terns and mechanisms of their genome evolution. For 
this reason, reactomes have increasingly been used as 
model systems for evolutionary genomics [49–54]. Here 
we modelled the evolution of reaction frequency distri-
bution in pan-reactomes to understand the forces and 
mechanisms driving genome evolution. We used pan-
reactomes as proxies for pan-genomes because they rep-
resent complex genotype-to-phenotype maps that allow 
us to directly explore the effects of differential gene com-
position, and study the composition of genomes in the 
context of complex cellular phenotypes.

We developed a mechanistic evolutionary model to 
expose the forces that drive reaction frequency distri-
bution. In our framework, pan-reactomes share a pool 
of reactions and individual reactome lineages undergo a 
process of extensive gene loss. We modeled this natural 
process of gene loss [3, 19–21], by allowing reactomes 
to lose all of their non-essential reactions in independ-
ent iterations across different simulated environments. 
This process provided an empirical distribution of the 
functional reactomes that can evolve from a given reac-
tion pool. This distribution allowed us to disentangle 
the environment-driven (nutrition) and environment-
independent (nature) reactions, build a model that can 
predict metabolic niches from reaction frequencies, and 
compare reactome patterns between prokaryote families.

Our model captures some of the essential features of 
pan-genome evolution but neglects some noticeable fea-
tures that will likely be of great interest in future exten-
sions. Examples of missing features are the barriers and 

costs associated with accommodating foreign genes [4]. 
An objective function that considers total protein allo-
cation [55] could simulate these costs with a similar 
framework as ours, but would also require high-quality 
protein-reaction maps, which are currently not available 
for most genomes. The use of a continuous distribution 
for the probability of sharing reactions would also likely 
increase the realism of our model. We chose instead to 
use discrete family-level reaction pools since we started 
from draft GSMMs reconstructions. In our experience, 
the draft reconstructions from the ModelSEED plat-
form contain adequate information to distinguish higher 
taxonomic levels [56, 57] but may not have enough res-
olution for a detailed comparison between strains from 
the same species or genus, particularly from non-model 
organisms.

Previous studies have also used stochastic reductive 
evolution in reactomes to assess alternative scenarios of 
reactome diversity [50, 53, 54]. Most of these studies were 
applied to the pan-reactome of the Escherichia coli clade 
[51, 53, 58] or were applied to understand patterns that 
emerge from the universal set of reactions [50, 54], i.e. all 
metabolic reactions that have been identified in prokary-
otes. Here we applied stochastic reductive evolution to 
understand differences within and across pan-reactomes 
of different prokaryotic families, providing a unique sys-
tematic overview of their pan-reactome dynamics. This 
approach allowed us to expose the patterns in pan-reac-
tome size, shape, and diversity that are functions of its 
composition. It also allowed us to predict family-specific 
metabolic niches that await experimental testing.

We identified patterns at two levels. At the lower level 
of individual reactions, we mechanistically predicted the 
essentiality of a reaction based on the capacity of the 
pan-reactome to generate functional alternatives across 
environments. This allowed us to identify how many and 
which reactions become essential in new environments. 
At the higher level of pan-reactomes, our framework 
revealed non-trivial features. While all 46 pan-reactomes 
were subjected to the same process of reaction loss and 
were under similar functional constraints, features such 
as size, shape, and diversity were significantly different 
between families. We found that these features depend 
closely on the composition of the pan-reactomes and 
are reflected in the in-silico-generated collection of 
panEFMs.

The composition of the pan-reactome determines pat-
terns observed in specific organisms. With our frame-
work, we mechanistically identified these patterns from 
functional reactomes. For example, some pan-reactomes 
form functional reactomes with a large number of core 
reactions. These reactomes are very similar to each other 
and use a small set of metabolites (Fig.  4, Additional 
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file  11: Table  S6). Other pan-reactomes form functional 
reactomes with a small set of core reactions and a large 
set of reactions of intermediate frequency (shell reac-
tions). These require more metabolites and exhibit sig-
nificantly different reaction frequencies when their 
pan-reactomes are challenged with different environ-
ments (Fig. 4, Additional file 1: Table S6). All these prop-
erties result from the different ways that reaction sets can 
assemble to form functional reactomes.

Conclusion
Reaction frequency highly depends on the global reac-
tome functionality since the patterns that we observed 
in panEFMs were identified without determining specific 
evolutionary goals or additive adaptive values for spe-
cific reactions. This constraint of functionality shapes the 
sample space of possible reactomes and constraints its 
evolutionary potential. In a similar trend, we expect that 
the combinatorial functionality of genes within a gene 
pool is an important driver of the pan-genome composi-
tion. In other words, the question of how often a gene is 
found in the genomes of a prokaryote group is to some 
extent addressed by how often the gene is expected in 
functional gene sets and to some extent by the composi-
tion of its external environment. We used these connec-
tions to predict the metabolic niches of natural evolving 
pan-genomes and identify the forces that shape pan-
genomes as important functional units of prokaryote 
evolution.

Methods
Reactomes
Bacterial and archaeal strains (n = 4885) from 46 taxo-
nomic families were selected from the PATRIC database 
[59] (Additional file 7: Table S2). We chose to use families 
that had genome sequences of over 24 different species 
and selected one strain of each species based on the max-
imum completeness and minimum contamination values 
of their genome sequences as reported in the PATRIC 
metadata.

We reconstructed genome-scale metabolic models 
(GSMMs) for each strain using the model SEED pipeline 
[56] implemented in PATRIC with the Mackinac python 
package v.0.8.4 [60]. Each model contains a list of reac-
tions that are predicted to be coded by the prokaryote 
genomes; these reactions are referred to as the reactome 
of the strain. In addition to the genome encoded reac-
tions, each model has a biomass reaction consisting of 
the relative proportions of biomass components, such as 
amino acids, nucleotides, proteins, fats, co-factors, and 
sugars, that the reactome should be able to synthesize in 
a growth environment. Additionally, some reactions that 
were not annotated in the genomes were added to assure 

that the reactomes were capable of producing biomass in 
complete media, an approach referred to as “gap-filling” 
[61].

The functionality of GSMMs was assessed by flux bal-
ance analysis (FBA) [62], optimized for biomass produc-
tion. Computed with cobrapy version 0.21.0. We used the 
flux yields on the biomass reaction as an indication of 
growth.

Pan‑reactomes
Pan-reactomes were generated by merging the reac-
tomes of all the strains from a given prokaryote fam-
ily. Each reaction was added once. Additionally, we 
added exchange reactions for the compounds that have 
transporters in any of the reactomes (Additional file  7: 
Table  S2), resulting in pan-reactomes with the same 
group of 292 exchange reactions.

Environment ball
We generated vectors of random uniform relative con-
centrations for the shared list of external compounds 
added as exchange reactions, excluding water and oxygen 
(n = 290). For obtaining relative uniform concentrations, 
we sampled a Dirichlet distribution with dimensions 
equal to the number of compounds (290) with uniform 
parameters. Samples from this distribution add to one 
and there is an equal probability of observing any rela-
tive concentration of any of the compounds. The result-
ing relative concentrations were adjusted to a constant 
uptake rate of water in mmol  gDW−1  h−1. Oxygen was 
added as a binary factor, with environments being either 
aerobic (containing an unconstrained amount of oxygen) 
or anaerobic (with zero oxygen), selected with a prob-
ability of 0.5. We generated 1000 random samples of the 
environment ball and used the resulting concentrations 
as the growth environments (Additional file 7: Table S2).

Toy model
The toy model was generated with the reactions in Addi-
tional file 6: Table S1. Functionality was directly assessed 
by evaluating if the biomass components could be syn-
thesized without accumulating by-products. Since stoi-
chiometries were all equal to one (Additional file  6: 
Table S1, Fig. 1), the external environment was defined by 
the presence or absence of metabolites.

Moran process
We evolved populations of reactomes derived from 
the toy and the Aeromonadaceae pan-reactomes with a 
Moran-like process [42]. For this, we started with ran-
dom functional reactomes (n = 1000) and simulated a 
two-step process. In the first step, a random reactome 
was chosen and a reaction was either deleted or inserted. 
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If the change resulted in a functional reactome, the pro-
cess continued, otherwise, the previous reactome was 
restored. In the second step, two reactomes were chosen 
and one of them was replaced by a copy of the other, sim-
ulating a birth–death process with constant population 
size. After many iterations (n = 106), the different types 
of reactomes that persisted were selected as the evolved 
reactome types.

Sampling the environment‑specific collection pan‑reactome 
elementary flux mode (panEFMs)
To generate random samples from the environment-
specific collection of panEFMs, we first constrained the 
pan-reactome to a given environment (Additional file 7: 
Table S2) and only proceeded if the flux on the biomass 
reaction was greater than zero with five significant digits. 
We then randomly removed reactions from the pan-reac-
tomes and evaluated if the resulting network exhibits flux 
in the biomass reaction that is greater than a cutoff of 1% 
of the flux observed in the pan-reactome. If the biomass 
flux is below the cutoff, the reaction was restored to the 
network, otherwise, the next reaction was removed until 
all reactions were assessed. At the end of one iteration, 
the reactions that remained in the network constitute 
a random sample of a panEFM. Next, we randomized 
the order of reaction removal and repeated the process. 
Each randomization of the reaction order finds a random 
panEFMs. We sampled 1000 panEFMs for each of the 
1000 metabolite concentrations in the environment ball.

Environment‑driven scores (EDS)
Reaction frequency in the environment-specific collec-
tions of panEFM was represented by a matrix contain-
ing the different environments of the environment ball as 
rows and reactions found in a pan-reactome as columns. 
Similarly, environment-specific metabolic niches were 
summarized in a matrix with a similar structure but con-
taining the environment ball metabolites as columns. The 
averages of the columns of these matrices are, respec-
tively, the expected values of reaction frequencies and 
the expected values of metabolite usage across environ-
ments. Residuals were obtained by taking the difference 
between these expected values and the values in each row 
(each environment). The environment-driven scores for 
reactions and metabolites were defined as the standard 
deviation of these residuals, divided by their maximum 
value.

Obtaining metabolite usage profiles
The metabolic niches of the panEFMs of bacterial and 
archaeal families were obtained by enumerating which 
of the possible external compounds were imported into 
the metabolic network when optimizing for biomass 

production. For each panEFM we first obtained the 
environment-specific FBA solution. We then assessed 
the fluxes in the exchange reactions for this solution. 
Negative fluxes correspond to the metabolites that are 
effectively required to produce biomass. One metabolic 
niche corresponds to the set of metabolites whose trans-
porters exhibited a negative flux in the FBA solution of 
a panEFM. Metabolic niches were summarized by the 
metabolite frequencies obtained from the 1000 ran-
dom samples of panEFMs that were obtained for each 
environment. We thus obtained a metabolic niche for 
each random environment by enumerating how often 
each metabolite was used after sampling panEFMs from 
pan-reactomes.

Reaction frequencies
We restricted our analysis to reactions that had gene evi-
dence (not gap-filled) and that could be active in a model. 
To define if a reaction could be active, we used flux varia-
bility analysis and excluded reactions that exhibited a flux 
variability of zero. We refer to the “natural reaction fre-
quencies” as the frequencies that were observed from the 
reaction composition of reactomes reconstructed from 
the genomes of a prokaryote family, while “frequencies 
in panEFMs” refer to the frequency that reactions were 
found in the random samples of panEFMs.

Elastic net
An elastic net model was trained to predict metabolite 
usage from reaction frequencies (natural or resulting 
from simulations in the Moran process). We used the 
matrices described above as training sets with five-fold 
cross-validation. The natural reaction frequencies were 
used to predict evolutionary environments. To train and 
fit the model we used the Python 3.7 package scikit-learn 
version 0.22.2.

Niche breadth
For each family, we calculated its niche breadth on the 
scale from specialist to generalist based on its presence 
in a large number of publicly available environmental 
sequencing datasets (Von Meijenfeldt et  al., https://​doi.​
org/​10.​1101/​2022.​07.​21.​500953).

In short, we selected taxonomically annotated envi-
ronmental sequencing projects from the MGnify dataset 
[63]. We selected analyses that were annotated with the 
4.1 pipeline to ensure that the taxonomic profiles were 
comparable, removed analyses with less than 50,000 
taxonomically annotated reads or ≥ 10% eukaryotic 
reads, chose a maximum of 1,000 samples per biome and 
selected 1 analysis per sample. The 22,518 selected analy-
ses spanned 140 different biomes across a wide geograph-
ical range, containing both metagenomic, transcriptomic, 

https://doi.org/10.1101/2022.07.21.500953
https://doi.org/10.1101/2022.07.21.500953
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and amplicon datasets (Von Meijenfeldt et al., https://​doi.​
org/​10.​1101/​2022.​07.​21.​500953).

A family was considered present in a sample if its 
relative abundance was ≥ 1/10,000. Niche breadth was 
defined as the mean pairwise distance between all the 
samples in which a family is found, where the mean pair-
wise distance is defined as ½ − (Spearman’s rank correla-
tion on family level/2). Since this measure is solely based 
on the taxonomic content of a sample, it is independent 
of manually added metadata such as the biome from 
which it originates. A family with a low score is primar-
ily found in samples with similar taxonomic profiles and 
we thus consider it a specialist, and a family with a high 
score is found in more dissimilar samples and is thus a 
generalist.
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