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Zusammenfassung

Diese Arbeit befasst sich mit der Quantifizierung von Unsicherheiten sowie der Optimierung unter Unsi-
cherheiten. Dabei betrachten wir insbesondere Unsicherheiten, die im Herstellungsprozess von Produkten
zustande kommen, bspw. durch Ungenauigkeiten in der Herstellung, natürliche Materialschwankungen oder
Umwelteinflüsse. Diese Unsicherheiten können zu Schwankungen in der Geometrie oder im Material führen,
die wiederum Schwankungen in der Funktionsweise des Produkts auslösen können. Als Yield bezeichnen wir
den Anteil aller Produkte in einem Herstellungsprozess mit Unsicherheiten, der alle Leistungsanforderungen
erfüllt. Somit ist der Yield das Gegenteil zur Fehler- oder Ausfallwahrscheinlichkeit (Yield = 1 – Fehlerwahr-
scheinlichkeit). Er dient als Maß für die (Un)sicherheit. Das Hauptziel dieser Arbeit ist die effiziente Abschät-
zung und die Maximierung des Yields. Damit wird die Zuverlässigkeit eines Produkts erhöht, was wiederum
den Ausschuss reduziert und somit Ressourcen, Geld und Zeit einspart.

Ein zentrales Forschungsthema ist die Reduzierung des Rechenaufwands bei der Yield Abschätzung, ohne
Genauigkeit einzubüßen. Im Rahmen dieser Arbeit wurden zwei hybride Yield Abschätzungsmethoden ent-
wickelt. Es handelt sich um stichprobenbasierte Ansätze, bei denen ein Großteil der Zufallsstichprobe auf
einem Ersatzmodell ausgewertet wird und nur eine kleine Menge an sogenannten kritischen Datenpunkten
auf dem ursprünglichen Modell. Das SC-Hybrid Verfahren basiert auf stochastischer Kollokation und adjun-
gierten Fehlerindikatoren, das nicht-intrusive GPR-Hybrid Verfahren verwendet Gauß Prozess Regression und
ermöglicht fortlaufende Verbesserungen des Ersatzmodells. Zur effizienten Yield Optimierung wird das ad-
aptive Newton-Monte-Carlo (Newton-MC) Verfahren vorgestellt. Eine Steigerung der Effizienz wird durch
adaptive Anpassung der Stichprobengröße erreicht.

Ein weiteres Thema der Arbeit ist die Optimierung von Problemen mit gemischten Gradienteninformatio-
nen, d.h. die Ableitungen der Zielfunktion sind nur bzgl. einem Teil der Optimierungsvariablen verfügbar.
Die Verwendung von gradientenbasierten Lösern wie dem adaptiven Newton-MC würde die rechenaufwen-
dige Approximation der fehlenden Ableitungen erfordern. Wir stellen zwei Optimierungverfahren vor, die
wir für genau diesen Fall entwickelt haben: die Hermite least squares und Hermite BOBYQA Optimierung.
Beide sind Modifikationen des ursprünglich ableitungsfreien Lösers BOBYQA (Bound constrained Optimiza-
tion BY Quadratic Approximation), die jedoch Ableitungsinformationen verarbeiten können und Regression
anstelle von Interpolation verwenden. Ein Vorteil der Hermite-Methoden ist außerdem die Robustheit bei
verrauschten Zielfunktionen. Die globale Konvergenz der Verfahren wird bewiesen. In der Yield Optimierung
ist der Fall von gemischten Gradienteninformationen besonders relevant, wenn neben Gaußverteilten unsi-
cheren Optimierungsvariablen auch deterministische oder anders verteilte unsichere Optimierungsvariablen
auftreten.

Die vorgestellten Methoden sind auf jegliche von Unsicherheiten betroffenen Designprozesse anwendbar.
In dieser Arbeit konzentrieren wir uns auf die Anwendung im Bereich elektrotechnischer Produkte. Die
Verfahren werden an zwei praktischen Beispielen, einem Rechteckhohlleiter und einem Permanentmagnet-
Synchronmotor (PMSM) evaluiert. Sowohl bei der Yield Abschätzung, als auch bei Einziel- und Mehrzielop-
timierung können enorme Einsparungen an Rechenaufwand beobachtet werden. Dies ermöglicht die Anwen-
dung vonDesignoptimierung unter Unsicherheiten in industriellen Problemstellungen.
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Abstract

This thesis addresses the quantification of uncertainty and optimization under uncertainty. We focus on
uncertainties in the manufacturing process of devices, e.g. caused by manufacturing imperfections, natural
material deviations or environmental influences. These uncertainties may lead to deviations in the geometry
or the materials, which may cause deviations in the operation of the device. The term yield refers to the
fraction of realizations in a manufacturing process under uncertainty, fulfilling all performance requirements.
It is the counterpart of the failure probability (yield = 1 – failure probability) and serves as a measure for
(un)certainty. The main goal of this work is to efficiently estimate and to maximize the yield. In this way,
we increase the reliability of designs which reduces rejects of devices due to malfunction and hence saves
resources, money and time.

One main challenge in the field of yield estimation is the reduction of computing effort, maintaining high ac-
curacy. In this work we propose two hybrid yield estimation methods. Both are sampling based and evaluate
most of the sample points on a surrogate model, while only a small subset of so-called critical sample points is
evaluated on the original high fidelity model. The SC-Hybrid approach is based on stochastic collocation and
adjoint error indicators. The non-intrusive GPR-Hybrid approach uses Gaussian process regression and allows
surrogate model updates on the fly. For efficient yield optimization we propose the adaptive Newton-Monte-
Carlo (Newton-MC)method, where the sample size is adaptively increased.

Another topic is the optimization of problems with mixed gradient information, i.e., problems, where the
derivatives of the objective function are available with respect to some optimization variables, but not for
all. The usage of gradient based solvers like the adaptive Newton-MC would require the costly approxima-
tion of the derivatives. We propose two methods for this case: the Hermite least squares and the Hermite
BOBYQA optimization. Both are modifications of the originally derivative free BOBYQA (Bound constrained
Optimization BY Quadratic Approximation) method, but are able to handle derivative information and use
least squares regression instead of interpolation. In addition, an advantage of the Hermite-type approaches
is their robustness in case of noisy objective functions. The global convergence of these methods is proven. In
the context of yield optimization the case of mixed gradient information is particularly relevant, if – besides
Gaussian distributed uncertain optimization variables – there are deterministic or non-Gaussian distributed
uncertain optimization variables.

The proposed methods can be applied to any design process affected by uncertainties. However, in this work
we focus on application to the design of electrotechnical devices. We evaluate the approaches on two bench-
mark problems, a rectangular waveguide and a permanentmagnet synchronousmachine (PMSM). Significant
savings of computing effort can be observed in yield estimation, and single- and multi-objective yield opti-
mization. This allows the application of design optimization under uncertainty in industry.
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1 Introduction

This introductory chapter describes the motivation behind the research topic and the research goals. First,
the reader is introduced to the field of yield estimation and optimization and a brief overview of related work
is provided. Then, the research goals and the contribution of this work are detailed. Finally, we outline the
structure of this thesis.

1.1 Motivation and background

Electrotechnical devices, such as antennas, electrical machines or waveguides, are designed in order to
achieve high performance requirements. Technical development allows the design of devices closer to their
physical limits. However, there are often manufacturing imperfections, natural material variations or unpre-
dictable environmental influences. This may lead to deviations in the geometry or material parameters, or
boundary conditions, which may lead to deviations in operation. This can cause violations of performance
requirements which implies that the device is useless due to malfunction. The aim of measuring and reducing
this risk is a necessity for efficient and sustainable production; thereby resources, time and money can be
saved. Hence, the quantification of uncertainty and optimization under uncertainty becomes increasingly
popular. The estimation and optimization methods discussed and proposed in this work are motivated by
the design of electromagnetic devices, but are not limited to this application. The workflows are equally
applicable for the design of mechanical components, for example.

The yield is the fraction of realizations in a manufacturing process under uncertainties that fulfills all per-
formance requirements. We follow the definition of [117] and interpret it as the counterpart of the failure
probability (i.e., yield = 1− failure probability). Thus, it may be interpreted as the probability of success of
the manufacturing process. However, the term failure probability is also often, e.g. in [104], used to refer to
failures in lifetime management of a product. To avoid confusion, we formulate our results in terms of the
yield which is particularly common in chip design, i.e., we investigate the maximization of the yield instead
of the minimization of the failure probability.

In practice, the yield cannot be calculated directly, but must be estimated. Commonly, sampling methods are
employed. Therefore, a large sample set of (virtual) designs is generated and the performance requirements
are checked. The quotient of sample points fulfilling the requirements and all considered sample points
forms the yield estimate, cf. Monte Carlo (MC) analysis. In Fig. 1.1 the sampling method for yield estimation
is illustrated on an example with one performance requirement and two uncertain parameters ξ1 and ξ2.
The gray shaded area indicates the safe domain, i.e., the set of design parameter combinations for which all
performance requirements are fulfilled. The white area represents the failure domain. On the left we see a
possible initial design, on the right an optimized design.
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Figure 1.1: Illustration of yield estimation with a sampling based method. Example with one performance
requirement and two uncertain parameters ξ1 and ξ2. Left: original design, right: optimized de-
sign.

When designing complex electrotechnical devices, the performance requirements are typically restrictions
involving the partial differential equations (PDEs) describing the electromagnetic field, i.e., Maxwell’s equa-
tions. For solving Maxwell’s equations, numerical methods are employed, e.g. the finite element method
(FEM). Even though advances in research and computational capacity make solving PDEs increasingly ef-
ficient, it remains a computationally expensive task. Hence, evaluating the PDEs for each sample point in
a large sample set quickly becomes computationally prohibitive. This motivates the aim for efficient yield
estimation and optimization techniques.

In practice, often the simultaneous optimization of reliability (i.e., yield) and other performance indicators
(e.g. size, costs,. . .) is requested. In multi-objective optimization (MOO) a trade-off between the different
objective functions is sought. This usually requires many evaluations of the objective functions, including the
yield estimate. Without efficient yield estimation techniques, MOO for yield optimization is not realizable for
industrial problems.

In order to use gradient based optimization methods for yield optimization, all partial derivatives of the
yield estimate must be available. Depending on the type of uncertainties encountered in the manufactur-
ing process, it occurs that the partial derivatives with respect to some optimization variables are available,
but with respect to other optimization variables they are not. Finite differences approximations to enable
gradient based solvers would require expensive extra evaluations of the yield estimate; derivative free op-
timization (DFO) solvers would not take advantage of the gradient information available. Both are disad-
vantageous for the overall efficiency of the optimization process. This motivates the development of an
optimization method suited to this kind of mixed gradient information (without approximating the missing
gradients).

1.2 Related work

Our definition of the yield originates from [62]. The same term is used in [29, 110, 121]. The classic MC anal-
ysis is described in [64, Chap. 5] and applied for yield estimation for example in [62]. Since this approach is
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computationally prohibitive in case of involved performance requirements, there is much research on increas-
ing the efficiency of sampling based techniques. One way is to reduce the size of the design sample set. To
avoid degradation in accuracy, methods like importance sampling [53] and subset simulation [7, 12, 75] are
proposed. Another way is to reduce the computational effort of evaluating one sample point. In multilevel
MC methods this is achieved by considering different accuracy levels of the underlying functions [60], e.g.
by varying the accuracy in the simulation model of the PDEs. In surrogate based approaches, the underlying
function is approximated by a function that can be cheaply evaluated. Then, the MC analysis is conducted
on the resulting surrogate model [17]. In the literature, surrogate models based on linear regression [105],
stochastic collocation (SC) [9], Gaussian process regression (GPR) [106] and neural networks [61] are in-
vestigated. GPR for yield or failure probability estimation is for example discussed in [124, 127], SC for
approximating PDEs under uncertainty for example in [76, 88]. Hybrid approaches, evaluating some sample
points on the surrogate model and a small subset on the original high fidelity model are proposed in [11, 25,
84, 85, 117].

Yield optimization using worst case analysis is discussed in [19, 62], using Bayesian optimization for example
in [46, 121]. In Bayesian optimization, the Gaussian process (GP) approximates the objective function itself,
not the underlying PDEs. MOO is employed in the context of uncertainty optimization in [46, 116]. Applied
to electrical machines, it is investigated in [19, 40, 83].

Optimization with mixed gradient information is usually approached with one of the following strategies:
Firstly, by using derivative approximations, for example finite differences for first order derivatives, and
Broyden-Fletcher-Goldfarb-Shanno (BFGS) updates for second order derivatives [118], and secondly, by us-
ing DFO methods without exploiting available derivative information [33]. Commonly used DFO methods
are swarm algorithms [8, 111] or the PDFO framework [128], including the BOBYQA method [101]. In [26,
27], modifications of the original BOBYQA method are proposed, in [33, Chap. 11] a version with provable
convergence is discussed.

1.3 Contribution

In this work efficient yield estimation and optimization methods are investigated. The industrial application
of MOO under uncertainty is discussed and a new optimization method for mixed gradient information is
proposed. The research contributions can be summarized as follows:

1. Development of a hybrid yield estimation approach based on SC and adjoint error indicators (SC-
Hybrid). Testing on a dielectrical waveguide shows that the computational effort can be drastically
reduced compared to classic MC methods. High estimation accuracy is ensured by construction, since
all error sources are controlled, i.e., finite element (FE) error, SC error and MC error, cf. [47].

2. Development of a non-intrusive hybrid yield estimation approach based on GPR (GPR-Hybrid). GP
updates, parallelization and sample sorting strategies are investigated, cf. [48].

3. Demonstration that the efficiency of the GPR-Hybrid approach allows yield estimation and (multi-
objective) yield optimization in real world applications such as the design of waveguides, cf. [48, 52],
or electrical machines, cf. [70]. This enables the design of (electrotechnical) components for highly
reliable manufacturing processes, under consideration of all kinds of uncertainties. The rejections due
to malfunction can be significantly reduced by product design involving reliability (yield) optimization.
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4. Development of an adaptive Newton-MC method for yield optimization with full gradient information,
cf. [47, 52]. Numerical tests show high efficiency, due to adaptive sample size increase and combination
with the above mentioned hybrid approaches for yield estimation.

5. Modification of the adaptive Newton-MC method, cf. [49], and application of the sequential quadratic
programming (SQP) method, cf. [51], for optimization with mixed gradient information using approx-
imations of first and second order derivatives.

6. Development of Hermite-type optimization methods for mixed gradient information (without approx-
imations of the derivatives). Proof of global convergence, performance study based on a test set of
nonlinear optimization problems and demonstration of practical applicability for yield optimization on
the example of a waveguide, cf. [51].

1.4 Outline

The thesis is structured as follows. In Chap. 2 the fundamental concepts of modeling electromagnetic phe-
nomena are introduced. We start with the formulation of Maxwell’s equations in Sec. 2.1 and the material
relations in Sec. 2.2. In this work, the PDEs originating from Maxwell’s equations and describing electro-
magnetic field quantities are solved numerically with the FEM. Hence, in Sec. 2.3, the method is briefly
covered. Two benchmark problems will be used to investigate the performance of the proposed methods: a
rectangular waveguide and a permanent magnet synchronous machine (PMSM). The corresponding problem
formulations, boundary conditions and quantities of interest (QoIs) are introduced in Sec. 2.4 and Sec. 2.5,
respectively. The mathematical concepts discussed in Chap. 3 and the yield estimation and optimization ap-
proaches proposed in Chap. 4 and Chap. 5 are independent of the application to electromagnetic phenomena
and can be easily adapted for example to the design of mechanical devices. The reader who is not interested
in this application area may skip Chap. 2 and start with Chap. 3.

In Chap. 3 we summarize mathematical foundations which are relevant for the robust design methods in the
subsequent chapters. Sec. 3.1 is dedicated to the basics of stochastic and probability theory, Sec. 3.2 recalls the
fundamentals of optimization and briefly describes some well-established optimization methods, and Sec. 3.3
provides an overview of techniques commonly used in uncertainty quantification.

Chapter 4 and 5 contain the core contributions of this thesis. Chapter 4 is dedicated to efficient yield esti-
mation. After defining the yield in Sec. 4.1 and providing a review of existing yield estimation methods in
Sec. 4.2, the new hybrid approaches are proposed. In Sec. 4.3 the SC-Hybrid approach is introduced, which
is a method based on SC and adjoint error indicators and promotes model refinement. The GPR-Hybrid ap-
proach is proposed in Sec. 4.4. Model updates and parallelization strategies for this non-intrusive GPR based
hybrid method are discussed.

Chapter 5 addresses optimization. In preparation for gradient based optimization solvers, first and second
order derivatives of the yield function are calculated in Sec. 5.1. In Sec. 5.2 single- and multi-objective
yield optimization problems are formulated. In Sec. 5.3 the adaptive Newton-MC method for yield opti-
mization is proposed. The Hermite least squares and Hermite BOBYQA (Bound constrained Optimization
BY Quadratic Approximation) methods for optimization with mixed gradient information are introduced in
Sec. 5.4.

A numerical evaluation of all proposed methods is provided in Chap. 6. Therefore, the waveguide and PMSM
model problems are specified in Sec. 6.1. Then, the yield estimation methods, the adaptive Newton-MC yield
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optimization and the MOO approaches are tested on the model problems in Sec. 6.2, Sec. 6.3 and Sec. 6.4, re-
spectively. In Sec. 6.5 the Hermite-type approaches are investigated, first on a large test set for benchmarking,
then on thewaveguide problem. Finally, the thesis is concluded in Chap. 7.
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2 Modeling

The yield estimation and the optimization methods discussed in Chap. 3–5 are independent of electromag-
netic phenomena. The concepts can be applied to any kind of design processes which are affected by uncer-
tainties. The reader who is not interested in the application to electrotechnical devices can skip this chapter,
in which an introduction to electromagnetism is provided.

Before any estimation or optimization technique can be applied, a computer model of the physical object is
required. This model is based on mathematical equations. When dealing with spatially resolved problems,
these equations are typically PDEs. In this chapter we will firstly recall Maxwell’s equations, the fundamental
equations describing electromagnetic phenomena. We briefly summarize the FEM for solving the resulting
system of PDEs. In this work, two benchmark problems are discussed, a rectangular waveguide and a PMSM.
Both problems are introduced. For the waveguide problem, we formulate Maxwell’s equations in the time
harmonic case, and for the PMSM problem in the magnetostatic case. From this, we derive the curl-curl
equations for each problem, discuss suitable boundary conditions, define corresponding QoIs and build their
FE approximations.

2.1 Maxwell’s equations

Macroscopic electromagnetic fields are described by Maxwell’s equations [6, 72, 90, 91]. Let E denote the
electric field strength, D the electric flux density, J the electric current density, H the magnetic field strength and
B the magnetic flux density. All these quantities are vector fields R× R3 → R3 depending on time t ∈ R and
space r = (x, y, z) ∈ R3. Let % denote the electric charge density, which is a scalar field R × R3 → R also
depending on time and space. Further, let V ⊆ R3 denote a volume with boundary surface ∂V and S ⊆ R2 a
surface with boundary contour ∂S. Following [6, Chap. 1.1.1], Maxwell’s equations in rest, i.e., with V and
S independent of t, in integral form are given by∫

∂S
E · ds = −

∫
S

∂

∂t
B · dS, (2.1)∫

∂S
H · ds =

∫
S

(
∂

∂t
D+ J

)
· dS, (2.2)∫

∂V
D · dS =

∫
V
%dV, (2.3)∫

∂V
B · dS = 0. (2.4)

Let n denote the unit outward normal vector to the surface S and τ the unit tangent vector to the curve ∂S.
Then, we can write dS ≡ ndS for the oriented infinitesimal surface element. Further, ds ≡ nds is an ori-
ented infinitesimal curve element and dV an infinitesimal volume element.
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Equation (2.1) is called Faraday’s law of induction and states that a change over time in the magnetic flux
induces a circulation of the electric field. For example, if a magnet is moved through a wire loop, an electric
current in the wire is induced. Equation (2.2) is called Maxwell-Ampère’s circuit law. It states that electric
current or a change in the electric flux, i.e., displacement current, within a closed loop induces a circulating
magnetic field around that loop. The equations (2.3) and (2.4) are called the (electric) Gauss law and the
magnetic Gauss law, respectively. The electric Gauss law states that the total electric flux through the closed
surface of a volume is proportional to the electric charge within this volume. This implies that the electric
field lines start in positive charges and end in negative charges. On the other hand, the magnetic Gauss law
states that the total magnetic flux through the closed surface of a volume is equal to zero. This implies that
there is no magnetic analogue to electric charges, i.e., there are no magnetic monopoles, but only pairs of
north and south pole in nature.

For a smooth vector field F the Stokes theorem∫
∂S

F · ds =
∫
S
∇× F · dS (2.5)

and the Gauss theorem ∫
∂V

F · dS =

∫
V
∇ · F · dV (2.6)

hold. Here, ∇· denotes the div-operator and ∇× the curl-operator. Applying (2.5) and (2.6) allows trans-
formation of Maxwell’s equations (2.1–2.4) into their differential form, see e.g. [6, Chap. 1.1.2]. They
read

∇× E = − ∂

∂t
B, (2.7)

∇×H =
∂

∂t
D+ J, (2.8)

∇ · D = %, (2.9)
∇ · B = 0. (2.10)

In general, Maxwell’s equations can be defined on the whole space domain R3 and time domain R≥0, see
e.g. [93, Chap. 1]. However, in the remainder of this work we only consider the domains D ⊂ R3 and
T ⊂ R≥0 for space and time, respectively. For simplicity, the computational domain D is assumed to be
bounded, simply connected and to have a Lipschitz continuous boundary.

In R3 the de Rham sequence describes the relation between function spaces based on kernels and images of
the differential operators ∇ (grad), ∇· (div) and ∇× (curl). It can be shown that the electromagnetic fields
can be identified with the function spaces in the de Rham sequence [93, Chap. 3.7, Chap. 5.1]. To ensure
correct approximations of the field quantities when solving Maxwell’s equations with discretization, it is
important to find finite dimensional spaces following the same structure.

2.2 Material relations

Maxwell’s equations are not sufficient to describe electromagnetic fields. They are complemented by equa-
tions expressing the properties of the medium in which the wave propagates, the so-called material rela-
tions or constitutive relations [6, Chap. 1.1.3]. For brevity of notation we assume that the material law be-
haves linearly, i.e., independent of the field strength, isotropically, i.e., the material properties are direction-
independent, only spatially inhomogeneously, i.e., dependent on the space, and independent of time and

8



frequency. However, these assumptions serve only to simplify the notation and have no effect on the meth-
ods proposed in this thesis. Let ε ≡ ε(r) denote the electric permittivity and µ ≡ µ(r) the magnetic
permeability. With the assumptions mentioned above, both quantities are scalar fields. They are each
composed of the vacuum permittivity ε0 and the relative permittivity εr, respectively vacuum and relative
permeability µ0 and µr. We can write ε = ε0εr and µ = µ0µr. We obtain the following material rela-
tions

D = εE, (2.11)
B = µH. (2.12)

In case of anisotropicmaterials, the scalarmaterial constants would be replaced by tensor fields.

2.3 Finite element method

In order to calculate the field quantities introduced in the previous sections, Maxwell’s equations (2.7–2.10)
and the material relations (2.11–2.12) are coupled and we obtain a PDE. In Sec. 2.4 and Sec. 2.5 we will
derive the PDEs for two problems that will be further investigated in this work. However, this section is
dedicated to solving the resulting PDEs in general. In practice, numerical methods are usually applied to
solve Maxwell’s equations. In this work we focus on the FEM, which is a well established method to solve
PDEs in the frequency domain [74, 93, 129]. Hence, in this section we will briefly recall the basic procedure
and the required function spaces.

Function spaces Let D be a simply connected and bounded computational domain and let a(r) ≡ a and
b(r) ≡ b be three-dimensional vector functions. We define their inner product by

(a,b)D =

∫
D
a · bdr, (2.13)

where b is the complex conjugate. Let(
L2(D)

)3
:= {a : (a, a)D <∞} (2.14)

denote the complex vector function space of square integrable three dimensional vector functions onD. Then,
the solution space is defined as the Hilbert space

H(curl, D) :=
{
a ∈

(
L2(D)

)3
: (∇× a,∇× a)D <∞

}
, (2.15)

cf. [93], where ∇ × a is the weak curl of a, i.e., for all infinitely differentiable functions g with compact
support holds ∫

D
(∇× a) · gdr =

∫
D
a · (∇× g)dr. (2.16)

Note that the existence of partial derivatives is assumed in the weak sense.

In preparation for the use of adjoint error indicators, we define the adjoint A† of an operator A by the prop-
erty [96, Chap. 7.6]

(Aa,b)D = (a,A†b)D. (2.17)
An operator A is called self-adjoint, if

A = A† (2.18)
in (2.17) holds [96, Chap. 7.7].
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Figure 2.1: Illustration of a coarse triangular discretization of the computational domain [0, 1] × [0, 1], with
mesh size h = 1/

√
2.

1
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Figure 2.2: Illustration of first and second order basis functions for a 1D problem.

Themethod We consider amodel problem originating fromMaxwell’s equations

Du(x) = f in D, (2.19)

whereD denotes a differential operator, f a forcing term and u(x) the continuous solution. The computational
domain is divided into a finite number of elements. These elements are of simple geometric form, e.g. trian-
gles in 2D or tetrahedrons in 3D. This discretization is realized by constructing a mesh of the original object,
i.e., its computational domain. A coarse triangular mesh on the computational domain [0, 1]× [0, 1] is illus-
trated in Fig. 2.1. The mesh size parameter in this example is h = 1/

√
2.

We introduce a subspace V of H(curl, D) and a finite dimensional function space Vh ⊂ V . Let {wj}Nh
j=1 ⊂ Vh

be basis functions withwj : D → R3. In Fig. 2.2, for example, first and second order basis functions for a one
dimensional problem are illustrated. The solution of (2.19) can be approximated as a linear combination of
the basis functions, i.e.,

u(x) ≈ uh(x) =
Nh∑
j=1

ujwj(x), (2.20)

whereNh denotes the number of degrees of freedom (DoFs). Next, we introduce some test functions vi living
in V . Note that the test and basis functions are problem dependent and will be discussed in more detail when
the specific problems are introduced, cf. Sec. 2.4 and Sec. 2.5. We insert the approximation (2.20) into the
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problem (2.19), multiply with the test functions and integrate over the computational domain. We obtain

Nh∑
j=1

uj

∫
D
(Dwj(x))vi(x)dD =

∫
D
f vi(x)dD ∀i = 1, . . . , Nh. (2.21)

This can be rewritten into matrix notation

Ku = f ⇔ u = K−1f. (2.22)

where K and f can be computed and then the system can be solved for the unknowns uj , j = 1, . . . , Nh.
In the following, basis functions and test functions are chosen to be equal (Ritz-Galerkin), i.e., wi = vi,
i = 1, . . . , Nh.

Other numerical methods for solving Maxwell’s equations are for example the boundary element method
(BEM) [80, 109], the finite integration technique (FIT) [122], the discontinuous Galerkin method [67] or
the finite difference method [115, 123]. However, the numerical method applied for solving the QoI makes
no conceptional difference for the estimation and optimization techniques discussed in this work. Hence,
these methods are not further discussed.

Adjoint error indicator for FEM There are different approaches to measure the FEM approximation error,
e.g. residual based error estimators [1, 10], recovery based error indicators [130], or adjoint based error
indicators [45, 131]. While an error estimator provides a strict upper bound, the error indicator is a measure
for the locally expected size of the error. Indicators are commonly used for determining the region where
an approximation model should be improved, e.g., by increasing the number of finite elements. An overview
over different error estimation approaches for FEM is provided in [2]. In this work we will focus on adjoint
based error indicators.

We formulate the continuous adjoint equation to (2.19) and obtain

D†z(x) = q in D. (2.23)

Let Q(u(x)) ≡ Q(x) denote a QoI depending on the solution of (2.19), and Qh(uh(x)) ≡ Qh(x) the QoI
depending on the approximation, respectively. Following [45, 131], an adjoint error indicator is introduced
in order to quantify the FE error. The FE error indicator is derived by

εfe,h(x) = |Q(x)−Qh(x)|
=

∣∣(q,u(x))
D
−
(
q,uh(x)

)
D

∣∣
=

∣∣(q,u(x)− uh(x)
)
D

∣∣
(2.23)
=

∣∣∣(D†z(x),u(x)− uh(x)
)
D

∣∣∣
(2.17)
=

∣∣(z(x),D(u(x)− uh(x))
)
D

∣∣
(2.19)
=

∣∣(z(x), f−Duh(x)
)
D

∣∣ . (2.24)

A computable expression can only be obtained by employing a FE approximation of the adjoint solution z.
However, since zh is orthogonal to the residual implying that the corresponding error estimate is zero, we
cannot simply choose zh. An adjoint solution with higher accuracy is required. Therefore we employ the
FE approximation of z with an increased number of finite elements, denoted by zh/2. Please note that the
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solution spaces must be nested, i.e., Vh/2 ⊂ Vh, to ensure higher accuracy of the solution zh/2. The computable
formulation of (2.24) is then given by

εcfe,h(x) =
∣∣∣(zh/2(x), f−Duh(x)

)
D

∣∣∣ . (2.25)

However, this expression requires solving the adjoint equation (2.23) with higher accuracy, implying more
computing effort. Later we will use an approximation of this error.

2.4 The waveguide problem

One benchmark problem we discuss in this work is a rectangular waveguide. Therefore, we reformulate
Maxwell’s equations for the time harmonic case. This is not only relevant for the specific waveguide problem,
but generally for high frequency electromagnetic wave phenomena, e.g. in the context of scattering problems,
antennas, microwave or optical waveguides, or resonant cavities [57, Chap. 2.1].

Maxwell’s equations for time harmonic problems In a time harmonic problem the field quantities are si-
nusoidal over time, this makes the use of complex numbers possible. The time dependence of the data and
the fields is proportional to eiωt, where ω ∈ Ω ⊂ R+ is the angular frequency and i the imaginary unit. This
allows us to use the electric field phasor E(r) and write

E(r, t) = Re(E(r)eiωt). (2.26)

for the electric field strength. In general, the field E(r) is complex and space dependent, i.e., E : D →
C3. The same holds for all other field quantities appearing in (2.7–2.10). Further, the derivative with re-
spect to the time ∂/∂t becomes iω. Then, the Maxwell’s equations for time harmonic problems are given
by

∇× E = −iωB (2.12)
= −iωµH, (2.27)

∇×H = iωD+ J (2.11)
= iωεE+ J, (2.28)

∇ · (εE) (2.11)
= ∇ · D = %, (2.29)

∇ · (µH)
(2.12)
= ∇ · B = 0. (2.30)

For a detailedmathematical discussionwe refer to [72, Chap. 6.9] and [93, Chap. 1.2].

Strong formulation We aim to derive the E-field formulation of Maxwell’s equations. Starting with (2.27),
multiplying by µ−1 from the left and applying ∇× yields

∇× (µ−1∇× E) = −iω(∇×H) (2.31)
(2.28)
= −iω(iωεE+ J) (2.32)
= ω2εE− iωJ. (2.33)
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Figure 2.3: Rectangular waveguide with two ports ∂DW
P1 and ∂DW

P2, PEC boundary conditions on the wave-
guide walls ∂DW

PEC, width a and height b.

In the following we assume the absence of charges and currents, i.e., % = 0 and J = 0. Using µ = µ0µr and
multiplying with µ0, we obtain the so-called curl-curl equation describing the electric wave in the computa-
tional domain D by

∇× (µ−1
r ∇× E)− ω2µ0εE = 0. (2.34)

Let us consider a rectangular waveguide model on the computational domain DW, with width a and height
b, as illustrated in Fig. 2.3. The boundary of the computational domain DW is split into three parts, i.e.,
∂DW = ∂DW

P1∪∂DW
P2∪∂DW

PEC. The boundaries ∂DW
P1 and ∂DW

P2 refer to the two ports (in red). At the walls of
the waveguide (in gray) we assume perfect electric conductor (PEC) boundary conditions, which corresponds
to Dirichlet boundary conditions, i.e.,

n× E = 0 on ∂DW
PEC, (2.35)

where n denotes the outer unit normal vector. We assume that the waveguide is excited at ∂DW
P1 by an

incident transverse electric (TE) TE10 wave

Einc = E0ETE
10e−ikz10z with ETE

10 := sin
(πx
a

)
ey, (2.36)

where E0 denotes the amplitude of the incident wave, kz10 =
√
ω2µ0ε0 −

(
π
a

)2 the propagation constant and
ey the unit vector in y-direction. Following [74, Chap. 8.5], we derive the boundary conditions for the ports
by

n× (∇× E)− ikz10(n× E)× n = −2ikz10Einc on ∂DW
P1, (2.37)

n× (∇× E)− ikz10(n× E)× n = 0 on ∂DW
P2. (2.38)

We summarize (2.34), (2.35), (2.37) and (2.38), and obtain the strong formulation of the waveguide problem
as

∇× (µ−1
r ∇× E)− ω2µ0εE = 0 in DW, (2.39)

n× E = 0 on ∂DW
PEC,

n× (∇× E)− ikz10(n× E)× n = −2ikz10Einc on ∂DW
P1,

n× (∇× E)− ikz10(n× E)× n = 0 on ∂DW
P2.
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Scattering parameter calculation We introduce the fundamental scattering parameter (S-parameter) of the
TE10 mode on the first port ∂DW

P1. Once (2.39) is solved, i.e., E is known, the S-parameter can be calculated
in a post-processing by

S ≡ STE
11 :=

2

E0ab

(
E− Einc,ETE

10

)
∂DW

P1

. (2.40)

Without loss of generality we assume that the port ∂DW
P1 is located at z = 0. As the electric field strength,

the S-parameter depends on the frequency ω, i.e., S ≡ Sω. Note that the S-parameter is an affine-linear
functional of E.

For the example of the waveguide, the S-parameter (2.40) is considered as QoI. Hence, we define the
parametrized solution operator QW as

QW(p) := S, (2.41)

where p denotes the parametrization containing for example geometry and material information, boundary
conditions and frequencies. Since the S-parameter depends on the solution E of (2.39), cf. (2.40), and the
solution E depends on the parametrization p, the operator QW involves solving a PDE and could be written
as QW(p) = Q̂W(E(p)).

Weak formulation In order to solve the waveguide problem numerically with FEM, the strong formula-
tion (2.39) needs to be transformed into the weak formulation which will be discretized later. We follow our
work in [47].

First, for brevity of notation, we introduce the trace operators [93, Eq. (3.45–3.46)]

πt[u] := n× u|∂DW , (2.42)
πT[u] :=

(
n× u|∂DW

)
× n. (2.43)

In order to derive the weak formulation of (2.39) we build the inner products of (2.34) with the test function
E′ ∈ V W, where V W ⊂ H(curl, DW) will be defined later, and integrate by parts [93, Theorem 3.31]. We
obtain (

µ−1
r ∇× E,∇× E′)

DW − ω2µ0
(
εE,E′)

DW +
(
πt[µ

−1
r ∇× E], πT[E′]

)
∂DW = 0. (2.44)

We insert the boundary conditions. The boundary integral in (2.44) vanishes on ∂DW
PEC due to the application

of PEC boundary conditions (2.35), also for E′. On ∂DW
P1∪∂DW

P2 the boundary conditions (2.37–2.38) are em-
ployed. We obtain theweak formulation of thewaveguide problem: find E ∈ V W s.t.(

µ−1
r ∇× E,∇× E′)

DW − ω2µ0
(
εE,E′)

DW + ikz10
(
πT[E], πT[E′]

)
DW

P1∪D
W
P2

(2.45)

= 2ikz10

(
Einc, πT[E′]

)
DW

P1

∀E′ ∈ V W.

Accounting for the PEC boundary condition (2.35) and seeking a well defined boundary integral in (2.45),
the space V W is chosen as [57, Eq. (2.47)]

V W :=
{
E ∈ H(curl, DW) : πT[E]

∣∣
∂DW

P1
∈
(
L2(∂DW

P1)
)3 ∧ πT[E]

∣∣
∂DW

P2
∈
(
L2(∂DW

P2)
)3 (2.46)

∧ πt[E]
∣∣
∂DW

PEC
= 0
}
.
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Discretization The last step before the waveguide problem can be solved with FEM is its discretization. We
introduce a finite dimensional function space V W

h ⊂ V W, for possible choices we refer e.g. to [93]. Indepen-
dent of the choice of V W

h , the approximated electric field strength Eh can bewritten as

E ≈ Eh ≡ Eh(r) =
NW

h∑
j=1

ejwW
j (r) ≡

NW
h∑

j=1

ejwW
j , (2.47)

where NW
h is the number of DoFs, {wW

j }
NW

h
j=1 ⊂ V W

h are basis functions with wW
j : DW → R3 and ej ∈ C,

j = 1, . . . , NW
h are the DoFs. In this work, we use first-kind, second order Nédélec basis functions de-

fined on a tetrahedral mesh of the computational domain DW. By that it is ensured that the finite element
spaces have the same relationship as the continuous spaces, i.e., they are linked by the discrete de Rham
sequence [93, Chap. 5.1]. The fact that the Nédélec basis functions ensure a conforming approximation
allows to apply the Cea’s Lemma [93, Lemma 2.37], which is the discrete analogue of the Lax-Milgram
Lemma and states that a unique solution exists [93, Chap. 2.3]. For details on Nédélec basis functions
and their curl-conforming property we refer to the original work by Nédélec [95] or discussions in [68,
93].

The discrete solution e = (e1, . . . , eNW
h
)> ∈ CNW

h is computed by solving the linear system(
A− ω2Mε + ikz10Mport)︸ ︷︷ ︸

=:KW(ω)

e = fW, (2.48)

where KW(ω) ∈ CNW
h ×NW

h denotes the systemmatrix and fW ∈ CNW
h the discretized right-hand side. In (2.48),

the stiffnessmatrixA, themass-matrixMε, thematrixMport and the right-hand side fW are given by

Aij = (µ−1
r ∇×wW

j ,∇×wW
i )DW , Mε

ij = µ0(εwW
j ,wW

i )D, (2.49)

Mport
ij =

(
πT[wW

j ], πT[wW
i ]
)
∂DW

P1∪∂D
W
P2
, fWj = 2ikz10

(
Einc, πT[wW

j ]
)
∂DW

P1

. (2.50)

Then, the discrete QoI is given by the discrete counterpart of the S-parameter (2.40), i.e.,

QW
h (p) := Sh ≡ STE

10,h = jTE10
(
e− einc

)
∈ C, (2.51)

where einc is the projection of (2.36) on the basis (2.47) and(
jTE10
)
j
=

2

E0ab
(wW

j ,ETE
10 )∂DW

P1
. (2.52)

Later we aim to interpolate Sh, so we assume Sh to be sufficiently smooth with respect to the parametriza-
tion p. Similar assumptions and numerical studies to justify these have also been made in [59] for exam-
ple.

2.5 The permanent magnet synchronous machine problem

The second application discussed in this work is a PMSM. Therefore, we introduce the magnetostatic formu-
lation of Maxwell’s equations, following [112].
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Maxwell’s equations in the magnetostatic case In the magnetoquasistatic case it is assumed that the fields
are slowly oscillating and that the electric energy is low compared to the magnetic energy [18]. The displace-
ment current density can be neglected compared to the current density, i.e., ∂D/∂t = 0. Thus, Maxwell’s
equations in the magnetoquasistatic case are formulated as the general Maxwell’s equations (2.7–2.10), with
the difference that (2.8) is replaced by

∇×H = J = Jc + Js, (2.53)

where Jc denotes the conduction current density and Js the source current density [34, Eq. (2.15)]. In
the magnetostatic case it is assumed that Jc = 0, i.e., that there are no eddy currents, and that there are
no changes over time, which implies that also ∂B/∂t = 0. Hence, the electric and magnetic fields can be
decoupled. From the Maxwell’s equations (2.7–2.10) and the material relations (2.11–2.12) remain [34,
Chap. 2.4]

∇×H = Js (2.54)
∇ · B = 0 (2.55)

B = µH. (2.56)

Since the PMSM contains permanent magnets (PMs), there are materials which induce a constant magnetic
field without requiring electric currents. We introduce Mpm ≡ Mpm(r) as the magnetization of a PM. The
material relation (2.56) is replaced by

B = µ(H+Mpm). (2.57)

From (2.55), we introduce themagnetic vector potential (MVP)A ≡ A(t, r) such that

B = ∇× A (2.58)

is fulfilled and replace (2.55) with (2.58).

Strong formulation We combine (2.54), (2.57) and (2.58) to obtain the magnetostatic approximation of
Maxwell’s equations. Startingwith (2.58), multiplying by µ−1 from the left and applying∇× yields

∇× (µ−1∇× A) = ∇× (µ−1B) (2.59)
(2.57)
= ∇× (H+Mpm) (2.60)

(2.54)
= Js +∇×Mpm. (2.61)

We introduce ν := µ−1 as the magnetic reluctivity. Then, the curl-curl equation describing the phenomena
of the PMSM on the computational domain DM is given by

∇× (ν∇× A) = Js +∇×Mpm. (2.62)

Let us consider a PMSM on the computational domain DM as illustrated in Fig. 2.4. We see a cross-sectional
view of the PMSM model, consisting of a rotor, including the PMs, and a stator. For the inner and the
outer boundary ∂DM

i and ∂DM
o , respectively, we assume homogeneous Dirichlet boundary conditions, i.e.,

n× A = 0 on ∂DM = ∂DM
i ∪ ∂DM

o . (2.63)

The equations (2.62) and (2.63) form the strong formulation of the PMSMproblem, whichwill be investigated
in this work.
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Figure 2.4: Cross-sectional view of a simplified PMSM with stator and rotor, on the computational domain
DM with the outer boundary ∂DM

o and the inner boundary ∂DM
i .

In practice, eq. (2.62) is often solved as a 2D problem, see Sec. 6.1. Then, eq. (2.62) transforms into the
Poisson equation. Together with the boundary condition (2.63) and the assumption that DM has a Lipschitz
continuous boundary (see Sec. 2.1), using the Lax-Milgram Lemma, it can be shown that there exists a unique
weak solution of the 2D problem [93, Theorem 3.14].

Torque calculation Based on the MVP A different quantities such as efficiency, total harmonic distortion
and the torque can be computed. In this work we focus on the torque. In [107, Chap. 6] different methods
on the calculation of the torque are discussed. Following the Maxwell stress method [78], [103, Chap. 1.5],
[5, Eq. (121)] the torque is given by

τ =

∫
Sr

t× (σM · n)dSr, (2.64)

where Sr denotes the surface enclosing the rotor, t the vector connecting the origin of the machine with the
surface Sr, n the unit normal vector with respect to the surface Sr and σM the Maxwell stress tensor defined
by

σM,ij = ν0

(
BiBj −

1

2
|B|2δij

)
(2.65)

with Kronecker delta δij , i, j = 1, 2, 3. Using the relation B = ∇ × A, cf. (2.58), we see that the calcu-
lation of the torque is a post-processing step once the MVP is obtained by FEM for example. In practice,
Arkkio’s formulation [5, Eq. (124)] is often used because it is considered to be numerically more sta-
ble.

In the PMSM example the torque is considered as QoI. Analogously to (2.41), we define

QM(p) := τ (2.66)

with parametrization p containing all problem specific information. Since the torque depends on the solution
A of (2.62–2.63), and the solution A depends on the parametrization p, the operator QM involves solving a
PDE and could be written as QM(p) = Q̂M(A(p)).
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Weak formulation Analogously to the waveguide problem, we multiply (2.62) with test functions A′ and
integrate by parts. We obtain(
ν∇× A,∇× A′)

DM +
(
n× (ν∇× A),A′)

∂DM =
(
Js,A′)

DM +
(
Mpm,∇× A′)

DM +
(
n×Mpm,A′)

∂DM . (2.67)

We insert the boundary condition (2.63) into (2.67), i.e., we define the solution space

V M :=
{
A ∈ H(curl, DM) : n× A

∣∣
∂DM = 0

}
(2.68)

and choose the test functions such that A′ ∈ V M. The boundary integral vanishes and the weak formulation
reads: find A ∈ V M s.t. (

ν∇× A,∇× A′)
DM =

(
Js,A′)

DM +
(
Mpm,∇× A′)

DM . (2.69)

Discretization The PMSM shall be solved by FEM. Analogously to (2.47) in the waveguide problem we in-
troduce a finite dimensional function space V M

h ⊂ V M and obtain the approximatedMVP by

A ≈ Ah ≡ Ah(r) =
NM

h∑
j=1

ajwM
j (r) ≡

NM
h∑

j=1

ajwM
j , (2.70)

where NM
h is the number of DoFs, {wM

j }
NM

h
j=1 ⊂ V M

h are basis functions with wM
j : DM → R3 and aj ∈ R,

j = 1, . . . , NM
h are the DoFs. The discrete solution a = (a1, . . . , aNM

h
)> ∈ RNM

h can be computed by solving
the linear system

KMa = fM, (2.71)

where the systemmatrixKM ∈ RNM
h ×NM

h and the discretized right-hand side fM ∈ RNM
h are given by

KM
ij =

(
ν∇×wM

j ,∇×wM
i

)
DM fMj =

(
Js,wM

j

)
DM +

(
Mpm,∇×wM

j

)
DM . (2.72)

As for thewaveguide, first-kind, second order Nédélec basis functions can be used.

To account for the rotating movement of the rotor inside the stator, typically two models are employed,
one for the stator and one for the rotor. In combination with FEM, there exist several methods to real-
ize that, see for example [120] for an overview. In the Lagrange multiplier method for example, the two
models are coupled by a coupling term, consisting of Lagrange multipliers [82]. In the locked step ap-
proach the time step is chosen such that the rotor shift corresponds to a multiple of the mesh size in the
air gap. By that, conformal meshes are ensured [102]. In the moving band technique the meshes of rotor
and stator are fixed, but a third mesh in the air gap is generated and only this is deformed or re-meshed if
required [36].

2.6 Summary

In this chapter the concepts of modeling electromagnetic phenomena were discussed. Therefore, we in-
troduced Maxwell’s equations as the fundamental PDEs and described the basic procedure of solving them
with FEM. As an example to investigate high frequency electromagnetic wave phenomena we introduced
a rectangular waveguide. We reformulated Maxwell’s equations for the time harmonic case and, using
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the material relations, derived the curl-curl equation describing the electric wave within the waveguide.
Boundary conditions for the ports and the walls were formulated and inserted into the strong formula-
tion. The scattering parameter was defined as QoI. As a low frequency example we introduced a PMSM.
We simplified Maxwell’s equations for the magnetostatic case, set Dirichlet boundary conditions and de-
rived the curl-curl wave equation in terms of the MVP. The torque of the machine was introduced as
QoI.

In the beginning of this chapter we mentioned that the yield estimation and optimization methods introduced
in the following chapters are independent of the considered model problem. Hence, we define the QoI more
generally. Let

Q(p) on D(p) ≡ D (2.73)

denote a parametrized solution operator with parametrization p containing for example geometry and mate-
rial information or boundary conditions. The computational domain D also depends on the parametrization
p. The QoI can be the S-parameter (2.40) or the torque (2.64), but it can also be any other operator. The
methods proposed in the following are especially relevant if solving the QoI is computationally expensive.
Typically, the QoI involves solving PDEs numerically, although this is not a requirement for the proposed
methods. However, it motivates the term PDE constrained optimization.

In the next chapter fundamental mathematical definitions andmethods for robust design are summarized.
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3 Mathematical foundations of robust design

After describing the fundamental concepts of modeling electromagnetic phenomena in the previous chapter,
this chapter is dedicated to collecting mathematical definitions and methods, which are relevant for robust
design optimization. The chapter is divided into three sections. Firstly, we recall basic definitions from the
field of probability theory. This is required, since for example manufacturing uncertainties are modeled
as random variables. Secondly, we summarize the foundations of optimization and provide a brief review
of existing optimization methods. This is a preparation for the yield optimization methods proposed in
Chap. 5. Thirdly, we introduce three approximation methods commonly used in the field of uncertainty
quantification, namely MC analysis, SC and GPR. The yield estimation methods proposed in Chap. 4 build
on these concepts.

As discussed in the previous chapter, we consider the solution operator Q(p) on the computational domain
D ≡ D(p) as QoI. The parametrization p includes all problem specific information, e.g. material and geom-
etry parameters, boundary conditions, etc.. The operator Q(p) can be the S-parameter from Sec. 2.4 or the
torque from Sec. 2.5, or it can be any other operator. Usually we assume that solvingQ(p) is computationally
expensive, e.g. it involves solving a PDE numerically.

3.1 Fundamentals of probability theory

Manufacturing imperfections or unpredictable environmental influences cause statistical uncertainties in the
material or geometry properties. These uncertainties are represented by random variables. Above we in-
troduced the QoI as solution operator Q depending on the parametrization p. In the following, we as-
sume that the operator is affected by uncertainties, e.g. geometry deviations due to inaccuracies in the
manufacturing process, natural material variations or unknown boundary conditions. Hence, for p we dis-
tinguish between deterministic parameters d, which are not affected by uncertainties, and uncertain pa-
rameters ξ, which are affected by uncertainties. For the QoI we write Q(ξ,d). In order to quantify the
impact of these uncertainties on the QoI, we require statistic quantities like expectation and standard de-
viation. Therefore, we briefly introduce random variables and their properties formally. We follow [21]
and [42].

3.1.1 Basic definitions in probability theory

Probability space The outcome of a random experiment is denoted by ω. The set of all possible outcomes
is called the sample space and denoted by Ω. A subset A of Ω is called an event. If the set Ω is not finite or
countable infinite, the definition of a σ-field is required. Let A and B be events in Ω and let A be a collection
of subsets of Ω fulfilling

21



i. ∅ ∈ A and Ω ∈ A,

ii. if A ∈ A, then the complement Ac ∈ A as well,

iii. if A,B ∈ A, then A ∪B ∈ A, A ∩B ∈ A and A \B ∈ A.

Then, A defines a σ-field on Ω [21, Def. 1.1.4]. For Ω 6= ∅, the tuple (Ω,A) is called a measurable space [42,
Def. 5.1]. The probability on (Ω,A) is amapping P : A → R, fulfilling [21, Def. 1.1.8]

i. 0 ≤ P[A] ≤ 1 for each A ∈ A,

ii. P[Ω] = 1,

iii. for all pairwise disjoint events A1, A2, . . . ∈ A hold P[∪∞
n=1An] =

∑∞
n=1 P[An] (σ-additivity).

Then, the triple (Ω,A,P) is called a probability space. Further, letϕ : R → R be a functionwith

i. ϕ(ξ) ≥ 0 for all ξ ∈ R,

ii.
∫
R ϕ(ξ)dξ = 1.

Then ϕ is called a density function [42, Def. 3.1].

Bayes’ rule We consider a probability space (Ω,A,P) and two events A,B ∈ A. These events are indepen-
dent, if P[A∩B] = P[A]P[B] [21, Def. 1.2.1]. The conditional probability of the event A given the event B is
defined by

P[A|B] =
P[A ∩B]

P[B]
, (3.1)

for P[B] > 0 [21, Def. 1.2.6]. For independent events P[A|B] = P[A] holds. If we are interested in
P[A|B] and assume P[B|A] to be known, then Bayes’ rule of retrodiction [21, Theorem 1.2.8] can be used

P[A|B] =
P[B|A]P[A]

P[B]
. (3.2)

In Sec. 3.3.3 we will introduce GPR, which is based on the concept of conditional probability and Bayes’
rule.

Random variables Let (Ω,A,P) be a probability space and (ΩΞ,AΞ) a measurable space. A mapping Ξ :
(Ω,A) → (ΩΞ,AΞ) is called a random variable [42, Def. 5.8]. Let a real random variable Ξ and a density
function ϕ be given. If

P[Ξ ∈ A] =

∫
A
ϕ(ξ)dξ (3.3)

holds for all events A ∈ A, the function ϕ is called the probability density function of the random variable
Ξ [42, Def. 5.8]. In Chap. 6 we will mainly discuss uniform, Gaussian or truncated Gaussian distributed
random variables. In preparation for this, we introduce these common probability density functions. For a
uniformly distributed random variable we write Ξ ∼ U(a, b) and the probability density function is defined
by

ϕU(a,b)(ξ) =

{
1
b−a , if a ≤ ξ ≤ b

0, else.
(3.4)
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For a Gaussian distributed random variable we write Ξ ∼ N (m,σ2) and the probability density function is
defined by

ϕN (m,σ2)(ξ) =
1√
2πσ

e−
(ξ−m)2

2σ2 . (3.5)

The Gaussian distribution has infinite support, i.e., the probability that the deviation from the mean value
becomes arbitrarily large is greater than zero. When modeling uncertainties, such a behavior is typically not
wanted. Therefore, we introduce the truncated Gaussian distributed random variable, which is a rescaled
Gaussian distributed random variable with zero tails. We write Ξ ∼ NT (m,σ

2, a, b) and the probability
density function is defined by

ϕNT (m,σ2,a,b)(ξ) =


1
σ

ϕN
(

ξ−m
σ

)
ψN

(
b−m
σ

)
−ψN

(
a−m
σ

) , if a ≤ ξ ≤ b

0, else,
(3.6)

whereϕN (·) is the probability density function of the standard normal distribution, i.e.,

ϕN (θ) ≡ ϕN (0,1)(θ) (3.7)

and ψN (·) its cumulative distribution function, i.e.,

ψN (θ) =
1

2

(
1 + erf

(
θ√
2

))
, (3.8)

with error function

erf(ζ) =
2√
π

∫ ζ

0
e−t2 dt. (3.9)

Let Θ define a second random variable on (Ω,A,P), with (ΩΘ,AΘ) and Θ : (Ω,A) → (ΩΘ,AΘ). Then, the
random variables Ξ and Θ are independent, if

P[Ξ ∈ A,Θ ∈ B] = P[Ξ ∈ A]P[Θ ∈ B] (3.10)

for all A ∈ AΞ and B ∈ AΘ [42, Def. 5.14].

Statisticalmoments The expectation value of the random variable is defined by [42, Def. 5.17]

E[Ξ] =
∫
R
ξ ϕ(ξ)dξ. (3.11)

The k-th moment of the random variable is given by

Mk[Ξ] ≡ E[Ξk] =
∫
R
ξk ϕ(ξ)dξ. (3.12)

Centering the second moment at E[Ξ] yields the variance [42, Def. 5.24]

V[Ξ] = E
[
|Ξ− E[Ξ]|2

]
=

∫
R
|ξ − E[Ξ]|2 ϕ(ξ)dξ. (3.13)

The standard deviation ofΞ is defined by the square root of the variance, i.e.,

Std[Ξ] =
√
V[Ξ]. (3.14)
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The same holds in case of multivariate random variables. However, for multivariate random variables, ad-
ditionally the covariance is introduced. Let Ξ = (Ξ1, . . . ,Ξn)

> denote a multivariate random variable and

Cov[Ξi,Ξj ] = E
[∣∣Ξi − E [Ξi]

∣∣∣∣Ξj − E [Ξj ]
∣∣], ∀i, j = 1, . . . , n (3.15)

the covariance of Ξi and Ξj . In case of i = j the covariance coincides with the variance. The covariance
matrix is then defined by

Σ = Cov[Ξi,Ξj ]{i,j=1,...,n} =


V[Ξ1] Cov[Ξ1,Ξ2] . . . Cov[Ξ1,Ξn]

Cov[Ξ2,Ξ1] V[Ξ2] Cov[Ξ2,Ξn]
... . . . ...

Cov[Ξn,Ξ1] . . . Cov[Ξn,Ξn−1] V[Ξn]

 . (3.16)

Law of large numbers The Monte Carlo analysis introduced in Sec. 3.3.1 is based on the law of large
numbers. The weak law of large numbers says, that the arithmetic mean of n realizations of a random
variable converges in probability to the expectation value if n tends to infinity [42, Theorem 5.10], i.e., for
each ε > 0

lim
n→∞

P

[∣∣∣∣∣ 1n
n∑
i=1

Ξ(i) − E[Ξ]

∣∣∣∣∣ > ε

]
= 0. (3.17)

3.1.2 Stochastic processes

In Sec. 3.3.3 we introduce GPR as a method to approximate a function by a GP. Therefore, based on [71,
Chap. 1], we will define stochastic processes in general and GPs in particular. While a random variable
represents one uncertain event at a given time or space, a stochastic process represents a path of random
events over time or space. Again we consider a probability space (Ω,A,P). A stochastic process is a family of
random variables {Qξ}ξ∈X in this space, indexed by the discrete or continuous set X describing the evolution
over time or space. A stochastic process can be interpreted in two ways. First, for a fixed ξ, Qξ can be seen
as random variable. Second, for an event ω ∈ Ω, we could write Qξ(ω) = pω(ξ), and then pω(ξ) is a function
of ξ and a realization or sample function of the stochastic process, i.e., a path representing the evolution
of the random process over time or space. The stochastic process is called a Gaussian process, if for every
finite subset of indices {ξ1, . . . , ξn} ⊆ X the multivariate random variable Qξ = (Qξ1 , . . . , Qξn)

> is Gaussian
distributed. A GP can be completely defined by its mean function m(ξ) and covariance or kernel function
k(ξ, ξ′) [106, Sec. 2.2]

m(ξ) = E[Qξ] (3.18)
k(ξ, ξ′) = Cov[Qξ, Qξ′ ] = E

[
(Qξ −m(ξ))

(
Qξ′ −m(ξ′)

)]
. (3.19)

We write
{Qξ}ξ∈X ∼ GP

(
m(ξ), k(ξ, ξ′)

)
. (3.20)

The squared exponential (or radial basis function (RBF)) kernel

k(ξ, ξ′) = e−
1
2
|ξ−ξ′|2 (3.21)

is a common choice in GPR.
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3.2 Fundamentals of optimization

The aim of this work is the optimization under consideration of uncertainties. Therefore we will introduce
fundamental definitions and summarize existing optimization methods. We will introduce an objective func-
tion f . In yield optimization, cf. Chap. 5, this f will be the yield depending on the QoIQ.

3.2.1 Basic definitions in optimization

Optimization problem Let f : Rn → R, g : Rn → Rm1 and h : Rn → Rm2 be continuously differen-
tiable functions. We formulate a general, single-objective, nonlinear optimization problem by [118, Chap.
15]

min
x∈Rn

f(x) (3.22)

s.t. g(x) ≤ 0 (3.23)
h(x) = 0. (3.24)

The objective function f is to be minimized over the optimization variable x (3.22), such that the inequality
constraints (3.23) and the equality constraints (3.24) are fulfilled. Please note that the inequality in (3.23)
is to be understood component-wise. The minimization problem can be reformulated into a maximization
problem by replacing (3.22) with

max
x∈Rn

−f(x). (3.25)

An optimization problem is bound constrained, if there are no equality constraints and the inequality con-
straints can bewritten in the simplified form of lower and upper bounds xlb, xub ∈ Rn, i.e.,

min
x∈Rn

f(x) (3.26)

s.t. xlb ≤ x ≤ xub. (3.27)

An optimization problem is called unconstrained, if there are no constraints at all.

Optimal solutions and convexity Following [118, Def. 1.1], the vector x ∈ Rn is a feasible solution of the
optimization problem (3.22–3.24) if it fulfills the constraints (3.23–3.24). The set of feasible solutions is
called the feasible set and denoted by X ⊆ Rn. A feasible solution xopt is a local minimum, if there exists a
neighborhood around xopt with width ε > 0 such that

f(xopt) ≤ f(x), ∀x ∈ X with ||x− xopt|| < ε. (3.28)

A feasible solution xopt is a global minimum, if

f(xopt) ≤ f(x), ∀x ∈ X. (3.29)

The set X is convex, if for all x1, x2 ∈ X and λ ∈ [0, 1] such that

(1− λ)x1 + λx2 ∈ X. (3.30)

Let X be a convex set. If the function f : X → R fulfills

f((1− λ)x1 + λx2) ≤ (1− λ)f(x1) + λf(x2), (3.31)

then f is called a convex function [118, Def. 6.1, 6.2]. The local minimum of a convex function is always a
global minimum.
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Figure 3.1: Visualization of the non-convex pareto-front for a bi-objective minimization problem.

Multi-objective optimization In case of several objective functions, aMOOproblem is formulated by

min
x∈X

fi(x) i = 1, . . . , k (3.32)

writing the simplified notation x ∈ X instead of (3.23–3.24). While in single-objective optimization (SOO)
the aim is to find the best solution with respect to one objective function, in MOO the aim is to find the
best solution with respect to k objective functions. In general, the best solution for one objective function
is not the best solution for another objective function. Therefore, the concept of pareto-optimality is intro-
duced [43, Def. 2.1]. A feasible solution xopt is called pareto-optimal, if there is no other feasible solution x
such that

fi(x) ≤ fi(xopt) for i = 1, . . . , k and (3.33)
fi(x) < fi(xopt) for some i ∈ {1, . . . , k}.

This definition implies, that a pareto-optimal solution is a solution, such that it is not possible to further
minimize the objective function value of one objective function without increasing the objective function
value of another objective function. Usually, the pareto-optimal solution is not one single point, but a set of
solutions, the so-called pareto-front. In Fig. 3.1 the non-convex pareto-front for a biobjective minimization
problem is visualized.

3.2.2 Review of existing optimization methods

There are many methods for optimization, see for example [118] for gradient based techniques, [33] for
DFO or [89] for heuristic approaches. The methods we discuss in the following are particularly common in
computational engineering and are chosen to best prepare for the novel methods proposed in Chap. 5 and
applied in Chap. 6. We start with the gradient based Newton method, then we introduce Powell’s derivative-
free BOBYQAmethod. We discuss scalarizationmethods for solvingMOO problems by transforming them into
SOO problems, beforewe come to genetic algorithms, solvingMOOproblems directly.
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Input: obj. function f , starting
point x(k) ∈ Rn, k = 0, α1, α2 >
0, β ∈ (0, 1), γ ∈ (0, 1), r > 0

is ∇f(x(k)) = 0? Return: optimal solution x(k)

is it possible to solve
Newton eq. (3.34) for s?

does the solution fulfill
angular cond. (3.35)?

set search direction
s(k) = s

set search direction
s(k) = −∇f(x(k))

determine step size σ(k)

with Armijo rule (3.36)

update x(k+1) = x(k) + σ(k)s(k)
and k = k + 1

yes

no

yes

yes

no

no

Figure 3.2: Flowchart for the globalized Newton method, content based on [118, Algorithm 10.9].
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Newton method The Newton method is best known from numerical analysis to find the root of a function.
For unconstrained optimization problems, the first order optimality condition is ∇f(x) = 0 [118, Theorem
5.1]. Hence, the Newton method can be applied for finding the root of the gradient of the objective function.
This requires that the objective function is twice continuously differentiable. The basic idea is to iteratively
solve the Newton equation

∇2f(x)s = −∇f(x) (3.34)

at a given x and update the solution x = x + s. However, this procedure does not guarantee global conver-
gence, which is the convergence from an arbitrary starting point to a stationary point, i.e., a point fulfilling
∇f(x) = 0. Therefore, it is necessary to control the search direction and the step size [118, Theorem 10.10].
For the search direction we check if a generalized angular condition is fulfilled, i.e., if for the current x and
the determined search direction s holds

−∇f(x)>s ≥ min (α1, α2||s||r) ||s||2, (3.35)

where α1, α2, r > 0. Otherwise, the gradient step is used as search direction, i.e., s = −∇f(x). For the
step size the Armijo rule is applied, for two parameters β ∈ (0, 1) and γ ∈ (0, 1) the largest number σ ∈
{β0, β1, . . . } is chosen, such that

f(x+ σs)− f(x) ≤ σγ∇f(x)>s (3.36)

holds. Please note that γ ∈ (0, 1/2) is needed to assert fast local convergence. The resulting globalized Net-
wonmethod from [118, Algorithm 10.9] is summarized in a flowchart, see Fig. 3.2.

Bound constrained Optimization BY Quadratic Approximation (BOBYQA) A DFO method for bound con-
strained problems has been proposed by Powell in [101]. Similar to SQP [118, Chap. 19], in each iteration
the original problem is approximated quadratically around the current iterate solution x(k), the quadratic
subproblem is solved in a trust region and x(k) is updated with the solution of the subproblem. While in SQP
gradient information, i.e., second order Taylor expansion, is used for building the quadratic approximation,
in BOBYQA a quadratic interpolation problem is solved. The description of the main ideas follows [26] and
our work in [51]. Let the set of interpolation points be defined by

T = {(y0, f(y0)), . . . , (yp, f(yp))}. (3.37)

In each iteration a local quadratic approximation m̃(k)(x) of f(x) is built, i.e.,

f(x) ≈ m̃(k)(x) = c(k) + g(k)
>
(x− x(k)) +

1

2
(x− x(k))>H(k)(x− x(k)), (3.38)

fulfilling the interpolation conditions

f(yj) = m̃(k)(yj) ∀yj ∈ T . (3.39)

In case of |T | = (n + 1)(n + 2)/2, the interpolation problem can be solved uniquely. Otherwise, i.e., |T | <
(n + 1)(n + 2)/2, the interpolation problem is underdetermined and the remaining degrees of freedom are
set by minimizing the change in the Hessian matrix H of the quadratic model (3.38). For this, the matrix
Frobenius norm is used, i.e.,

min
c(k),g(k),H(k)

||H(k) −H(k−1)||2F s.t. (3.39) holds, (3.40)
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where typicallyH(−1) = 0n×n. Having built the quadraticmodel, the trust region subproblem

min
x∈Rn

m̃(k)(x) (3.41)

s.t. ||x− x(k)||2 ≤ ∆(k)

is solved. In (3.41), ∆(k) > 0 denotes the trust region radius in the k-th iteration. Once the optimal solution
of the subproblem xopt is obtained, it is checked if the decrease in the objective function is sufficient. We
compare the ratio between actual and expected decrease, i.e.,

r(k) =
actual decrease

expected decrease
=

f(x(k))− f(xopt)
m̃(k)(x(k))− m̃(k)(xopt)

. (3.42)

If r(k) is considered to be large enough, the solution is accepted, i.e., x(k+1) = xopt, and the trust region radius
is increased, i.e., ∆(k+1) > ∆(k). Otherwise, the solution is not accepted, i.e., x(k+1) = x(k), and the trust
region radius is decreased, i.e., ∆(k+1) < ∆(k). The interpolation set is updated and a new iteration begins.
The basic procedure is illustrated in Fig. 3.3.

The convergence of model based optimization methods depends on the accuracy of the approximation. While
in gradient based methods, typically Taylor expansion error bounds are considered to show the decreas-
ing error between the model m̃(k)(x) and the function f(x) and their derivatives, in DFO other measures
are required. Let d denote the polynomial degree of m̃(k)(x), i.e., in BOBYQA d = 2, G a constant only
depending on the function and Λ > 0 the poisedness constant. In [31] an error bound is then given
by

||∇m̃(k)(x)−∇f(x)|| ≤ 1

(d+ 1)!
GΛ

p∑
i=0

||yi − x||d+1. (3.43)

According to (3.43) the poisedness constant Λ is crucial for the accuracy of the quadratic model. It is a
measure of how well balanced the interpolation points are. Or, in other words, how linear independent the
resulting rows of the interpolation problem are. Figure 3.4 shows the example of an interpolation set with
three points. Left, all points lie almost on one line. Hence, the two dimensional space is covered poorly, the
poisedness constant would be large. Right, we see a set of well balanced interpolation points. The following
definitions show formally, how the poisedness constant Λ relates to the quality of the interpolation set [33,
Def. 3.1, 3.6, 5.3].

Definition 1 (Poisedness). Let an interpolation set T be defined as in (3.37), let Φ = {Φ0(x), . . . ,Φp(x)} be
a polynomial basis of maximum degree d, let interpolation conditions be given as defined in (3.39) and let
M denote the system matrix of the resulting interpolation problem. Then, the interpolation set T is poised
for polynomial interpolation of degree d if and only if the matrix M is nonsingular.

This implies that an interpolation set is poised if and only if the solution of the interpolating polynomial exists
and is unique [33, Lemma 3.2]. Please note that the definition of poisedness is independent of the chosen
basis.

Definition 2 (Λ-poisedness in the interpolation sense). Let a constant Λ > 0, a set B ⊂ Rn, a polynomial
basis Φ = {Φ0(x), . . . ,Φp(x)} of maximum degree d, Φ(x) = (Φ0(x), . . . ,Φp(x))> and a poised interpolation
set T as defined in (3.37). Then the training data set T is Λ-poised in B (in the interpolation sense) if and
only if

∀x ∈ B ∃l(x) ∈ Rp+1 s.t.
p∑
i=0

li(x)Φ(yi) = Φ(x) with ||l(x)||∞ ≤ Λ. (3.44)
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Input: obj. function f ,
starting point x(k) ∈ Rn,
initial trust region ra-
dius ∆(k), k = 0

generate initial
interpolation set T

stopping criteria fulfilled? Return: optimal solution x(k)

calculate quadratic approxima-
tion of f around x(k), by solving
(3.39) or (3.40), obtain m̃(k)

solve trust region subprob-
lem (3.41) and obtain xopt

calculate ratio
r(k) acc. to (3.42)

is r(k) sufficiently large?

set x(k+1) = xopt,
∆(k+1) > ∆(k), k = k + 1

set x(k+1) = x(k), ∆(k+1) < ∆(k)

update interpolation set T

no

yes

yes

no

Figure 3.3: Flowchart for the BOBYQA method, content based on [101].
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bad good

Figure 3.4: Illustration of the poisedness of an interpolation set in a 2-dimensional space. Left a poorly
poised set, right a well poised set.

Remark 1. When using the monomial basis, i.e., for d = 2 we use Φ =
{
1, x1, . . . , xn,

1
2x

2
1, x1x2, x1x3, . . . ,

xn−1xn,
1
2x

2
n

}
, the equality in Def. 2 can be rewritten as M>l(x) = Φ(x). Then, the li(x), i = 0, . . . , p are

uniquely defined by the Lagrange polynomials and can be calculated by

Mλi = ei+1, (3.45)

where ei ∈ Rp1 denotes the i-th unit vector and the entries of λi are the coefficients of the polynomial li.

For the underdetermined interpolation case in BOBYQA, the following definition is needed.

Definition 3 (Λ-poisedness in the minimum-norm sense). Let a constant Λ > 0, a set B ⊂ Rn, the monomial
basis Φ = {Φ0(x), . . . ,Φq(x)} of maximum degree d, Φ(x) = (Φ0(x), . . . ,Φq(x))>, a poised interpolation set
T as defined in (3.37) and p < q. Then the training data set T is Λ-poised in B (in the minimum-norm sense)
if and only if

∀x ∈ B ∃l(x) ∈ Rp+1 s.t.
p∑
i=0

li(x)Φ(yi) l.s.
= Φ(x) with ||l(x)||∞ ≤ Λ, (3.46)

where l.s. indicates that the equations system is solved in the least squares sense.

Remark 2. The li(x), i = 0, . . . , p, correspond to the Lagrange polynomials (in the minimum norm sense),
cf. [33, Def. 5.1]. Analogously to Remark 1 they can be calculated by the minimum norm solution of

Mλi
m.n.
= ei+1, (3.47)

using the elements of λi as coefficients for the polynomial li.

In [33, Chap. 3] it is shown that the poisedness constant Λ, or rather 1/Λ can be understood as the distance
to singularity of the system matrix of the interpolation problem. Definitions 2 and 3 show that the poisedness
constant Λ corresponds to the quality of the interpolation set, and from (3.43) follows that in order to apply
the convergence theory for gradient based methods to DFO methods, it is required that Λ remains uniformly
bounded during the optimization procedure, i.e., for all interpolation sets used within the algorithm. For
the maintenance of the interpolation set during the optimization follows that the poisedness constant Λ is
a crucial factor. An accepted solution is added to the interpolation set, i.e., T = T ∪ {(yadd, f(yadd))} with
yadd = xopt. Since the size of the interpolation set is fixed, another interpolation point has to leave the set.
Hereby, the aim is to reduce the poisedness constant Λ as much as possible. Let li, i = 0, . . . , p, be the
Lagrange polynomials obtained by evaluating (3.45) or (3.47) and

igo = argmax
i=0,...,p

li(yadd). (3.48)

31



Per construction, yigo is the point with the worst (largest) value of the corresponding Lagrange polynomial,
evaluated at the new iterate solution. Hence it has the worst impact on the Λ-poisedness of the interpolation
set and is replaced by the new solution, i.e., the updated interpolation set is T = T ∪ {(yadd, f(yadd))}\
{(yigo , f(yigo))}. Sometimes in the algorithm, it is required to improve the interpolation set by exchanging
points, regardless of the subproblem’s optimal solution. Then, a new point is determined as follows. Let yi
be an interpolation point which shall leave the interpolation set based on (3.48) and li the corresponding
Lagrange polynomial. Then, the new point is chosen by solving

ynew = max
y∈B

li(y). (3.49)

For more details we refer to the original work by Powell [101]. The author also proposed two other methods,
LINCOA [100] (LINearly Constrained Optimization Algorithm), which allows linearly constrained optimiza-
tion problems to be solved, and COBYLA [99] (Constrained Optimization BY Linear Approximations), which
allows general constraints but approximates the objective function only linearly.

Scalarization methods for multi-objective optimization A common technique for solving MOO problems
is to transform them into a SOO problem. This approach is called scalarization. In weighted sum scalariza-
tion [43, Chap. 3], the objective functions are combined into a weighted sum, which then yields the new
objective function. We obtain

min
x∈X

k∑
i=1

wi fi(x), (3.50)

with weighting parameters wi > 0, i = 1, . . . , k. The ε-constraint method [43, Chap. 4] is another scalar-
ization technique. Only one of the objective functions is considered as the objective function, while all the
remaining ones are provided with an upper bound and included into the constraints. Without limitation of
generality, we assume that f1 is the objective function which will be kept in the ε-constraint formulation.
This yields

min
x∈X

f1(x) (3.51)

s.t. fi(x) ≤ εi, i = 2, . . . , k,

with parameters εi, i = 2, . . . , k. The advantage of transforming the MOO problem into a SOO problem is
that it can be solved efficiently with standard SOO methods. However, the solution of (3.50) or (3.51) is
only one pareto-optimal solution, depending on the starting point and the choice of the parameters wi or
εi, respectively. In order to obtain the pareto-front, the SOO problems have to be solved several times with
different values for weights or bounds, respectively. Further, the feasible set needs to fulfill some convexity
requirements to give the weighted sum method the chance to find each pareto-optimal solution. In Fig. 3.1
for example, the solutions x1 and x3 could be found, however the pareto-optimal solution x2 could not be
found using the weighted sum approach, cf. [43, Chap. 3].

Genetic algorithms Genetic algorithms solve MOO problems directly and the solution is a set of solutions
converging to the pareto-front [8, Chap. 4]. The term genetic algorithm is motivated by the natural evolution
process of organisms and covers various algorithms, e.g. the Non-dominated Sorting Genetic Algorithms I-
III (NSGA I-III) [16, 37, 111]. The main idea is briefly sketched in the following. In the beginning, an
initial set of solutions is generated. Each solution is called an individual, the set is called population. All
objective functions are evaluated on each individual. Based on this information, the so-called fitness value is
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Input: obj. func-
tions fi, constraints

generate initial population

evaluate objective functions

stopping criteria fulfilled?

calculation of fitness

selection

crossover

mutation

new generation

Return: final generation
as pareto front

no

yes

Figure 3.5: Flowchart for the genetic MOO approach, based on [52, Fig. 3].

determined, which is a metric for the quality of an individual. Based on the fitness value, in each iteration,
the population is updated and hence, a new generation is created. This update includes three main elements:
selection (survival of the fittest), crossover (reproduction process where genetic traits of the individuals are
propagated) and mutation (variation of genetic traits). The procedure is continued until a stopping criterion
is reached, e.g. the maximum number of generations is exceeded or the improvement in the solution or
objective space stagnates. An illustration of the simplified genetic algorithm is provided in Fig. 3.5. Compared
to solving a MOO once with a scalarization technique, the genetic algorithms are computationally more
expensive since the objective functions are solved for each individual of each generation. Considering the
aim of maximizing the yield, which involves the repeated solving of probably expensive QoIs, we see that this
may become computationally challenging. However, genetic algorithms approximate directly the complete
pareto-front, not only one solution. Further, they do not require convexity or other previous knowledge about
the problem. Also, the drawback of manually setting parameters like weights (weighted sum) or bounds (ε-
constraint) is eliminated.
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3.3 Uncertainty quantification

In Sec. 2.3 we discussed high fidelity models, e.g. based on the FEM, and their approximation error. How-
ever, even if the computer model is highly accurate, the actually manufactured device may differ from it.
This is not necessarily caused by erroneous computer models, but by manufacturing or environmental uncer-
tainties, so-called aleatory uncertainties. These may lead to deviations in the original design parameters or
other system parameters. To account for these uncertainties, we model the affected parameters as random
variables. Let ξ denote the multivariate random variable representing the uncertain parameter and let us
assume that ξ follows a given probability density function ϕ(ξ). A realization of ξ is denoted by ξ(i) ∈ Rn.
Let us consider a QoI Q : Rn → R, which maps the uncertain input ξ to an uncertain output Q(ξ). The
QoI Q can be assumed to be sufficiently smooth to be well approximated by GPs or polynomial interpolation.
Estimating the impact of these deviations and considering them already in the design process based on com-
puter models helps to increase the reliability of manufacturing processes. The field dealing with this is called
uncertainty quantification (UQ). In this section we recall several approximation methods frequently used in
UQ.

3.3.1 Monte Carlo analysis

A widely used method in UQ is MC analysis [64, Chap. 5]. It is used to estimate statistical measures of the
functionQ, e.g., themean value, the variance or failure probabilities as wewill see in Sec. 4.2. Therefore, a set
of MC sample points {ξ(i)}i=1,...,NMC of the uncertain parameter is generated according to the corresponding
probability density function. According to [42, Chap. 3.4], the MC estimator of the mean value is then given
by

E[Q(ξ)] =

∫
Rn

Q(ξ)ϕ(ξ)dξ ≈ 1

NMC

NMC∑
i=1

Q(ξ(i)) = ẼMC[Q(ξ)] (3.52)

and the variance by

V[Q(ξ)] ≈ ṼMC[Q(ξ)] =
1

NMC − 1

NMC∑
i=1

(
Q(ξ(i))− ẼMC[Q(ξ)]

)2
. (3.53)

The MC estimator is unbiased, i.e., for all NMC ≥ 1

E[ẼMC[Q(ξ)]] = E[Q(ξ)]. (3.54)

For the variance of the MC estimator of the mean value follows

V[ẼMC[Q(ξ)]] =
V[Q(ξ)]

NMC
. (3.55)

By taking the square root of (3.55) we obtain the MC error indicator εMC [60], which coincides with the root
mean square error (RMSE) and the standard deviation of the estimator

εMC = Std[ẼMC[Q(ξ)]] =

(
E
[∣∣∣E[Q(ξ)]− ẼMC[Q(ξ)]

∣∣∣2]) 1
2

︸ ︷︷ ︸
RMSE

=

√
V[Q(ξ)]√
NMC

=
Std[Q(ξ)]√

NMC
. (3.56)
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From (3.56) follows that the MC analysis provides high accuracy for large sample sets, but slow convergence
with O

(
1/

√
NMC

)
. Assuming that the evaluation of Q(ξ(i)), i = 1, . . . , NMC requires solving a complex

model numerically, as introduced in Chap. 2, this approach quickly becomes computationally prohibitive if
high accuracy is desired. On the other hand, eq. (3.56) also shows that the accuracy of the MC estimator
does not directly depend on the number of uncertain parameters n. Besides the simple implementation and
applicability, this is an important advantage of the MC analysis. An alternative is a surrogate based MC
analysis, i.e., a cheap to evaluate surrogate model Q̃ of Q is built and then Q̃ is used in (3.52) and (3.53).
In the following, we will introduce two possible surrogate models. In contrast to a pure MC analysis, the
discussed surrogate models require that the QoI depends smoothly on the input parameter. Provided that
this is fulfilled, this is also an advantage of the surrogate methods: they exploit the information about the
smoothness of the QoI, which MC does not.

3.3.2 Sparse grid stochastic collocation via interpolation

Stochastic collocation refers to methods with the goal of building an accurate approximation of the consid-
ered function using sampling [126]. However, when talking about SC in the following, we refer to SC via
polynomial interpolation; more concretely, to sparse grid SC based on Leja nodes [94]. Following [94, 126],
a brief introduction is given.

Again, let the QoI Q : Rn → R be the function to be approximated, let

TSC =
{(

ξ(1), Q(ξ(1))
)
, . . . ,

(
ξ(p), Q(ξ(p))

)}
(3.57)

be a given training data set with |TSC| = p and let Φ = {φ1, . . . , φp} be a multivariate polynomial basis, i.e.,
φj : Rn → R. Assuming that Q is well-defined and sufficiently smooth, the surrogate model Q̃(ξ) is defined
by

Q̃(ξ) =

p∑
j=1

αjφj(ξ), (3.58)

where the coefficients αj are determined by solving the linear equations system which originates by enforcing
the interpolation conditions

Q̃(ξ(j)) = Q(ξ(j)), ∀j = 1, . . . , p. (3.59)

Additionally, all or some derivatives can be used to extend the conditions (3.59)with

∂

∂ξi
Q̃(ξ(j)) =

∂

∂ξi
Q(ξ(j)), j ∈ {1, . . . , p}, i ∈ {1, . . . , n}, . (3.60)

This approach is called Hermite interpolation [65].

For the basis of (3.58) a Lagrange interpolation approach can be chosen [58, Chap. 2.2]. From univariate
interpolation it is well-known that the structure of the training data points is crucial for the quality of the
surrogate model. The fact that polynomial interpolation on unstructured or equidistant points becomes
unstable is known as the Runge phenomena [65, Chap. 6.2]. For approximations with high accuracy and
robustness, training data points should be chosen on a grid with higher density toward the boundaries of
the interval. A common choice are Chebyshev nodes [113, Chap. 20]. Unfortunately, those nodes have
a specific construction and are not nested, i.e., the surrogate model cannot simply be updated later with
additional training data points. For an improvement of the model, a new structured training data set has to
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Figure 3.6: Illustration of training data points for SC in two dimensions. Left tensor grid with equidistant
nodes, right sparse grid with adaptive Leja nodes.

be generated and evaluated, which requires the high computational effort of building a complete surrogate
model.

Transferring the findings from univariate interpolation to multivariate interpolation leads to a tensor grid
approach. Let TSC,i with |TSC,i| = pi, i = 1, . . . , n denote the training data set for the univariate surrogate
model of the i-th dimension and let Q̃i denote this surrogate model. Then, the multivariate surrogate model
is given by

Q̃(ξ) = Q̃1(ξ)⊗ · · · ⊗ Q̃n(ξ) (3.61)

and the set of training data points by

TSC = TSC,1 × · · · × TSC,n. (3.62)

This approach results in a total number of training data points p = p1 × · · · × pn. Employing all these points
of the grid is often computationally intractable. For dimensions n � 1 the convergence rate deteriorates
rapidly, which is often referred to as the curse of dimensionality [126].

An alternative is (Smolyak) sparse grids SC [22]. The idea is to neglect a subset of the training data set
TSC, which does not contribute significantly to the approximation accuracy. A visualization of training data
sets in the tensor grid and the sparse grid approach is given in Fig. 3.6. There exist different approaches
to choose the training data points which shall be considered, e.g., Clenshaw Curtis nodes, which are the
extrema of Chebyshev polynomials [30], or weighted Leja nodes [94], which will be introduced in the fol-
lowing. For each dimension i = 1, . . . , n, the weighted Leja nodes are defined recursively by an optimization
problem. Let pL,i denote the number of Leja nodes in the i-th dimension and ϕ(ξi) the probability density
function of the corresponding input parameter ξi. For j = 2, . . . , pL,i the j-th Leja node is calculated by

ξ
(j)
i = argmax

ξi∈R

√
ϕ(ξi)

j−1∏
k=1

|ξi − ξ
(k)
i |. (3.63)

The first node in each dimension can be chosen arbitrarily, and is typically set ξ(1)i = 0. The sparse grids can
also be constructed adaptively, detecting highly sensitive parameters ξi, cf. [86, 94].

Adjoint error indicator for stochastic collocation As the original model we consider the high fidelity so-
lution of the QoI, i.e., Qh(ξ), obtained for example with FEM. We introduce an adjoint error indicator for
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SC [23, 24]. Therefore, we recall the primal (2.19) and the dual (2.23) problem from Sec. 2.3 with their
corresponding systems of linear equations

Ku(ξ) = f, (3.64)

and
K†z(ξ) = q, (3.65)

respectively. We are interested in the error between the original solution Qh and the SC approximation Q̃h.
Therefore, besides the SC approximation of the QoI Q̃h, we also build SC approximations of the solutions u and
z of the original problem (3.64) and the dual problem (3.65), respectively. The same set of training data points
is employed, cf. [73]. For u no additional computing effort is caused, for z problem (3.65) needs to be solved
for each training data point. However, the additional costs for the adjoint problem can often be mitigated, e.g.
by re-using the LU decomposition of the primal problem, see [57, Chap. 4.3]. The resulting approximations
are denoted by ũ and z̃. Following [73], the SC error is given by

εsc(ξ) =
∣∣∣Qh(ξ)− Q̃h(ξ)

∣∣∣
=

∣∣(q,u(ξ))
D
−
(
q, ũ(ξ)

)
D

∣∣
=

∣∣(q,u(ξ)− ũ(ξ)
)
D

∣∣
(3.65)
=

∣∣∣(K† z(ξ),u(ξ)− ũ(ξ)
)
D

∣∣∣
(2.17)
=

∣∣(z(ξ),K (u(ξ)− ũ(ξ)
))
D

∣∣
(3.64)
=

∣∣(z(ξ), f− K ũ(ξ)
)
D

∣∣ . (3.66)

Using z̃ instead of z yields the SC error indicator

ε̃sc(ξ) :=
∣∣(z̃(ξ), f− K ũ(ξ)

)
D

∣∣ . (3.67)

3.3.3 Gaussian process regression

Another surrogate-based method is GPR [106, Chap. 2.2]. In contrast to SC, the training data points can
be chosen arbitrarily and their number does not automatically scale with the dimension. The structure of
this section is based on our work in [48, Sec. 3.1]. Again, let Q : Rn → R be the QoI to be approxi-
mated. GPR can be divided into four mandatory and one optional step. These steps are described in the
following.

1. Prior: Before we have seen any data, we start with some prior assumptions about the function we aim to
approximate, for example, about the smoothness or the mean value. These assumptions are called the prior
and are formulated as a GP {Qξ}ξ∈X , with X ⊂ Rn. The GP is completely defined by its mean functionm(ξ)
and its kernel function k(ξ, ξ′), cf. Sec. 3.1.2. In other words, according to the assumptions, in this step a
mean function and a kernel function are chosen. We write

{Qξ}ξ∈X ∼ GP
(
m(ξ), k

(
ξ, ξ′

))
. (3.68)

2. Training data: In this step, training data is collected by running simulations on the original model or by
taking measurements. The training data set is defined by

TGPR =
{(

ξ(1), Q(ξ(1))
)
, . . . ,

(
ξ(p), Q(ξ(p))

)}
, (3.69)
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where for i = 1, . . . , p, ξ(i) ∈ Rn denote the input data and Q(ξ(i)) ∈ R the output data (observation),
respectively. Further we denote the matrices of input and output data by

X =
(
ξ(1), . . . , ξ(p)

)
∈ Rn×p and Q =

(
Q(ξ(1)), . . . , Q(ξ(p))

)
∈ Rp. (3.70)

3. Posterior: The information from the prior assumptions and the collected training data is combined in order
to obtain a new GP, with updated mean and kernel function. Using

K =

 k(ξ(1), ξ(1)) . . . k(ξ(1), ξ(p))
...

...
k(ξ(p), ξ(1)) . . . k(ξ(p), ξ(p))

 and m =

 m(ξ(1))
...

m(ξ(p))

 (3.71)

and applying Bayes’ rule, cf. Sec. 3.1.1, the posterior distribution of the output Qξ depending on the training
data set is given by

Qξ|X ,Q ∼ N (m,K). (3.72)

In Fig. 3.7 example realizations for the prior and the posterior are illustrated.

4. Predictions: Depending on the prior assumptions and the training data, for an arbitrary test point ξ? the
predicted distribution is

Qξ? |ξ?,X ,Q ∼ N (m(ξ?) + k(ξ?,X )K−1(Q−m)︸ ︷︷ ︸
mean

, k(ξ?, ξ?)− k(ξ?,X )K−1k(X , ξ?)︸ ︷︷ ︸
variance

), (3.73)

with

k(ξ?,X ) =
(
k(ξ?, ξ(1)), . . . , k(ξ?, ξ(p))

)
, (3.74)

k(X , ξ?) =
(
k(ξ(1), ξ?), . . . , k(ξ(p), ξ?)

)>
. (3.75)

In order to predict the function value ofQ in ξ?, the mean value of (3.73) in this point is taken, i.e., Q̃GPR(ξ
?).

In order to predict the error or uncertainty of the GPR model in this specific point, the standard deviation
of (3.73) is considered, i.e., εGPR(ξ?) = σGPR(ξ

?).

5. Model update (optional): An existing GPR model can be updated with a new data point (ξadd, Q(ξadd)) by
adding it to the training data set by

TGPR,new = TGPR ∪
{(

ξadd, Q(ξadd)
)}

, (3.76)

and extending the input and output matrices by

X new =
(
X , ξadd

)
∈ Rn×p+1 and Qnew =

(
Q, Q(ξadd)

)
∈ Rp+1. (3.77)

We update (3.71) according to

Knew =

(
K k(X , ξadd)

k(ξadd,X ) k(ξadd, ξadd)

)
and mnew =

(
m

m(ξadd)

)
. (3.78)

Predictions for a new test point ξ? can then be obtained as in step 4, but using (3.77) and (3.78).
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Figure 3.7: Visualization of Gaussian process regression with mean value (i.e., prediction), 2σGPR interval,
training data points and sample paths drawn from the prior (left) and the posterior (right).

Since in contrast to SC, the training data points are chosen arbitrarily and a model update is possible without
generating a completely new training data set, this approach is well suited for surrogate based MC analysis. If
required, individual MC sample points can be used to improve the GPR model at any time. For the update, a
linear systemwith matrixKnew has to be solved, which is of cubic complexity in the worst case, i.e.,O(p3), but
can be reduced to O(r2p) by using low-rank approximations, where the rank of the low-rank approximation
is denoted by r [106, Chap. 8]. Thus, the computational effort of such an update is assumed to be negligible
in comparison to one evaluation of the original function Q.

3.4 Summary

In this chapter we discussed the mathematical foundations in the areas probability theory, optimization and
uncertainty quantification. Manufacturing uncertainties may lead to deviations in the geometry or material
parameters. To account for these deviations, we model uncertain parameters as random variables. Therefore,
the basic concepts of probability theory are required. Further, we recalled the law of large numbers, which is
the foundation for all sampling based methods in uncertainty quantification. We described the widely used
MC analysis as a basic sampling method. In preparation for the next chapter we introduced two surrogate
models, SC and GPR. These will be part of the hybrid yield estimation methods proposed in Sec. 4.3 and
Sec. 4.4. In the field of optimization, we recalled basic definitions and briefly described common optimization
approaches: The gradient based Newton method, which will be adapted to tackle computationally expensive
yield optimization in Sec. 5.3, the derivative free BOBYQA method, which will be modified to handle mixed
derivative information in Sec. 5.4, and MOO approaches, which will be applied for simultaneous reliability
and performance optimization in Chap. 6.
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4 Yield Estimation

This chapter is dedicated to yield (or failure probability) estimation. First, the yield is introduced formally
and an overview of existing approaches for yield estimation is provided. Then, we propose two new hybrid
methods for efficient yield estimation. One of them is based on SC, the other one on GPR. The aim of these
methods is to maintain the high estimation accuracy achieved with classic MC, while the computational effort
is reduced by evaluating most of the sample points on surrogate models. The content and structure of this
chapter follow our work in [47, 48].

4.1 Yield formulation

In the design process a device or component is optimized over its design parameters, i.e. geometry and
material parameters, such that some predefined performance requirements are fulfilled. However, manu-
facturing or environmental uncertainties may lead to deviations in the geometry and material parameters
and this may lead to a violation of the requirements. The probability, that the requirements are fulfilled,
under consideration of uncertainties, is called the yield. This implies the following relation between the yield
(probability of success) and the so-called failure probability: yield = 1 − failure probability. In this sec-
tion we will formally introduce the yield, following the definitions in [62]. Therefore, we require certain
preparations.

We define three kinds of parameters: uncertain design parameters, deterministic design parameters and
range parameters. Please note that we use the term design parameters for any kind of geometry or material
parameters of the device. However, some of these parameters cannot be influenced in the design process. For
example, the magnetization of a PMmight be affected by uncertainties due to natural material deviations, but
is not subject to optimization when designing the PMSM. The uncertain parameters ξ are modeled as random
variables, where ξ ∈ Rnξ indicates the mean or expectation value and ϕ(ξ) the corresponding probability
density function. The deterministic parameters are given by d ∈ Rnd . The range parameter describes the
environment in which the performance requirements have to be fulfilled and is denoted by r ∈ Tr ⊂ R.
Typical range parameters are temperature or frequency. We introduce nQ QoIs, cf. (2.73), in form of a function
Q : Rnξ+nd+1 → RnQ , and define its solution vector evaluated in (ξ,d, r) by Qr(ξ,d) ∈ RnQ and a bound
c ∈ RnQ . Then the performance feature specifications (PFS) are given by

Qr(ξ,d) ≤ c ∀r ∈ Tr = [rlb, rub], (4.1)

where the inequality is understood componentwise. In Fig. 4.1 we see a QoI plotted over a range parameter.
The black bar indicates the upper bound of the PFS. While the solid curve corresponds to the QoI evaluated in
ξ, the dashed curves represent possible deviations due to uncertainties.
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Figure 4.1: Illustration of a QoI plotted over a range parameter. The black bar indicates the upper bound
of the PFS. The solid curve corresponds to the QoI evaluated in ξ, the dashed curves illustrate
deviations in the QoI due to design uncertainties.

We define the safe domain as the set of all parameter combinations of the uncertain parameter fulfilling the
PFS. It depends on the current value of the deterministic parameter. Wewrite

Ω ≡ Ωd = {ξ : Qr(ξ,d) ≤ c ∀r ∈ Tr} . (4.2)

Let 1Ωd(ξ) denote the indicator function, i.e.,

1Ωd(ξ) =

{
1, ξ ∈ Ωd

0, ξ /∈ Ωd,
(4.3)

and let P denote the probability andE the expectation value. We define the yield as

Yϕ(ξ,d) ≡ Y (ξ,d) := P [ξ ∈ Ωd] = E[1Ωd(ξ)] :=

∫
Rnξ

1Ωd(ξ)ϕ(ξ)dξ. (4.4)

Note that the yield depends on the probability distribution of the uncertain parameters. However, for sim-
plicity of notation we omit the subscript ϕ in the remainder of this work. Further, if there are no determin-
istic parameters to be considered, we write only Y (ξ). Since the yield is a probability, 0 ≤ Y (ξ,d) ≤ 1
holds.

4.2 Method review

As a result of the definition of the yield via the expectation value of the indicator function, the MC analy-
sis introduced in Sec. 3.3.1 is a straightforward approach for yield estimation. Using definition (4.4) and
applying (3.52), we obtain the MC yield estimator

YMC(ξ,d) = ẼMC[1Ωd(ξ)] =
1

NMC

NMC∑
i=1

1Ωd(ξ
(i)) ≈ E[1Ωd(ξ)] = Y (ξ,d), (4.5)
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Figure 4.2: Visualization of Monte Carlo analysis. Example with two uncertain parameters ξ1 and ξ2. Ac-
cepted sample points are given in green, rejected sample points in red color. Illustration based
on [70, Fig. 2].

where {ξ(i)}i=1,...,NMC are the MC sample points of the uncertain parameter, generated according to the cor-
responding probability density function. In Fig. 4.2 an example with two uncertain parameters is shown.
Since the variance of the indicator function is given by

V[1Ωd(ξ)] = E[1Ωd(ξ)]
(
1− E[1Ωd(ξ)]

)
= Y (ξ,d)

(
1− Y (ξ,d)

)
, (4.6)

an error indicator of theMC yield estimator is obtained by inserting (4.6) into (3.56)

εMC,Y =

√
Y (ξ,d)(1− Y (ξ,d))

NMC
≤ 0.5√

NMC
. (4.7)

The inequality provides an upper bound for the error indicator which is met in case of Y (ξ,d) = 0.5.

In practice, calculating the QoI typically involves solving an expensive model, e.g. from FE discretization,
see Sec. 2.3. Since the QoI has to be evaluated for each sample point, and a large sample set is required
for high accuracy, a classic MC analysis becomes computationally prohibitive. An alternative to MC are
sampling-free methods such as the first order reliability method (FORM) and the second order reliability
method (SORM) [20, 28]. The aim of FORM / SORM is a first or second order approximation of the limit
state function, i.e. the surface between safe domain and failure domain. However, in the past years there has
been much research on improving the efficiency of sample-based methods. Mainly, we can distinguish two
ideas in order to reduce their computing effort. First, reducing the number of sample points, e.g., through
importance sampling [53] or subset simulation [7, 12, 75]. Second, reducing the effort of evaluating one
sample point, e.g. with model order reduction [66] or surrogate based approaches. In surrogate methods
a small set of sample points, so-called training data points, is used to approximate the QoI. Then, a MC
analysis is conducted using the approximation, i.e., the surrogate model, instead of the original model of
the QoI, cf. [17]. Different methods for building the surrogate model have been employed, e.g., linear
regression [105], SC [9, 85], GPR [106] and more recently neural networks [61]. The two ideas of reducing
the computing effort can also be combined. In [117, 124, 127] importance sampling and GPR are employed.
In industry, on the other hand, linearization approaches are frequently applied, assuming that the design
parameter deviations are small enough [35, Online Help: Yield Analysis Overview]. Although this approach
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is very efficient, the linearity assumption is often not valid. In Sec. 3.3.2 and Sec. 3.3.3, SC and GPR have
been introduced. In the following sections, two efficient and accurate yield estimation methods are proposed,
using SC and GPR in a hybrid framework. Therefore, first we introduce and motivate the idea of a hybrid
approach for yield estimation.

For the sake of simplicity in notation, in the following we assume nQ = 1, i.e., we consider one scalar-valued
QoI Q : Rnξ+nd+1 → R with the PFS

Qr(ξ,d) ≤ c ∀r ∈ Tr. (4.8)

However, the following surrogate based approaches can be extended straightforwardly to the case of nQ >
1, e.g. by constructing one surrogate model for each QoI and considering all resulting PFS in Ωd, and
when determining the critical sample points. According to (4.8), the inequality needs to be fulfilled for
all r ∈ Tr. We discretize Tr and obtain the discretized range parameter set Td. We reformulate the PFS as

Qr(j)(ξ,d) ≤ c ∀j = 1, . . . , |Td|. (4.9)

If (4.9) holds, the PFS (4.8) is considered to be fulfilled. On the other hand, if the inequality in (4.9) is
violated for one r(j) ∈ Td, the PFS (4.8) is considered to be not fulfilled.

Hybridmethod The reliability of a surrogate based yield estimator depends on the accuracy of the surrogate
model, which depends, among other things, on the number of training data points. This leads to a trade-
off between efficiency and accuracy. However, even if the surrogate model is highly accurate, measured by
classical norms or pointwise, the yield estimation may still fail drastically. In [85] the following example is
provided. Let a QoI be defined by the constant function Q(ξ) = 0 and the PFS by Q(ξ) ≥ 0. Then the yield
is P [Q(ξ) ≥ 0] = 1, since the requirement is fulfilled for each ξ ∈ R. Let a surrogate model be given by

Q̃N (ξ) = − 1

N
, N ≥ 1, (4.10)

which implies uniform convergence
lim
N→∞

Q̃N (ξ) = Q(ξ). (4.11)

However, the yieldwith respect to the surrogatemodel is P[Q̃N (ξ) ≥ 0] = 0 for each finiteN .

To overcome this problem, in [85] a hybrid approach is proposed, which follows the procedure illustrated in
Fig. 4.3. The idea behind this procedure is to trust the surrogate model only if the predicted function value
is far enough from the critical area, i.e., the limit between safe domain and failure domain. Otherwise, the
original model is consulted. Note, that the definition of the term far enough is crucial, and typically depends
on the prediction, an error indicator and a threshold γ. The MC sample points for which the original model
is evaluated are referred to as critical sample points. Hybrid schemes have also been employed for example
in [11, 84, 117]. Based on this key idea the following questions have to be considered when developing a
hybrid approach:

1. Which kind of surrogate is used?

2. How is the term far enough defined?

3. (How) Is it possible to update the surrogate model during the estimation process?

4. Are there further steps in order to improve efficiency and / or accuracy of the estimation?
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Input: QoI Q, uncertainty
distribution ϕ(ξ), MC sample
size NMC, threshold γ > 0

build surrogate Q̃ of Q

generate MC sample set
{ξ(i)}i=1,...,NMC , set i=1

evaluate sample point ξ(i) on Q̃set i = i + 1

Q̃(ξ(i)) ≥ γ Q̃(ξ(i)) < −γ|Q̃(ξ(i))| < γ

critical: evaluate ξ(i) on Q

Q(ξ(i)) ≥ γ Q(ξ(i)) < γ

accept: set 1Ωd(ξ
(i)) = 1 reject: set 1Ωd(ξ

(i)) = 0

i < NMC?

Return: yield estimate
YMC(ξ) = 1

NMC

∑NMC
i=1 1Ωd(ξ

(i))

no

yes

Figure 4.3: Flowchart for the basic hybrid scheme proposed in [85] for c = 0.
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The first two questions are mandatory, the other two questions are optional features. In Sec. 4.3 and Sec. 4.4
we propose two hybrid approaches based on this idea, but differing in how they deal with each of these
questions.

Excursion: rare event simulation A subfield of research on yield estimation deals with rare event simulation,
i.e., very small probabilities of failure. In [53] it is shown that a minimum number of failure events must
occur in order to provide accurate estimation results. More precisely, for failure probabilities of Pf = 10−n at
least 10n+2 sample points are required. According to [85], a rule of thumb states that for a reliable estimation
result, at least 10 failure sample points have to be generated. Therefore, it is natural that methods suitable for
the reduction of sample points are also utilized for rare event simulation. Importance sampling [53] reduces
the number of sample points by concentrated sampling in the area of interest. This is achieved by sampling a
modified probability density function and applying weight functions for each sample point when calculating
the yield by (4.5). In subset simulation [7, 12, 39] a sequence of nested subsets is generated and sequential
MC is conducted. In each step, conditional probabilities are calculated, each of them larger than the very
low failure probability, and thus, less sample points are required. In the end, the failure probability (and
thus the yield) can be calculated as a product of conditional probabilities. These are just two approaches of a
very particular research field in the context of yield estimation. In the remainder of this work higher failure
probabilities are assumed, i.e., Pf & 0.01. This implies that we are not in the situation of rare events and
choose the error bounds accordingly.

4.3 Stochastic collocation hybrid approach

In this section we propose a hybrid approach based on the sparse grid SC introduced in Sec. 3.3.2. Before
the method is described in detail, we summarize the main ideas. For the QoI a surrogate model is built using
sparse grid SC based on adaptive, weighted Leja nodes, in the following denoted by SC. The univariate Leja
nodes are generated according to (3.63) and the adaptive selection of the corresponding multivariate nodes
is based on the adjoint error indicator from (3.67), cf. [23, 24]. A MC analysis is conducted on the surrogate
model. For each MC sample point, the approximation error is estimated, also using an adjoint error indicator
for the SC surrogate model and for the FE discretization, in the following referred to as SC error and FE error.
Based on that, it is decided if the FE model is evaluated, and whether the FE discretization is refined. Using
these evaluations, the MC yield estimator is calculated. The structure and content of this section follows our
work in [47].

The proposed SC-Hybrid approach is based on the hybrid method in [85]. One main difference lies in the
way the critical sample points are determined. The authors from [85] define a tube around the limit between
safe domain and failure domain. Its size is either fixed in advance or determined by iteratively adding critical
sample points until some error bound is reached. In our work, on the contrary, an adjoint error indicator
is used in order to determine the critical sample points. An adjoint error indicator in combination with
GPR has also been applied in [25], but contrary to the hybrid approach there, in our work the polynomial
surrogate model is based on SC. Furthermore, we consider the model error, i.e., the FE discretization error,
in addition to the SC error as hybrid distinction criterion and provide a strategy for FE model refinements, if
required.
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Error indicator for SC and FEM Let Q̃h denote the SC approximation of the QoI, for which the training
data points have been evaluated on a FE model with mesh size h, i.e., on Qh. In order to determine the
critical sample points, we aim to quantify the total error of the SC surrogate Q̃h(ξ,d, r) compared to the true
value Q(ξ,d, r), which is the combination of the SC error estimation given in (3.67) and the FE error given
in (2.25). However, for the computation of the FE error, it is required to solve problem (2.19) with FEM and
the adjoint problem (2.23), this one even on a refined grid. If this would be done for each MC sample point,
it would be computationally more expensive than a classic MC analysis on the original model. Therefore,
a SC surrogate approximation of εcfe,h(ξ,d, r) from (2.25) is used, denoted by ε̃fe,h(ξ,d, r). Then, the total
approximation error indicator can be defined by

εtot,h(ξ,d, r) :=
∣∣∣Q(ξ,d, r)− Q̃h(ξ,d, r)

∣∣∣
≤
∣∣Q(ξ,d, r)−Qh(ξ,d, r)

∣∣+ ∣∣Qh(ξ,d, r)− Q̃h(ξ,d, r)
∣∣

≈ ε̃fe,h(ξ,d, r) + ε̃sc(ξ,d, r)
=: ε̃tot,h(ξ,d, r). (4.12)

Note that the separation of the FE error and the SC error by the triangle inequality is a rather conservative
choice to define the total error.

The algorithm The first step of the SC-Hybrid approach is the construction of the SC surrogate model based
on adaptive Leja nodes, as introduced in Sec. 3.3.2. For each range parameter point rj ∈ Td an own surrogate
model is built. Then, a MC analysis is carried out based on the safe domain (4.2) using the SC surrogates.
For each MC sample point ξ(i), i = 1, . . . , NMC, and each range parameter point r(j), j = 1, . . . , |Td|, i.e., each
surrogate model denoted by Q̃(j)

h , the total approximation error ε̃tot,h(ξ(i),d, r(j)) is calculated according
to (4.12). We define the interval

Iεtot(ξ(i),d, r(j)) =
[
Q̃

(j)
h (ξ(i),d)− s ε̃tot,h(ξ

(i),d, r(j)), Q̃(j)
h (ξ(i),d) + s ε̃tot,h(ξ

(i),d, r(j))
]
, (4.13)

where s ≥ 1 indicates a safety factor. If for each j = 1, . . . , |Td| each element of the interval Iεtot(ξ(i),d, r(j))
fulfills (or does not fulfill) the PFS (4.9), the i-th sample point is classified as accepted (or not accepted). If the
PFS is only fulfilled for a subset of the interval Iεtot(ξ(i),d, r(j)), the sample point is classified as critical. For all
critical sample points, the original model, i.e., the FE model with mesh size h, will be evaluated. We obtain
Qh(ξ

(i),d, r(j)). For these sample points the SC error vanishes, while the FE error remains unchanged. We
define the FE error interval by

Iεfe(ξ
(i),d, r(j)) =

[
Qh(ξ

(i),d, r(j))− s ε̃fe,h(ξ
(i),d, r(j)), Qh(ξ(i),d, r(j)) + s ε̃fe,h(ξ

(i),d, r(j))
]
. (4.14)

Following the same decision rules as above, the sample point is again classified as accepted, not accepted, or
critical. If the sample point is not critical, it is finally classified and we can continue with the next MC sample
point. Otherwise we iteratively refine the FE model, e.g. by using a finer mesh h = h/2, and reevaluate the
FE model and the corresponding FE error for this critical sample point until the sample point can be reliably
classified or a maximum number of refinement steps is reached. Applying this procedure, we obtain an
accuracy comparable to the classic MC analysis, using the finest refinement. A difference would only occur if
the error for one sample point would be greatly underestimated, leading to a wrong classification of accepted
or not accepted instead of critical. Since the adjoint error indicators are no strict upper bounds, the safety
factor s is introduced in order to avoid wrong classification by error underestimation. The size of the safety
factor is determined by evaluating a small random sample on the surrogate model Q̃h and the original model
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Figure 4.4: Visualization for the classification of a sample point ξ(i) as accepted, not accepted or critical,
based on model value Q̃ ≡ Q̃

(j)
h (ξ,d), adjoint error indicator ε ≡ ε̃

(j)
tot,h(ξ,d) and safety factor s.

Qh with the finest mesh. Then we consider the maximum ratios between the actual error and the sum of
the adjoint error indicators. Similarly to the application of the triangle inequality for the total approximation
error (4.12), the safety factor is chosen rather conservatively in this work. A conservative choice may increase
the computational effort due to too many sample points classified as critical, however it increases the accuracy
by avoiding misclassification. A visualization of classifying a sample point as accepted, not accepted or critical
is given in Fig. 4.4. The SC-Hybrid decision process for the i-th sample point is summarized in a flowchart
in Fig. 4.5.

To further increase the efficiency of the yield estimation process, we propose a shortcut strategy for the
consideration of the range parameter points r(j). Since the PFS must hold for each r(j), j = 1, . . . , |Td|, each
sample point ξ(i), i = 1, . . . , NMC is evaluated for each range parameter point, i.e., on each surrogate model
Q̃

(j)
h . If the PFS are fulfilled for one range parameter point (on the corresponding surrogate model), the test

is carried out for the next range parameter point. However, if the sample point fails to fulfill the PFS for a
single arbitrary range parameter point, the sample point can be immediately classified as not accepted and
the remaining range parameter points do not need to be considered. In the case that this sample point would
be classified as critical for a later range parameter point, computational effort can be saved. Please note
that this shortcut strategy is independent of the hybrid approach, i.e., it can also be applied in a classic MC
analysis or a SC surrogate-based MC analysis without hybrid scheme. However, in the hybrid method we can
further benefit from the fact that the QoI is evaluated in two stages. First on the surrogate model, which is
computationally cheap, then on the FE models. Since the PFS are defined as upper bounds, we assume that
range parameter points for which the surrogate model value Q̃(j)

h (ξ(i),d) is higher have a higher likelihood
that the original model valueQh(ξ(i),d, r(j)) violates the requirements. Hence, we apply an ordering strategy,
ordering the range parameter points for each sample point according to their surrogate model values and
starting examination at the range parameter point r(jstart) where

jstart = argmax
j=1,...,|Td|

Q̃
(j)
h (ξ(i),d) (4.15)

holds. Please note that for the sake of clarity this ordering strategy is not reflected in Fig. 4.5.
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Input: sample point ξ(i), deterministic parameter
d, range parameter points {r(j)}j=1,...,|Td|, safety
factor s, surrogate models Q̃(j)

h and FE models
for all refinements Q(j)

h , error indicators, initial
refinement h, finest refinement hend, bound c, j = 1

set Q ≡ Q̃
(j)
h and ε ≡ ε̃tot,h

evaluate Q and ε for ξ(i), r(j), d set j = j + 1

is Q+ s ε ≤ c? is j = |Td|? Return: ξ(i) accepted

is Q− s ε > c? Return: ξ(i)

not accepted

is Q ≡ Q̃
(j)
h ?set Q ≡ Q

(j)
h

and ε ≡ ε̃fe,h

is h = hend?set ε ≡ 0

refine the FE model h = h/2

no

no

no

no

yes

yes

yes yes

no

yes

Figure 4.5: Flowchart summarizing the hybrid decision process for one MC sample point in the SC-Hybrid
approach. Content based on [47, Algorithm 1].
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Comments and summary The proposed SC-Hybrid approach allows a reduction in the number of high
fidelity function evaluations, while maintaining high accuracy comparable with classic MC. All relevant
error sources are controlled within this algorithm: the MC error, the FE error and the surrogate error, which
is the SC error in our case. The MC error is controlled by defining a target accuracy and determining the
sample size according to (4.7). The FE error is controlled by calculating the adjoint FE error indicator and
adjusting the mesh size, if required. The SC error is controlled by calculating the adjoint SC error indicator
and evaluating the sample point on the FE model, if necessary. At this point it should be mentioned that
the SC-Hybrid approach is an intrusive method. For the calculation of the adjoint error indicators FEM
solutions and system matrices are required. Therefore, the method may not be applicable in combination
with commercial software. Also, in its current form it is not possible to easily update the surrogate model. A
variant of this approach could use regression instead of interpolation. Since the need for structured training
data would be eliminated, SC model updates would be possible, similar to the updates described for the
GPR-Hybrid approach in the next section. On the other hand, the absence of SC model updates allows for
straightforward parallelization when evaluating critical sample points, just as in classic MC analysis. Finally,
we summarize the SC-Hybrid method by answering the questions regarding hybrid approaches, posed on
page 44:

1. Surrogate: Sparse grid stochastic collocation based on adaptive, weighted Leja nodes.

2. Definition of far enough: Based on adjoint error indicators for FE error and SC error.

3. Updates: No. If an improvement of the surrogate is required, a completely new SC model with new
training data points needs to be built.

4. Further features: Control of the FE error for possible model refinements. Straightforward paralleliza-
tion.

4.4 Gaussian process regression hybrid approach

In this section we propose a hybrid approach based on GPR as introduced in Sec. 3.3.3. Similar to the SC-
Hybrid approach, a surrogate model for the QoI is built, here the approximation is a GP. Then, a MC analysis
is performed on the GPR surrogate. The mean value of the GP in a MC sample point is considered as a
QoI value prediction, and its standard deviation is considered as an error indicator. Based on that, the MC
sample point is classified. In contrast to the SC-Hybrid approach, for GPR the training data is not required to
be structured. This advantage is used to update the GPRmodel during the estimation process with critical MC
sample points, i.e., with sample points which have been evaluated on the original high fidelity model during
the estimation process. Further, sorting and parallelization strategies for the MC analysis are investigated.
GPR is a non-intrusive method, which allows the use of commercial or proprietary software as a blackbox
FEM solver. Analogously to the SC-Hybrid approach, a FE model refinement strategy could be implemented.
In order to preserve the blackbox character of the GPR-Hybrid method, it is recommended to use a non-
intrusive FE error estimator or an error estimator included in the software. The structure and content of this
section follows our work in [48].

Research on yield or failure probability estimation using surrogate models based on GPR has already been
proposed in the past, e.g. [11, 12, 25, 124, 127]. In [25] a hybrid approach using GPR for the surrogate
model combined with adjoint error indicators for determining critical sample points is proposed. In the GPR-
Hybrid approach, we generalize and extend this method using GPR for both, building the surrogate model
and obtaining an error indicator for determining the critical sample points. In [11], the authors discuss and
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compare various sorting strategies applied to the GPR training data points, with the aim of requiring less
training data points, and thus less evaluations on the high fidelity model. In [12], small failure probabilities
are calculated with a limited budget of function evaluations on the high fidelity model, i.e., a limited budget of
training data points. An adaptive GPR surrogate model is used, but it is not combined with a hybrid approach,
hence there are no critical sample points to improve the GPR surrogatemodel. Instead, the authors distinguish
between sample points generated by Bayesian subset simulation (sequential MC) for the estimation of the
failure probability and sample points adaptively generated as training data for the GPR model based on a
stepwise uncertainty reduction technique. In [124] and [127], combined surrogate model approaches based
on GPR with importance sampling are proposed. The GPR model and the importance sampling density are
improved adaptively by adding MC sample points from the last iteration to the training data set. These points
are selected by a learning function and evaluated on the high fidelity model. A hybrid approach as proposed
in [85] is not applied in [124] and [127].

The algorithm A set of training data points for the initial GPRmodel is generated. Since no specific structure
is required for the training data, it can be generated for example randomly according to the probability
density function of the uncertain parameters. As in the SC-Hybrid approach, for each range parameter point
r(j) ∈ Td an own surrogate model is built. The MC analysis is started. In contrast to the SC-Hybrid method,
the MC analysis is not conducted completely, since we aim to improve the GPR model during the estimation
process by updates with critical sample points. The MC sample is generated, and then, for each sample point
ξ(i), i = 1, . . . , NMC, and each range parameter point r(j), j = 1, . . . , |Td|, the predicted value of the QoI
Q̃(j)(ξ(i),d) and the predicted standard deviation σ(j)GPR(ξ

(i),d) ≡ ε
(j)
GPR(ξ

(i),d) are obtained. Following the
concept of sigma levels [79], again a safety factor s ≥ 1 is introduced, which is multiplied with the standard
deviation to define the GPR error interval

IεGPR(ξ(i),d, r(j)) =
[
Q̃(j)(ξ(i),d)− s ε

(j)
GPR(ξ

(i),d), Q̃(j)(ξ(i),d) + s ε
(j)
GPR(ξ

(i),d)
]
. (4.16)

As described in Sec. 4.3, the choice of s depends on the problem and can be determined by evaluating a small
test set on the high fidelity and the GPR model and calculating the ratio of true and predicted error. If the
PFS are fulfilled (or not fulfilled) for a MC sample point ξ(i), i.e., for each j = 1, . . . , |Td|, each element of the
interval IεGPR(ξ

(i),d, r(j)) fulfills (or does not fulfill) the PFS, the i-the sample point is classified as accepted
(or not accepted). If the PFS are fulfilled for a subset of the interval IεGPR(ξ

(i),d, r(j)) the i-th sample point is
classified as critical. If the sample point is critical, the high fidelity model is evaluated for this point, then it is
classified. Before we continue with the next MC sample point, the GPR model is updated, i.e., the evaluated
critical sample point is added to the training data set and the GP is recalculated. As described in Sec. 3.3.3,
the computational effort of updating the GPR model is negligible compared to one evaluation of the high
fidelity model. And since the critical sample points are evaluated in the hybrid method anyway, this update
requires almost no additional computational effort. In the following we distinguish between offline and online
evaluations of the high fidelity model. Typically the computational effort of surrogate based approaches lies
in the offline evaluations, i.e., the evaluation of training data before for example the MC analysis is started.
The hybrid approach based on GPR allows us to start with a rather small initial training data set to keep
the offline costs low. The resulting less accurate GPR model does not pose a problem for yield estimation
accuracy, since by reevaluating critical sample points on the high fidelity model, the hybrid approach ensures
the correct classification as accepted or not accepted. The only difference is that there may be more sample
points classified as critical in the beginning, if the initial GPR model is built with a smaller training data
set. The evaluations of critical sample points used for accurate classification and for model updates during
the estimation process are referred to as online costs. Since the accuracy of the GPR model increases by
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Algorithm 1 Classification of i-th MC sample point in the GPR-Hybrid approach, based on [48, Algorithm 1]

1: Input: MC sample point ξ(i), range parameter points r(j) ∈ Td and corresponding GPR models Q̃(j),
j = 1, . . . , |Td|, PFS threshold c, safety factor s, high fidelity model Q

2: for j = 1, . . . , |Td| do
3: Evaluate the GPR model and obtain Q̃ ≡ Q̃(j)(ξ(i),d) and εGPR ≡ ε

(j)
GPR(ξ

(i),d)
4: if Q̃+ s εGPR ≤ c then
5: PFS fulfilled for r(j)
6: else if Q̃− s εGPR > c then
7: Classify ξ(i) /∈ Ω (not accepted) and stop
8: else
9: Classify ξ(i) as critical sample point

10: Evaluate the high fidelity model and obtain Q ≡ Q(ξ(i),d, r(j))
Update the GPR model Q̃

11: if Q ≤ c then
12: PFS fulfilled for r(j)
13: else
14: Classify ξ(i) /∈ Ω (not accepted) and stop
15: end if
16: end if
17: if j = |Td| then
18: Classify ξ(i) ∈ Ω (accepted)
19: else
20: Continue with j = j + 1
21: end if
22: end for

updates during the yield estimation, the number of critical sample points decreases towards the end of the
process.

The procedure for classifying one MC sample point within the GPR-Hybrid approach is provided in Algo-
rithm 1. As in the SC-Hybrid approach, a shortcut strategy is applied, i.e., if a sample point fails to fulfill
the PFS for one range parameter point, the remaining range parameter points do not need to be considered.
Further, the range parameter points could be ordered according to (4.15). This ordering is not represented
in Algorithm 1.

Parallelization A classic MC analysis is well-suited for parallelization, since each sample point is evaluated
independently. The same holds for a hybrid approach without model updates. However, if the GPR model is
to be updated with each critical sample point, the evaluation of critical sample points and also the evaluation
of all sample points on the GPR model is required to be performed sequentially. In order to enable parallel
computing for hybrid approaches with model updates, we introduce so-called batches. Let NB denote the
size of a batch. Only after the evaluation of NB critical sample points on the high fidelity model (possibly in
parallel) is the GPR model updated. Setting NB = 1 indicates that no batches are used and the model update
is conducted immediately, i.e., no parallelization is possible.

After evaluating a batch of critical sample points, all or a subset of the critical sample points can be used to
update the GPR model. If all critical sample points are used for the update, all critical points are added to
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the training data set of the corresponding j-th surrogate model Q̃(j), j = 1, . . . , |Td|, the GPs are updated
and we continue with the classification of the remaining MC sample points. If only a subset is used, they are
chosen in a greedy way. The critical sample points of the batch corresponding to the j-th range parameter
point are collected in the set C(j). The sample point in C(j) with the maximum difference between predicted
value and real value of the QoI is added to the training set first, i.e.,

ξadd = argmax
ξ(i)∈C(j)

∣∣∣Q̃(j)(ξ(i),d)−Q(ξ(i),d, r(j))
∣∣∣ . (4.17)

The GP is updated with this additional point and the remaining critical sample points in C(j) are evaluated
on the updated GPR model in order to obtain a new, better prediction and (4.17) is evaluated again. This
procedure is repeated until the error is below a given tolerance εB. When solving in batches, it can be
advisable to include only a subset of the critical sample points in order to avoid too many, closely neighboring
training data points. In a sequential updating procedure without batches, this problem cannot occur, since a
sample point is unlikely to be classified as critical, if a very closely neighboring point is already in the training
data set. Setting εB = 0 indicates using all critical sample points for model updates. After the updates,
like before, the hybrid yield estimation proceeds with evaluating the remaining MC sample points on the
updated GPR models until again NB sample points have been identified as critical and evaluated on the high
fidelity model (possibly in parallel). Note that without much extra cost, after each model update it is also
possible to reevaluate all already considered non-critical MC sample points on the updated GPR model. The
procedure for yield estimation with the GPR-Hybrid approach is represented in Algorithm 2. The combination
of Algorithm 1 and Algorithm 2 is illustrated in a flowchart in Fig. 4.6.

Sorting strategies The efficiency of the hybrid approach with model updates can be improved by consid-
ering the MC sample points in an optimized order. The sample points are sorted, such that we start the
classification with the most promising sample points in the sense that they contribute most to the improve-
ment of the GPR model. This shall lead to an earlier improvement of the GPR model and hence, to more
sample points classified correctly as accepted or not accepted without being evaluated on the high fidelity
model. The sorting of the MC sample points requires information about the model value and the predic-
tion error. Therefore, first, the whole MC sample set is evaluated on the initial GPR surrogate models to
obtain Q̃(j)(ξ(i),d) and ε(j)GPR(ξ

(i),d), for i = 1, . . . , NMC and j = 1, . . . , |Td|. Then, a sorting criterion is ap-
plied to order the MC sample points. In [11] a collection and comparison of various sorting criteria can be
found. We focus on two criteria. The first one is introduced by Echard, Gayton and Lemaire in [41], it is
referred to as the EGL criterion in the following. For the i-th sample point, the EGL criterion is calculated by

CEGL(ξ
(i)) := min

j=1,...,|Td|

∣∣∣Q̃(j)(ξ(i),d)− c
∣∣∣∣∣∣ε(j)GPR(ξ

(i),d)
∣∣∣ , (4.18)

where c denotes the upper bound from the PFS (4.8). Then, all MC sample points are sorted beginning with
the smallest value of the EGL criterion, i.e.,

istart = argmin
i=1,...,NMC

CEGL(ξ
(i)). (4.19)

We propose a second criterion, based on the hybrid decision criterion (4.16), it is referred to as the hybrid
criterion and defined by

CH(ξ
(i)) := max

j=1,...,|Td|

(
c−

(
Q̃(j)(ξ(i),d)− s ε

(j)
GPR(ξ

(i),d)
))((

Q̃(j)(ξ(i),d) + s ε
(j)
GPR(ξ

(i),d)
)
− c
)
. (4.20)
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Input: MC sample set {ξ(i)}i=1,...,NMC , deterministic parameter d, range parameter
points {r(j)}j=1,...,|Td|, safety factor s, surrogate models Q̃(j) and original high fidelity
model Q, bound c, error tolerance εB ≥ 0, batch size NB ∈ N, C(j) = ∅ ∀j =

1, . . . , |Td|, Ωd = ∅, counter for critical sample points #HFonline
GPR-H = 0, i = 1, j = 1

evaluate Q ≡ Q̃(j)(ξ(i),d)
and ε ≡ ε

(j)
GPR(ξ

(i),d)
set j = j + 1

is Q+ s ε ≤ c? is j = |Td|?
classify ξ(i) as
accepted, set
Ωd = Ωd ∪ ξ(i)

is Q− s ε > c?classify ξ(i) as
not accepted

classify ξ(i) as critical,
set C(j) = C(j) ∪ ξ(i),

evaluate Q = Q(ξ(i),d, r(j)),
set #HFonline

GPR-H = #HFonline
GPR-H + 1

is Q ≤ c?

#HFonline
GPR-H ≥ NB?is i < NMC?

i = i + 1
j = 1

Return: yield esti-
mate YMC(ξ,d) = |Ωd|

NMC

j = 1

is C(j) = ∅?

determine ξadd with (4.17), ε =
Q̃(j)(ξadd,d) − Q(ξadd,d, r(j)),

set C(j) = C(j)\ξadd

update Q̃(j) with ξadd,
update Q̃(j) ∀ξ(i) ∈ C(j)

is ε ≤ εB?

∀ξ(i) ∈ C(j) classify acc. to
Q̃(j)(ξ(i),d) ≤ c, set C(j) = ∅

is j = |Td|?

j = j + 1

no

no

yes
no

no

yes

no

yes yes

no

yes

yes

no

no

yes

yes
no

yes

Figure 4.6: Flowchart summarizing the yield estimation process in the GPR-Hybrid approach. Content
based on [48, Algorithm 1, 2].
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Algorithm 2 Yield estimation with the GPR-Hybrid approach, based on [48, Algorithm 2]

1: Input: MC sample set
{
ξ(i)
}
i=1,...,NMC

, range parameter points r(j) ∈ Td and corresponding GPR models

Q̃(j), j = 1, . . . , |Td|, PFS threshold c, safety factor s, high fidelity model Q, error tolerance εB ≥ 0, batch
size NB ∈ N

2: for i = 1, . . . , NMC do
3: Classify ξ(i) according to Algorithm 1
4: Count number of online high fidelity evaluations #HFonlineGPR-H
5: for j = 1, . . . , |Td| do
6: Define C(j) =

{
ξ(i) : ξ(i) classified as critical for r(j) in last NB MC evaluations

}
7: end for
8: if #HFonlineGPR-H is an integer multiplier of NB then
9: for j = 1, . . . , |Td| do

10: Initialize ε = ∞
11: while ε > εB do
12: Set ξadd = argmaxξ(i)∈C(j)

∣∣∣Q̃(j)(ξ(i),d)−Q(ξ(i),d, r(j))
∣∣∣

13: Update Q̃(j) with sample point ξadd
14: Evaluate updated GPR model and obtain updated Q̃(j)(ξ(i),d) for all ξ(i) ∈ C(j)

15: Calculate ε = maxξ(i)∈C(j)

∣∣∣Q̃(j)(ξ(i),d)−Q(ξ(i),d, r(j))
∣∣∣

16: end while
17: end for
18: end if
19: end for
20: Estimate the yield with Y (ξ) = |Ω|

NMC

Per definition it holds that

CH(ξ
(i))

{
> 0, if ξ(i) is critical
≤ 0, else.

(4.21)

For the hybrid criterion, the MC sample points are sorted beginning with the largest value of the hybrid
criterion, i.e.,

istart = argmax
i=1,...,NMC

CH(ξ
(i)). (4.22)

Algorithm 3 is a modification of Algorithm 2, applying the sorting strategy. Although, in this work we focus on
sampling strategies based on the EGL and the hybrid criterion, any other criterion could be used instead, for
example one from [11]. Once a GPR model is updated for one batch of critical sample points, the remaining
MC sample points are reevaluated on the updated GPR models and are sorted again, according to the chosen
criterion. This procedure is repeated until each sample point is classified as accepted or not accepted and the
MC yield estimator can be calculated.

Comments and summary Using the GPR-Hybrid approach for yield estimation enables the reduction of high
fidelity evaluations by maintaining high accuracy comparable with classic MC. The GPR-Hybrid approach
has three important advantages over the SC-Hybrid approach. First, the training data set is not required
to be structured and updating the GPR model with a new training data point is computationally negligible.
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Algorithm 3 Sorting strategy for yield estimation in the GPR-Hybrid approach, based on [48, Algorithm 3]
1: Input: input from Algorithm 2, sorting criterion
2: Evaluate all sample points ξ(i), i = 1, . . . , NMC on the GPR models
3: Sort all sample points according to the chosen sorting criterion
4: for i = 1, . . . , NMC do
5: Run lines 3-7 from Algorithm 2 (i.e., classify ξ(i) and define C(j))
6: if #HFonlineGPR-H is an integer multiplier of NB then
7: Run lines 9-17 from Algorithm 2 (i.e., update GPR models)
8: Evaluate remaining sample points ξ(k), k = i+ 1, . . . , NMC
9: Sort the remaining sample points according to the chosen sorting criterion

10: end if
11: end for
12: Estimate the yield with Y (ξ) = |Ω|

NMC

This allows initialization with a rather small initial training data set and updates of the GPR model during
the MC estimation procedure. Second, GPR provides an error indicator in form of the standard deviation of
the GP. Hence, no additional computational effort nor information is required to calculate an error indicator
for the hybrid distinction criterion. This leads to the third point, neither for the generation of the surro-
gate model nor for the calculation of the error indicator are any FEM solutions or system matrices required,
only the value of the QoI. This makes the GPR-Hybrid approach a blackbox method easily usable with pro-
prietary software. Additionally, the application of parallelization and sorting strategies is possible. Finally,
we summarize the GPR-Hybrid method by answering the questions regarding hybrid approaches posed on
page 44:

1. Surrogate: GPR.

2. Definition of far enough: Based on the standard deviation of the GPR model.

3. Updates: Yes. Since there is no need of structured training data, arbitrary points, e.g. critical MC
sample points, can be added to the training data set and the GPR model can be updated with negligible
computational costs.

4. Further features: The usage of batches provides a parallelization strategy. The option of sorting MC
sample points may further increase efficiency.

4.5 Summary

In the beginning of this chapter we formally introduced the yield as the fraction of realizations in a man-
ufacturing process with uncertainties fulfilling all PFS. We provided a review of existing yield estimation
methods, before we proposed two new yield estimation approaches. Both are hybrid methods, which means
that most of the MC sample points are evaluated on a surrogate model while only a small subset of criti-
cal sample points is evaluated on the high fidelity model. This saves computing time while high accuracy
standards from classic MC are maintained. The SC-Hybrid approach relies on SC as surrogate model. For
determining the critical sample points, an adjoint SC error indicator is employed. This requires knowledge
of the FEM matrices and solutions, which limits the use of proprietary software. The GPR-Hybrid approach
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relies on GPR as the surrogate model and utilizes the standard deviation of the GP as error indicator for deter-
mining critical sample points. The blackbox character enables the straightforward application of proprietary
software for solving the QoI (here FEM software) and the unstructured training data points allow the use
of critical sample points for GP model updates during the estimation process. Parallelization strategies were
also discussed. In both methods a FE model refinement strategy can be applied. For the SC-Hybrid approach
this has been implemented based on an adjoint FE error indicator. The next chapter uses those algorithms
within the maximization of the yield.
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5 Yield optimization

We introduced the yield as the fraction of realizations in a manufacturing process fulfilling the PFS, see (4.4).
Besides the estimation of the yield, e.g. with one of the methods presented in Chap. 4, the maximization of
the yield is the next natural task. This chapter deals with different methods for yield optimization, depending
on the specific problem and the information available.

The adaptive Newton-MC method is a modification of the globalized Newton method specialized on keeping
the computational effort of yield optimization low. The Hermite least squares and Hermite BOBYQA methods
are modifications of Powell’s BOBYQA method, for the case that some partial derivatives are available and
are to be used. This is a general optimization framework and not limited to yield optimization. However,
in Sec. 5.1 we will see that the situation of mixed gradient information is particularly relevant if a yield is
optimized over uncertain and deterministic parameters at the same time.

For the yield defined in (4.4) the general formulation of the optimization problem is given by

max
ξ,d

Y (ξ,d), (5.1)

where ξ ∈ Rnξ and d ∈ Rnd . In this formulation, the yield is maximized over both types of design parameters
– deterministic and uncertain parameters – and the problem is unconstrained. In Sec. 5.2 we will introduce
different kinds of constraints.

5.1 Derivative calculation

In Sec. 3.2.2 we summarized common optimization methods dividing them into gradient based and deriva-
tive free optimization methods. In order to apply and modify gradient based optimization techniques in
the following sections, we derive the first and second order derivatives of the yield based on [62, Chap.
7.1].
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5.1.1 Derivatives with respect to mean of uncertain parameters

We recall the definition of the yield from (4.4) and derive first the derivative with respect to the mean value
of the uncertain parameter ξ, i.e.,

∇ξY (ξ,d) (4.4)
= ∇ξ

∫
Rnξ

1Ωd(ξ)ϕ(ξ)dξ (5.2)

(?)
=

∫
Rnξ

∇ξ

(
1Ωd(ξ)ϕ(ξ)

)
dξ (5.3)

(??)
=

∫
Rnξ

1Ωd(ξ)∇ξϕ(ξ)dξ. (5.4)

The equality (?) holds since the integral is built over ξ and not over ξ, the equality (??) holds since ξ does
not appear in the indicator function. Hence, only the gradient of the probability density function needs
to be calculated. Let us assume, that all uncertain parameters are Gaussian distributed, cf. (3.5), then,
ϕ(ξ) is the probability density function of a multivariate Gaussian distribution, and its derivative is given
by

∇ξϕ(ξ) ≡ ∇ξϕN (ξ,Σξ)
(ξ) (5.5)

= ∇ξ det(2πΣξ)
− 1

2 exp
(
−1

2
(ξ − ξ)>Σ−1

ξ (ξ − ξ)

)
(5.6)

= Σ−1
ξ (ξ − ξ)ϕN (ξ,Σξ)

(ξ), (5.7)

whereΣξ is the covariancematrix of the uncertain parameter. Inserting (5.7) into (5.4) yields

∇ξY (ξ,d) =
∫
Rnξ

1Ωd(ξ)Σ
−1
ξ (ξ − ξ)ϕN (ξ,Σξ)

(ξ)dξ. (5.8)

In the same way, the Hessian with respect to ξ can be obtained

∇2
ξ
Y (ξ,d) =

∫
Rnξ

1Ωd(ξ)Σ
−1
ξ

(
(ξ − ξ)(ξ − ξ)> −Σξ

)
Σ−1

ξ ϕN (ξ,Σξ)
(ξ)dξ. (5.9)

Hence, in case of Gaussian distributed uncertain parameters, closed form formulations of the gradient and
the Hessian with respect to ξ exist. In general, i.e., for arbitrary distributions, this is not the case, as we will
see in the end of this section.

Simplification and estimation of derivatives We aim to simplify the formulations (5.8) and (5.9) in order
to show that the gradient and the Hessian with respect to the mean value of Gaussian distributed uncertain
parameters can be estimated without additional computing effort when the yield itself has been estimated
with a MC analysis. The required simplification is stated in Theorem 1, but first we need some preparation.
We follow [62, Chap. 7.1].

Definition 4 (Acceptance-truncated distribution (ATD)). Let Y (ξ,d) be the yield as defined in (4.4) with
deterministic parameter d and uncertain parameter ξ ∼ N (ξ,Σξ). Further let ϕN (ξ,Σξ)

(ξ) denote the corre-
sponding probability density function. Then,

ϕATD(ξ) =
1

Y (ξ,d)
1Ωd(ξ)ϕN (ξ,Σξ)

(ξ) (5.10)

defines the acceptance-truncated distribution with respect to ϕN (ξ,Σξ)
(ξ).
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The distribution (5.10) represents the uncertain parameter combinations fulfilling the PFS, i.e., lying inside
the safe domain Ωd. Please note, that in general, this is not a Gaussian distribution. The mean and the
covariance of ϕATD(ξ) are given by

ξATD = EϕATD [ξ] =
1

Y (ξ,d)

∫
Rnξ

ξ 1Ωd(ξ)ϕN (ξ,Σξ)
(ξ)dξ, (5.11)

ΣATD = EϕATD

[
(ξ − ξATD)(ξ − ξATD)

>
]

=
1

Y (ξ,d)

∫
Rnξ

(ξ − ξATD)(ξ − ξATD)
>1Ωd(ξ)ϕN (ξ,Σξ)

(ξ)dξ. (5.12)

We obtain a simplified and calculable formulation of the gradient and the Hessian of the yield.

Theorem 1. Let Y (ξ,d) be the yield as defined in (4.4) with deterministic parameter d and uncertain parameter
ξ ∼ N (ξ,Σξ). Further let ϕN (ξ,Σξ)

(ξ) denote the probability density function and ϕATD(ξ) the corresponding
acceptance-truncated distribution with mean ξATD and covariance matrix ΣATD. Then, the gradient and the
Hessian of the yield with respect to ξ are given by

∇ξY (ξ,d) = Y (ξ,d)Σ−1
ξ (ξATD − ξ), (5.13)

∇2
ξ
Y (ξ,d) = Y (ξ,d)Σ−1

ξ (ΣATD + (ξATD − ξ)(ξATD − ξ)> −Σξ)Σ
−1
ξ . (5.14)

Proof. We start with the proof of (5.13). We derive

∇ξY (ξ,d) (5.8)
=

∫
Rnξ

1Ωd(ξ)Σ
−1
ξ (ξ − ξ)ϕN (ξ,Σξ)

(ξ)dξ (5.15)

= Σ−1
ξ

(∫
Rnξ

1Ωd(ξ) ξ ϕN (ξ,Σξ)
(ξ)dξ − ξ

∫
Rnξ

1Ωd(ξ)ϕN (ξ,Σξ)
(ξ)dξ

)
(5.16)

(5.11),(4.4)
= Σ−1

ξ

(
Y (ξ,d)ξATD − ξY (ξ,d)

)
(5.17)

= Y (ξ,d)Σ−1
ξ

(
ξATD − ξ

)
. (5.18)

For the Hessian we show (5.14)

∇2
ξ
Y (ξ,d) (5.9)

=

∫
Rnξ

1Ωd(ξ)Σ
−1
ξ

(
(ξ − ξ)(ξ − ξ)> −Σξ

)
Σ−1

ξ ϕN (ξ,Σξ)
(ξ)dξ (5.19)

= Σ−1
ξ

(∫
Rnξ

1Ωd(ξ) (ξ − ξ)(ξ − ξ)>ϕN (ξ,Σξ)
(ξ)dξ︸ ︷︷ ︸

=:(?)

(5.20)

−
∫
Rnξ

1Ωd(ξ)Σξ ϕN (ξ,Σξ)
(ξ)dξ︸ ︷︷ ︸

=ΣξY (ξ,d)

)
Σ−1

ξ . (5.21)
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We transform (?) by replacing (ξ − ξ) by (ξ − ξATD) + (ξATD − ξ) and applying (4.4), (5.11) and (5.12)

(?) =

∫
Rnξ

1Ωd(ξ)
(
(ξ − ξATD) + (ξATD − ξ)

) (
(ξ − ξATD) + (ξATD − ξ)

)>
ϕN (ξ,Σξ)

(ξ)dξ (5.22)

binom.
=

∫
Rnξ

1Ωd(ξ) (ξ − ξATD)(ξ − ξATD)
>ϕN (ξ,Σξ)

(ξ)dξ︸ ︷︷ ︸
(5.12)
= ΣATDY (ξ,d)

(5.23)

+ 2

∫
Rnξ

1Ωd(ξ) (ξ − ξATD)(ξATD − ξ)>ϕN (ξ,Σξ)
(ξ)dξ (5.24)

+

∫
Rnξ

1Ωd(ξ) (ξATD − ξ)(ξATD − ξ)>ϕN (ξ,Σξ)
(ξ)dξ︸ ︷︷ ︸

(4.4)
= Y (ξ,d)(ξATD−ξ)(ξATD−ξ)>

(5.25)

= ΣATDY (ξ,d) (5.26)

+ 2
(∫

Rnξ

1Ωd(ξ) ξ ϕN (ξ,Σξ)
(ξ)dξ︸ ︷︷ ︸

(5.11)
= Y (ξ,d)ξATD

− ξATD

∫
Rnξ

1Ωd(ξ)ϕN (ξ,Σξ)
(ξ)dξ︸ ︷︷ ︸

(4.4)
= ξATDY (ξ,d)

)
(ξATD − ξ)> (5.27)

+ Y (ξ,d)(ξATD − ξ)(ξATD − ξ)> (5.28)

and insert (?) back into (5.21)

∇2
ξ
Y (ξ,d) = Σ−1

ξ

(
ΣATDY (ξ,d) + Y (ξ,d)(ξATD − ξ)(ξATD − ξ)> −ΣξY (ξ,d)

)
Σ−1

ξ (5.29)

= Y (ξ,d)Σ−1
ξ (ΣATD + (ξATD − ξ)(ξATD − ξ)> −Σξ)Σ

−1
ξ . (5.30)

When the yield is estimated with a sample based approach, e.g. classic MC analysis (see Sec. 3.3.1), SC-
Hybrid approach (see Sec. 4.3) or GPR-Hybrid approach (see Sec. 4.4), then the mean and covariance of the
acceptance-truncated distribution (5.11–5.12) can be estimated by [62]

ξATD ≈ ξ̃ATD =
1

NΩd

NMC∑
i=1

1Ωd(ξ
(i))ξ(i), (5.31)

ΣATD ≈ Σ̃ATD =
1

NΩd − 1

NMC∑
i=1

1Ωd(ξ
(i))(ξ(i) − ξ̃ATD)(ξ

(i) − ξ̃ATD)
>, (5.32)

where NΩd ≡ |Ωd| ≤ NMC denotes the number of sample points inside the safe domain Ωd and ξ(i), i =

1, . . . , NMC the i-th MC sample point. Since 1Ωd(ξ
(i)) has already been evaluated for all i = 1, . . . , NMC

within the yield estimation and also Ωd and thus NΩd are known, (5.31) and (5.32) are obtained without
any additional computational effort. It follows, that once the yield is estimated, its gradient and Hessian can
also be calculated without additional computational effort.

Corollary 2. Assume we have the same setting as in Theorem 1 and note that mean value ξ and covariance
matrix Σξ of the uncertain parameter ξ are given. Let Ỹ (ξ,d) denote a MC based estimation of the yield and
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ξ̃ATD and Σ̃ATD the approximations from (5.31) and (5.32). Then, the gradient and the Hessian of the yield with
respect to ξ can be estimated by

∇ξY (ξ,d) ≈ ∇ξỸ (ξ,d) = Ỹ (ξ,d)Σ−1
ξ (ξ̃ATD − ξ), (5.33)

∇2
ξ
Y (ξ,d) ≈ ∇2

ξ
Ỹ (ξ,d) = Ỹ (ξ,d)Σ−1

ξ (Σ̃ATD + (ξ̃ATD − ξ)(ξ̃ATD − ξ)> −Σξ)Σ
−1
ξ . (5.34)

Non-Gaussian uncertain parameters Let us now assume, that the uncertain parameters are not all Gaussian
distributed. Then, in general, derivatives of their probability density functions are not available in closed
form. This implies that the simplified formulation of the yield derivatives and the computability without
additional effort cannot be ensured. For illustration, let us consider a uniformly distributed one-dimensional
uncertain parameter. In (5.4) the gradient of the probability density function is required. Let ξ be the
mean value of the uniform distribution and ∆ξ > 0. Then, the probability density function is given by

ϕU(ξ−∆ξ,ξ+∆ξ)
(ξ) =

{
1

2∆ξ
, if ξ −∆ξ ≤ ξ ≤ ξ +∆ξ

0, else.
(5.35)

This can also be written using an indicator function

ϕU(ξ−∆ξ,ξ+∆ξ)
(ξ) =

1

2∆ξ
1[ξ−∆ξ,ξ+∆ξ]

(ξ) + 1<ξ−∆ξ
(ξ) · 0 + 1>ξ+∆ξ

· 0︸ ︷︷ ︸
=0

. (5.36)

Calculating the gradient of (5.36) involves calculating the derivative of the indicator function. For this, we
refer to the following section.

In Sec. 3.1 we introduced the truncated Gaussian distribution. This distribution is almost Gaussian, but
ensures physical behavior of the parameters. Although the corresponding gradient and Hessian are not
exactly given by (5.13) and (5.14), these are good approximations. In Sec. 6.3.1 we show that the resulting
errors are negligible compared to the MC error. Hence, in the numerical tests in Chap. 6 we consider the
derivatives as available, when the parameter is truncated Gaussian distributed and use (5.13) and (5.14),
respectively.

5.1.2 Derivatives with respect to deterministic parameters

In Problem (5.1) the yield is optimized over the mean of the uncertain parameter and over the determin-
istic parameter. In the last section we discussed the derivation of the gradient with respect to the former,
this section deals with the derivation of the gradient with respect to the latter. Analogously to (5.2), we
obtain

∇dY (ξ,d) (4.4)
= ∇d

∫
Rnξ

1Ωd(ξ)ϕ(ξ)dξ (5.37)

(?)
=

∫
Rnξ

∇d
(
1Ωd(ξ)ϕ(ξ)

)
dξ (5.38)

(??)
=

∫
Rnξ

∇d1Ωd(ξ)ϕ(ξ)dξ. (5.39)

Again, the gradient can be drawn into the integral, cf. (?). This time, the probability density function
does not depend on the optimization variable for which we calculate the gradient, but the safe domain
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Ωd does, cf. (??). Hence, the derivative of an indicator function is required. Since the gradient of the
indicator function is related to the Dirac distribution [81], this derivative exists only in the distributional
sense. Therefore, a numerical computation of (5.39) is also not straightforward. Hence, in the remain-
der of this work, the gradients including derivatives of the indicator function are considered as unavail-
able.

5.2 Optimization problem formulations

We summarize that once the yield is estimated, the first and second order derivatives of the yield with re-
spect to the mean value of (almost) Gaussian distributed uncertain parameters are available without any
noteworthy additional computing effort. This statement does not hold for derivatives with respect to de-
terministic or non-Gaussian distributed uncertain parameters. Although we discussed in Sec. 5.1.2 that
approximations of these gradients are also possible, there are several impediments: especially the gradient
of the QoI must be available and problem dependent approximations of the Dirac distribution must be found.
To our best knowledge, for finding a well suited approximation of the Dirac distribution there are research
achievements and rules, but no tuning algorithms or established criteria. For that reason, we decided not
to approximate the derivatives with respect to deterministic or non-Gaussian distributed uncertain parame-
ters. Instead, we assume them to be unavailable. This motivates the formulation of different optimization
problems, depending on the type of optimization variables, i.e., depending on the derivative information
available.

5.2.1 Single objective optimization problem for gradient based solvers

We formulate an unconstrained SOO problem which allows the usage of gradient based optimization algo-
rithmswithout the necessity of approximating derivatives. The problem reads

max
x∈Rn

f(x), (5.40)

where f : Rn → R is twice continuously differentiable and ∇xf(x) and ∇2
xf(x) are available. In the context

of yield optimization the problem reads

max
ξ∈Rξ

Y (ξ,d), (5.41)

where the yield is defined as in (4.4) and ξ ∼ N (ξ,Σξ) is a Gaussian distributed uncertain parameter.
From Sec. 5.1.1 we know that the gradient and the Hessian of the yield are then available. In Sec. 5.3
we propose the adaptive Newton-MC algorithm which is an efficient modification of the Newton method to
solve (5.41).
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5.2.2 General single objective optimization problem

We generalize (5.40). We still assume that the objective function is twice continuously differentiable, but now
we permit that some or all partial derivatives are unavailable, e.g. because they are too expensive to compute.
In addition, we allow bound constraints. The optimization problem reads

max
x∈Rn

f(x) (5.42)

s.t. xlb ≤ x ≤ xub

with f : Rn → R twice continuously differentiable, but now ∂
∂xi
f(x) is only available for a subset of

{1, . . . , n}.

Let the yield be defined as in (4.4). Let d ∈ Rd denote a deterministic design parameter, ξG ∼ N (ξG,ΣξG)
a Gaussian distributed uncertain parameter and ξnG a non-Gaussian distributed uncertain parameter with
ξnG = E[ξnG]. Then, the general, bound constrained single-objective yield optimization problem reads

max
ξG,ξnG,d

Y (ξG, ξnG,d) (5.43)

s.t. ξG,lb ≤ ξG ≤ ξG,ub

ξnG,lb ≤ ξnG ≤ ξnG,ub

dlb ≤ d ≤ dub.

Following Sec. 5.1.1 and Sec. 5.1.2, the derivatives with respect to ξG are available, the others are not.
In (5.43), the yield depends on all parameter types ξG, ξnG and d and all of them are optimization variables.
But this is not necessary. The dependence and / or the optimization over types of parameters is allowed to
be omitted. Problem (5.41) for example is an unconstrained special case of (5.43), where the yield depends
only on ξG ≡ ξ and d, and the only optimization variable is ξG ≡ ξ. We formulate two further special
cases, which are interesting for the remainder of this work. First, we consider the problem where the yield
depends on deterministic and arbitrarily distributed uncertain parameters, but we only optimize over the
deterministic parameters. Thus, only the derivatives with respect to d are of interest. Following Sec. 5.1.2
they are considered as unknown. The problem reads

max
d

Y (ξG, ξnG,d) (5.44)

s.t. dlb ≤ d ≤ dub.

Second, we formulate a simplified version of (5.43) by leaving out the non-Gaussian distributed uncertain
parameter. We obtain

max
ξG,d

Y (ξG,d) (5.45)

s.t. ξG,lb ≤ ξG ≤ ξG,ub

dlb ≤ d ≤ dub.

The motivation for this formulation is to distinguish only two types of parameters. One type, for which
the derivative information is available (ξG), and one type for which the derivative information is not avail-
able (d). In Sec. 5.4 we propose an optimization strategy which is developed to efficiently handle objec-
tive functions for which some partial derivatives are known and others are unknown. These Hermite-type
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algorithms are general optimization approaches well suited for yield optimization as (5.45), but not lim-
ited to this application. In the Hermite-type method, non-Gaussian distributed uncertain parameters would
be treated as deterministic parameters in the optimization procedure (certainly not in the estimation pro-
cess).

5.2.3 Multi objective optimization problem

Maximizing the yield means increasing the reliability of a design in a manufacturing process. In practice,
however, there are often other performance features that also should be optimized, e.g. power, costs or size.
In (3.32) we formulated a general MOO problem. Let f1 be the yield. We obtain the general multi-objective
yield optimization problem formulation

max
ξG,ξnG,d

Y (ξG, ξnG,d) (5.46)

max
ξG,ξnG,d

fi(ξG, ξnG,d) i = 2, . . . , k

s.t. ξG ∈ XG

ξnG ∈ XnG

d ∈ Xd.

As in the previous sections, ξG is a Gaussian distributed uncertain parameter for which the derivatives are
assumed to be available, ξnG and d are non-Gaussian distributed uncertain parameters and deterministic
parameters, respectively, for which the derivatives are considered as unavailable. In contrast to the sec-
tions above, we formulate the constraints more generally, i.e., they are not limited to bound constraints.
As in Sec. 5.2.2, different types of parameters could be left out which generates special cases analogously
to (5.41), (5.44) and (5.45). We refrain from formulating these special cases. When solving (5.46) with a
scalarization technique as described in Sec. 3.2.2, the problem is transformed into a SOO problem. If addi-
tionally, problem (5.46) is only bound constrained, the problem reduces to (5.43) (or one of the formulated
special cases) and can be solved with the same techniques mentioned above. Otherwise, if scalarization meth-
ods are applied, but (5.46) is not only bound constrained, the methods LINCOA (for linear constraints) or
COBYLA (for general constraints) can be applied, see Sec. 3.2.2. For solving (5.46) directly as MOO problem,
genetic algorithms can be applied, see also Sec. 3.2.2.

5.3 Adaptive Newton-MC

In this section we will propose an algorithm that is called adaptive Newton-MC optimization. It is a modifica-
tion of the Newton algorithm introduced in Sec. 3.2.2 and an efficient method to solve the yield optimization
problem (5.41), i.e., yield optimization under the assumption that all first and second order derivatives are
available. This section follows our work in [47].

The globalized Newton method illustrated in Fig. 3.2 is formulated for a minimization problem. Since the
yield, i.e., the objective function, shall bemaximized, we rewrite (5.41) as

min
ξ∈Rξ

−Y (ξ,d). (5.47)
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Let us assume that the yield is estimated by a classic MC analysis, cf. Sec. 3.3.1 and Sec. 4.2. We recall the
error estimator of the MC yield estimator from (4.7)

εMC,Y =

√
Y (ξ,d)(1− Y (ξ,d))

NMC
≤ 0.5√

NMC
. (5.48)

The accuracy of the MC yield estimator depends on the sizeNMC of the MC sample set. On the other hand, so
does the computational effort of the yield estimation. In each iteration of the Newton method, the yield has
to be estimated – possibly several times. Thus, an accurate yield estimation in each step of the optimization
is computationally challenging. However, the accuracy of the yield estimator at intermediate steps of the
optimization routine is not essential to find an optimal solution in the end. It is sufficient that the gradient
obtained in each step indicates the right descent direction. Only towards the termination of the algorithm,
high accuracy of the yield and derivative estimation may be decisive to accurately determine the optimal
solution.

The idea is to reduce accuracy and computational effort in the first Newton iterations by starting with a small
size of the MC sample set. During the optimization procedure, the sample size is adaptively increased. A
similar idea is also used in the stochastic gradient approach, see [56] for example. They also use approxi-
mated or inexact gradients. In contrast to this, our approach uses more sample points than typically used
in the stochastic gradient approach. And since the yield gradient results directly from the calculation of the
yield estimate, our approach uses the reduced sample size also for the estimation of the objective function,
not only for the derivatives.

The proposed adaptive Newton-MC approach ensures that high, predefined, accuracy requirements are ful-
filled at the final stages of the algorithm while computational effort can be reduced significantly. A pseudo
code is provided in Algorithm 4. We begin with a relatively small sample size and run a few fast initial Newton
iterations. If the yield improvement stagnates, the globalized Newton method illustrated in Fig. 3.2 would
stop. Here, instead, we increase the sample size until an improvement of the yield is observed or a target
accuracy is reached. Then, a new Newton iteration is started. Only if the target accuracy has been reached
and the yield no longer improves, the algorithm terminates. Hence, in addition to the other parameters in
the globalized Newton method, we require a definition of a target accuracy, an initial sample size and a rule
for how and when to update the sample size.

We define the target accuracy as an upper bound for the MC error estimator. According to (5.48) the error
estimator εMC,Y also depends on the size of the yield. In a non-adaptive strategy, a sample size would be
chosen for the complete optimization procedure. As in yield estimation a target accuracy ε̂MC,Y would be
defined and the sample size would be calculated based on the worst case holding for Y (ξ,d) = 0.5 (see (4.7)),
i.e.,

NMC =
Y (ξ,d)(1− Y (ξ,d))

ε̂2MC,Y

Y (ξ,d)=0.5
=⇒ NMC ≥ 0.25

ε̂2MC,Y
. (5.49)

In the adaptive Newton-MC method, the same target accuracy could be chosen, but it is only required to
be fulfilled in the final stages. In the final stages, the yield estimate is typically larger than 0.5 and thus a
smaller sample size is sufficient in order to reach the target accuracy. For example, a yield of size Y (ξ,d) = 0.9
requires only

NMC ≥ 0.09

ε̂2MC,Y
(5.50)
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Algorithm 4 Adaptive Newton-MC, based on [47, Algorithm 3]

1: Input: Starting point ξ(0) ∈ Rnξ , target accuracy ε̂MC,Y , initial sample size N start
MC , Newton method pa-

rameters β ∈ (0, 1), γ ∈ (0, 1), α1, α2 > 0, q > 0

2: Output: Optimal solution ξ
opt

3: while ∇YMC(ξ
(k)
,d) 6= 0 and

∥∥∥ξ(k) − ξ
(k−1)

∥∥∥ > 0 do

4: Calculate s(k) by solving Newton’s equation ∇2YMC(ξ
(k)
,d)s(k) = −∇YMC(ξ

(k)
,d).

5: if ”Calculation of s(k) possible” and −∇YMC(ξ
(k)
,d)s(k) ≥ min

(
α1, α2

∥∥s(k)∥∥q)∥∥s(k)∥∥2 then
6: Accept search direction s(k).
7: else
8: Set search direction s(k) = −∇YMC(ξ

(k)
,d).

9: end if
10: Determine step size with Armijo rule, i.e., search for largest σ(k) ∈

{
β0, β1, β2, β3, . . .

}
, such that

YMC(ξ
(k)

+ σ(k)s(k),d)− YMC(ξ
(k)
,d) ≤ σ(k)γ∇YMC(ξ

(k)
,d)>s(k).

11: Set ξ(k+1)
= ξ

(k)
+ σ(k)s(k) and k = k + 1.

12: end while

13: Calculate MC error estimator εMC,Y =

√
YMC(ξ

(k)
,d)(1−YMC(ξ

(k)
,d))

NMC

14: if εMC,Y > ε̂MC,Y then
15: while εMC,Y > ε̂MC,Y and

∣∣∣YMC(ξ
(k−1)

,d)− YMC(ξ
(k)
,d)
∣∣∣ < ε̂MC,Y do

16: Increase sample size Nnew
MC = NMC + incN start

MC .
17: Calculate YMC(ξ

(k)
,d) and εMC,Y with Nnew

MC .
18: Set NMC = Nnew

MC .
19: end while
20: Go back to line 3.
21: else
22: Return ξ

opt
= ξ

(k).
23: end if

sample points to fulfill the accuracy ε̂MC,Y . Let ξ
(k) denote the solution of the k-th iteration. The sample size is

updated, if the yield shows no improvement compared to the last iteration, i.e.,∣∣∣YMC

(
ξ
(k−1)

,d
)
− YMC

(
ξ
(k)
,d
)∣∣∣ < ε̂MC,Y (5.51)

and the target accuracy is not reached yet, i.e.,

ε̂MC,Y < εMC,Y

(
YMC

(
ξ
(k)
,d
))

=

√√√√YMC

(
ξ
(k)
,d
)(

1− YMC

(
ξ
(k)
,d
))

NMC
. (5.52)

Let N start
MC denote the initial MC sample size. We define an incremental factor inc > 0. Each time a sample

size increase is required, the new sample size is calculated by

Nnew
MC = Nold

MC + incN start
MC . (5.53)

Note that it is not necessary to generate and evaluate a completely new MC sample set of size Nnew
MC each

time the sample size is increased. Only the additional incN start
MC sample points have to be evaluated and then
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they are fused with the previous sample set of size Nold
MC. The Newton-MC approach ensures that high, pre-

defined, accuracy requirements are fulfilled at the final stages of the algorithm while computational effort
can be reduced significantly.

Combination with hybrid estimation approaches In the beginning of this section we assumed that the
yield is estimated with a classic MC analysis on the high fidelity model. However, this is not necessary. The
optimization procedure remains unchanged for more involved MC based estimation methods like the SC-
Hybrid approach (see Sec. 4.3) or the GPR-Hybrid approach (see Sec. 4.4). The surrogate models in the
GPR-Hybrid approach can even be updated on the fly. In Sec. 4.4 we discussed updates after each evaluation
of a critical sample point or – to enable parallelization – after a batch of critical sample points. In the adaptive
Newton-MC framework another option would be to update after each Newton iteration. This would also allow
parallelization, but not necessarily with optimal utilization of all cores. Please note that this optimization
framework is different from the Bayesian optimization, which is often discussed in literature when GPR (or
kriging) surrogate modeling is combined with optimization, see e.g. [46, 121]. There, typically the function
which is approximated by the GP is optimized by choosing new training data points based on an acquisition
function. This acquisition function aims to find a trade-off between exploration (improving the quality of the
surrogate model) and exploitation (improving the objective function value of the approximated function). A
well established acquisition function is for example the expected improvement (EI) [92]. Here instead, we
maximize the yield. However, we do not learn the yield function itself, but the underlying QoI. This QoI
defines the limit state function dividing all possible designs into accepted and not accepted designs and is
assumed to be sufficiently smooth to be well approximated by a GP. By applying the GPR-Hybrid approach
in the optimization, the accuracy of the surrogate model and the objective function value (here yield, not
QoI) are also improved simultaneously.

The adaptive Newton-MC optimization can also be combined with the SC-Hybrid approach for yield estima-
tion. In the SC-Hybrid approach, the surrogate model cannot be easily updated, a complete recalculation
would be required. Hence, the collocation points for the SC surrogate model should be chosen such that a
larger area is well approximated, since during the optimization the algorithm will move away from the initial
solution. Alternatively, one could employ the regression variantmentioned in Sec. 4.3.

We like to emphasize that, in combination with the hybrid approaches, the adaptive Newton-MC method
achieves an a-priori defined accuracy of the result. All error sources are controlled. The MC error is con-
trolled by the adaptive adjustment of the MC sample set size, the surrogate model error (here SC or GPR
error) is controlled by the hybrid scheme reevaluating critical sample points on the FE model, and the
FE error is controlled by the FE model refinement strategy (here only implemented for the SC-Hybrid ap-
proach).

5.4 Hermite-type modifications of BOBYQA

In this section we discuss optimization in the case that some partial derivatives are known, but others are
not. Here, the objective function is assumed to be smooth, i.e., although some partial derivatives are un-
known, they are assumed to exist. This is relevant for example for yield optimization with Gaussian dis-
tributed uncertain design parameters and deterministic design parameters, see problem (5.45). A com-
mon approach is the usage of gradient based solvers with finite differences approximations for the gradients
and Broyden-Fletcher-Goldfarb-Shanno (BFGS) updates for the Hessians [118, Chap. 13.2]. In [49], we
modified the adaptive Newton-MC method for yield optimization in this way. However, for a large number
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of unknown derivatives and computationally expensive problems, the additional objective function evalua-
tions for the finite differences quickly become unattractive. In this section we propose two modifications of
the originally derivative free BOBYQA method introduced in Sec. 3.2.2. These methods are well suited for
mixed gradient information, and, moreover, they are not limited to yield optimization. The first approach
will be referred to as Hermite least squares, the second as Hermite BOBYQA. This section follows our work
in [51].

While BOBYQA was proposed by Powell [101] and originally implemented in Fortran, today there are several
modifications and implementations. In this work we will mainly refer to two more recent versions. First, the
Python implementation by Cartis et al., called PyBOBYQA [26]. And second, the algorithm proposed by Conn
et al. [33, Algo. 11.2], which is an (unconstrained) modification of BOBYQA such that global convergence
to a stationary point can be proven. One key aspect for this is the fact that the interpolation set is always
ensured to be Λ-poised, see [33, Chap. 3.3]. If it is not, the so-called model improvement algorithm [33,
Algo. 6.3] is applied which guarantees transformation of the set into a Λ-poised set within a finite number
of steps. The existence of this model improvement algorithm is crucial for the proof of convergence. The im-
plementations by Powell [101] and Cartis et al. [26] do not guarantee convergence. Although both methods
update the interpolation set such that the poisedness constant Λ is hopefully reduced, they do not provide any
bounds [31]. The model improvement algorithm would require checks of the Λ-poisedness more often and a
new generation of the complete interpolation data set in situations of poorly balanced data points. However,
to enable bound constrained optimization and in the sake of computational efficiency and thus, practical
applicability, Powell and Cartis et al. refrain from provable convergence and rely on heuristics for when and
how to control and improve the Λ-poisedness of the interpolation set.

Notation Let x ∈ Rn denote the optimization variable, where xi, i = 1, . . . , n can be either deterministic
or stochastic. Further, let f : Rn → R denote the objective function. As in BOBYQA we consider a bound
constrained optimization problem, we recall from (3.27)

min
x∈Rn

f(x) (5.54)

s.t. xlb ≤ x ≤ xub.

In BOBYQA the objective function is approximated via quadratic interpolation, in Hermite least squares and
Hermite BOBYQA it is approximated via quadratic least squares regression. We formulate the approximation
problem generally as an interpolation or least squares regression problem. Therefore, we recall the notation
used in BOBYQA from Sec. 3.2.2. Let m̃(x) be a polynomial of degree d, Φ = {φ0(x), . . . , φq(x)} a polynomial
basis in Pd

n and q1 = q+1 the number of basis polynomials. For the vector of basis polynomials evaluated in x
wewriteΦ(x) = (φ0(x), . . . , φq(x))>. Althoughmost of the results hold for any choice of a basis, in the follow-
ing we consider the monomial basis of degree d = 2, i.e., if not specifically noted otherwise, for the remainder
of this section, Φ is defined by the (n+ 1)(n+ 2)/2-dimensional basis

Φ =

{
1, x1, . . . , xn,

1

2
x21, x1x2, x1x3, . . . , xn−1xn,

1

2
x2n

}
. (5.55)

The interpolation set is given by

T =
{(

y0, f(y0)
)
, . . . , (yp, f(yp))

}
(5.56)
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and the number of interpolation points is p1 = p+ 1. Then, the system matrix and the right hand side of the
approximation problem are given by

M ≡ M(Φ, T ) =

φ0(y
0) . . . φq(y0)

...
...

φ0(yp) . . . φq(yp)

 and b ≡ b(T ) =

f(y
0)
...

f(yp)

 . (5.57)

For p1 = q1 the system matrix M is quadratic and

Mv = b (5.58)

yields an interpolation problem which has a unique solution v ∈ Rq1 (note here q1 = p1) if and only if M is
non-singular. According to Def. 1, the corresponding interpolation set is then said to be poised. For p1 > q1
the system matrix M lies in Rp1×q1 and v ∈ Rq1 , which yields an overdetermined interpolation problem. It
can be solved with least squares regression. We write

Mv l.s
= b ⇔ min

v∈Rq1
||Mv− b||2 ⇔ M>Mv = M>b. (5.59)

If M has full column rank, the linear system (5.59) can be uniquely solved. Analogously to the interpolation
case and following [33, Chap. 4], the corresponding interpolation set is said to be poised for polynomial least
squares regression. When speaking about interpolation sets in the following, we assume them to be poised,
if not specifically noted otherwise.

The definitions ofΛ-poisedness (Def. 2, 3) can be extended to the regression case [33, Def. 4.7].

Definition 5 (Λ-poisedness in the regression sense). Let a constant Λ > 0, a set B ⊂ Rn, a polynomial basis
Φ = {Φ0(x), . . . ,Φq(x)} of maximum degree d, a poised set T as defined in (5.56) and let p > q. Then the
training data set T is Λ-poised in B (in the regression sense) if and only if

∀x ∈ B ∃l(x) ∈ Rp1 s.t.
p∑
i=0

li(x)Φ(yi) = Φ(x) with ||l(x)||∞ ≤ Λ. (5.60)

Remark 3. Since the system (5.60) is underdetermined, the coefficients li(x), i = 0, . . . , p, are not uniquely
defined. However, the minimum norm solution corresponds to the Lagrange polynomials (in the regression
sense), cf. [33, Def. 4.4]. Analogously to Remark 1 and 2 they can be calculated by solving

Mλi
l.s.
= ei+1, (5.61)

using the elements of the solution vector λi as coefficients for the polynomial li.

Assumption for Hermite-type approaches In contrast to the classic BOBYQA setting, now we assume that
the partial derivatives with respect to some directions are known, and unknown for the others. With x ∈ Rn,
let ID ⊆ {1, . . . , n} denote the index set of known first order derivative directions. Then, the set of available
first order derivatives is given by

D :=

{
∂

∂xi
f

}
i∈ID

. (5.62)
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Further, we define the set of available second order derivatives by

D2 :=

{
∂2

∂xi∂xj
f

}
(i,j)∈ID2

, (5.63)

where the tuple set ID2 ⊆ {1, . . . , n} × {1, . . . , n} is the index set of known second order derivative direc-
tions. Higher order derivatives are not of concern, since we build quadratic approximations. For the sake
of simplicity, in the following we focus on the practically more relevant case of given first order derivatives.
However, in the end of the section we will show that the proposed methods can be straightforwardly adjusted
for using second order derivatives. For better readability and without limitation of generality, we assume
that the xi are ordered, such that we can write

ID = {1, . . . , nkd}, nkd ≤ n (5.64)

for the index set of known first order derivative directions. The resulting interpolation set used for the
Hermite-type modifications of BOBYQA is denoted by TH and given by

TH =

{(
y0, f(y0),

∂

∂y1
f(y0), . . . ,

∂

∂ynkd

f(y0)
)
, . . . ,

(
yp, f(yp),

∂

∂y1
f(yp), . . . ,

∂

∂ynkd

f(yp)
)}

. (5.65)

The linear system of BOBYQA The Hermite-type approaches are modifications of the original BOBYQA
method. The aim is to use derivative information which we assume to be available in order to obtain better
predictions of the quadratic model m̃(x). Before these modifications are discussed in detail, we recall the
construction of the linear systems solved in BOBYQA to generate the approximation, cf. [26, 101]. Let xopt ∈
T denote the optimal solution of the current quadratic subproblem. Since this point is included into the
interpolation set, cf. Sec. 3.2.2, without limitation of generality we assume xopt = yp. In case of p1 = q1 =
(n+1)(n+2)/2, the interpolation problem is uniquely solvable and reads

MIv
(k)
I = bI (5.66)

with

MI =

 φ1(y0 − xopt) . . . φq(y0 − xopt)
...

...
φ1(yp−1 − xopt) . . . φq(yp−1 − xopt)

 ∈ Rp×q, (5.67)

v(k)I =

(
g(k)

H(k)?

)
∈ Rq and bfull =

 f(y0)− f(xopt)
...

f(yp−1)− f(xopt)

 ∈ Rp, (5.68)

where H(k)? is a vector in R(n2+n)/2 containing the lower triangular and the diagonal entries of the sym-
metric matrix H(k). Further we set c(k) = f(xopt). Then, the quadratic model (see (3.38)) is formulated by

m̃(k)(x) = c(k) + g(k)
>
(x− x(k)) +

1

2
(x− x(k))>H(k)(x− x(k)). (5.69)

Otherwise, if n + 2 ≤ p1 < q1 = (n + 1)(n + 2)/2, further information is required, i.e., the system defined
in (3.40) is solved, minimizing the change between H(k−1) and H(k). The resulting linear system reads

MBv
(k)
B = bB, (5.70)

72



where
MB =

(
A B>

B 0

)
∈ Rp+n×p+n, (5.71)

with A ∈ Rp×p given by

A =
1

2


(
(y0 − xopt)>(y0 − xopt)

)2
. . .

(
(y0 − xopt)>(yp−1 − xopt)

)2
...

...(
(yp−1 − xopt)>(y0 − xopt)

)2
. . .

(
(yp−1 − xopt)>(yp−1 − xopt)

)2
 (5.72)

and

B =

 | |
y0 − xopt . . . yp−1 − xopt

| |

 ∈ Rn×p. (5.73)

Further,

v(k)B =


v
(k)
1
...

v
(k)
p+n

 ∈ Rp+n, (5.74)

and

bB =


f(y0)− f(xopt)

...
f(yp−1)− f(xopt)

0

− 1

2


(y0 − xopt)>H(k−1)(y0 − xopt)

...
(yp−1 − xopt)>H(k−1)(yp−1 − xopt)

0

 ∈ Rp+n. (5.75)

After solving the interpolation problem (5.70), the coefficients of the quadratic model (5.69) are determined
by

c(k) = f(xopt), g(k)
>
= (v

(k)
p+1, . . . , v

(k)
p+n) (5.76)

H(k) = H(k−1) +

p−1∑
i=0

v
(k)
i+1

(
(yi − xopt)(yi − xopt)>

)
. (5.77)

5.4.1 Hermite least squares method

The aim of Hermite interpolation is to find a polynomial approximation of a function by solving a lin-
ear system containing information on function values and partial derivative values in given training data
points, cf. [65, Chap. 6.6] or [108]. We propose an approximation method using such a linear system,
but with more information than necessary for a uniquely solvable interpolation problem and solve it with
least squares regression. Hence, we call the optimization method based on this technique Hermite least
squares.

In the Hermite least squares approach we extend the simple interpolation system (5.66) from BOBYQA with
derivative information yielding an overdetermined system which will be solved by least squares regression.
We introduce this method in two steps. First, we assume that the system (5.66) is uniquely solvable, i.e.,
the number of interpolation points p1 coincides with the number of basis polynomials q1. Second, we allow
that the system (5.66) is underdetermined, i.e., p1 < q1. In the original BOBYQA this would not be solvable
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and would transform into (5.70), but by adding derivative information, still an overdetermined system is
obtained. The number of rows of this new system is given by |TH| = p1(1 + nkd), where p1 is the number of
interpolation points and |TH| denotes the number of information, i.e., the number of objective function values
and derivative values. For p1 = q1 global convergence to a stationary point can be proven under the same
assumptions (e.g. smoothness of the objective function) as in Conn’s version [33, Algo. 11.2]. However, for
p1 < q1 the method yields superior performance in practice, see Sec. 6.5.

Regression based on interpolation (p1 = q1) Let us consider a training data set TI with |TI| = p1 ≡ q1.
Instead of determining the unique solution of (5.66), additionally we provide derivative information for the
first nkd partial derivatives of each training data point. We obtain the interpolation set TH from (5.65) with
|TH| = p1(1 + nkd). The gradient information is included in the linear system (5.66) by adding lines to the
system matrix and the right hand side. We obtain

MH =



φ1(y0 − xopt) . . . φq(y0 − xopt)
...

...
φ1(yp−1 − xopt) . . . φq(yp−1 − xopt)
∂
∂y1

φ1(y0 − xopt) . . . ∂
∂y1

φq(y0 − xopt)
...

...
∂

∂ynkd

φ1(y0 − xopt) . . . ∂
∂ynkd

φq(y0 − xopt)
∂
∂y1

φ1(y1 − xopt) . . . ∂
∂y1

φq(y1 − xopt)
...

...
∂

∂ynkd

φ1(yp − xopt) . . . ∂
∂ynkd

φq(yp − xopt)


∈ Rp1(1+nkd)−1×q (5.78)

and

bH =



f(y0)− f(xopt)
...

f(yp−1)− f(xopt)
∂
∂y1

f(y0)
...

∂
∂ynkd

f(y0)
∂
∂y1

f(y1)
...

∂
∂ynkd

f(yp)


∈ Rp1(1+nkd)−1. (5.79)

The resulting system
MHv

(k)
H

l.s.
= bH (5.80)

is solved with least squares regression in order to build the quadratic model for the trust region subproblem
(v(k)H is defined as v(k)I in (5.68)). The formulation of the system using second order derivatives is provided at
the end of this section. We will discuss howwell this model approximates the original function. Therefore, we
state the following theorem, which is a generalization of Theorem 4.1 in [32].

Theorem 3. Let TI be a poised interpolation set as defined in (5.56), Φ the monomial basis with |TI| = |Φ|
and B ⊂ Rn. Further, let MI be the corresponding system matrix of the interpolation problem and bI the right
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hand side, respectively. Let TR ⊃ TI be a training set containing further information, such that the corresponding
system matrix MR has still full column rank. If TI is Λ-poised in B in the interpolation sense, then TR is at least
Λ-poised in B in the regression sense.

Proof. The additional information can be added to the system matrix MI and the right hand side bI in form
of additional rows. For the regression problem corresponding to TR we obtain

MR =

(
MI
Madd

)
and bR =

(
bI
badd

)
. (5.81)

The interpolation set TI is Λ-poised in the interpolation sense. Thus, by Def. 2 holds

∀x ∈ B ∃lI(x) ∈ R|TI| s.t.
∑
yi∈TI

liI(x)mi
I = Φ(x) with ‖lI(x)‖∞ ≤ Λ, (5.82)

where mi
I denotes the i-th column of the matrix M>

I . Let lR(x) = (lI(x),0)> ∈ R|TR|, then∑
yi∈TR

liR(x)mi
R = Φ(x) (5.83)

holds and ‖lR(x)‖∞ is bounded by Λ, since

‖lR(x)‖∞ = max
i=0,...,|TR|

|liR(x)|
Def. lR= max

i=0,...,|TI|
|liI(x)| = ‖lI(x)‖∞

(3.44)
≤ Λ. (5.84)

In the beginning of Sec. 5.4 we stated that the model improvement algorithm is a necessary requirement for
ensuring global convergence of the BOBYQA method. This algorithm is always able to generate a Λ-poised
interpolation set in a finite number of steps. For regression it is not clear if such an algorithm exists [33,
Chap. 6]. However, Theorem 3 shows that it is enough to ensure that a subset of TR is Λ-poised in the
interpolation sense, and we can deduce that TR is Λ-poised in the regression sense. Hence, although there
is no model improvement algorithm for regression, the model improvement algorithm for interpolation [33,
Algorithm 6.3] can be applied to a subset of TR with |Φ| = (n + 1)(n + 2)/2 points. Then, the optimization
procedure [33, Algorithm 11.2] can be applied, but instead of using interpolation, the quadratic model is
built with TR and least squares regression. Further, we note that in the proof of Theorem 3 we set liR(x) = 0
for i > |TI|. This implies that as long as the matrix MR has full column rank, the type of additional infor-
mation in TR has no impact on the proof. Hence, instead of additional points and their function values, it
is also possible to add derivative information for existing points and the set TR remains at least Λ-poised.
Also the proof of convergence for the complete optimization procedure from [33] remains unaffected. How-
ever, in practice we expect that our modification converges faster due to better local quadratic approxima-
tions.

Regression based on underdetermined interpolation (p1 < q1) The number of required data points for
building a uniquely solvable quadratic interpolation model is p1 = q1 = (n + 1)(n + 2)/2. Extending the
system with additional gradient information allows the reduction of the number of data points and while
still leading to a determined or overdetermined interpolation problem. The number of rows of the system
matrix (5.78) in the Hermite least squares approach is (1 + nkd)p1 − 1 and has to be greater than or equal
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to the number of columns of the system matrix, which is q = |Φ| − 1 = (n + 1)(n + 2)/2 − 1. Thus, for the
Hermite least squares approach only

p1 ≥
⌈
(n+ 1)(n+ 2)

2(1 + nkd)

⌉
. (5.85)

interpolation points are required. The Hermite least squares system (5.78–5.80) can be built as before, the
only difference is that p1 < q1. This implies that the data set TH no longer contains a subset of Λ-poised (in
the interpolation sense) data points. Thus, the model improvement algorithm cannot be applied to a subset
of TH and convergence cannot be proven.

Λ-poisedness for Hermite least squares We discuss how the derivative information can be considered for
building and maintaining the interpolation set. We begin with the Hermite interpolation setting, i.e., let

p1 =
(n+ 1)(n+ 2)

2(1 + nkd)
, (5.86)

s.t. |TH| = q1 and the Hermite interpolation problem (5.80) is uniquely solvable. We extend the definitions
of Λ-poisedness (Def. 2, 3, 5) to the Hermite interpolation case. Note that the following definition does not
ensure that the error bounds required for provable convergence are provided (cf. [33, Chap. 6.1]). This leads
to an algorithm without formal convergence proof, analogously to the original BOBYQA implementations [26,
101].

Definition 6 (Λ-poisedness in the Hermite interpolation sense). Let a constant Λ > 0, a set B ⊂ Rn, the
monomial basis Φ = {Φ0(x), . . . ,Φq(x)} of maximum degree d, Φ(x) = (Φ0(x), . . . ,Φq(x))> and a poised
Hermite interpolation set TH as defined in (5.65). Let |TH| = p1(1 + nkd) = q1 = |Φ|. Then the training data
set TH is Λ-poised in B (in the Hermite interpolation sense) if and only if

∀x ∈ B ∃l(x) ∈ Rq1 s.t. M>
H l(x) = Φ(x) with ||l(x)||∞ ≤ Λ. (5.87)

Analogously to the simple interpolation and regression cases we define Lagrange-type polynomials for Her-
mite interpolation and show that they solve (5.87).

Definition 7 (Lagrange-type polynomials for Hermite interpolation). Let MH ∈ Rq1×q1 be the system matrix
of a Hermite interpolation problem with respect to the basis Φ as defined in (5.78) and ei ∈ Rq1 the i-th unit
vector. Let λi ∈ Rq1 solve

MHλ
i = ei+1. (5.88)

For i = 0, . . . , q, let
ti(x) = λi0φ0(x) + · · ·+ λiqφq(x) (5.89)

be the polynomial built with the basis Φ and the entries of λi as coefficients. Then, ti(x) is the i-th Lagrange-
type polynomial for Hermite interpolation.

Lemma 4. Let MH ∈ Rq1×q1 be the system matrix of a Hermite interpolation problem with respect to the basis
Φ as defined in (5.78) and t(x) =

(
t0(x), . . . , tq(x)

)> be defined as in (5.89). Then, t(x) solves M>
H l(x) = Φ(x)

(cf. (5.87)), i.e., t(x) ≡ l(x).
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Proof. Let I denote the q1 × q1 identity matrix and define T by the solution vectors of (5.88), i.e.,

T =

 | |
λ0 . . . λq

| |

 . (5.90)

Then we rewrite (5.88) into
MHT = I ⇔ TMH = I. (5.91)

Left multiplication by Φ(x)> yields

Φ(x)>TMH = Φ(x)>.

We apply (5.90)

(φ0(x), . . . , φq(x))

 | |
λ0 . . . λq

| |

MH = (φ0(x), . . . , φq(x))

and (5.89) (
t0(x), . . . , tq(x)

)
MH = (φ0(x), . . . , φq(x)) .

By transposing we obtain

M>
H

t
0(x)
...

tq(x)

 =

φ0(x)...
φq(x)

 ,

which is per definition equivalent to

M>
H t(x) = Φ(x).

Hence, t solves (5.87), i.e., t(x) ≡ l(x).

For the uniquely defined polynomial m̃H(x) solving the Hermite interpolation problem MHv = bH with MH ∈
Rq1×q1 and bH ∈ Rq1 holds

m̃H(x) =
p∑
i=0

f(yi)ti(x) +
p∑
i=0

nkd∑
j=1

∂f

∂xj
(yi)tjp1−1+i(x), (5.92)

where p1 = p+1 is the number of interpolation points and |Φ| = q1 = (1+nkd)p1 holds.

We extend the concept above for Hermite interpolation to Hermite least squares, i.e., to the case |TH| > q1. In
order to obtain the Lagrange-type polynomials for Hermite least squares, we solve

MHλ
i l.s.
= ei+1, (5.93)

instead of (5.88). The interpolation set is updated based on Λ-poisedness in the Hermite least squares sense.
This means that we choose the leaving interpolation point by maximizing (3.48) over the first p1 Lagrange
polynomials, where the Lagrange polynomials are obtained from (5.93). This ensures that the derivative
information is considered when maintaining the interpolation set. In practice we observe that often the
chosen leaving point would be the same without considering derivative information. However, there are
several iterations where another leaving point is chosen when derivative information is considered. Once
a leaving point is chosen, we replace this point with all its corresponding information (function value and
derivative information) by the new data point.
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Second order derivatives In the beginning of Sec. 5.4 we mentioned that the usage of second order deriva-
tives in the Hermite least squares method is straightforward. For the sake of completeness we formulate the
resulting linear system analogously to (5.78–5.80). Let MD2,i, i = 0, . . . , p, denote the matrix with second
order derivative information for the i-th interpolation point yi, and bD2,i the corresponding right hand side.
Further, let n2kd ≤ n denote the number of known second order derivative directions. Then, MD2,i and bD2,i

are given by

MD2,i =



∂2

∂x1∂x1
φ1(yi − xopt) . . . ∂2

∂x1∂x1
φq(yi − xopt)

∂2

∂x1∂x2
φ1(yi − xopt) . . . ∂2

∂x1∂x2
φq(yi − xopt)

...
...

∂2

∂x1∂xn2kd
φ1(yi − xopt) . . . ∂2

∂x1∂xn2kd
φq(yi − xopt)

∂2

∂x2∂x2
φ1(yi − xopt) . . . ∂2

∂x2∂x2
φq(yi − xopt)

...
...

∂2

∂xn2kd∂xn2kd
φ1(yi − xopt) . . . ∂2

∂xn2kd∂xn2kd
φq(yi − xopt)


∈ R(n2

2kd+n2kd)/2×q (5.94)

and

bD2,i =



∂2

∂x1∂x1
f(yi)

∂2

∂x1∂x2
f(yi)
...

∂2

∂x1∂xn2kd
f(yi)

∂2

∂x2∂x2
f(yi)
...

∂2

∂xn2kd∂xn2kd
f(yi)


∈ R(n2

2kd+n2kd)/2. (5.95)

Then, MD2,i and bD2,i can be added as additional lines to the system (5.80) and solved by least squares
regression.

We assume that the second order derivatives are available for all directions, i.e., the index set of known second
order derivative directions is given by ID2 = {1, . . . , n}×{1, . . . , n}. Further, utilizing that Φ is the monomial
basis as defined in (5.55), then, the matrix MD2,i can be simplified to

Msimpl.
D2,i

=

0 . . . 0 1
...

... . . .
0 . . . 0 1

 , (5.96)

i.e., the linear part vanishes and the quadratic part reduces to the identitymatrix.

5.4.2 Hermite BOBYQA method

A characterizing feature of the original BOBYQA method is, that it can handle underdetermined interpolation
settings. Existence and uniqueness of the solution are guaranteed by minimizing the change between the
current and the last Hessian matrix of the quadratic model (in the Frobenius norm), cf. Sec. 3.2.2. Thereby,
the number of required interpolation points is reduced to n+2 ≤ |TB| ≡ p1 < (n+1)(n+2)/2. The Hermite
BOBYQA approach extends this underdetermined interpolation system (5.70) with derivative information

78



and applies least squares regression. The corresponding system matrix (5.71) and right hand side (5.75)
need modification.

Taking the coefficients (5.76–5.77) obtained by solving the original underdetermined BOBYQA system (5.70),
we obtain the quadratic BOBYQA model by

m̃
(k)
B (x) = c

(k)
B + g(k)B

>
(x− x(k)) +

1

2
(x− x(k))>H(k)

B (x− x(k)), (5.97)

where we write the subscript B to emphasize the correspondence to the original BOBYQA system. The gra-
dient of m̃(k)

B (x) reads
∇xm̃

(k)
B (x) = g(k)B +H(k)

B (x− x(k)). (5.98)

We replace the Hessian H(k)
B by (5.77) and obtain

∇xm̃
(k)
B (x) = g(k)B +

(
H(k−1) +

p−1∑
i=0

v
(k)
B,i+1

(
(yi − xopt)(yi − xopt)>

))
(x− x(k)). (5.99)

First, we assume that all first order derivatives are available, i.e., nkd = n. Additionally to the interpolation
conditions (3.39) we have the conditions

∇m̃(k)(yj) = ∇f(yj) ∀yj ∈ TH. (5.100)

We insert (5.99) into (5.100). For each yj ∈ TH we obtain
p−1∑
i=0

v
(k)
B,i+1

(
(yi − xopt)(yi − xopt)>

)
︸ ︷︷ ︸

=:Ci

(yj − x(k)) + g(k)B = ∇f(yj)−H(k−1)(yj − x(k)) (5.101)

as condition. From Ci ∈ Rn×n follows that Ci(yj − x(k)) ∈ Rn×1 and thus on the left and right hand side
of (5.101)we have vectors inRn. We rewrite (5.101) asmatrix, which yields the linear system | | 1 0

C0(yj − x(k)) . . . Cp−1(yj − x(k)) . . .
| | 0 1


︸ ︷︷ ︸

=:Mj
+

v(k) =

 |
∇f(yj)−H(k−1)(yj − x(k))

|


︸ ︷︷ ︸

=:bj+

(5.102)

for each yj ∈ TH. This can be appended to the original BOBYQA system, to obtain the Hermite BOBYQA (HB)
system matrix and right hand side

MHB =


MB
M0

+
...

Mp
+

 and bHB =


bB
b0+
...
bp+

 . (5.103)

Now we consider the general case that only some partial derivatives are available, i.e., nkd < n. Then,
only the first nkd rows of each Mj

+ and bj+ are included. Since bB ∈ Rp+n and each bj+ ∈ Rnkd , we obtain
bHB ∈ Rp+n+p1nkd , and MHB ∈ Rp+n+p1nkd×p+n+p1nkd respectively. The overdetermined Hermite BOBYQA
system is formulated as

MHBv
(k)
HB

l.s.
= bHB, (5.104)

After solving (5.104) with least squares regression, the coefficients of the quadratic Hermite BOBYQA model
are calculated analogously to the original BOBYQAmethod by (5.76–5.77).
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Λ-poisedness for Hermite BOBYQA Again we discuss how the interpolation set is updated, with the aim of
improving the Λ-poisedness. In the original BOBYQA method, the new and leaving data points are chosen as
described in (3.48) and (3.49), based on the Lagrange polynomials in theminimum-norm sense and the corre-
sponding Def. 3 for Λ-poisedness in the minimum-norm sense. Like in the Hermite least squares approach, we
could apply the BOBYQA updating procedure also in the Hermite BOBYQA method, arguing that for a subset
of the Hermite BOBYQA data set Λ-poisedness (in the minimum-norm sense) can be ensured. However, again
the derivative information would not be considered. To do this, we solve

MHBλ
i l.s.
= ei+1 (5.105)

and build polynomials using the entries of λi as coefficients, according to (5.76–5.77). Then we use these
polynomials instead of the Lagrange polynomials when determining leaving and new data points with (3.48–
3.49).

Second order derivatives As the Hermite least squares method, the Hermite BOBYQA method can be ex-
tended to handle second order derivatives. Let yi ∈ TH be the i-th interpolation point and

Ci =

c
i
11 . . . ci1n
...

...
cin1 . . . cinn

 (5.106)

the corresponding matrix as defined in (5.101). The Hessian of the last iteration H(k−1) can be written as

H(k−1) =


h
(k−1)
11 . . . h

(k−1)
1n

...
...

h
(k−1)
n1 . . . h

(k−1)
nn

 . (5.107)

Again, we denote the matrix with second order derivative information by MD2,i, i = 0, . . . , p, and the right
hand side by bD2,i, respectively. Assuming that the second order derivatives are available for all directions,
we obtain

MD2,i =



ci11 . . . ci11 0 . . . 0
...

...
...

...
ci1n . . . ci1n 0 . . . 0
ci21 . . . ci21 0 . . . 0
...

...
...

...
ci2n . . . ci2n 0 . . . 0
ci31 . . . ci31 0 . . . 0
...

...
...

...
cinn . . . cinn 0 . . . 0


∈ R((n2+n)/2)×(p+n) (5.108)
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and

bD2,i =



∂2

∂x1∂x1
f(yi)− h

(k−1)
11

...
∂2

∂x1∂xn
f(yi)− h

(k−1)
1n

∂2

∂x2∂x2
f(yi)− h

(k−1)
22

...
∂2

∂x2∂xn
f(yi)− h

(k−1)
2n

∂2

∂x3∂x3
f(yi)− h

(k−1)
33

...
∂2

∂xn∂xn
f(yi)− h

(k−1)
nn



∈ R(n2+n)/2. (5.109)

In case that not all derivative directions are available, the corresponding rows in MD2,i and bD2,i must be
removed.

5.4.3 Preconditioning for Hermite-type methods

In this sectionwe discuss possible preconditioning techniques for solving the linear equations system.

Scaling In PyBOBYQA, the Python implementation of BOBYQA [26], the system is scaled before it is solved.
I.e., instead of solving

Mv = b (5.110)

the system
LMRR−1v = Lb (5.111)

is solved, where the matrices L and R are diagonal and of same size asM. We recall that∆ is the trust region
radius. Note, for simplicity of notation we omit the index k for the current iteration. Each interpolation
point yi, i = 0, . . . , p, is scaled with the factor 1/∆. In case of original BOBYQA with p1 = q1, this yields a
multiplication of the columns ofM representing the linear part with 1/∆, and a multiplication of the columns
representing the quadratic part with 1/∆2. Thus, L and R are given by

L = I and R = diag
(

1

∆
, . . . ,

1

∆︸ ︷︷ ︸
p

,
1

∆2
, . . . ,

1

∆2︸ ︷︷ ︸
p−n

)
. (5.112)

Preserving the same scaling scheme in the Hermite least squares approach would leave the right scaling
matrix R unchanged while for the left scaling matrix L we obtain

L = diag(1, . . . , 1︸ ︷︷ ︸
p

,∆, . . . ,∆︸ ︷︷ ︸
p1nkd

). (5.113)

In the original underdetermined BOBYQA setting (p1 < q1), the scaling of yi with 1/∆ yields the scaling
matrices

L = R = diag
(

1

∆2
, . . . ,

1

∆2︸ ︷︷ ︸
p

,∆, . . . ,∆︸ ︷︷ ︸
n

)
. (5.114)
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For Hermite BOBYQA follows

L = diag
(

1

∆2
, . . . ,

1

∆2︸ ︷︷ ︸
p

,∆, . . . ,∆︸ ︷︷ ︸
n

,
1

∆
, . . . ,

1

∆︸ ︷︷ ︸
p1nkd

)
(5.115)

The right scaling matrix remains as defined in (5.114).

Weighting An optional preconditioning step is a weighting of the information in the regression problem, cf.
weighted regression [14]. This can be realized by left multiplication of a diagonal matrix D (of the same size
as M), i.e.,

DMv l.s
= Db. (5.116)

The idea is to give more weight to the interpolation points which are close to the current iterate solution,
and less weight to those interpolation points that are far from the current iterate solution. In the Hermite
least squares approach, this can be applied to function and derivative information, since each information is
represented by one row. In the Hermite BOBYQAmethod, the weighting shall only be applied to the derivative
information, since the first p+ n rows do not belong to one specific interpolation point. Thus, the first p+ n
diagonal entries of D are set to 1.

5.5 Summary

In this chapter we formulated SOO and MOO problems for yield optimization. We calculated the first and
second order derivatives of the yield function, with respect to uncertain Gaussian distributed parameters, un-
certain non-Gaussian distributed parameters and deterministic parameters. We observed that the derivatives
with respect to uncertain Gaussian distributed parameters can be obtained without any additional comput-
ing effort, while this is not the case for the other parameter types. This motivated the development of the
Hermite-type modifications of the BOBYQAmethod. These methods are well suited for optimization problems
with mixed gradient information and are not limited to the application of yield optimization. Under reason-
able assumptions, global convergence was proven. For a yield optimized over uncertain Gaussian distributed
parameters, we proposed the adaptive Newton-MC method, which achieves high efficiency by adaptively in-
creasing the MC sample size. In combination with the hybrid approaches for yield estimation, all errors (MC,
SC/GPR and FE) can be fully controlled. The adaptive MC sample size increase can also be transferred to the
Hermite-type approaches, when they are used for yield optimization. In the next chapter we will investigate
how the proposed methods perform in practice.
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6 Numerical applications and results

In the previous two chapters methods for yield estimation and optimization were proposed. In this chapter
these methods are numerically evaluated. In Chap. 2 we introduced two benchmark problems, a rectangular
waveguide and a PMSM. In Sec. 6.1 we will specify these general applications to concrete model problems,
which will be used for the numerical testing afterwards. The chapter is similarly structured as the theory
chapters. We start with the evaluation of the yield estimation methods, first for the waveguide, then for the
PMSMproblem. As reference solution we consider a classic MC analysis. We continue with yield optimization.
First, the adaptive Newton-MC method in combination with different yield estimation approaches is tested
on the waveguide problem. Then, MOO problems for a simultaneous optimization of the reliability (yield)
and performance (size / costs) of the waveguide and the PMSM are formulated and solved. Finally, the
Hermite-type optimization methods are evaluated, first on a set of 30 nonlinear test problems, then on the
waveguide yield problem.

6.1 Models

This section is dedicated to the detailed specification of the benchmark problems. We start with the waveguide
problem and continue with the PMSM problem.

6.1.1 Waveguide

In Sec. 2.4, we formulated the waveguide problem for a rectangular waveguide. In this section we introduce
a particular model of a rectangular waveguide with dielectric inlay, which is used to numerically test and
evaluate the methods proposed in the previous chapters. This model has been introduced by [87] and used
as a benchmark problem e.g. in [57, 86, 88]. It is well suited for benchmarking since a closed form solution
exists. The waveguide is illustrated in Fig. 6.1. It consists of two ports ∂DW

P1 and ∂DW
P2 (in red), a dielectric

inlay (in yellow) and two vacuum offsets (in green). The boundary conditions and the numerical model are as
stated in Sec. 2.4. The computational domain for the inlay is denoted byDW

1 , the computational domain of the
offsets is denoted by DW

2 . While for DW
1 different material properties will be assumed and later optimized,

DW
2 is assumed to have vacuum permittivity ε0 and permeability µ0. The width a and the height b of the

waveguide are assumed to be fixed. The geometry parameters indicating the length of the inlay and the
length of the offset are changeable and are subject to optimization.

Depending on the test case, we consider four or twelve design parameters. Let

x{12} = (x1, . . . , x12)
> (6.1)
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Figure 6.1: Finite element model of a rectangular waveguide with dielectric inlay. The waveguide ports are
given in red, the inlay in yellow and the offset in green. Figure taken from [47, Fig. 2], © 2020 by
Begell House, Inc..

denote the design parameter vector in case of twelve and

x{4} = (x1, x2, x13, x14)
> (6.2)

in case of four design parameters, respectively. The parameters x1 and x2 are geometry parameters (in mm),
i.e., the length of the dielectric inlay and the length of the vacuum offset, see Fig. 6.1. The other parameters
are material parameters with an effect on the relative permittivity εr|DW

1
and permeability µr|DW

1
on the dielec-

tric inlay. In case of twelve design parameters the effects are represented by

ε
{12}
r |DW

1
= x5 + (x3 − x5) (1 + iωx6τ)

−1 + (x4 − x5) (1 + iωx7τ)
−1 , (6.3)

µ
{12}
r |DW

1
= x10 + (x8 − x10) (1 + iωx11τ)

−1 + (x9 − x10) (1 + iωx12τ)
−1 , (6.4)

where
τ =

1

2π (20GHz)
. (6.5)

In case of four design parameters, the relation is given by

ε
{4}
r |DW

1
= 1 + x13 + (1− x13)

(
1 + iω

(
2π5 · 109

)−1
)−1

, (6.6)

µ
{4}
r |DW

1
= 1 + x14 + (2− x14)

(
1 + iω

(
1.1 · 2π20 · 109

)−1
)−1

. (6.7)

Depending on the considered test case, some of the design parameters are assumed to be uncertain, while oth-
ers are assumed to be deterministic. This will be clarified in the respective section. The uncertain parameters
are modeled as independent random variables. In order to represent the manufacturing uncertainties and
avoid unphysical parameter values, they are assumed to follow a truncated Gaussian distribution, cf. (3.6). In
Sec. 6.3.1 we discuss the consequences for gradient based optimization when assuming a truncated Gaussian
distribution instead of a Gaussian distribution. For uncertain geometry parameters we write ξi instead of xi
and set

ξi ∼ NT (ξi, 0.7
2, ξi − 3, ξi + 3), i ∈ {1, 2}, (6.8)
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for uncertainmaterial parameters we alsowrite ξi instead of xi and assume that

ξi ∼ NT (ξi, 0.3
2, ξi − 0.3, ξi + 0.3), i ∈ {3, . . . , 14}. (6.9)

If a design parameter xi is considered as deterministic, wewrite di, i ∈ {1, . . . , 14}.

As stated in Sec. 2.4, the S-parameter is considered as QoI. Please note, that the S-parameter depends on
the deterministic design parameter d, the uncertain design parameter ξ and the angular frequency ω. The
PFS are given by

Qω(ξ,d) := |Sω(ξ,d)|
!
≤ Spfs = −24dB ∀ω ∈ Tr = [2π6.5, 2π7.5] in GHz. (6.10)

This implies that the angular frequency ω is considered as a range parameter. In the computations we consider
eleven equidistant frequency points ω(j) ∈ Td ⊂ Tr in the frequency range. The PFS have to be fulfilled in
these points, i.e.,

|Sω(j)(ξ,d)|
!
≤ −24dB ∀ω(j) ∈ Td. (6.11)

In the proposed surrogate based approaches, for each ω(j), and for the real and the imaginary part, separate
surrogate models are built. To overcome this, approximations along the frequency could be built, e.g. using
model order reduction [66], [44, Chap. 5.2] or a specific GPR kernel [57, Chap. 3].

We provide some details on the implementation in the programming language Python. For the calculation
of the S-parameter (2.51) with FEM, we employ the FE library FEniCS [3]. Since complex numbers are not
supported in FEniCS 2017.2.0, the real and the imaginary parts of the matrices are assembled separately and
combined afterwards. The resulting linear system of equations is solved with a sparse LU decomposition [63],
using scipy [119].

6.1.2 PMSM

The (multi-objective) design optimization under uncertainty has a long tradition in the field of electrical
machines [40]. Common approaches are the Taguchi methods [116], worst case optimization [19] and
six sigma design optimization [125]. In [83] a recent study on these methods is provided. We follow this
tradition and also investigate the performance of the proposed yield estimation and optimization methods
on the example of an electrical machine. In Sec. 2.5 we introduced the PMSM problem. In this section we
will specify that problem and discuss the modeling and simulation details. The PMSM we will investigate is
based on the benchmark problem introduced in [97] and used for example in [18]. The model is illustrated
in Fig. 6.2. It has six PMs, i.e., Npp = 3 pole pairs, three phases and two slots per pole and phase, i.e., a
total of 36 slots. The three phases are represented with different colors of the windings in Fig. 6.2. The
radius of the entire machine, i.e., the outer stator radius, is Rs,o = 67.5mm, the length of the machine is
lz = 100mm. The materials used are copper for the coils, laminated steel for the machine and rare-earth
material for the PMs, e.g. NdFeB-magnets. Since rare-earth materials are expensive and their extraction
pollutes the environment [13], it is of high interest to reduce the size of the PMs. A detailed description of
the material and geometry parameters of the investigated PMSM is provided in Appendix A. However, the
parameters which are subject to optimization and the uncertain parameters will be discussed in the following.
In Fig. 6.3a the deterministic geometry parameter

d = (d1, d2, d3, d4)
> (6.12)
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Figure 6.2: PMSM model with six PMs and 36 slots. Figure taken from [70, Fig. 1], © 2022 IEEE.

is illustrated. The length of d1, d2 and d3 is given in mm, the angle of d4 in degree. Later we will consider
d as the optimization variable. The magnitude of the magnetic field induced by the i-th PM Bi (in Tesla
(T)) and the magnetization direction of the PM φi (in degree) are considered uncertain, see Fig. 6.3b. Since
these uncertainties are assumed to be caused by manufacturing imperfections they may differ for each PM
within the PMSM. Hence, for six PMs we obtain a total of twelve uncertain parameters. Following [18] and
the Laplace principle of unsufficient reasons [69], they are modeled as uniformly distributed random variables
with mean value

ξ =
(
ξ1, . . . , ξ12

)>
=
(
B1, . . . , B6, φ1, . . . , φ6

)>
= (0.94, . . . , 0.94, 0, . . . , 0)> (6.13)

and a distribution range of ±0.05T and ±3 °, respectively. We write

ξk ∼ U(ξk − 0.05, ξk + 0.05) for k = 1, . . . , 6 (6.14)
ξk ∼ U(ξk − 3, ξk + 3) for k = 7, . . . , 12.

The uncertain parameters arematerial properties which are not subject to optimization.

In this work, the average torque τavg is considered as QoI. In Sec. 2.5 the torque has been introduced as
function of the (discretized) MVP, which depends on the geometry and material properties of the PMs. For
emphasizing this relation we can write

τavg ≡ τavg(a(ξ,d)). (6.15)

We introduce a lower bound on the average torque for preventing possible machine failures. We obtain the
PFS

Q(ξ,d) := τavg(a(ξ,d))
!
≥ τpfs = 10.8Nm. (6.16)

We proceedwith some details on themodeling and simulation of this model in CST Studio Suite® 2021 (CST).
For cylindrical machines, having a length larger than or similar to the size of their diameter, sufficient accuracy
can be achieved in the computations by relying on 2D models [18]. For the investigated PMSM this is the
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Figure 6.3: Illustration of deterministic geometry parameters and uncertain material properties in the
PMSM. Figures taken from [70, Fig. 4, 5], © 2022 IEEE.

case. We assume B = (Bx(x, y), By(x, y), 0), and thus Js = (0, 0, Jz(x, y)) and A = (0, 0, Az(x, y)). With this
assumptions, the strong formulation (2.62) can be transformed into

−∇ · (ν∇Az(x, y)) = Jz(x, y) + (∇×Mpm)z. (6.17)

The homogeneous Dirichlet boundary conditions we assumed in (2.63) become

n×Az(x, y) = 0 on ∂DM = ∂DM
i ∪ ∂DM

o . (6.18)

Instead of modeling the Dirichlet boundary conditions (6.18) directly, we approximate them by modeling air
with µ = ε = 1 in the origin and outside themachine. Themagnetic flux density in the air outside themachine
is approximately 0.5mT compared to 0.94T in the PMs. Hence, this approximation is justified. Within the
CST FE solver, nodal basis functions of second order are applied.

In the simulation, as τavg we refer to the average torque value over one electrical period

tep =
1

sm ·Npp
=

60

1930 rpm · 3
≈ 0.01036 s, (6.19)

where sm denotes the speed of the machine in revolutions per minute (rpm). Let Nper denote the number of
time steps used to resolve the electrical period and τk ≡ τ(ak(ξ,d)) the torque value in the k-th time step,
then the average torque is given by

τavg =
1

Nper

Nper∑
k=1

τk. (6.20)

In the following computations we set Nper = 60 since it provides sufficient accuracy in the order of 10−4

within a reasonable simulation time of ≈ 85 s.

6.2 Yield estimation

In this section we will evaluate the performance of the proposed yield estimation approaches, i.e., SC-Hybrid
and GPR-Hybrid, on the two benchmark problems. We follow our work in [47] and [48]. As the reference
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solution a classic MC analysis is considered. In the evaluation we are mainly interested in two aspects, the
accuracy of the yield estimate and the efficiency of the method. For measuring the accuracy we consider the
relative error compared to the reference solution given by

εrel =

∣∣∣Yref − Ỹ
∣∣∣

Yref
, (6.21)

where Yref denotes the value of the reference solution and Ỹ the value of the considered yield estimator.
For measuring the efficiency or the computational costs, we consider the number of high fidelity function
evaluations in order to obtain the estimate, i.e.,

#HF ≡ #HFh = # high fidelity evaluations. (6.22)

In our case, the term high fidelity evaluation typically refers to the FEM evaluation of the problem with
mesh size h. However, in case of the SC-Hybrid approach with model refinement as proposed in Sec. 4.3,
different levels of high fidelity evaluations are distinguished. In this work, the refinement is achieved by
refining the mesh size h by division by two. The resulting difference in the computing effort depends on the
computational model and the solver. In the following, we assume an optimal solver which is linear in the
number of DoFs. This implies that each time the mesh size is halved, the computational effort increases by a
factor of four in case of a 2D model and by eight in case of a 3D model. The electric field of the considered
waveguide problem is constant in y-direction, thus, the refinement is only applied to x- and z-directions.
Hence, the factors for a 2D model apply. The measure for the computational effort under consideration of
three different refinement levels is then given by

#HFL = #HFh + 4#HFh/2 + 16#HFh/4. (6.23)

This measure is only relevant for the SC-Hybrid approach. On the other hand, in the GPR-Hybrid approach
parallelization is enabled, cf. Sec. 4.4. The batch size NB indicates the number of high fidelity evaluations
performed possibly in parallel. Assuming that sufficient parallel processors are available to realize this par-
allelization, the efficient costs are given by

#HFeff =

⌈
#HF
NB

⌉
. (6.24)

In the hybrid approaches we further distinguish between offline and online high fidelity evaluations. Offline
evaluations are the evaluations of the training data in order to build the initial surrogate model. Online
evaluations are the reevaluations of critical sample points on the high fidelity model. Note that in the GPR-
Hybrid approach online evaluations are used for surrogatemodel updates.

In both hybrid methods a safety factor s ≥ 1 for determining critical sample points has to be chosen, cf. (4.13)
and (4.16). In the following, this parameter is set s = 2, which is a rather conservative choice. This might
lead to more sample points classified as critical, i.e., higher computational costs, but also to higher accuracy
by avoiding misclassification of sample points, cf. Sec. 4.3.

6.2.1 Waveguide

In the following computations all design parameters of the waveguide introduced in Sec. 6.1.1 are considered
as uncertain parameters, i.e., wewrite ξi instead of xi and set themean values to

ξ
{4}

= (10.36, 4.76, 0.58, 0.64)> (6.25)
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Figure 6.4: Comparison of MC yield estimates with different sample sizes NMC for the waveguide problem
with four uncertain parameters. Figure taken from [48, Fig. 2].

and
ξ
{12}

= (8.6, 3.8, 2, 0.5, 0.7, 0.6, 1.4, 2.8, 1.7, 0.8, 0.3, 1.4)> , (6.26)

respectively. The size of the MC sample set NMC is chosen based on the MC error estimator (4.7). In the
following we allow an MC error of ε̂MC,Y = 0.01which yields a sample size ofNMC = 2500. For the waveguide
problem with four uncertain parameters, in Fig. 6.4 the results of the MC yield estimators for different sample
sizes are given. The black line indicates the value of the yield estimator for NMC = 10000, which is the most
accurate solution calculated. The gray shaded area indicates the 0.01-sigma level for each sample size. We
observe that for sample sizes below 1500 the sigma interval is rather large, then it decreases with increasing
sample sizes, first rapidly, then slowly.

The reference solutions for the yield estimation, i.e., the yield values obtained with classic MC analysis with
NMC = 2500 sample points on the closed form solution of thewaveguide, are given by

Y
{4}
ref = 95.44% (6.27)

and

Y
{12}
ref = 74.60%. (6.28)

SC-Hybrid approach We present the results for the SC-Hybrid approach from Sec. 4.3 applied to the wave-
guide problem. We follow our work in [47]. The results will be compared to classic MC and to the SC
approach without hybridization.

For a fair evaluation (same final accuracy) of the computational effort of the SC-Hybrid approach compared
to classic MC, the classic MC must be conducted on the finest mesh used within the SC-Hybrid refinement
process, i.e., on a mesh with size h/4. We will refer to this approach as MCfine. In order to evaluate the
SC-Hybrid strategy, leaving out the effect of model refinement, we also apply the refinement to the MC
approach, called MCL to indicate the usage of different levels of high fidelity. For the SC surrogate model,
the Leja nodes are evaluated on the first grid, i.e., with mesh size h. Since the range parameter interval is
discretized in eleven equidistant range parameter points and for each of them separate surrogate models
are built, cf. Sec. 6.1.1, the number of Leja nodes is multiplied with eleven to obtain the offline costs. The
separate surrogate models for the imaginary part and the real part use the same Leja nodes. We investigate
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Approach # Leja #HFoffline
h #HFonlineh #HFonlineh/2 #HFonlineh/4 #HFL εrel (%)

MCfine – – – – 26360 421760 0.0000
MCL – – 26360 5 1 26396 0.0000

SC-Hybrid 30 330 165 5 1 531 0.0000
SC 30 330 – – – 330 0.1257
SC 120 1320 – – – 1320 0.0000

Table 6.1: Computational effort and accuracy for yield estimation with SC-Hybrid approach compared to
classic MC and pure SC, applied to waveguide problem with four uncertain parameters.

Approach # Leja #HFoffline
h #HFonlineh #HFonlineh/2 #HFonlineh/4 #HFL εrel (%)

MCfine – – – – 22705 363280 0.0000
MCL – – 22705 25 6 22901 0.0000

SC-Hybrid 90 990 4812 25 6 5998 0.0000
SC 90 990 – – – 990 6.2235
SC 1600 17600 – – – 17600 0.4290

Table 6.2: Computational effort and accuracy for yield estimation with SC-Hybrid approach compared to
classic MC and pure SC, applied to waveguide problem with twelve uncertain parameters.

two different accuracy settings for the SC approach, which is reflected in the number of Leja nodes employed.
In the four parameter example we use 30 and 120 Leja nodes per surrogate model, in the twelve parameter
example 90 and 1600, respectively. For the SC-Hybrid approach the SCmodel with lower accuracy is employed
as the initial surrogate model. For each approach the sameMC sample set as for the reference solution is used.
The results for the four parameter setting are summarized in Table 6.1, the results for the twelve parameter
setting in Table 6.2.

In both tables we see the number of offline and online high fidelity evaluations. For the online evaluations we
distinguish the three different refinement levels. In the last two columns we see the key indicators for each
approach: the costs according to (6.23) and the relative error compared to the reference solution according
to (6.21).

In the test case with twelve uncertain parameters (see Table 6.2), both MC approaches and the SC-Hybrid
approach achieve the same yield estimate as the reference solution. Thereby, the SC-Hybrid approach requires
the least computational effort. Compared to MCL more than 73% of the computing costs can be saved,
compared to MCfine even 98%. We observe that in both approaches applying the refinement strategy, i.e.,
SC-Hybrid approach and MCL, most of the MC sample points are evaluated on the first mesh (h). The
refinement h/2 is applied for 25 sample points, the refinement h/4 for only 6 sample points. The pure SC
approach performs worse. Using the same surrogate model as for SC-Hybrid, the computational effort is
reduced by more than 80%, but at the cost of a relative error of more than 6%. Increasing the accuracy of
the surrogate model by increasing the number of Leja nodes reduces this error. However, even with 1600
Leja nodes per surrogate model, resulting in a computational effort three times higher than in the SC-Hybrid
approach, the error is still larger than 0.4%.

In the test case with four uncertain parameters, the results are similar. The MC approaches and the SC-Hybrid
approach achieve the same yield estimate as the reference solution, while the SC approach employing 30 Leja
nodes, but without hybridization, has an error of more than 0.1%. In this setting the error of the SC approach
can be reduced to zero by increasing the number of Leja nodes to 120. However, with 120 Leja nodes the
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computing effort of the SC method is more than twice the effort of the hybrid approach. Considering the
computational effort of the MC approaches and the SC-Hybrid approach, we observe that the hybrid approach
saves almost 98% compared to MCL, and even 99.8% compared to MCfine.

We conclude, in both settings the SC-Hybrid approach performs best, achieving the reference solution for the
yield estimate at the lowest computational costs. Comparing the test case with twelve and four uncertain
parameters, we observe that the advantage of the SC-Hybrid approach over classic MC decreases for an
increasing number of uncertain parameters. Nevertheless, by construction we know that the number of high
fidelity evaluations in the SC-Hybrid approach can never exceed the number of high fidelity evaluations in
classic MC, excluding the effort for calculating the error indicator and for the offline high fidelity evaluations
(which might scale poorly for many uncertain parameters). Further, we observe that the higher the number of
uncertain parameters, the higher the benefit which can be expected from the SC-Hybrid approach compared
to pure SC. This can also be explained by the scaling of collocation nodes and dimension in the SC approach.
The hybrid approach allows lower accuracy in the surrogate model since critical sample points are reevaluated
on the high fidelity model before classification.

Since the GPR-Hybrid approach, which will be investigated next, is not implemented with model refinement,
we perform one calculation of the SC-Hybrid approach without refinement to allow a valid comparison.
For the waveguide problem with four uncertain parameters and 30 Leja nodes we perform all high fidelity
evaluations on a mesh with size h. The reference value of the yield can be achieved while the total number
of high fidelity evaluations is

#HFSC-H = #HFoffline
h +#HFonlineh = 330 + 165 = 495. (6.29)

GPR-Hybrid approach For the GPR-Hybrid approach we investigate the waveguide problem with four un-
certain parameters. For this benchmark problem a closed form solution exists and will be used here. However,
we refer to this evaluation as a high fidelity evaluation since in practice the problem would be solved using
a computationally expensive numerical method, e.g. FEM. The GPR is realized in Python with the package
scikit-learn [98]. In the beginning of GPR a kernel and a mean function have to be chosen, cf. Sec. 3.3.3.
The kernel applied to the waveguide problem is a product of a constant kernel and a squared exponential
kernel, i.e.,

k(ξ, ξ′) = ζe
|ξ−ξ′|
2l2 , (6.30)

where ζ ∈ R and l > 0 are hyperparameters. For the hyperparameters we provide the starting points
ζ0 = 0.1 and l0 = 1 and ranges ζ ∈ [10−5, 10−1] and l ∈ [10−5, 105], then they are optimized within scikit-
learn. For the hyperparameter optimization we allowed a maximum of 10 iterations. As the mean function
the mean value of the training data evaluations is employed. The noise factor in the GPR is set to α =
10−5. This is recommended in order to avoid numerical issues, e.g. due to mesh noise. For more details on
hyperparameters we refer to [106, Chap. 2.3].

As in the SC-Hybrid approach, for each frequency range point a separate surrogate model is built with its own
training data points. Further, we build separate surrogate models for the imaginary part and the real part.
Hence, the square root is avoided, which ensures (affin-)linearity of the QoI [48]. Since the same training
data can be used for both and the computational costs for building the GP is negligible compared to the high
fidelity evaluations of each sample point (cf. Sec. 3.3.3), the resulting computational effort for building these
two surrogate models separately is also negligible.

The initial set of training data points is generated according to their probability density function, differ-
ent sizes of the training data set |TGPR| are investigated. The batch size NB defines the number of critical
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|TGPR| = 5 |TGPR| = 10 |TGPR| = 30

#HFoffline 55 110 330

#HFonline 306 226 179
#HF 361 336 509

Table 6.3: Number of high fidelity evaluations for different sizes of the initial training data set in the GPR-
Hybrid approach applied to the waveguide problem. In all cases batch size NB = 50 is used.

No sorting EGL criterion Hybrid criterion
#HFonline #HFonlineeff #HFonline #HFonlineeff #HFonline #HFonlineeff

NB = 1 178 178 146 146 127 127
NB = 20 197 10 163 9 160 8
NB = 50 226 5 201 5 209 5

Table 6.4: Online computational costs of different batch sizes and updating strategies within the GPR-
Hybrid approach, applied to the waveguide problem. We distinguish high fidelity and effective
evaluations.

sample points evaluated before a model update is considered. It can be chosen according to the number
of parallel processors available in order to allow parallel computing. However, a higher value also has
the effect that the GPR model is updated less frequently, which might result in more sample points clas-
sified as critical due to evaluation on a less accurate surrogate model. Different values for NB are com-
pared.

For batch size NB = 50 we investigate the best performing size of the training data set. The results are sum-
marized in Table 6.3. In all following tests we set |TGPR| = 10, since the sum of offline and online evaluations is
minimal in this case. For smaller training data sets the number of offline evaluations decreases, while the num-
ber of online evaluations increases. For larger values we observe the opposite.

We compare different batch sizes NB ∈ {1, 20, 50} and apply either no sorting strategy, sorting based on the
EGL criterion (4.18) or sorting based on the hybrid criterion (4.20). In all tests the reference solution of
the yield estimate is achieved. Since the offline costs are the same for each of these test cases, in Table 6.4
only the online costs are compared. We distinguish between the number of online high fidelity evaluations
#HFonline and the number of effective online evaluations #HFonlineeff according to (6.24). The total costs can
be obtained by adding the offline costs #HFoffline = 110, or #HFoffline

eff = d110/NBe, respectively, to the online
costs reported in Table 6.4.

We evaluate the effect of using batches, i.e., of setting NB > 1. For both sorting strategies and without
sorting larger batches lead to higher numbers of high fidelity evaluations. However, the number of effective
evaluations decreases in all cases significantly. This observation coincides with the expectation described
above. It follows that the use of batches is only recommended when sufficient processors are available and
parallelization is realized.

We observe that for smaller batch sizes the effect of sorting is stronger. Without batches (NB = 1), sorting
with the EGL criterion reduces the number of high fidelity evaluations by 18%, sorting with the hybrid
criterion by 29%, compared to the strategy without sorting. In Fig. 6.5 the effect of sorting the sample points
is illustrated. By sorting the sample points, the most critical sample points are evaluated first. This leads to
faster improvement of the GPR model. For batch size NB = 50, the plot shows the number of high fidelity
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Figure 6.5: Comparison of different sorting strategies within the GPR-Hybrid approachwith batch sizeNB =
50 applied to the waveguide problem. Number of high fidelity evaluations over the number of
MC sample points which have already been considered for classification. The marks indicate
completed batches. Figure taken from [48, Fig. 3].

evaluations over the number of MC sample points which have already been considered for classification. For
the 0-th MC sample point the offline costs are plotted. The marks indicate when one batch is completed. It
shows that using a sorting strategy, first the critical sample points are evaluated on the high fidelity model,
then the non-critical sample points on the GPR model. Without sorting the critical sample points are more
spread over the MC sample, although this curve is also flattening due to the improvement of the GPR model.
After evaluating the whole MC sample set, the total number of high fidelity evaluations is similar for all
strategies.

Finally, we compare the computational effort with the reference solution. Classic MC without batches (i.e.,
NB = 1) requires 26360 high fidelity function evaluations. Enabling parallel computing for classic MC with
NB parallel processors yields 1318 effective evaluations forNB = 20, 528 forNB = 50, respectively. Depending
on the sorting strategy and the batch size, using the GPR-Hybrid approach reduces the computational effort
by 99.0− 99.5% compared to classic MC.

Linearization approach Linearization is a standard method for yield estimation in industry [35]. Assuming
that the variations of the uncertain parameters are small enough to achieve valid results, the QoI is approx-
imated by a simple linearization approach and then a MC analysis is applied. This paragraph is dedicated
to the evaluation of the validity of this approach and the comparison of the results with the hybrid methods
proposed in this work. We follow our work in [48].

We briefly describe the linearization approach. Let ξ0 denote the point for which a linearization shall be
realized, probably ξ. For each direction a new point is generated by

ξk = ξ0 + δek, k = 1, . . . , nξ, (6.31)

and evaluated on the high fidelity model. In (6.31), ek denotes the k-th unit vector and δ > 0 the step size
(if interpreted in the sense of finite differences). Having now two points per direction, we create a linear
equations system with

Q(ξk) =

nξ∑
i=1

(αiξ
k
i ) + αnξ+1, k = 0, . . . , nξ, (6.32)
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Figure 6.6: Comparison of yield estimates by linearization (with step size δ) over increasing magnitudes of
uncertainty υ for the waveguide problem with four uncertain parameters. Reference solution is
from classic MC analysis. Figure taken from [48, Fig. 4].

where αi, i = 1, . . . , nξ, denote the interpolation coefficients. By solving this system, the linear interpolation
model is built. As in the GPR-Hybrid method, separate surrogate models are built for each range parameter
point and for the real and the imaginary part. As above, for the surrogates of the real and the imaginary
part the same interpolation points can be used. The number of required high fidelity evaluations per range
parameter point is nξ+1. In case of the waveguide problem with four uncertain parameters and eleven range
parameter points, 5 ·11 = 55 high fidelity evaluations are required. If derivative information is available, this
could be utilized alternatively.

We introduce the parameter υ ∈ [0, 1] to describe a varying magnitude of uncertainty. For the uncertain
parameter we write ξ ∼ NT (ξ, υΣ, a,b), i.e., the covariance matrix is multiplied with different values of
υ. For υ = 0 there is no uncertainty, for υ = 1 we obtain the case as described in Sec. 6.1.1 and evalu-
ated previously in this section. In Fig. 6.6 the yield estimates with increasing values of υ are illustrated.
We compare the linearization approach with different values for the step size δ with the classic MC analy-
sis. The hybrid approaches coincide with the MC yield estimates for all magnitudes of uncertainty and are
not visualized here. For υ > 0.5 the deviations of the linearization approach are significantly for any δ.

Comparison In this section the proposed hybrid approaches have been applied to the waveguide problem.
We evaluate their performance against each other and in comparison to the classic MC analysis. Both hybrid
methods demonstrate high accuracy by coinciding with the MC results for all test cases. In order to analyze
the computational effort under comparable settings, we consider the GPR-Hybrid solution without batches
(i.e., NB = 1) and without sorting and the SC-Hybrid solution without high fidelity model refinement. The
computational costs for the waveguide problem with four uncertain parameters are summarized in Table 6.5.
Compared to classic MC the computational effort is reduced by 98% with the SC-Hybrid approach and even
99% with the GPR-Hybrid approach. This significant reduction of computing time allows yield analysis in
industrial applications. Comparing the two hybrid methods, the GPR-Hybrid approach is the recommended
choice. It requires 40% less high fidelity evaluations than the SC-Hybrid approach. Further, for GPR no
detailed information of the FEM solution is required which allows the usage of proprietary software as a
blackbox.
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Approach # Training points #HFoffline #HFonline #HF
MC – – 26360 26360

SC-Hybrid 30 330 165 495
GPR-Hybrid 10 110 178 288

Table 6.5: Comparison of computational effort for different yield estimation approaches, applied to wave-
guide problem with four uncertain parameters.

6.2.2 PMSM

In this section we estimate the yield for the PMSM described in Sec. 6.1.2. Since the machine is modeled
and simulated in CST, details on the FEM matrices and solutions are not available. It follows that only classic
MC and the GPR-Hybrid approach are employed. We discuss the yield estimation in the starting point of the
optimization which follows in Sec. 6.4.2, i.e.,

d(0) = (19, 7, 7, 0)>. (6.33)

The mean of the uncertain parameter ξ is as defined in (6.13). Equivalently to the waveguide problem, the
size of the MC sample set is NMC = 2500. Due to the absence of a range parameter, only one surrogate model
is required. For the reference solution, which is MC on the high fidelity (i.e., CST)model, this results in a com-
putational effort of 2500 high fidelity evaluations. TheMC yield estimate is

Yref = 4.28%. (6.34)

Parallel computing was not available, thus, the batch size is set toNB = 1. Sorting is not applied. This section
follows our work in [70].

Generation of the training data set This paragraph is dedicated to the generation of the training data set for
the initial GPR surrogate model. In case of pure yield estimation, the deterministic parameter d is set accord-
ing to (6.33) and remains unchanged. The training data set consists of random sample points drawn from the
probability distribution of the uncertain parameter. We refer to this setting as Case Est.

Later we aim to optimize the yield. In contrast to the waveguide problem, where the mean of the uncertain
parameter is the optimization variable, here we optimize over the deterministic parameter. Since the op-
timization is also using the surrogate model, for the purpose of optimization the training data set should

also include variations of the deterministic parameter. We generate training data points (ξ
(i)>

,d(i)>)>,
i = 1, . . . , |TGPR|. The realizations for the uncertain parameter are distributed as in Case Est. The real-
izations of the deterministic parameters d1, d2 and d3 are uniformly distributed in a ±10% range around the
values defined in (6.33). The deterministic parameter d4 is uniformly distributed in [−3, 3]. We refer to this
setting as Case Opt.

Size of the training data set Once the generation of the training data points is clarified, a suitable size of
the training data set is determined. Different values are tested, the results are summarized in Table 6.6.
Please note that the offline costs coincide with the training data size, since there is no range parameter.
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Case |TGPR| #HFoffline #HFonline Ỹ (%) #HF εrel (%)

10 10 26 4.28 36 0.0000
Case Est 20 20 23 4.28 43 0.0000

50 50 21 4.28 71 0.0000

15 15 34 3.92 49 8.4112
Case Opt 20 20 40 4.36 60 1.8692

30 30 43 4.32 73 0.9246

Table 6.6: Comparison of computational costs and accuracy for different sizes of the initial training data
set in the GPR-Hybrid approach applied to the PMSM problem.
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Figure 6.7: Comparison of the GPR model error for Case Est and Case Opt. Figure based on [70, Fig. 6],
© 2022 IEEE.

In Case Est ten initial training data points are sufficient to achieve a highly accurate yield estimate. By increas-
ing the number of training data points the number of critical sample points (online evaluations) decreases only
slightly. With 36 high fidelity evaluations the total costs areminimum for |TGPR| = 10.

Based on the sample size NMC = 2500, the reference solution for the yield estimate and the equation for the
error tolerance of the MCmethod (4.7) we obtain a MC error indicator of

εMC,Y (Yref, NMC) =

√
Yref(1− Yref)

NMC
≈ 0.00405. (6.35)

Hence, all yield estimates in the region Yref ± 0.405% are valid. For the Case Opt at least 15 training data
points are required to achieve this accuracy. However, using only five more data points yields 20% higher
total costs, but reduces the relative error from more than 8% to less than 1.9%. Only two MC sample points
are classified differently as in the reference solution then. In the following optimization part, we apply Case
Opt with |TGPR| = 20 for training the initial surrogate model.

Figure 6.7 shows the standard deviation, i.e., the error, of the GPR models for Case Est and Case Opt during
the procedure of one yield estimation. The observation from the waveguide model applies also to the PMSM:
The number of critical sample points evaluated on the high fidelity model decreases over time, while the
accuracy of the GPR model increases. The GP in the Case Est is already very accurate after the initial training.
It is evident that for yield estimation Case Est performs slightly better than Case Opt, since the training data
set solely includes points resembling the sample points drawn for the MC analysis, but not deterministic
optimization variables. However, comparing the effort to standard MC, the difference between Case Est and
Case Opt is not significant.
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Comparison For pure yield estimation Case Est is the natural choice, since the deterministic parameter
can just be considered as a constant model parameter. For yield optimization Case Opt is recommended, to
account for the change of the deterministic parameters during the optimization process. Compared to classic
MC the computational effort of yield estimation can be reduced by 98.56% for Case Est, and 97.6% for Case
Opt, while achieving the same yield estimate.

6.3 Adaptive Newton-MC for yield optimization

In this section we apply the adaptive Newton-MC method for yield optimization proposed in Sec. 5.3 to the
waveguide problem. For the yield estimation during the optimization procedure, classic MC, SC-Hybrid and
GPR-Hybrid methods are employed. The results are compared to optimization with a standard globalized
Newton method. The content of this section follows our work in [47, 52].

As in the previous section, the safety factor is set to s = 2 and the MC error tolerance to ε̂MC,Y = 0.01. For
the standard Newton method, this error tolerance implies a sample set size of NMC = 2500. In the adaptive
Newton-MC method we set the initial MC sample set size N start

MC = 100 and the incremental factor inc = 1. In
both methods, adaptive Newton-MC and standard Newton, we limit the number of Armijo backward steps.
If the inequality in line 10 of Algorithm 4 is not fulfilled after three steps, the step size is set to σ(k) = β3 and
the next iteration starts.

6.3.1 Waveguide

We consider the waveguide problem as introduced in Sec. 6.1.1. As starting point for the optimization we
set

ξ
{4},(0)

= (9, 5, 1, 1)> (6.36)

for the waveguide problem with four uncertain parameters and

ξ
{12},(0)

= (9, 5, 2, 0.5, 1, 1, 1.1, 2.5, 1, 1, 1, 2)> (6.37)

for the settingwith twelve uncertain parameters. The initial yield estimates are

Ỹ {4},(0) ≈ 41% and Ỹ {12},(0) ≈ 15%. (6.38)

Validity of assuming a truncated Gaussian distribution The adaptive Newton-MC method uses the deriva-
tives of the yield, which can be easily computed in case of Gaussian distributed uncertain parameters, cf.
Sec. 5.3. However, according to Sec. 6.1.1, we modeled the uncertain parameter as truncated Gaussian
distributed, in order to avoid unphysical values. This implies, that the gradient used for optimization de-
viates from the exact gradient corresponding to the MC sample set. This can be interpreted as an inexact
Newton method [38], with approximations in the root-finding problem, i.e., here inexact gradients and Hes-
sians.
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Figure 6.9: Comparison of the gradients ∇ξ1
YG (closed form Gaussian gradient according to (5.33)) and

∇ξ1
YDQ (truncated Gaussian gradient from difference quotient) for the waveguide problem with

one uncertain parameter. Figures taken from [47, Fig. 3, 4], © 2020 by Begell House, Inc..

In order to avoid these inexact derivatives, alternatively, one could calculate the gradient with finite dif-
ferences. However, the computational effort would increase significantly. While the gradient based on the
Gaussian distribution can be calculated without any additional computing effort, the difference quotient
requires at least one additional yield estimation per dimension. To distinguish the two types of gradi-
ents, in this paragraph we write ∇ξ1

YG for the gradient based on the Gaussian distribution and calculated
with (5.13), and ∇ξ1

YDQ for the gradient based on the truncated Gaussian distribution and calculated with
the difference quotient. We propose a simple modification of the adaptive Newton-MC method to ensure
the optimality of the final yield solution with reduced additional computing costs. Once the algorithm has
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terminated, the gradient can be calculated with the difference quotient. If the error is small enough, i.e.,∣∣∣∇ξ1
YG −∇ξ1

YDQ

∣∣∣ < εgrad (6.39)

for some εgrad > 0, the solution is accepted. Otherwise, the next iteration is started using the difference quo-
tient gradient from now. Please note that also this modification may increase the computational effort signifi-
cantly, which could lead to a computationally prohibitive problem in practice.

Let us investigate the difference of the two gradients for a simplified version of the waveguide problem. We
consider only one uncertain parameter ξ1, a truncated Gaussian distributed MC sample set and set the step
size for the difference quotient equal to 10−3. Figure 6.8 shows the yield plotted over the uncertain parameter
ξ1. In Fig. 6.9 the two gradients are compared. In Fig. 6.9a the gradients are plotted over the uncertain pa-
rameter ξ1. Although there are differences, they show very similar behavior. Especially in the important areas
close to the optima both graphs agree well. Figure 6.9b shows the convergence of the gradients for increasing
NMC for a given value of the uncertain parameter. We observe that the gradients converge towards each other
for large NMC. Hence, an increase of NMC could also be applied in the modification mentioned above. How-
ever, we conclude that ∇ξYG is a good approximation for the yield based on truncated Gaussian distributed
uncertain parameters. We use this approximation for an inexact Newton method, see e.g. [38]. This is also
validated by the optimization results in the remainder of this section.

Adaptive Newton-MC with the SC-Hybrid approach We apply the adaptive Newton-MC and the standard
Newton method to the waveguide problem with four and twelve uncertain parameters. The number of Leja
nodes for building the surrogate model was chosen according to the estimation, i.e., 30 for four uncertain
parameters, and 90 for twelve uncertain parameters, respectively. The refinement strategy in three mesh size
levels (h,h/2,h/4) is also applied. Note that the surrogate model is only built once before the optimization
starts. Alternatively, one could build a new surrogate model in each iteration or generate Leja nodes in a
larger interval to cover a larger space. In Table 6.7 the results are summarized. Evaluating the performance of
the optimization methods, again, we focus on two key indicators. First, the computational effort according
to (6.23), i.e., under consideration of varying effort for different refinement levels. The offline costs are
also included. Second, the optimal yield value achieved (Y opt). In order to obtain comparable results the
optimal yield value is always estimated with NMC = 2500, although the adaptive approach may require less
sample points in the last iteration. Besides that, also the number of Newton iterations (#It) is provided in
Table 6.7.

For the case with four uncertain parameters the yield can be improved to more than 95%. Applying the adap-
tive method, the computational costs are 90% lower than with the standard Newton method. We evaluate
the proposed method, i.e., the adaptive Newton-MC method for optimization and the SC-Hybrid approach
with model refinement for yield estimation against existing standard methods, i.e., non-adaptive Newton
with classic MC on the finest mesh (h/4). The costs for this standard approach would be #HFL ≈ 13 · 106.
Hence, the proposed method can save 99.9% of the computing costs.

In the case with twelve uncertain parameters, the adaptive Newton-MC and the non-adaptive standard New-
ton method terminate in different local optima with similar yield values. While the number of iterations is
similar for both, the computational costs can be halved with the adaptive method. Figure 6.10 shows the size
of the MC sample set in each iteration of the adaptive Newton-MC method. We observe that most iterations
require only small sample sets. Only in the end does the number increase to reach the defined MC error
tolerance.
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Dim Approach #Leja #It #HFL Y opt (%)

4 adapt. Newton-MC 30 12 13716 95.44
4 standard Newton 30 30 138158 97.92

12 adapt. Newton-MC 90 33 376073 74.84
12 standard Newton 90 37 682745 78.20

Table 6.7: Comparison of adaptive Newton-MC and standard Newton method for yield optimization with
SC-Hybrid estimation applied to the waveguide problem.
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Figure 6.10: Increase of the MC sample sizeNMC in the adaptive Newton-MCmethod for yield optimization,
applied to the waveguide problem with twelve uncertain parameters.

Adaptive Newton-MC with the GPR-Hybrid approach We optimize the waveguide with four uncertain pa-
rameters using the GPR-Hybrid approach for yield estimation. The GPR model is updated after each eval-
uation of a critical sample point. Alternatively, one could set the batch size NB > 1 or update after each
iteration. In Fig. 6.11 the progress of the yield is plotted over the iterations of the optimization. Again, we
consult the standard Newton method as reference algorithm. The yield increases very similarly. Both meth-
ods find the same optimum. While the adaptive method requires only 681 high fidelity evaluations, including
offline costs, the non-adaptive method requires 2753 evaluations. Hence, using the adaptive Newton-MC
optimization, the effort can be reduced by 75%.
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Figure 6.11: Progress of the yield estimation with adaptive Newton-MC and standard Newton optimization
and GPR-Hybrid estimation, applied to the waveguide with four uncertain parameters. Figure
based on [52, Fig. 6].
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Standard Newton Adaptive Newton-MC
MC SC-H GPR-H MC SC-H GPR-H

Y opt (%) 97.92 97.92 98.32 95.40 95.44 98.32
#HF 863792 136556 2753 56652 13616 681

Saving (%) ref 84.19 99.68 93.44 98.42 99.92

Table 6.8: Comparison of the adaptive Newton-MCmethod and the standard Newtonmethod with different
yield estimation approaches, applied to the waveguide problem with four uncertain parameters.

Comparison We summarize the results for yield optimization with the adaptive Newton-MC method using
different estimation approaches and compare it with the standard Newton method. Therefore, we consider
the SC-Hybrid approach without model refinement, i.e., all high fidelity evaluations originate from FEM
with mesh size h. In Table 6.8 the optimal yield values and the number of high fidelity evaluations are
summarized. Further, we introduce the row Saving. It provides the percentage of high fidelity evaluations
which can be saved compared to the reference solution, i.e., compared to standard Newton with classic MC.

In all cases the yield is maximized significantly from 41% to more than 95%. The small differences do not
allow any statement about the quality of the respective method. With all estimation techniques the adaptive
optimization method reduces the computational effort significantly. Even with classic MC we record a saving
of more than 93%. However, the combination of the adaptive Newton-MC method for yield optimization
and the GPR-Hybrid approach for yield estimation performs best. The computational costs are minimal,
with a saving of 99.92% compared to the reference method, while the optimal yield value is maximal with
98.32% (although the differences in the yield values are not significant). The better performance of the GPR-
Hybrid approach compared to the SC-Hybrid approach probably results from the fact that the GPR model
can be updated during the optimization process, while the SC model cannot adapt to the advancing path
of optimization, which may lead far away from the starting point. The initial model remains unchanged or
completely new models are built. Due to the required structure of the interpolation points, the critical sample
points cannot be used for potential new models.

6.4 MOO for yield optimization

In this section we formulate MOO problems according to (5.46) for the waveguide and the PMSM and solve
them with the methods described in Sec. 3.2.2.

6.4.1 Waveguide

We consider the waveguide problem with four uncertain parameters and no deterministic ones, and follow
our work in [52]. Besides maximizing the yield, we aim to minimize the width of the waveguide. The width
of the waveguide is given by the length of the inlay and the offsets. Since these quantities are uncertain,
we require the expectation value, i.e., E[ξ1 + 2ξ2]. It is obtained by sampling the uncertain parameters.
Note, the computing costs of this sum is negligible compared to the high fidelity evaluations required for the
yield estimation. The MOO problem will be solved directly with a genetic algorithm. This implies a trade-
off between the two objective functions. In order to ensure a minimum of reliability of the manufactured
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Figure 6.12: Pareto front for the simultaneous maximization of the yield and minimization of the width of
the waveguide with four uncertain parameters, see (6.40). Figure based on [52, Fig. 6].

device, we introduce a lower bound for the yield estimate Ymin = 80%. Further, we introduce lower and
upper bounds for the optimization variable, i.e., the mean value of the uncertain parameter. We obtain the
optimization problem

max
ξ

Y (ξ) (6.40)

min
ξ

E[ξ1 + 2ξ2]

s.t. Y (ξ) ≥ Ymin = 0.8

(5, 3, 0.5, 0.5)> ≤ ξ ≤ (25, 15, 1.5, 1.5)>.

We apply the NSGAII (Non-dominated Sorting Genetic Algorithm II) algorithm [37] implemented in the
Python package pymoo [15]. The initial population size is set to 200, the number of offsprings per generation
to 100 and the maximum number of generations to 30. For the remaining parameters the default settings
are used. After 30 generations, i.e., 200 + 30 · 100 = 3200 evaluations of the objective functions, we obtain
the pareto front in Fig. 6.12. Depending on the weighting of the two objective functions, one of the pareto
optimal solutions can be chosen.

6.4.2 PMSM

In the literature, many different aspects of electrical machines have been optimized, for example the shape
of the rotor [54], the stator slots [4], or the PMs [18, 19]. Additionally, freeform [55] and topology [54]
optimization is investigated. In this work the shape and the position of the PMs will be subject to parametric
optimization. In Sec. 6.1.2 wementioned, that thematerial for the PMs is limited, expensive and its extraction
harms the environment. It is only reasonable to reduce the amount of this material in the PMSM design, i.e.,
reduce the size of the PMs [18, 97]. In the 2D model, the size of the magnet is described by its surface.
We define the objective function C(d) = d1 d2 (in mm2), which is proportional to the costs of the PMs. We
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introduce bound constraints and linear constraints on the geometry parameters to ensure that the PM fits
into its position. The resulting MOO problem reads

max
d

Y (ξ,d) (6.41)

min
d

C(d) = d1 d2

s.t. (d1, d2, d3) ≥ (1, 1, 5)>

d3 ≤ 14

d2 + d3 ≤ 15

3d1 − 2d3 ≤ 50

d4 ≤ 8.5.

Problem (6.41) will be solved with a genetic algorithm and with the scalarization methods described in
Sec. 3.2.2. We will also investigate a multi-start procedure for the weighted sum method. The content and
the structure of this section follows our work in [70].

Reference solution Before we compare the different MOO approaches considering uncertainties, we calcu-
late a reference solution. I.e., we minimize the surface dimension without consideration of material uncer-
tainties. In (6.41) we neglect the first objective function (i.e., the maximization of the yield), therefore we
introduce an additional constraint τavg ≥ 10.8Nm, cf. (6.16). Evaluating the QoI always on the high fidelity
model, we obtain the optimal solution

dref = (20.0, 4.69, 5.0,−0.09) (6.42)

with optimal value Cref = 93.7759mm2. Now we assume that we have uncertainties as specified in Sec. 6.1.2.
We estimate the yield for this solution and obtain a value of Yref = 0.4696.

In the following we show that significantly better yield values (around 0.99) can be achieved when uncertain-
ties are already considered and optimized during the optimization process. In return, the surface dimension
will be reduced a bit less than in the reference optimization run (to 108mm2).

Genetic algorithm We apply the same genetic algorithm implementation as for the waveguide problem, i.e.,
NSGAII as part of the python package pymoo [15, 37]. We set the initial population size to 100, the number
of offsprings per generation to 50 and the maximum number of generations to 18. Further we define lower
and upper bounds for the optimization variables by d1 ∈ [18, 21], d2 ∈ [6, 7], d3 ∈ [6, 8], d4 ∈ [−2, 2]. After
eight generations the pareto front is as illustrated in Fig. 6.13. The gray shaded area indicates the set of
feasible solutions. After 18 generations, the algorithm has converged to a single point (indicated as square
in Fig. 6.13) with yield value 100% and surface dimension 108.146mm2. Please note that the reference
solution (6.42) lies not within the bounds specified above.

One advantage of genetic algorithms is their blackbox character. However, the computational costs are high.
After 18 generations, the objective functions are evaluated 100+18 ·50 = 1000 times. Each time the objective
functions are evaluated, a complete yield estimation is executed. Again the computational effort for the
second objective function is negligible. Applying the GPR-Hybrid approach for yield estimation, about 11040
high fidelity evaluations are performed, including 20 offline evaluations. One high fidelity evaluation of the
investigated PMSM in CST takes approximately 85 seconds. Accordingly, the entire optimization lasts eleven
days. A calculation with classic MC would last almost seven years.
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Figure 6.13: Pareto front after eight generations for the simultaneous maximization of the yield and mini-
mization of the size of the PMs, see (6.41). Optimization converges to single solution after 18
generations (red square). Figure based on [70, Fig. 15].

As explained in Sec. 3.2.2, the methods we discuss in the following require more previous knowledge about
the problem than a genetic algorithm and return only one pareto optimal solution at a time, but are compu-
tationally much less expensive.

ε-constraint method In the ε-constraint scalarization method one objective function is transformed into a
constraint. We keep the yield as the objective function and introduce an upper bound Cmax for the PM size.
The resulting SOO problem reads

max
d

Y (ξ,d) (6.43)

s.t. (d1, d2, d3) ≥ (1, 1, 5)>

d3 ≤ 14

d2 + d3 ≤ 15

3d1 − 2d3 ≤ 50

d4 ≤ 8.5

C(d) = d1 d2 ≤ Cmax.

Since the gradient of the yield with respect to a deterministic parameter is not available, cf. Sec. 5.2.1, and the
constraint C(d) = d1 d2 is nonlinear, a derivative free solver for nonlinear constraints is required. We solve
the optimization problem with COBYLA (Constrained Optimization BY Linear Approximation), which is part
of the PDFO framework (Powell’s Derivative Free Optimization solvers) [128] and able to handle arbitrary
constraints.

Different values forCmax are compared. In Fig. 6.14a and Fig. 6.14b the progress of the yield estimate and the
PM surface is plotted for the different values of Cmax. The results are summarized in Table 6.9. The optimal
objective function values Y opt and Copt are provided. For the computational effort we count the number of
objective function calls, i.e., yield estimations (#YE), and the number of high fidelity evaluations, including
20 offline evaluations.

We observe that for most values of Cmax the yield increases significantly, while the surface dimension remains
close to the bound provided. But if the bound is chosen to low, the optimization routine fails to maximize the
yield (see Cmax = 100). Hence, the choice of Cmax is a trade-off between the two objective functions and is
crucial for the optimization result. This is a drawback in practice, since previous knowledge is required. Later
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Figure 6.14: Progress of the two objective functions during the ε-constraint method applied to the PMSM.
Figures based on [70, Fig. 7, 8], © 2022 IEEE.

Comp. effort Object. fct. values
Cmax #YE #HF Y opt (%) Copt (mm2)

120 17 370 100.0 119.938
110 35 382 99.8 110.000
108 42 335 99.6 108.000
100 38 182 0.0 99.092

Table 6.9: Comparison of different values for the upper bound Cmax in the ε-constraint method applied to
the PMSM.

in this sectionwewill discuss themulti-start procedure, a heuristic which addresses this drawback. For this ex-
ample, we find thatCmax = 108 is the best choice. The computational effort is similar for all settings (362 high
fidelity evaluations on average), except the failing setting (Cmax = 100).

Weighted sum method In the weighted sum method all objective functions are merged into one single
objective function and weighting factors are assigned. Since maximization and minimization are combined,
the second objective function C(d) is multiplied with −1, cf. (3.25). For (6.41) we obtain the scalarized
problem

max
d

f(ξ,d) = Y (ξ,d) + w(−C(d)) (6.44)

s.t. (d1, d2, d3) ≥ (1, 1, 5)>

d3 ≤ 14

d2 + d3 ≤ 15

3d1 − 2d3 ≤ 50

d4 ≤ 8.5.

The SOO problem has only linear constraints. Hence, we can apply the optimization algorithm LINCOA
(LINearly Constrained Optimization Algorithm), which is also part of the PDFO framework [128]. Besides
the trust region termination criteria implemented in LINCOA, we limit the number of objective function calls
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Figure 6.15: Progress of the two objective functions during the weighted summethod applied to the PMSM.
Figures based on [70, Fig. 9, 10], © 2022 IEEE.

Comp. effort Object. fct. values
w #YE #HF Y opt (%) Copt (mm2)

1 · 10−3 31 279 99.9 128.963
2 · 10−3 35 250 99.6 114.594
3 · 10−3 59 282 99.5 109.702
5 · 10−3 100? 754 97.8 105.174

Table 6.10: Comparison of different values for the weight w in the weighted sum method applied to the
PMSM. Note that the test case w = 5 · 10−3 has terminated since the maximum number of
objective function calls (100) was reached.

to 100 and terminate if there is no significant change of the objective function value, considering the last four
iterations. I.e., the algorithm terminates if

∆f (j) =

∣∣∣∣∣
(
1

4

4∑
i=1

f (j−i)(ξ,d)− f (j)(ξ,d)

)∣∣∣∣∣ < 10−4. (6.45)

Different values for the weightw > 0 are tested. In Fig. 6.15a and Fig. 6.15b the progress of the yield estimate
and the PM surface dimension employing the weighted sum method is visualized. In Table 6.10 the results
are summarized. In all settings, the yield estimate improves significantly. It is evident, that the influence
of the surface dimension of the PMs increases for larger weight values. Consequently, the optimal value of
the surface dimension decreases. On the other hand, the value of the optimal yield estimate deteriorates
slightly for increasing w. Further, we observe that larger weights increase the demand on the weighted
objective function which leads to higher computing costs. For w = 5 · 10−3, the algorithm terminates since
the maximum of 100 objective function calls is reached. As the bound Cmax in the ε-constraint method,
the weight w is a trade-off between the two objective functions and is crucial for the optimization results.
It should be chosen wisely, based on previous knowledge if possible. The best results are obtained with
w = 3 · 10−3. The optimal objective function values are a good trade-off. The number of objective function
calls is almost twice the number with lower weights, but thanks to the GPR-Hybrid approach, the number of
high fidelity evaluations is only slightly higher.
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Figure 6.16: Visualization of the exploration phase during the multi-start procedure applied to the PMSM.
Progress of the weighted sum objective function f(ξ,d) from (6.44) for different starting
points. Figure based on [70, Fig. 11], © 2022 IEEE.
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Figure 6.17: Progress of the two objective functions during the optimization of the PMSM. Comparison of
weighted sum with and without multi-start procedure, for weight w = 1 · 10−3. Figures based
on [70, Fig. 12, 13], © 2022 IEEE.

Multi-start procedure A drawback of both scalarization methods is that a parameter has to be set, the
bound Cmax in the ε-constraint method or the weight w in the weighted sum method. Further, the solvers
LINCOA and COBYLA are – as most deterministic optimization solvers – no global methods, i.e., they find a
local optimum which depends on the starting point chosen. With the multi-start procedure we aim to cover
the feasible set better and not being trapped in a local optimum.

Multi-start procedures are common heuristics, which are widely used to globalize local optimization solvers,
cf. [89, Chap. 6]. We will briefly describe the strategy we apply here. We randomly generate a set of ten
starting points. For each of them, the optimization is started with low accuracy, i.e., with sample size NMC =
100. This phase serves to explore the entire feasible set in order to determine the most promising region.
For this purpose, high accuracy is not required, so we save computational effort by choosing a small sample
set. Alternatively, one could use lower fidelity FEM models. Following the terminology of reinforcement
learning [114], we call this phase the exploration phase. After twelve objective function calls per starting
point the optimizations are stopped and the starting point is selected for which the objective function value
is best (i.e., maximum) so far. For the corresponding starting point the optimization is continued with high
accuracy, i.e., NMC = 2500. Now we seek for the best objective function value in this region, hence, we call
this phase the exploitation phase.
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Comp. effort Object. fct. values
multi-start #YE #HF Y opt (%) Copt (mm2)

no 31 279 99.9 128.963
yes 135 414 99.8 111.203

Table 6.11: Comparison of weighted sum with and without multi-start procedure, for weight w = 1 · 10−3,
applied to the PMSM.

optimized PM design

initial PM design

Figure 6.18: Optimal design of the PMSM after optimizing with the weighted sum method employing the
multi-start procedure. The gray shades area indicates the optimal design, the black contours
the initial design. Figure taken from [70, Fig. 14], © 2022 IEEE.

We apply the multi-start procedure to the weighted sum problem (6.44). We choose the weight w = 1 · 10−3,
since for this setting, the final objective function value Copt is still very high. We investigate whether the
multi-start procedure is able to compensate the poor result.

In Fig. 6.16 the trajectory for the weighted sum function f(ξ,d) in the exploration phase is plotted. Most of
the starting points perform similarly well during that phase, while two improve barely. The last solution of the
green curve is used for the exploitation phase. In Fig. 6.17a and Fig. 6.17b as well as Table 6.11, the results
of the multi-start procedure are compared to the weighted sum results without multi-start. While the finite
yield estimate does not differ significantly, the surface dimension of the PMs can be reduced to ≈ 111mm2,
instead of ≈ 129mm2 without multi-start. The objective function is evaluated more than four times more
often than without multi-starts, but most of the times with small MC sample sets. Thus, the number of high
fidelity evaluations is only 50% higher.

Comparison With all MOO methods significant improvement of the two objective functions, i.e., the yield
estimate and the surface dimension of the PMs, could be achieved. The yield estimate is increased from
≈ 4% to at least 99.5%, the surface dimension is decreased from ≈ 133mm2 to ≈ 110mm2. In Fig. 6.18
the initial design of the PMSM and the optimal design achieved with the multi-start procedure are shown.

An advantage of the genetic algorithm is, that in contrast to the scalarization methods, it can be used as a
blackbox, no parameters as weights or bounds have to be chosen. Further, it returns a set of pareto optimal
solutions, not only one. On the other hand, with more than 11000 high fidelity evaluations it is computa-
tionally very expensive. The scalarization methods achieve equivalently good results, provided the weight
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w, or bound Cmax, respectively, is chosen well. But for this, previous knowledge is required. A set of pareto
optimal solutions can only be achieved by solving the problem for many different values of weight and bound.
A method to globalize the optimization and to reduce the impact of the weight, or bound, is the multi-start
procedure. Although the solution found by the simple weighted sum method with the setting w = 1 · 10−3

performed poorly, the optimal solution after applying the multi-start procedure is almost as good as the best
solutions found with the genetic algorithm or the scalarization methods after determining the most suitable
value for w and Cmax, respectively. The computational effort is with 414 high fidelity evaluations much lower
than with the genetic algorithm.

6.5 Hermite-type approaches for mixed gradient optimization

This section is dedicated to the numerical evaluation of the Hermite least squares and the Hermite BOBYQA
method and follows our work in [51]. As we emphasized in Sec. 5.4, these methods are not specifically for
yield optimization, but in general for optimization of objective functions with mixed gradient information.
Therefore, in Sec. 6.5.1 we will first evaluate the methods on a test set of almost 30 nonlinear, bound con-
strained problems of different dimensions, before they are applied to yield optimization of the waveguide
problem in Sec. 6.5.2.

The PyBOBYQA implementation by [26] is considered as the reference solution. We use the default set-
ting, i.e., the number of interpolation points is p1 = 2n + 1 < q1, and refer to it as refB in the following.
Further, we compare the performance with SQP, approximating the unknown derivatives with finite differ-
ences. We apply the SLSQP algorithm from [77], implemented in SciPy [119]. The default settings of each
method are used. Note that the proposed Hermite-type approaches are modifications of the PyBOBYQA im-
plementation, which allows detailed comparisons of numerical tests. The SQP method, on the other hand,
is a completely different method and implementation. For the Hermite BOBYQA method we use the same
number of interpolation points as in refB, i.e., p1 = 2n + 1. For the Hermite least squares method we set

p1 = max
(
2n+ 1− nkd,

⌈
(n+ 1)(n+ 2)

2(1 + nkd)

⌉)
, (6.46)

which showed best performance in numerical tests. Different constellations of available and unavailable
derivatives are investigated. For an available derivative we always assume that it is available for all interpo-
lation points.

As in the sections before, the key indicators to measure the performance of a method are the computational
effort, measured by the number of objective function calls, and the ability to find an optimum. Please note that
we consider only test problemswhich are solvable with the reference BOBYQAmethod.

6.5.1 Numerical test set

The test set consists of 29 problems commonly used for benchmarking and can be found on GitHub [50].
One of the test cases is the Rosenbrock function in R2, given by

f(x) = 100(x2 − x21)
2 + (1− x1)

2, (6.47)

where we assume that ∂f/∂x2 is available and ∂f/∂x1 is not available. We introduce this test case as it will
be used for extensive testing in the following.
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Figure 6.19: Error of the quadratic model m̃(k)(x) according to (6.48) with δ = 0.01 for the Rosenbrock
function (6.47). Figure taken from [51, Fig. 1].

Accuracy of the quadratic model Before we evaluate the optimization results for the complete test set,
we introduce the approximation errors of the quadratic models m̃(k)(x) of the various methods. There-
fore, we consider the second order Taylor expansion as reference and calculate the error using the L2-norm

‖m̃(k)(x)− T2f(x; x(k))‖2L2 =

∫ x(k)+δ

x(k)−δ
|m̃(k)(x)− T2f(x; x(k))|2 dx. (6.48)

In Fig. 6.19 the resulting errors are visualized for the Rosenbrock optimization problem (6.47). The error
of the Hermite least squares model decreases first. After only 20 iterations it is below 2.5 · 10−7. The refB
model needs 65 iterations for reducing the error to this magnitude, the Hermite BOBYQA model 118 itera-
tions, respectively. It should be noted that the Hermite BOBYQA model error is already below 10−6 after 50
iterations, but has an outlier in iteration 117 before it reduces to 2.5 · 10−7. Finally, all methods find the same
optimum. In conclusion, the Hermite least squares method tends to approximate the objective function best,
particularly at the beginning, i.e., in the first 40 iterations.

Evaluation of the test set For each of the 29 problems from the test set we consider different cases. We
vary the number of known derivate directions nkd in the range [12n, n] and compare the average number of
objective function calls for each value of nkd. For example, for a test problem with n = 3 and the assump-
tion nkd = 2, we obtain three test cases: 1) ∂f/∂x1 and ∂f/∂x2 are known, 2) ∂f/∂x1 and ∂f/∂x3 are
known and 3) ∂f/∂x2 and ∂f/∂x3 are known. For n = 10 three random permutations of known deriva-
tives per nkd are evaluated. The results are visualized in Fig. 6.20a–6.20e, separately for each dimension n.

Applying the Hermite least squares optimization, the optimal solution is found in all test cases. Although
there are single test cases for which the number of objective function calls is higher than with refB, in average
their number is significantly lower. The savings lie between 34% and 80%, depending on the dimension n
and the number of known derivatives nkd. The case n = 10 with nkd = 5 is an exception, there the saving is
only 6%. The Hermite BOBYQA finds the optimum for all test cases, except of three. These cases are excluded
from the plots in Fig. 6.20, but are listed in [50]. For nkd ≈ 1

2n, the number of function evaluations is 8% –
49% higher compared to refB, while for nkd ≈ n it is 7% – 54% lower. For both Hermite-type approaches we
observe that the computational effort decreases, the more derivative information we can provide. When all
derivatives are available, they conceptually approach SQP, see Sec. 3.2.2

Hence, all test problems are also evaluated with SQP. The unknown gradients are approximated with finite
differences. In most test cases the number of objective function calls with SQP is lower than refB, and of-

110



0 20 40 60

Hermite B. nkd = 2
Hermite B. nkd = 1
Hermite l.s. nkd = 2
Hermite l.s. nkd = 1

refB 57
38

34
61

53

avg. # objective function calls

(a) 2-dimensional test problems.

0 20 40 60 80 100

Hermite B. nkd = 3
Hermite B. nkd = 2
Hermite l.s. nkd = 3
Hermite l.s. nkd = 2

refB 73
43

39
98

66

avg. # objective function calls

(b) 3-dimensional test problems.
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(c) 4-dimensional test problems.
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(d) 5-dimensional test problems.
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Figure 6.20: Average number of objective function calls for all test problems with varying number of known
derivatives nkd. Figures based on [51, Fig. 2].
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ten also lower than with Hermite least squares. Since the SQP implementation is completely different, for
example how they solve the quadratic subproblem, the results are not visualized in the summary plots in
Fig. 6.20.

We conclude that the optimization with the Hermite least squares method requires significantly less compu-
tational effort than the reference PyBOBYQA solution refB, provided that at least the half of the partial deriva-
tives are available. By using the Hermite BOBYQA optimization the computational effort is only reduced if
most of the derivative directions are available. However, in this case it might be rather recommended to use
SQP and calculate the few missing derivatives with finite differences.

Weighted regression In Sec. 5.4.3 we mentioned the weighted regression as an optional preconditioning
step. We define the weights of an exponential weighting scheme by

w(yi) =
1

exp (κ)
exp

(
κ− κ

||yi − x(k)||2
maxi=0,...,p ||yi − x(k)||2

)
, ∀i = 0, . . . , p, (6.49)

where yi is the i-th interpolation point and κ > 0 a scaling factor, set to κ = 5 in our tests. The intention is
that data points far from the current iterate solution x(k) are exponentially lower weighted in the regression
than points close to x(k). In the Hermite least squares method the weight w(yi) is applied to each row of the
linear equations system related to the i-th interpolation point, i.e., also to the rows containing the derivative
information. In the Hermite BOBYQA method it can only be applied to the derivative rows, cf. Sec. 5.4.3. In
the numerical tests there was no significant improvement observed. Therefore, the weighting is not applied
per default.

Noisy data On the example of the Rosenbrock function (6.47) we compare the performance of the discussed
optimization methods under noise. For that purpose, we follow [26] and model the noise by multiplying the
objective function value and its derivative values by 1+ζ, where ζ is a uniformly distributed random variable
in the range [−10−2, 10−2]. As starting point for the optimization we set

xstart = (1.2, 2) with f
(
xstart

)
= 31.4. (6.50)

The optimal solution is
xopt = (1, 1) with f

(
xopt

)
= 0. (6.51)

We optimize the noisy Rosenbrock problem using the Hermite least squares method. After only 37 ob-
jective function calls (even 6 less than without noise), it terminates successfully with the optimal solution

xH.l.s. = (1, 1) with f
(
xH.l.s.

)
= 1.02 · 10−23. (6.52)

Applying the Hermite BOBYQA optimization, after 109 objective function calls we also find the optimal solu-
tion

xH.B. = (1, 1) with f
(
xH.B.

)
= 2.97 · 10−19. (6.53)

The reference solution refB fails in finding the optimal solution. After 43 objective function calls it returns

xB = (1.41, 1.98) with f
(
xB
)
= 0.16. (6.54)
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Figure 6.21: Results for the optimization of the noisy Rosenbrock function (6.47). Optimal objective func-
tion values and number of objective function calls. Figure based on [51, Fig. 3].

In [26, Sec. 7], the authors propose a modification of the PyBOBYQA method for noisy data. The main
differences compared to refB are: different default settings for the trust region radius adjustment, sample
averaging and multiple restarts. We also test this modification and refer to it as refN. Even after 2000 objective
function calls none of the termination criteria apply. To compare the performance with the Hermite least
squares method, we set the budget to 37 function calls (which is the required number for Hermite least
squares), refer to it as refN,37 and obtain

xN,37 = (1.08, 1.17) with f
(
xN,37

)
= 0.01. (6.55)

Hence, within that budget, the optimal solution has improved significantly, but is not sufficiently identified.
The results are evenworse for the SQPmethod. After 41 objective function calls the solution

xSQP = (0.21,−0.00) with f
(
xSQP

)
= 0.31. (6.56)

is returned.

In summary: as expected, the SQP method, dependent on finite differences approximations of the gradient,
fails in case of noisy data. Also the standard PyBOBYQA method refB terminates without finding the optimal
solution. The PyBOBYQAmodification for noisy data refN approaches the optimum, but it does not terminate.
The Hermite-type methods on the other hand show great robustness under noise. This can be intuitively
explained by the least squares approach instead of interpolation.

Hermite least squares with second order derivatives Equations (5.108–5.109) show how second order
derivatives can be used in the Hermite least squares approach. Since this information is rarely available in
practice, it is only numerically evaluated for the Rosenbrock function (6.47). The results are summarized in
Table 6.12. We observe that by using second order derivatives, the number of objective function calls can be
slightly reduced in this example.

Known derivatives
1 2 1, 2

1st order 67 43 40
2nd order 62 40 38

Table 6.12: Number of objective function calls for the optimization of the Rosenbrock function (6.47) with
the Hermite least squares method with and without using second order derivatives.
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Figure 6.22: Optimal yield value and number of objective function calls for the waveguide problem with two
uncertain and two deterministic optimization variables. Figures based on [51, Fig. 4].

6.5.2 Hermite-type approaches for yield optimization

In this section we apply the Hermite least squares and the Hermite BOBYQA method to the waveguide prob-
lem, again we compare the results with the reference solutions. We introduce a setting with two uncertain
and two deterministic optimization variables. The geometry parameters ξ1 and ξ2 are uncertain, as defined
in (6.8). The material parameters x13 and x14 from (6.2) are deterministic optimization variables. To empha-
size that and in accordance with Sec. 5.1, they will be denoted with d1 and d2, respectively. The optimization
variable x ∈ R4 is then given by

x =

(
ξ
d

)
= (ξ1, ξ2, d1, d2)

>. (6.57)

While the derivatives with respect to ξ1 and ξ2 are available without additional computing effort, cf. Sec. 5.1.1,
the derivatives with respect to d1 and d2 are considered as unknown, cf. Sec. 5.1.2. The starting points are

ξ
start
1 = 9, ξ

start
2 = 5 and dstart1 = dstart2 = 1. (6.58)

The yield is estimated with MC, the initial yield value is Ỹ start ≈ 43%.

In order to evaluate the yield optimization with and without noise we generate the MC sample set in two
different ways. First, in each iteration a completely new random sample set is generated (noise), or second,
the sample set is just shifted according to the movement of the mean value (no noise). The size of the samle
set NMC controls the accuracy and thus, the noise level. We investigate three settings: a) no noise: shifted
sample set and NMC = 2500; b) low noise: new sample set and NMC = 2500; c) high noise: new sample set
and NMC = 100.

The results are summarized in Fig. 6.22. In the no noise setting (Fig. 6.22a) all approaches achieve optimal
yield values above 97%. The SQP method requires the least number of objective function evaluations, fol-
lowed by Hermite least squares with 50% more evaluations, refB with 100% and finally Hermite BOBYQA
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with 150% more evaluations. These results correspond to our findings in the previous section. Hermite least
squares optimization outperforms the reference method refB, when half of the derivative directions are avail-
able. For Hermite BOBYQA more derivative information is required to become competitive. SQP performs
best, but is not directly comparable. In the noisy settings the results for refB and Hermite least squares do
not change significantly, neither the optimal yield value nor the computing effort. For the Hermite BOBYQA
method, the number of function evaluations decreases to the same level as for refB. The optimal yield value
in the high noise setting is slightly worse. The major difference can be observed for SQP. The number of
objective function calls doubles from the no noise to the high noise setting, and thus, comes to the same
level as refB. At the same time, the optimal yield value found deteriorates from more than 99% to only
93%.

6.6 Summary

In the beginning of this chapter the two benchmark problems, i.e., the waveguide and the PMSM, were
specified. Then, the yield estimation and optimization methods proposed in the previous chapters were
evaluated. With the hybrid yield estimation approaches the computational effort of yield estimation could be
significantly reduced (up to 99%) while high accuracy standards from classic MC analysis were maintained.
This allows yield estimations for real-world applications in a reasonable time. In direct comparison, the
GPR-Hybrid approach performs better thanks to easy model updates and the automatically provided error
estimate.

The adaptive Newton-MC method proved to be a simple and efficient way to maximize the yield by modi-
fying uncertain Gaussian distributed design parameters. The computational effort was 93% lower than the
same optimization with the standard Newton method (for yield estimation with classic MC). With MOO,
reliability optimization can be combined with performance optimization. While genetic algorithms require
many function evaluations by nature, scalarization techniques find only one solution depending on chosen
parameters, which requires expert knowledge. For achieving the same optima with the considered test cases,
the effort was still significantly lower using scalarization methods. The multi-start procedure proved to be
a solid globalization technique which also reduces the sensitivity of the scalarization parameter choice. We
conclude that the application of the proposed efficient yield estimation techniques allows even computation-
ally expensive tasks like MOO under uncertainty. The time scale of solving such a problem reduces from years
to days. Hence, it becomes practically applicable.

The Hermite-type approaches were applied to a large set of nonlinear test problems with mixed gradient
information. The Hermite least squares method outperformed the derivative free BOBYQA reference if
at least half of the derivative directions were available. Both Hermite-type approaches showed high per-
formance for noisy data. Tests on yield optimization with the waveguide problem confirmed these find-
ings.
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7 Conclusion and outlook

In this work, different methods for efficient and accurate yield (or failure probability) estimation and opti-
mization were investigated. The application to the design process of electrotechnical devices was discussed.
However, the proposed methods are not limited to this application and can be applied in any manufactur-
ing process affected by uncertainties, e.g. due to manufacturing imperfections or natural material devia-
tions.

One main challenge of sampling based yield estimation methods is that they are computationally prohibitive,
if the quantity of interest (QoI) involves to numerically solve a complex model. In the case of electrotechnical
devices, this are typically partial differential equations (PDEs) originating from Maxwell’s equations, solved
for example with the finite element method (FEM). In Chap. 4 we introduced yield estimation methods with
significantly reduced computational effort while maintaining high accuracy. The SC-Hybrid approach is based
on stochastic collocation (SC) and adjoint error indicators for the SC error and the finite element (FE) error.
The GPR-Hybrid approach is a non-intrusive method using Gaussian process regression (GPR) and allows GPR
model updates on the fly with negligible additional computing costs. Compared to classic Monte Carlo (MC)
methods, the computational effort can be reduced by 98% with the SC-Hybrid approach, and 99% with the
GPR-Hybrid approach, respectively. By applying FE model refinement strategies, the savings increase to even
99.8%. We showed that parallelization is possible and can further reduce the effective costs, also when using
surrogate model based approaches with recurring model updates.

This reduction of computing time allows the estimation of the yield for industrial designs, where one eval-
uation of the QoI often takes several minutes or even hours. In practice, often not only yield estimation
is requested, but also yield optimization, i.e., the maximization of the design reliability. Then, the objective
function, i.e., the yield estimate, is evaluated many times during the optimization process. Hence, an efficient
approach for yield estimation is particularly important.

Besides efficient yield estimation approaches which have been used within the optimization, we investigated
how the computing costs of the optimization algorithm can be reduced directly. In Sec. 5.3 we proposed a
strategy for an adaptive sample size increase within the estimations. In combination with a globalized Newton
method, we named it adaptive Newton-MC optimization. We showed that gradients of the yield can only be
obtained directly from the yield estimate, if all optimization variables are affected by uncertainties and are (al-
most) Gaussian distributed. Otherwise, they must be approximated by costly additional QoI evaluations. The
Hermite-type approaches proposed in Sec. 5.4 are modifications of the derivative free BOBYQA (Bound con-
strained Optimization BY Quadratic Approximation) method, exploiting all (first and second order) derivative
information available. Due to better local quadratic approximations than in the original BOBYQA method,
the optimization converges faster, requiring less evaluations of the objective function. By utilizing derivative
information for the half of the optimization variables, the number of yield estimations during the optimization
procedure were reduced by 27%with the Hermite least squares approach.
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We demonstrated that the Hermite least squares and the Hermite BOBYQA methods are not limited to yield
optimization, but are relevant for all optimization problems with mixed gradient information and computa-
tionally expensive objective functions. Especially for noisy problems, they show high robustness and outper-
form the original BOBYQAmethod or gradient basedmethods with derivative approximations. Further, global
convergence of the Hermite-type approaches can be proven under suitable assumptions.

Besides reliability optimization, there are often other performance indicators to be optimized. The com-
puting effort in multi-objective optimization (MOO) is particularly high, since a trade-off between different
objectives has to be found. Using classic MC is prohibitive. Applying for example a genetic algorithm to
the bi-objective design optimization of a permanent magnet synchronous machine (PMSM) took eleven days
using the GPR-Hybrid approach for yield estimation. With classic MC it would have required up to seven
years.

The main findings of this research can be summarized as follows. First, GPR based hybrid approaches
are better suited for yield estimation than polynomial interpolation based hybrid approaches. This can be
mainly explained by their blackbox character and their flexibility regarding model updates. Second, if at
least half of the derivative information is available, the Hermite least squares method outperforms deriva-
tive free solvers. Additionally, (Hermite) least squares shows higher robustness than interpolation in case
of noisy data. Particularly for noisy problems, the specialized Hermite least squares method is also supe-
rior to gradient based approaches using approximations of the derivatives. Third, expensive tasks in indus-
trial design such as MOO under uncertainty become tractable by using the proposed hybrid approaches
for yield estimation. The time scale to solve these problems reduces from years or months to days or
hours.

We conclude that the investigations in this work are important steps to make uncertainty quantification
and optimization of uncertainty and under uncertainty feasible in real-world applications. Reliable designs
in manufacturing processes under uncertainty lead to an increasing number of fully functional and high
performing devices. This allows to develop devices closer to their physical limits and it saves resources, time
and money by reducing rejects due to malfunctioning.

Based on the theoretical and numerical findings in this treatise, new topics for further investigation arise.

• We mentioned that besides reducing the computational effort of one sample point evaluation, reducing
the number of sample points evaluated is a commonly used technique to reduce the effort for yield
estimation. The hybrid methods proposed in this work could be combined with such techniques, e.g.
importance sampling [53, 117].

• We defined performance feature specifications (PFS) which have to be fulfilled in a whole range pa-
rameter interval. We modeled this with a discrete set of range parameter points and separate surrogate
models, each corresponding to one range parameter point. An alternative approach is to build an
approximation along the range parameter, e.g. by employing model order reduction [44, 66].

• One drawback of the SC-Hybrid approach is the requirement of structured data points which inhibits
easy model updates during the estimation process. By using regression instead of interpolation this
drawback could be circumvented, cf. Sec. 4.3.

• In Sec. 4.2 we discussed that the proposed yield estimation methods do not address the case of rare
events, i.e., yield estimation where the number of failing realizations is very small. Common approaches
to tackle that are importance sampling [53] or subset simulation [7, 12, 39]. Further research could
investigate how one of these techniques can be combined with the GPR-Hybrid approach to enable rare
event simulation within our framework.
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• In the Hermite-type optimization approaches we focused on reducing the number of objective function
calls, assuming that each call is computationally expensive. Using one of the hybrid approaches for
yield estimation reduces the computational effort for each objective function call (in case of yield opti-
mization). However, analogously to the adaptive Newton-MC optimization, we suggest to incorporate
an adaptive sample size increase strategy. This would be a specialization of the (general) Hermite-
type optimization framework only for yield optimization. In the MOO approaches one can also apply
adaptive sample size increase.

• We proved global convergence of the Hermite least squares method for the case that the number of
interpolation points is sufficient to uniquely solve the interpolation problem (without derivative infor-
mation). However, we showed that a lower number of interpolation points performs better in practice,
as long as the system is overdetermined when derivative information is included. For this, global con-
vergence was not proven.
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A Geometry and material specifications for the PMSM

A specification of the material and geometry properties of the PMSM can be found in [18, Table A.1, A.2],
where this model has also been used for benchmarking. However, for the sake of completeness, in Table A.1,
Table A.2 and Fig. A.1 we provide a detailed description.

Geometry
inner rotor radius 16mm
outer rotor radius 44mm
model coupling radius 44.7mm
inner stator radius 45mm
outer stator radius 67.5mm
length 100mm
number of PMs 6
number of pole pairs 3
number of phases 3
number of coils 36
number of windings per coil 12
skew angle 0.52°
c1 8.2mm
c2 5mm
c3 5.4mm
c4 4°
c5 5.7°
c6 7°

Table A.1: Geometry properties of the investigated PMSM.

Material
iron conductivity 0S/m
copper conductivity 0S/m
PM conductivity 0S/m
iron relative permeability 500
copper relative permeability 1
PM relative permeability 1.05

Table A.2: Material properties of the investigated PMSM.
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Figure A.1: Geometry of the investigated PMSM.
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List of acronyms

CST CST Studio Suite® 2021
DFO derivative free optimization
DoF degree of freedom
FE finite element
FEM finite element method
GP Gaussian process
GPR Gaussian process regression
MC Monte Carlo
MOO multi-objective optimization
MVP magnetic vector potential
PDE partial differential equation
PEC perfect electric conductor
PFS performance feature specifications
PM permanent magnet
PMSM permanent magnet synchronous machine
QoI quantity of interest
RMSE root mean square error
SC stochastic collocation
SOO single-objective optimization
SQP sequential quadratic programming
TE transverse electric
UQ uncertainty quantification

123





List of symbols

Electromagnetic field quantities

E electric field strength
D electric flux density
J electric current density
H magnetic field strength
B magnetic flux density
Mpm magnetization of a permanent magnet
A magnetic vector potential
% electric charge density
ε permittivity
µ permeability
ν reluctivity

Physical quantities

S S-parameter of the waveguide
ω angular frequency
τ torque of an electrical machine
C size of a permanent magnet
φj magnetization direction of the j-th permanent magnet
Bj magnitude of the magnetic field induced by the j-th permanent magnet

Finite element method

D differential operator of the model problem
f right hand side of the primal model problem
q right hand side of the adjoint model problem
u solution of the primal model problem
z solution of the adjoint model problem
K system matrix of the discretized finite element system
f right hand side of the discretized primal finite element system
q right hand side of the discretized dual finite element system
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u vector of degrees of freedom of the primal finite element system
z vector of degrees of freedom of the dual finite element system
V solution space
h mesh size of the finite element discretization
Nh number of degrees of freedom
wj basis functions
vi test functions
εfe,h finite element error
εcfe,h computable formulation of the finite element error

Probability theory

P probability
E expectation value
V variance
Cov covariance
Σ covariance matrix
σ standard deviation
ξ mean value of a random variable ξ
ϕ probability density function

Uncertainty quantification

Q quantity of interest
Q̃ approximation of Q
d deterministic design parameter
ξ uncertain (design) parameter
r range parameter
Tr range parameter interval
Td discretized range parameter interval
c performance feature specification threshold
Y yield
NMC number of Monte Carlo sample points
ξ(j) j-th Monte Carlo sample point
NB batch size for parallelized hybrid approaches
s safety factor in hybrid approaches
CH hybrid sorting criterion in GPR-Hybrid approach
CEGL Echard, Gayton, Lemaire (EGL) sorting criterion in GPR-Hybrid approach
T training data set
k / k / K kernel function / vector / matrix of a Gaussian process
m / m mean function / vector of a Gaussian process
εMC Monte Carlo estimation error
εMC,Y yield estimation error
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εsc stochastic collocation error
εGPR Gaussian process regression error
Iε error interval in hybrid approaches
#HF computational costs measured by number of high fidelity function evaluations
#HFL computational costs considering different levels of high fidelity function evaluations
#HFeff effective computational costs considering parallel high fidelity function evaluations

Hermite-type optimization

X solution space in optimization
m̃ quadratic model of objective function
c / g / H scalar / vectorial / matrix coefficients of m̃
Λ poisedness constant
li Lagrange basis polynomial
M interpolation or least squares system matrix
b interpolation or least squares right hand side
p1 number of interpolation points in BOBYQA and Hermite-type approaches
q1 number of basis polynomials in BOBYQA and Hermite-type approaches
yj j-th interpolation point in BOBYQA and Hermite-type approaches
nkd number of known derivatives in Hermite-type approaches
D / ID set / index set of available first order derivatives in Hermite-type approaches
D2 / ID2 set / index set of available second order derivatives in Hermite-type approaches

Mathematical notations

R set of real numbers
C set of complex numbers
N set of natural numbers
i imaginary unit
∇ gradient
∇· div-operator
∇× curl-operator
D computational domain
n unit outward normal vector
ej j-th unit vector
xlb / xub lower / upper bound (elementwise) of a vector x
Φ / Φ set / vector of polynomial basis functions
A† adjoint of an operator or a matrix A
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