TECHNISCHE
UNIVERSITAT
DARMSTADT

Persistence problems for fractional

Processes

Vom Fachbereich Mathematik
der Technischen Universitdt Darmstadt
zur Erlangung des Grades eines
Doktors der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation
von

Martin Alexander Dennis Kilian, M.Sc.

aus Bad Soden am Taunus

Erstes Gutachten: Prof. Dr. Frank Aurzada
Zweites Gutachten: Prof. Francoise Péne (PhD)
Tag der Einreichung: 20. April 2022

Tag der miindlichen Priifung: 25. November 2022

Darmstadt 2022



Kilian, Martin Alexander Dennis: Persistence problems for fractional processes
Darmstadt, Technische Universitat Darmstadt,

Jahr der Veroffentlichung der Dissertation auf TUprints: 2023

URN: urn:nbn:de:tuda-tuprints-229490

Tag der miindlichen Priifung: 25.11.2022

Veroffentlicht unter CC-BY-SA 4.0 International

https://creativecommons.org/licenses/



https://creativecommons.org/licenses/

Acknowledgements

First and foremost, I wish to thank my supervisor Prof. Dr. Frank Aurzada for
introducing me to the topics of this thesis and for the constant support during the
last 3 years. I enjoyed working with you and appreciated that on the one hand,
you always take time to discuss problems both mathematically and organisationally
when necessary, while on the other hand, you also give enough space to be able to

work in a self-determined way.

Further, I would like to thank Dr. Micha Buck and Dr. Ercan Sonmez for the
pleasant collaborations on joint projects with Prof. Dr. Frank Aurzada, see [8] and
[13], respectively. Special thanks go to Micha for being a mentor-like colleague in
my first months as a PhD student, which made the start of my academic career as
easy as for Giannis finishing a nice alley-oop by Jrue Holiday. I also want to thank
Prof. Dr. G. Molchan for providing a sketch of the proof of Theorem [B.2(b), as it
now appears in this thesis and in [12], which significantly shortened the first proof
of the upper bound. Moreover, I thank all the colleagues of my research group for

an enjoyable working environment.
I gratefully acknowledge support by DFG grant AU370/5.

Last but not least, I thank my brother Johannes for proofreading this thesis and

for being a wonderful older brother.

iii






Abstract

In this thesis, we deal with several persistence problems for fractional processes.
Persistence concerns the event that a stochastic process has a long excursion staying
below or above a certain barrier. A central question in this context is the analysis

of the probability of this event — the so-called persistence probability.

We first consider the persistence probabilities of integrated fractional Brownian mo-
tion and fractionally integrated Brownian motion. While it is well-known that these
persistence probabilities decay asymptotically polynomially, their polynomial rates
are unknown except for the special cases of Brownian motion and integrated Brow-
nian motion. We show that for both processes, the polynomial rate is a continuous
function in the Hurst parameter and determine its asymptotic behaviour at the

boundaries of the respective parameter domain.

Subsequently, we study persistence probabilities of mixed processes, such as mixed
fractional Brownian motion. Precisely, we consider the sum of two self-similar cen-
tred Gaussian processes with different self-similarity indices and show that, un-
der non-negativity assumptions of covariance functions and some further minor
conditions, the persistence probability of the sum decays asymptotically polyno-
mially with the same polynomial rate as for the single process with the greater
self-similarity index. In particular, this determines the polynomial rate of the per-

sistence probability of mixed fractional Brownian motion.

Lastly, we give estimates for the persistence probabilities of further fractional pro-
cesses of interest, namely the bifractional Brownian motion and the fractional

Ornstein-Uhlenbeck process.






Zusammenfassung

In dieser Dissertation befassen wir uns mit verschiedenen Persistence-Problemen
fiir fraktionale Prozesse. Mit Persistence ist das Ereignis einer langen Exkursion
eines stochastischen Prozesses gemeint, bei der dieser unter- oder oberhalb einer
bestimmten Schranke bleibt. Fine zentrale Fragestellung in diesem Kontext ist
die Analyse der Wahrscheinlichkeit jenes Ereignisses — die sogenannte Persistence-
Wahrscheinlichkeit.

Zunichst betrachten wir die Persistence-Wahrscheinlichkeiten der integrierten frak-
tionalen Brownschen Bewegung sowie der fraktional integrierten Brownschen Be-
wegung. Wihrend es wohlbekannt ist, dass diese Persistence-Wahrscheinlichkeiten
asymptotisch polynomiell abfallen, ist die polynomielle Rate nur in den Spezialféllen
der Brownschen Bewegung und der integrierten Brownschen Bewegung bekannt.
Wir zeigen, dass bei beiden Prozessen die polynomielle Rate eine stetige Funk-
tion vom Hurst-Parameter ist, und bestimmen ihr asymptotisches Verhalten an den

Réandern des jeweiligen Definitionsbereiches des Parameters.

Anschliefsend beschéftigen wir uns mit den Persistence-Wahrscheinlichkeiten von
gemischten Prozessen wie der gemischten fraktionalen Brownschen Bewegung.
Um genau zu sein, betrachten wir die Summe zweier selbstdhnlicher zentrierter
Gaufprozesse mit unterschiedlichen Selbstahnlichkeitsindizes und zeigen, dass,
unter der Annahme von nicht-negativen Kovarianzfunktionen und einiger weit-
erer unwesentlicher Bedingungen, die Persistence-Wahrscheinlichkeit der Summe
asymptotisch polynomiell abféllt, und zwar mit der gleichen polynomiellen Rate
wie bei demjenigen Einzelprozess, der den groferen Selbstidhnlichkeitsindex besitzt.
Insbesondere wird damit die polynomielle Rate der Persistence-Wahrscheinlichkeit

der gemischten fraktionalen Brownschen Bewegung bestimmt.

Abschliefsend geben wir noch Abschitzungen fiir die Persistence-Wahrscheinlich-
keiten weiterer relevanter fraktionaler Prozesse, ndmlich der bifraktionalen Brown-

schen Bewegung und des fraktionalen Ornstein-Uhlenbeck-Prozesses.
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Chapter 1
Introduction

This thesis deals with so-called persistence problems for stochastic processes. Per-
sistence concerns the event that a real-valued stochastic process stays below or
above a fixed barrier for an untypically long time. While this is a classical topic in
probability theory for Markov processes, such as Brownian motion, random walks
and Lévy processes, research on this type of problem for fractional processes has
just begun, as many powerful tools of the Markovian setting are not applicable
anymore. The aim of this thesis is to make further contributions to fill the gap

regarding persistence results for fractional Brownian motion and related processes.

In this chapter, we state the general persistence problem we are concerned with, we
motivate where the interest for these persistence problems comes from and we give

an overview of known results and related literature.

1.1 The general problem

For a real-valued stochastic process X = (X;);>0 and a barrier z € R, the so-called

(one-sided) persistence probabilities of X are given by

P(sup Xt§$>, T >0,

te[0,7

or, alternatively, by

]P’( inf X, > —:c>, T >0.
te[0,7
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Typically, these probabilities tend to zero for 7' — oo and the goal is to determine
the asymptotic rate of decay. In this thesis, we mainly deal with self-similar centred
Gaussian processes, i.e., we consider processes X whose finite-dimensional distribu-
tions are centred Gaussian and which satisfy (X.) 4 (c? X;) for some H > 0 and
all ¢ > 0. Thus, due to the fact that centred Gaussian distributions are symmetric,
the above two ways of defining persistence probabilities are equivalent. Further, due
to self-similarity, we have Xy = 0 a.s., implying P(supte[O’T] X < x) =0forz <0
and all T > 0 (which also holds for z = 0, if we exclude degenerate cases where the
persistence probability for z = 0 does not tend to zero), whereas, for x > 0, self-
similarity yields P(supte[oﬂ X < :U) = P(supte[O’m_l/HT] X < 1) for T > 0. Hence,
w.l.o.g., we can restrict ourselves to determining the asymptotic rate of the per-
sistence probabilities for the barrier x = 1. For self-similar processes, one expects

asymptotically polynomial decay, i.e.,

P| sup X, <1 | =100, T — 0, (1.1)
te[0,7)

where § = 6(X) € (0,00) is the so-called persistence exponent of X.

1.2 Motivation

Persistence probabilities appear in many fields of applied probability. In physics,
the first interest for persistence came from the so-called droplet condensation prob-
lem: In the context of the formation of dew, the condensation of water vapor on
a substrate can be modelled in a way that the expected fraction of the surface of
the substrate which was never covered by water is given by a persistence probabil-
ity. This was discovered due to the fact that this fraction decays asymptotically
polynomially in time just like the persistence probability in (1.1]), see [48]. Moti-
vated by this observation, persistence properties of various dynamical systems in
non-equilibrium states were studied by theoretical physicists and in many cases,
persistence probabilities turned out to be related to relevant properties of the sys-
tem. In particular, persistence exponents often serve as a simple measure of how
fast the corresponding system returns to its equilibrium. Models involving frac-
tional Brownian motion and related processes have received considerable attention
in recent years. For instance, the inviscid Burgers equation, where the initial veloc-
ity is given by a fractional Brownian motion, was studied extensively in the context

of persistence, see [75], [78], [58] and [56]. For an overview of persistence problems
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and results from the perspective of theoretical physics, we refer to the surveys [72],
[22] and [47] as well as the monographs [51] and [68].

As a further motivation, we want to mention applications in finance and insurance.
An investor, for example, who considers selling a stock performing badly might be
interested in the probability that the stock price returns to his input price in a given
time, which is clearly the counterpart to a persistence probability. Further, when
dealing with limit orders to buy or sell a stock, persistence probabilities occur, as
the event that the order will not be executed in a given time is clearly a persistence
event. Note in this context that due to long memory, especially fractional and
mixed fractional Brownian motion play a major role in finance, see e.g. [27] and
[3]. In insurance, one deals with so-called ruin probabilities, where ruin concerns
the event that the costs of an insurance portfolio exceed the sum of initial capital
and received insurance premiums. If one considers this event on a finite time frame,
the ruin probability represents again the counterpart to a persistence probability.
Note, however, that in the typical setting, the probability that the ruin never occurs
is positive so that one is rather interested in the asymptotic behaviour of the ruin
probability (on an infinite time frame) when the initial capital tends to infinity, see
[34] for classical results and [7]| for results in the context of a modified notion of

ruin.

1.3 Known results

In this section, we give an overview of the existing results for (one-sided) persis-
tence probabilties of (time-continuous Gaussian) fractional processes which form
the basis of our results in Chapters [3] to 5] Further related results for the two-
sided persistence problem, discrete-time processes or non-Gaussian processes will
be summarized in Section [L4 For a recent overview of mathematical results for

persistence probabilities in general, we refer to the survey [16].

Fractional Brownian motion. Recall that the fractional Brownian motion
(FBM) B with Hurst parameter H € (0,1) is the unique normalized centred
Gaussian process with a.s. continuous sample paths which is H-self-similar and
which has stationary increments, i.e., B satisfies — additionally to the property

of self-similarity we have already mentioned — the condition (BfL, — Bf) 4 (BH)
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for all h > 0. For H = 1/2, these properties imply independent increments so that

W := BY/2 is a usual Brownian motion.

Let us thus recall shortly the classical result for Brownian motion. The strong
Markov property of Brownian motion implies the reflection principle, which states
that (Wt) = (Wili<r + (2W,; — Wy)14s,), the Brownian motion reflected at a
stopping time 7, has the same law as the original Brownian motion W, see e.g. [61],
Theorem 2.19]. Setting 7 := inf{¢t > 0: W, = 1} then determines the persistence
probabilities of W explicitly, namely

te[0,T) te[0,T]

]P(sup thl) zl—P(sup Wt>1> =1-PWyr>1)—P(r <T,Wpr<1)
=1 —-P(Wy>1)—P(Wp>1)

2
= P(|Wr| <1) ~ \ET”, T — oo,
(1.2)

which in particular shows the asymptotic behaviour as in (1.1)) with persistence
exponent O(W) = 1/2. Here and elsewhere, f(z) ~ g(z) stands for lim f(x)/g(z) =
1.

For H # 1/2, however, these powerful Markov techniques are not applicable any-
more. For H < 1/2, the increments of B are negatively correlated, whereas for
H > 1/2, the increments are positively correlated and even exhibit long-range de-
pendence, L.e., > > E[B{(BE | — B)] = co. While these properties are nice for
applications, the intrinsical non-Markovian structure makes it hard to derive persis-
tence results. Even for the few fractional processes where results are available, they
are typically in the form ((1.1) and it remains an open problem to determine the
exact asymptotic order as in (1.2)). For the FBM, Molchan could derive the result

T~ (1-H)g=cViogT < IP’( sup Bfl < 1> < T~ (=) eVlogT (1.3)
te(0,7)

for some ¢ > 0 and T large enough, see [59], which yields the persistence exponent
O(B") = 1 — H. The crucial part in the proof was to show that the persistence

probabality of FBM has — up to terms of lower order — the same asymptotic order

(/OT Bl dt>_1] (1.4)

as the expectation

I(T):=E
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-1
of the functional ( fOT B! dt) , which is some sort of a smoothed out counterpart

of the rough indicator 1 pri<1- Heuristically, there is the following connection

sup
between the functional angll}Tl]e indicator: The typical paths of By contributing to
the persistence event, i.e., which satisfy BY < 1 for all ¢t € [0,T], rather tend to
escape to —oo than to oscillate around the origin. But these are exactly those
paths for which the functional is large and which contribute to I(7") the most,

consequently.

For I(T'), one was able to determine the exact asymptotic order: In [59, State-

ment 1], it was shown that

I(T)~HE [m[ax] Bﬂ -0 T 5 o, (1.5)
tel0,1

by using an argument which goes back to Kawazu and Tanaka, see [41], Section 2.2|.
They considered the Brownian motion, but basically used only self-similarity and
stationary increments (and the existence of the moment-generating function of the
maximum) so that Molchan could easily adapt the argument for the FBM. It seems
plausible that in fact, the persistence probability of B¥ and I(T) have even the
same exact asymptotic order. But still up to now, unfortunately, the result in ([1.3])

could only be slightly improved: For H > 1/2, there exists ¢ > 0 such that

AT~ (log 7)YV <P sup B <1 <eT 01
te[0,T
for T large enough, see [I1, Theorem 12|, while for H < 1/2, there exists ¢ > 0 such
that

T (1og )71/ CH) < ]P’( sup B < 1) < T~ (log T)°
t€[0,T]

for T large enough, see [I1, Theorem 12| and [5, Theorem 1]. The result in [5] was
achieved by finding another way to relate I(7T') to the persistence probabilities of
B whereas the result in [I1] was deduced from stronger results for the persistence
probabilities of discrete-time analogues of FBM, which we will discuss a little bit

more detailed in Section [I.4]

Integrated FBM. Now, we consider the (one-sided) integrated version of BY,
given by I := fg B ds, t > 0. Again, we first discuss the Brownian case H = 1/2,
which is the integrated Brownian motion V; := fg Wsds, t > 0. The process V'
itself is non-Markovian, but in contrast to B and I” for H # 1/2, this is not
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intrinsical: As W is a Markov process, the pair (V, W) also is, and consequently, a
similarly strong result as in could be shown for the persistence probabilities of
integrated Brownian motion via Markov techniques. In 1962, using the transition
density of (V, W), McKean obtained among other results the joint distribution of
the time when integrated Brownian motion first returns to zero, if the corresponding
Brownian motion is started at 1, together with the absolute value of the Brownian
motion at this time, see [50]. Based on this formula, in 1971, Goldman deduced
an explicit expression for the density of the distribution of the first hitting time of
integrated Brownian motion at 1, if the corresponding Brownian motion is started
at 0, see [37]. In particular, he showed the following asymptotics for this density:
P(m € dt)

5/4
dt ’

~ct t — 00,

for some ¢ > 0, where 7 := inf{t > 0: V, = 1}. Since the persistence probabilities
of V can be written as P(suptE[O,T] V; <1) =P(ry > T) for T > 0, this implies

P(sup V}Sl) :/wwdtwélcT_l/‘l, T — oo, (1.6)
te[0,7) T dt

vielding (V') = 1/4. Later, Sinai (see [77]; refinements of Isozaki and Watanabe
in [40]) generalized the result to straight line boundaries (instead of the constant
boundary 1) by considering approximating discrete-time processes and using the
techniques he developed to deduce the same persistence exponent 1/4 for the inte-

grated simple random walk.

However, as for the persistence probabilities of FBM, the proofs for the Brownian
case cannot be adapted to the general case, since Markov tools, such as transition
densities or the reflection principle, are not available anymore. Due to the fact
that I is a self-similar centred Gaussian process with a non-negative covariance
function, one knows that the persistence probabilities of integrated FBM (IFBM)
behave asymptotically as in (1.1)) with some persistence exponent 0;(H) := (1) €
(0,00) (cf. Corollary 2.6). Except for the Brownian case H = 1/2, though, where
we have already seen that 0;(1/2) = 1/4, the exact value of §;(H) is unknown.

Based on numerical simulations, Molchan and Khokhlov stated in 2004 the conjec-

ture

0/(H)=H(1—H), He(,1), (1.7)

see [58], which was surprising due to its symmetry w.r.t. H = 1/2. As already

seen in the context of the correlation of the increments, the processes B and thus
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also Il are very different processes for H < 1/2 and H > 1/2. Further note that
there evidentially is no symmetry in the two-sided persistence problem of IFBM (cf.
Section for more details). For the one-sided problem nevertheless, the symmetric
conjecture has not been disproven for almost 20 years now, and over the years, more

and more evidence in favour of the conjecture could be gained.

The first analytical estimate was deduced in [54], where it was shown that there
exists p € (0,1/2) such that pH(1—H) < 0;(H) <1—H for H € (0,1). The upper
bound is due to the fact that the one-sided persistence exponent is always bounded
from above by the two-sided persistence exponent of a process (in the case that both
exponents exist) and that the two-sided persistence exponent of IFBM is bounded
from above by 1 — H (in fact given by 1 — H; cf. Section for more details).
The lower bound was proven by estimating the auto-covariance function of the
Lamperti transform of IFBM to an auto-covariance function, where results for the
persistence exponent of the corresponding stationary Gaussian process are available,
and applying Slepian’s lemma (cf. Chapter [2| for more details). This is a standard
technique in the context of persistence of self-similar Gaussian processes, which
could be further exploited to improve both upper and lower bound. In [55], resulting
from an inequality of the auto-covariance functions of the Lamperti transform of

IFBM with Hurst parameter H and 1 — H, respectively, the relation

was used, together with another estimate by Slepian’s lemma, to improve the lower
bound to
1
0;(H) > §min(H,1—H) for H € (0,1). (1.9)

Note that itself is of interest, as it represents one direction of the proof that ;
has indeed the point of symmetry H = 1/2, which would be 6;(1 — H) = 0;(H). In
[57], further relations of the auto-covariance functions of the Lamperti transforms
of FBM and IFBM were used, by applying again Slepian’s lemma, to improve the
upper bound to

0;(H) <min(H,1 — H) for H € (0,\/%—3} U (Z;l) ;

0r(H) <1/4 for H € (%, ﬂ : (1.10)
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Figure illustrates the conjecture as well as the proven possible range of the
persistence exponent of IFBM, given by the bounds and (L.10). In Theorem
3.1, we will strengthen this analytical evidence for the conjecture by showing
that 0y is a continuous function, which is asymptotically equivalent to the conjecture
at the boundaries 0 and 1 of the domain of the Hurst parameter H € (0, 1).

Or

=
\
!

Figure 1.1: Conjecture of Molchan and Khokhlov (dashed line) and upper and lower
bounds proven by Molchan (solid lines) for the (one-sided) persistence exponent of
IFBM.

Fractionally integrated Brownian motion. For a Brownian motion W and
H > 0, let us now consider the fractionally integrated Brownian motion (FIBM)

with Hurst parameter H, given by
t 1
R .= / (t—s)TzdW,,  t>0.
0

Note that this is well-defined due to the fact that E[[°(t — s)** 71 d(W)un] =

[7s?=1ds < oo for H > 0. For H > 1/2, the stochastic Fubini theorem, see

e.g. [67, Theorem IV.65], yields the following alternative representation for R:

1 H-1/2
—__— __RH - Dyss(t — )32 du dW,
T(H +1/2) T(H+1/2) // st =) "
= [ (t— H3/2/ Ly dW,d
(A —1/2>/< T, B AW

which is the Riemann-Liouville fractional integral of W of order H — 1/2. For this
reason, the FIBM is also called Riemann-Liouville process. Further note that the

Riemann-Liouville fractional integral of W for integer orders n € N is given by the
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n-times integrated version of the Brownian motion W, since

t — 81 1 51 - 52)n !
[t = [ W asas
8 — 55" 2
:/ / L 22>) d52 d81
:---:// / W, dsp, ... ds; (1.12)
0 Jo 0

by the Leibniz integral rule. For H € (0,1), the FIBM R is closely related to the
FBM B via the Mandelbrot-van Ness integral representation, which states that

0
Rf’+/ (t—s)T=2 — (=s)T=2aW,, >0,

—o0
is an independent decomposition of FBM (with a non-normalized variance), see
e.g. [53, Theorem 1.3.1]. It is well-known that R shares many properties with B,
such as H-self-similarity, continuous sample paths and, for H € (1/2,1), long-range
dependence of the increments (which are non-stationary in the case of R). In
some literature, especially in econometrics, R is introduced as an alternative type
of FBM, see [49]. Regarding persistence, however, the two processes behave quite
differently.

As for IFBM, due to the fact that R¥ is a self-similar centred Gaussian process with
a non-negative covariance function, one knows that the persistence probabilities of
R decay asymptotically polynomially as in (1.1)) with some persistence exponent
Or(H) := O(RH) € (0,00). Note that R'Y? equals the Brownian motion W by
definition and that R%/? equals the integrated Brownian motion V by . Thus,
we have already seen that 6r(1/2) = 1/2 and that 0r(3/2) = 1/4. Except for these
two Brownian cases, though, the exact value of g(H) is unknown. Nevertheless,
similarly to the case of IFBM, there are some estimates for 6z which in particular
show that the persistence exponents of FIBM and FBM do not coincide, as we will

outline now.

By using the fact that fractionally integrating twice with orders a; > 0 and ay > 0
is equivalent to fractionally integrating once with the order a; + as, it was shown
in [9] that 0 is non-increasing on [1/2,00). Together with the identity 0r(3/2) =
1/4, this implies Og(H) > 1/4 for H € [1/2,3/2], which shows that 0z(H) and
0(B") = 1 — H cannot coincide for H € (3/4,1). Furthermore, by again using
the technique of estimating the auto-covariance function of the Lamperti transform

and applying Slepian’s lemma, it was deduced in [9, Corollary 4.1] that it holds
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Or(H) > Ogr(oc) for H > 1/2, where p(c0) := —limy_,o0 7P(sup,coy Z¢ < 0)
denotes the persistence exponent (of exponential decay, in contrast to polynomial
decay in (1.1)); cf. Chapter [2| for more details) of the centred Gaussian process Z
with covariance function (s,t) — 1/ cosh(|t — s|/2). In fact, continuity lemmas for
persistence exponents, which were proven in the years that followed (cf. Lemma
3.3), imply even Or(H) — Or(co) for H — oco. In [55, Proposition 2.3, it was
shown that O (co) > 1/(4v/3), whereas [66] gives evidence in favour of the equality
Or(c0) = 3/16.

In Chapter 3| we will be concerned with the behaviour of 0(H) for H — 0: We
will show in Theorem that 0r tends to co and that the asymptotic behaviour
is in the range H~! to H 2, which is again quite contrary to the behaviour of the
persistence exponent §(B) =1 — H of FBM.

Fractional Ornstein-Uhlenbeck process. Now, at first sight, we leave our ba-
sical setting of self-similar centred Gaussian processes. Consider the stochastic
differential equation (SDE)

Xo = 57

where A > 0, W is a Brownian motion and £ is a random variable independent of
(Wy)i>0 with E[€?] < co. The Ornstein-Uhlenbeck process (OU process) is defined
as the unique strong solution U* of the SDE for the initial condition & :=
ffoo e dW,, which is given by

t

U} = / e M= dw,,  t>0. (1.14)

—0
Due to the the fact that W is a centred Gaussian process with stationary incre-
ments, the process U” is a stationary centred Gaussian process, where stationarity
means (U} ;)0 = (U})iso for all h > 0. For stationary processes Z, one expects

asymptotically exponential decay of the persistence probabilities, i.e.,

P| sup Z, < x| = e Tt T — oo, (1.15)
te[0,7)

for x € R, where 0, = 0,(Z) € (0,00) is also called persistence exponent and, in

contrast to the case of self-similar processes, usually depends on the barrier x.



1.3. KNOWN RESULTS 11

Nevertheless, this has a deep connection to persistence problems of self-similar pro-
cesses. As U™ is a stationary centred Gaussian process, its distribution is charac-

terized uniquely by the auto-covariance function, which is given by

(o] el v

&0 1
—)t —2\s —\t
= ds = — 1.16
e /0 e S N e ( )

E[UyU} = e ™ME

for t > 0, where we used centredness of W as well as the independence of (W}),;~o and
(Wi)eso in the first, the identity (W_;) < (W¢) in the second and the Ito isometry
in the third step. This is the auto-covariance function of the stationary centred

Gaussian process
1

V2
which is thus an alternative representation of the OU process U*. This is the so-
called Lamperti transform of the scaled Brownian motion (W /v/2)), which is

a A-self-similar process (cf. Chapter . In general, the Lamperti transformation

™M Woane, t >0, (1.17)

provides a bijective way to transform self-similar processes into stationary processes

and vice versa.

Using this alternative representation and the powerful Markov tools available for
Brownian motion yields the classical persistence result for the OU process in the
case of the barrier x = 0, which was first deduced in [76], but which can also be
found in [69, Section IX] and in [79]. One has

P| sup Ut’\§0 =P sup W; <0
t€[0,T] te[1,e277T)
0
:/ P sup W, —W) < —x
—00 te[1,e27T]
:L/OOIP’ sup W, <z|e®?dz
V2 Jo te0,ePT -1

1o ;
= —— P(|W,asr_1| < x) e /2 dx
= [ (W <)

1 1
= - — = arctan(x/ 2T — 1>
T

W1 € de) P(Wl S d.fl])

2
1 1

= —arcsin(e ) ~ — e, T — o0, (1.18)
7r 77

where we used the Markov property as well as the stationary increments of W in
the third, the reflection principle in the fourth, the integral formula [38 eq. 6.285.1]
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in the fifth and the functional equation arctanx = 7/2 — arctan% for x > 1 as well
as the identity arcsinz = arctan(x/v/1 — 22) for |#| < 1 in the sixth step. This
yvields the persistence exponent 0y(U*) = \. For general barriers x # 0, tools for
stationary centred Gaussian processes imply that the persistence exponent 8, (U*) €
(0,00) exists (by non-negativity and integrability of the auto-covariance function,
see Proposition and that the function z — 6,(U?) is continuous (cf. [33]
Lemma 1.1]). Further, clearly, z — 6,(U?) is non-increasing since the persistence
probability is non-decreasing in x. For x > 0, one additionally knows that 0, (U?) is
given as a solution of some explicit equation and that lim, ., 0,(U*) = 0, see [74],
where this is contained as a result for persistence probabilities of W with square

root boundaries, due to the representation ((1.17)).

Due to the two representations and of the OU process, there are two
ways to define fractional analogues of U*. For H € (0,1), let B be an FBM
with Hurst parameter H. We first consider the fractional generalization of the
representation (T.17). As B is H-self-similar, the scaled FBM (B, /v/2)) is 2\H-
self-similar and its Lamperti transform is given by

1
ZA = —— M BH >0, (1.19)

V2\

cf. Chapter [2l Note that the persistence probabilities of Z* for the barrier z = 0

can be written as

P supZtH’/\SO =P sup Bf<0], T>0,
te[0,T] te[1,e2AT]

and it is well-known that P(sup,c;, 7 Bf' <0) and P(sup,cr Bf' < 1) have — up
to terms of lower order — the same asymptotic behaviour for 7" — oo (cf. Corollary
. Thus, using the persistence result for B | these persistence probabilities
of ZH behave asymptotically as in (1.15)) with persistence exponent 6y(Z7*) =
20 0(BH) = 2)\(1 — H).

In Chapter [5 we will be concerned with the fractional generalization of the repre-
sentation ([1.14)), which was introduced in [26]. For A\ > 0, the so-called fractional
OU process is given by

t
Ut = / e M= ABHE ¢ >0,

which was shown to be well-defined for all H € (0,1) as a Riemann-Stieltjes in-
tegral, by using that ffoo BfleAs ds is well-defined (due to the Hoélder continuity
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of the sample paths of BY and the invariance of B under time inversion) and
applying an integration by parts formula for Riemann-Stieltjes integrals (cf. [26]
Proposition A.1]). Further, it was shown in [26] that this is the unique stationary
solution with continuous sample paths of the SDE dX; = —\X;dt+ dB}?, which is
the fractional analogue of the SDE (L.13). Except for the Brownian case H = 1/2,
the distributions of U”* and Z#* are quite different. In [26, Theorem 2.3|, for
example, it was proven that the auto-covariance function of U”* decays polyno-
mially for H # 1/2. On the contrary, the auto-covariance function of Z#* decays

exponentially, as
AN E[Zé{,)\ZH,)\] _ o2t | 2NHE (e)\t B e"\t) 2H
s =

_ 6—2/\Ht . i(_l)n (QH) e2>\t(H—n)
n

n=1

— e~ PHE | 9T o=22(1-H)t 4 0(672/\1?), t — 00,

by the binomial theorem. Also regarding persistence, they behave very differently.
We will show in Proposition [5.5[ that for H > 1/2, it holds 0,(U#*) = 0 for every
x € R, i.e., that in this case, the persistence probability of the fractional OU process

does not have a true exponential decay as in ([1.15)).

Figure illustrates the results presented in this section.

Figure 1.2: Relation of the persistence exponents of FBM, Brownian motion (BM),
integrated Brownian motion (IBM), IFBM, FIBM and OU process for A = 1/2
(OU). For IFBM with parameter H € (0,1), we shift the function by 1 because
H-TFBM corresponds to (H + 1)-FIBM.
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1.4 Related work

In this section, we mention further results for persistence probabilities of fractional

processes which do not fit directly into the setting of this thesis.

Two-sided persistence problem. All the processes X = (X;);>¢ considered in
the previous section can be extended to two-sided processes (X;)iecg. Thus, one can

also consider the two-sided persistence probabilities of X given by
Pl sup X, <1], T >0,
te[-T,T)

and for self-similar processes X, where in the two-sided case, H-self-similarity means

(Xe) < (|| X;) for all ¢ € R, one expects again

IP( sup X; < 1) = T~ +o(l) T — o0,

te[-T,T)

for some persistence exponent ' = 6'(X) € (0,00). Note that this is no substantial

new problem for processes X for which (X;);>0 and (X;);<o are independent, as in

Pl sup X;<1]=P| sup X;<1]-P| sup X;<1
te[-T,T) te[—T,0] te[0,7

2
=P sup X; <1,
te(0,7)

where we used (X _;) < (F117X;) = (X;). This is fulfilled for Markov processes
and integrated Markov processes, where Py, is trivial, so that we can infer from
the one-sided persistence results that /(1) = 260(WW) = 1 for the Brownian motion
and 0'(V) =260(V) = 1/2 for the integrated Brownian motion.

this case

For fractional processes X, however, this is typically not the case and one has to solve
the one-sided and two-sided case completely separately. A priori, one only has — in
the case that both persistence exponents exist — the estimate 6'(X) > 6(X), since
trivially IP’(suptE[nyT] X < 1) < P(supte[O’T] X < 1). For the FBM, it was shown
by Molchan in 1999 that ¢'(B) = 1, independent of H, see [59, Theorem 3|. This
is a consequence of the fact that the distribution of the position of the maximum

of B on a symmetric interval w.r.t. the origin has a finite density. Furthermore,
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in contrast to the one-sided case, the two-sided persistence exponent could also be
determined for the IFBM. The upper bound ¢’ (1) < 1— H for H € (0,1) is due to
a relation of the two-sided persistence probability of IFBM and the inviscid Burgers
equation with FBM initial velocity that was established in [58], although up to 2017,
the existence of (1) had only been known for H > 1/2. In 2017, by discretizing
the problem and considering the expectation of a useful functional, Molchan could
derive the lower bound ¢'(I%) > 1 — H for H € (0,1), see [56], which proved the
existence of ¢/'(I*7) for H < 1/2 and simultaneously showed that ¢'(I*) equals 1 — H
for all H € (0,1).

Discrete-time processes. Similarly, one can consider one-sided and two-sided
persistence probabilities of fractional discrete-time processes (X, )nez, given by
P(max,—,. n X, < x) and P(max,—_n.. n X, < z), respectively, for N € N and
x € R. For discrete-time analogues of the processes discussed in the previous section,
one expects that the persistence probabilities have the same asymptotic behaviour
in N as the persistence probabilities of the corresponding continuous-time process
in T, in particular that persistence exponents coincide in the case they exist. By
Donsker’s theorem, discrete-time analogues of Brownian motion are given by cen-
tred random walks with finite variance. By classical results going back to Sparre
Andersen and Rogozin, see [80], [81] and [70], one knows that, for z > 0,

IP’( E%&XNSn < ac) ~ c, N7Y2 N — o0,

where (5,,) is a centred random walk with finite variance and ¢, > 0 is a constant
dependent on x and the distribution of S;. Note that due to the Markov property of
(Sp), this directly implies a similar result for the two-sided persistence probabilities,

where the persistence exponent doubles to 1.

A fractional analogue to Donsker’s theorem, the functional central limit theorem for
strong dependence and light tails, see e.g. [87, Theorem 4.6.1], provides the discrete-
time analogues of FBM. These are given by sums of stationary centred sequences
which are either assumed to be Gaussian or to have a representation as a so-called
linear process and to fulfill a certain moment condition, and for which the variance
of the sum increases asymptotically as cn?? for some ¢ > 0, where H € (0,1) is
the Hurst parameter of the corresponding FBM. This in particular includes the
trivial discrete-time analogue of FBM, fractional Gaussian noise (BX), but in fact

defines a much larger class of discrete-time processes. For this reason, starting with
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Molchan’s result for the FBM from 1999, it took a long time to deduce a similar
result for discrete-time analogues of FBM. In particular, one had to find new proof
techniques which do not rely on self-similarity anymore, as this property does not
make sense for discrete-time processes. In |11, Theorem 11|, it was shown that in
the case of sums (SX) of stationary centred Gaussian sequences which additionally
satisfy inf,cy E[SHSH] > 0, it holds, for z > 0,

¢, ' N~U=H)(log N)71/2 < ]P’(nzrolaXN S < x) < N~O-H)geaViogN (1.20)
for some ¢, > 0 and N large enough. Note that the additional assumption
inf,en E[SZSH] > 0 is only needed for the upper bound to pass over from the
persistence probability for the barrier —1 to the persistence probability for a barrier
x > 0. In [11], this is done for z = 1, but the argument works for any x > 0. Further
note that exactly this argument (which is a change of measure using functions in
the reproducing kernel Hilbert space; cf. Proposition adds the factor ecVios N,
In the case H > 1/2, under the stronger assumption of non-negative covariances of
the stationary centred Gaussian sequence, one could derive by Slepian’s lemma (cf.
Proposition the optimal upper bound ¢, N~=) Later, in [6, Corollary 8],
the strong assumption inf,cy E[SZSH] > 0 could be replaced by a rather moderate
assumption on the spectral measure of the stationary centred Gaussian sequence to

deduce the same result as in ([1.20]).

In [6], it was further shown that — analogously to the continuous-time case — the
two-sided persistence exponent of sums of stationary centred Gaussian sequences,
for which the variance of the sum increases asymptotically as en? and which sat-
isfy the assumption on the spectral measure, is given by 1, independent of H ([0,
Theorem 1]), and that the two-sided persistence exponent of integrals of these sums
(which are discrete-time analogues of IFBM) is given by 1 — H (|6, Theorem 2|).
Other results for discrete-time fractional processes include weighted sums of sta-
tionary centred Gaussian sequences (cf. [14]), random walks in random scenery (cf.
[11]), random walks in random environment (cf. [I0]), and branching processes in

correlated random environment (cf. [24] and [10]).

Non-Gaussian fractional processes. Although most of the proof techniques
for the results that we discussed previously crucially rely on Gaussianity (cf. Chap-
ter , there are also a few results for persistence probabilities of non-Gaussian

fractional processes. In [15], persistence probabilties of so-called Hermite processes,
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which generalize the FBM to non-Gaussian H-self-similar processes with stationary
increments, were studied. One expects that these persistence probabilities all decay
asymptotically polynomially with persistence exponent 1 — H, just as for the FBM.
This could be shown for the Hermite process of order 2, the so-called Rosenblatt pro-
cess, by establishing a decorrelation inequality similar to Slepian’s inequality (which
requires Gaussianity and thus cannot be applied; cf. Proposition . For the Her-
mite processes of higher order, upper and lower bounds for persistence probabilities

with non-matching barriers were proven.

Furthermore, the proofs for the presented results for discrete-time fractional pro-
cesses only partially rely on Gaussianity and thus also yield (weaker) results for
non-Gaussian fractional processes. In particular, one can deduce the following re-
sult for non-Gaussian discrete-time analogues of FBM, which is not published in the
corresponding paper: As already mentioned, the non-Gaussian discrete-time ana-
logues for the FBM with Hurst parameter H € (0, 1), given by the functional central
limit theorem [87, Theorem 4.6.1], are sums S,, = Y., X;, n € N, of stationary
centred sequences (X;);en, where V[S,] ~ cn?# for some ¢ > 0 and n — oo, and
additionally, (X;) has a representation as a linear process and fulfills some moment
condition. In this context, linear processes are of the form ZjeZ ci—i&;, © € N, where
(&;) is the so-called innovation process — a centred i.i.d. sequence with finite vari-
ance — and (¢;) is a square-summable sequence of constants. If one further assumes

c; > 0 for all j € Z and E|&|? < oo for all p > 2, the results of [LI] imply

N-O-H)+e(l) < IP’( max S, < 1) < cN-(=H)
n=0,...,N
for some ¢ > 0 and N — oo. The upper bound is due to the fact that, by [31]
p. 63|, the assumption ¢; > 0 for all j € Z implies that, for every i € N, the
family X7,..., X, of random variables is positively associated. Then, one applies
[11, Theorem 8] together with [I1, Proposition 9]. Note that the condition of [11]
Theorem 8] is fulfilled for B := E[sup;(o ) Bf’] due to the fact that the functional
central limit theorem holds for (S,) and that, by the association of Xi,...,X;
and [62, Theorem 2|, one has E[(max,—o. nS,)?] < V[Sy] for N € N so that
the renormalized maximum is bounded in L?. The lower bound follows from [11,
Theorem 5|, together with the fact that, by |73, Theorem 1.4.1], the assumption
E|¢[P < oo for all p > 2 implies E[(S))?] = E[(X})’] < E|X,|% < oo for all > 2.
Note that [IT, Theorem 5| even demands E[(S;)”?] < oo for all 8 > 0, but the

assumption is only used in the proof for large (.
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1.5 Outline

In Chapter |2, we will introduce the central tools for dealing with persistence prob-
abilities of self-similar centred Gaussian processes, which we will need in the proofs
of the results of Chapters [3] to In particular, in Proposition 2.4 we will de-
duce a new result for the reproducing kernel Hilbert space (RIKKHS) of self-similar
centred Gaussian processes, which could be of independent interest, and which, to-
gether with Slepian’s lemma, provides an easy way to derive the equality of the
persistence exponents of a self-similar centred Gaussian process and its Lamperti
transform. Later, in Chapter 4] this result on the RKHS will be crucial to prove

the persistence result for general mixed processes.

In Chapter [3| we will then consider the persistence probabilities of integrated FBM
(IFBM) and fractionally integrated Brownian motion (FIBM). In both cases, we
will show that the persistence exponent is a continuous function in the respective
Hurst parameter. Further, for the IFBM with Hurst parameter H, we will determine
the asymptotic behaviour of the persistence exponent at the boundaries 0 and 1 of
the domain of H, which is in accordance with the conjecture of Molchan and
Khokhlov (Theorem . For the FIBM with Hurst paramter H, we will determine
the asymptotic behaviour of the persistence exponent for H — 0 (Theorem .

Thereafter, in Chapter 4} we will study persistence probabilities of mixed processes,
which are given by sums of self-similar centred Gaussian processes with different
indices of self-similarity. We will first prove our main result, which states that under
the assumptions of non-negative covariances and some further minor conditions,
the persistence probability of the sum decays asymptotically polynomially with the
persistence exponent of the single process with the greater index of self-similarity
(Theorem [£.1). Afterwards, we will use this result to deduce corollaries for the
mixed FBM, the mixed IFBM and the mixed FIBM.

Lastly, in Chapter bl we will consider the persistence probabilities of bifractional
Brownian motion (biFBM), which is a generalization of FBM, and of the fractional
Ornstein-Uhlenbeck (fOU) process. For the biFBM, we will prove lower and upper
bounds for subsets of the parameter domain which unfortunately do not intersect
(Proposition . For the fOU process with Hurst parameter H, we will show that
for H > 1/2, the persistence probability does not have a true exponential decay,

i.e., the persistence exponent equals zero (Proposition [5.5)).
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Remark. This thesis is mainly based on the articles [12] and [13]; see also the remarks

at the end of each chapter.
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Chapter 2

Fundamental tools

In this chapter, we present the general tools which will help us in Chapters [3| to
to deal with persistence probabilities of self-similar centred Gaussian processes.
First, in Section we recall Slepian’s lemma, which turns an inequality for the
covariances of two centred Gaussian random vectors with same variances into an in-
equality for their persistence probabilities. In Section we will then explain how
self-similar processes can be transformed via the so-called Lamperti transforma-
tion into stationary processes and what this means for their respective persistence
probabilities. This is relevant since one consequence of Slepian’s lemma is that
for stationary centred Gaussian processes with a non-negative covariance function
(and some additional condition on the sample paths), the persistence exponent as in
exists. Subsequently, in Section we will introduce the so-called reproduc-
ing kernel Hilbert space (RKHS), for which it is well-known that shifts by elements
of this function space do not change the persistence exponent in the case it exists.
Afterwards, we will show a new result for the RKHS of self-similar centred Gaussian
processes, which allows us to state general conditions under which the persistence
exponents of a self-similar process and its Lamperti transform are identical, and

which will help us in Chapter |4| to prove the main theorem.

2.1 Slepian’s lemma

As the name suggests, Slepian’s lemma in its original version was proven in [79,

Lemma 1| by Slepian, where the probabilities of two centred Gaussian random

21
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vectors being non-negative, respectively, were estimated. In the usual, more general

form, see e.g. [42, Corollary 3.12], the statement is as follows:

For n € N, let (X1,...,X,) and (Y7,...,Y},) be centred Gaussian random vectors
in R", respectively, such that E[X?] = E[Y?] and E[X,X;] < E[Y;Y}] for all 4,5 =
1,...,n. Then, for all (z1,...,x,) € R™,

PX;<x;Vi=1,....n) <PY;, <x;Vi=1,...,n). (2.1)

By setting x; := x, one directly concludes that in the discrete-time case, an in-
equality in the covariance functions of centred Gaussian processes with identical
variances implies the same inequality in the persistence probabilities. Due to the
continuity of P, the inequality also holds for n = oo, i.e., for countable families
X and Y of random variables. To be able to go over to continuous-time processes
X and Y, the natural additional assumption is separability, since in this case, their

suprema are determined by countable subsets of time indices.

Recall that a real-valued stochastic process (X;)ier on a probability space (2, %, P),
with (T, d) being a separable metric space (e.g. [0,7] or [0, 00) with the Euclidean
metric), is called separable if there exists a countable subset D C T and a set
Qo € F of probability P(€2y) = 0 such that, for every t € T, € > 0 and w € €,

Xi(w) € {Xs(w): s € D, d(s,t) < e},

where the closure is taken in R U {oc}, see e.g. [42, p. 45]. In view of the fact that
we want to consider processes (X;);>o with a.s. cadlag paths in Chapter [4] note that
a.s. right-continuous sample paths imply separability, by taking e.g. D := QN[0, 00).

Then, the continuous-time analogue of ({2.1)) is given as follows, which is [19,
Lemma 1.2.5|.

Proposition 2.1. Let (T, d) be a separable metric space, (Xi)ier and (Yy)ier be two
real-valued separable centred Gaussian processes, and f: T — R be a measurable

function whose set of discontinuity points is at most countable.
(a) If E[X?] = E[Y?] and E[X,X;] < E[Y.,Y}] for all s,t € T, then
PX, < f(t)VteT) <P, < f(t)Vt €T).

(b) If T =1[0,00) and E[X;X;] > 0 for all s,t > 0, then, for all T1,T5 > 0,

P(X, < f()Vt € [0,T1]) - P(X, < f(t)Vt € [Ty, T} + T])
<P(X; < f(t)Vt € [0, Ty + To)).
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Note that part (b) directly follows from part (a) by considering the process (X;);o
given by Kolmogorov’s existence theorem, for which (X;);<r, 4 (X1)i<r, as well
as (Xy)>1, 4 (X1)i>1y, and for which (X;)ier, and (X;)i>7, are independent, and
taking a separable modification, which is possible by construction and due to the
fact that X is separable.

2.2 Lamperti transformation

For H > 0, let X = (X;);~0 be an H-self-similar process, i.e., for all ¢ > 0, it holds
(Xet) < (cH X;). Tt is easy to see that then, the so-called Lamperti transform of X,
given by

Z,=e HX,. T €R,

is a stationary process, i.e., (Z,1p) 4 (Z,) for all h € R. Also conversely, if (Z,),cr
is a stationary process, setting X, := t¥ Zj,,, t > 0, yields an H-self-similar process
so that there is a bijective relation between H-self-similar processes on (0, 00) and

stationary processes on R.

Persistence probabilities of a self-similar process X and its Lamperti transform Z
are related as follows. One has, by definition of the Lamperti transform, for the

persistence probability of Z with barrier z € R,

T7€[0,T] te[l,eT)

IP’( sup Z- g:c) :]P’< sup X, — xt SO), T > 0. (2.2)

For z := 0, the right hand side looks quite similar to the persistence probability
of the self-similar X as defined in (1.1), where we explained that changing the
(constant) barrier does not affect the asymptotic polynomial order of the persistence

probability in the self-similar setup. Thus, if indeed

IP’( sup Z, < 0) — ¢ T(0+e(1)) T — oo, (2.3)

T7€[0,T

for some persistence exponent 6 € (0,00), it seems plausible that also

IP’( sup X; < 1) = T~ 0+e(), T — o0, (2.4)

te[0,T]

with the same exponent 6, which we have already seen for fractional Brownian

motion and its Lamperti transform. In the following, we want to develop suffi-
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cient conditions under which this is true for general self-similar centred Gaussian

processes.

We start with a result stating sufficient conditions under which (2.3) holds, which

essentially is a consequence of Slepian’s lemma.

Proposition 2.2. Let (Z;);>0 be a separable stationary centred Gaussian process
with a non-negative auto-covariance function r(t) := E[ZyZ;], 7 > 0. Then, for

every x € R, the persistence exponent

1
0.(Z) = — lim TlogP( sup Z, < x) € [0, o0

T—oo T€[0,T]

exists. If, moreover, Z is a.s. right-continuous at 0 and r is not the zero function,
then

0.(Z) € [0,00) for all x € R.

If, moreover, Z has a.s. cadlag sample paths and fooo r(r)dr < oo, then

0.(Z) € (0, 00) for all x € R.

Proof. The first statement (existence in [0, o0]) is a direct consequence from Propo-
sition (b), implying due to stationarity that — log P(supTG[O,T] 7, < x), T >0,is
subadditive, and Fekete’s lemma (see e.g. [82) Lemma 1.2.1]). In particular, Fekete’s

lemma yields

—log P(su Z.<zx
0,(7) = inf g ( Prefo,1) > )7
T>0 T
which is clearly in [0, oc] and equals oo if and only if P(sup, ¢ Z- < z) = 0 for
all T > 0. In this case, continuity of P implies

0>1lmP| sup Z, <z | =P U sup Z, <z |,
T=0 \ refo,17 T0.7cq (TEOT]

which equals P(Z, < z) if Z is a.s. right-continuous at 0. If r is not the zero
function, Zj is non-trivially normal distributed so that P(Z, < z) > 0, implying the

second statement.

The third statement can be proven by basically performing exactly the steps in the
proof of [14, Lemma 3.2(a)]. But since the result there assumes a.s. continuous

sample paths and the proof is not too long, we include it here.
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Fix M > 1 and set s; := Mi for i € Ny. Then, for T"> M and N := L%J, one

estimates

P{ sup Z;, <z | <P max sup Z,<«x
T€[0,T i=0,...,N— 17‘6[31 8;+1]

si+1
< IED< max / Z,dr < :1:), (2.5)
i=0,..N-1 .

where the integral in the last probability is well-defined, since it is a.s. an integral
of a cadlag function over a finite interval. Let us set (2 := fo fo r(|m — 7'2| )dry dry
and X; := C‘lfSiHZ dr for i € Nyg. Then, the right-hand side of (2.5) equals
77777 N1 X; < () and (X;)ien, is a stationary centred Gaussian process

due to the fact that Z is. Consequently, (Xo,...,Xx_1) is a centred Gaussian

vector with covariance matrix

8)i—j|+1
B(i,j) = B(0, i — j|) C// r(|n—n)dndrn,  i,j=0,...,N—1.

Sli—jl

We estimate, by using the non-negativity of r,

_ fnax ZBO]Z—]| <ZZBOZ <2( // r(m — 1) dm dr

-----
JF

<2(? 7“(7) dr =: ey,
M-1
where limy; o ey = 0, as fo 7)dr < oo by assumption. Thus, the Gershgorin
discs (cf. [36]) are centred at B(O, 0) = 1 and have radius at most €)s. Since B is
real and symmetric, all eigenvalues of B are real and Gershgorin’s circle theorem

yields that all eigenvalues lie within [1 — e, 14 €], We get
]P( max Xz < C_ll‘) = / (27T)_N/2(det B)—l/Qe—zTB’lz/Z dz
i=0,...,N—1 (oo Tm)V
¢\
< (27(1 - sM))—N/zlP(N(O, 1) < —) =: BN,

\/1_5M

where limy;o0 Br = ﬁP(N(O,l) < ('r) < 1. Thus, there exists My > 1
such that By, < 1. Together with , we get, for T" > M, the estimate
P(supTe[O’T] 7. < :p) < ﬁﬁo. Taking logarithms, dividing by 7" and letting T" — oo,
this yields —0,(Z) < log(6u,)/Mo < 0 and thus the assertion. O

For a long time, the comparatively strong assumption of non-negative covariances

had been the only condition for which the existence of the persistence exponent of
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general stationary centred Gaussian processes had been known. Recently, in [35],
this assumption could be replaced by a rather moderate assumption on the spectral
measure of the stationary process. In this thesis, though, the existence result as in

Proposition is completely adequate for our purposes.

Suppose (X;);>0 is a separable self-similar centred Gaussian process with a non-
negative covariance function. Then, its Lamperti transform (Z,),cg is a separable
stationary centred Gaussian process with a non-negative auto-covariance function
and Proposition [2.2) yields for a persistence exponent 6 € [0, cc]. By (2.2), this
implies P(sup,ep 71 X¢ < 0) = 7MW for T — co. Now, follows, if one is able
to show that }P’(supte[lﬂ X < O) and IP’(suptE[O’T] X < 1) have the same asymptotic

polynomial order for T"— oo. Let us now explain how this can be done.

The typical approach is to show inequalities in both directions. One direction is a

direct consequence of Proposition (b) Due to non-negative covariances,

Pl sup X;y <1 | >P[ sup X;<1]| -P| sup X; <1
te[0,T te(0,1] te[1,T)

2P<sup X; < 1> -IP’( sup Xy §O> :T*9+0(1), T — oo.

te€(0,1] te[1,T)

(2.6)

Note that the last equality is trivial for § = oo, whereas for § < oo, the fact that
P(supep, 1) Xt < 0) = P(supyep 1/ X < 0) = 29t°0) for x — 0 implies that

Pl sup X; <1]|>P| sup X; <1]|-P| sup X;<0] >0
te(0,1] tel0,z] te(z,1]

for some z > 0.

For the inverse direction, it is useful to see that

P( sup X; < O> > IP’( sup Xy + h(t) < 1) (2.7)

te[1,7) te(0,7)

holds for any (deterministic) measurable function h: [0,00) — R satisfying h(t) > 1
for all ¢t > 1. In view of this estimate, it suffices to show that there exists such a
function A for which additionally holds that the persistence probabilities of X and
of the shifted process X + h have the same asymptotic polynomial order. As we
will see in the next section, this is the case, if X has a.s. cadlag sample paths and

if there exists such h in the so-called reproducing kernel Hilbert space of X.
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2.3 Reproducing kernel Hilbert space

Recall that for a non-empty set T and a kernel K: T x T — R, a Hilbert space
H C {f: T — R} with inner product (-,-)3 is called reproducing kernel Hilbert
space (RKHS) with reproducing kernel K, if

ky:=K(-,t)eH  forallte T, and (2.8)
h(t) = (h, ki) for all t € T and all h € H. (2.9)

Further recall that such an RKHS exists if and only if K is symmetric and positive
definite and the RKHS is unique in this case, see e.g. [71, Theorem 2.2|. Thus,
there is a bijective relation between centred Gaussian processes and RKHSs, by

considering covariance functions as reproducing kernels.

For a centred Gaussian process X = (X})er, let us denote by Hx the RKHS of X
i.e., the RKHS with reproducing kernel K (s,t) := E[XX}], s,t € T. It is easy to
see that

Hy = {t — E[£X,] ‘ € € Hy := span{X;: { € ']1“}} , (2.10)

where the closure is in L?. This is due to the fact that £ € span{X;: t € T} is
mapped linearly to h := E[(¢X ] € span{k;: t € T} with (hy, he)y, = (&1,&2) 12, that
span{X;: t € T} is dense in Hy, and that span{k;: t € T} is dense in Hx. Note
here that property ensures that span{k;: t € T} C Hy, whereas property
implies that 0 € Hx is the only element orthogonal to span{k;: t € T}, so that this

is indeed a dense subspace of Hx.

As already mentioned, the importance of the RKHS in the context of persistence is
that, if some condition on the sample paths of X is satisfied, shifts by functions in
the RKHS of X do not change the asymptotic polynomial order of the persistence
probability of X. This is a consequence of the fact that functions in the RKHS of
X are so-called admissible shifts, i.e., functions h for which the distribution of the
shifted process X + h is absolutely continuous w.r.t. the distribution of the process
X. Let us recall this result, which is the so-called Cameron-Martin formula, see
e.g. |44, Theorems 9.3/9.4].

Let X be a centred Gaussian process taking values in some topological space F such
that the distribution of X on & is a Radon measure, where & is the Borel-o-algebra
of F, ie.,

P(X € A) =sup{P(X € B): BC A, B € &, B compact} (2.11)
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for all A € &. Then, for all A € & and h :=E[(X | € Hx =: H, where € Hy, it
holds
P(X +heA) =E|e M52y (2.12)

Note that this result is quite elementary in the finite-dimensional case: For n € N,
let £ := R™ with the Euclidean topology and X ~ N(0, K), where K € R™" is a

symmetric positive-definite matrix. Then, we have
Hx CR"={KX: A€ R"} =span{k;: t =1,...,n} C Hy,

i.e., all shifts are admissible, and Hy = {\TX: A € R"}. One easily deduces that,
for h=KXeR" ¢ =)TX and A € Z(R"), it indeed holds
2m)"det K P(X + h € A) = / e 7 K22 4
A—h
— / 6—(z—h)TK*1(z—h)/2 dz
A

_ / eszKflz/QHTzf,\TK,\/z dz
A
=/ (2m)"det K E [eg_”h”%m ]1X6A] ,

where we used that ||h]|3, = [|€]]7. = E[(ATX)?] = AT KA.

In the infinite-dimensional case, however, this is highly non-trivial and we refer to
[44] for the proof. By applying Holder’s inequality and the reverse Holder inequality,
respectively, for arbitrary p > 1 to the right-hand side of and then optimizing
in p, the Cameron-Martin formula implies the following upper and lower bounds for
the quotient P(X + h € A)/P(X € A), which is [9, Proposition 1.6].

Proposition 2.3. Let X be a centred Gaussian process taking values in some topo-
logical space E such that the distribution of X on & is a Radon measure, where &
is the Borel-o-algebra of E. Then, for all A € & with P(X € A) € (0,1) and all
h e Hx =:H, it holds

PX+heA) .\ /amiEoi/BXea)-IniE,/2,
P(XeA) —

If additionally ||h||%, < 21og(1/P(X € A)), then also

P(X +heA) < V25 log(1/P(X€A)) ~|Rl3, /2.
P(XeA) —

Remark. (i) The assumption (2.11)) is always satisfied if F is a separable complete

metric space, since in this case, every probability measure on & is a Radon

measure, see [20, Theorems 1.1/1.4].
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(ii) In [9, Proposition 1.6|, it is assumed that E is a Banach space, but this is
used in the proof only to be able to apply the Cameron-Martin formula. As
we want to consider processes (X;);>o with a.s. cadlag sample paths and thus
take F := D[0,00) with the Skorokhod topology, we need the more general

assumptions made in [44] Theorem 9.3]|.

(iii) In [9, Proposition 1.6, the upper bound is stated without the additional as-
sumption. However, it is proven b)lf applying Holder’s inequality for p =
(1 — VIIR]3,/(2log(1/P(X € A)))) , which is not well-defined without the

additional assumption, see also [0, Proposition 3]. Nevertheless, note that in

the context of persistence, the typical application is to consider A := Ap € &
such that limp . P(X € Ar) = 0, and that in this case, the condition is
always fulfilled for T large enough.

Before we present the mentioned result for the RKHS of self-similar centred Gaus-
sian processes, let us consider the RKHS Hy of a Brownian motion W = (W})s>o,

which is given by

Hy = {h: [0,00) = R ‘ h(0) = 0, h is differentiable a.e., /Oo(h’(t))2 dt < oo
’ (2.13)
with inner product (hy, ho)y,, = [y~ hi(t)R5(t) dt. This is due to the fact that in
this case, we have k;(s) = s At for s,t > 0. Note that span{k;: ¢ > 0} is a subspace
of the right-hand side of (2.13)), and that by property of Hyy, it holds

SAL o8] o0
(ks, kt)ay = SNt = / ldu = / (s Au)'(t Au) du = / KL (uw)ki(u) du
0 0 0

for s,t > 0. Together with the fact that the derivatives of elements of span{k,: ¢t >
0} — piecewise constant functions with compact support — are dense in the space of

continuous functions with compact support, which again are dense in L?*([0,00)),
this implies the identity (2.13).

Thus, there are functions in the RKHS of W growing faster than ¢7 for t — oo if
and only if v < 1/2. Recall here that we have already seen in Section that the
persistence exponent of the OU process depends on the barrier x, which in view
of means that Hy cannot contain any function growing as t'/2. It seems
plausible that for general H-self-similar centred Gaussian processes, this transfers
in the sense that one can take v < H. Still, this has only been known for specific

processes, such as fractional Brownian motion (cf. |18 Section 4] for H > 1/2
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and [65, Section 6] for general H € (0,1)), integrated fractional Brownian motion
(by using the result for fractional Brownian motion and representation (2.10))) or
fractionally integrated Brownian motion (by using representation and the
seen result for Brownian motion).

In the following, we will show that for general H-self-similar centred Gaussian pro-
cesses fulfilling some additional assumptions, there exists a function A in the RKHS
growing faster than ¢7 for any v < H, which will be crucial in the proof of Theorem
M.1l Secondary, we will show that this function can be chosen in a way such that
h(t) > 1 for t > 1. Thus, it will also be suitable for the estimate to deduce the
equality of the persistence exponents of the self-similar process and its Lamperti

transform.

This will be done by going over to the Lamperti transform and using a representation
of the RKHS of Gaussian stationary processes (GSPs) with a continuous auto-
covariance function via the spectral measure. Recall that for a GSP Z = (Z,),cr
with a continuous auto-covariance function r(7) := cov(Zy, Z;), 7 € R, Bochner’s

theorem provides a unique finite measure p on (R, Z(R)), satisfying

r(7) :/Rem du(z), TER, (2.14)

which is called spectral measure of Z, see e.g. [4, Theorem 1.2.7]. The RKHS of Z

can then be written in the form

My — {T - /Rgo(x)e_i” du() ‘ oc LQ(M)}. (2.15)

This is due to the fact that, by (2.14), it holds [, "¢~ du(z) = k(7) for t, 7 € R.
Thus, ¢ € span{e”':t € R} is mapped linearly to h := [, o(x)e ™ du(z) €
span{k;: t € R} with (hy,he)w, = (@1,92)12(n- Further, since p is finite, the
subspace span{e’ : t € R} is dense in L*(p).

Using this representation, we first get the following result for the RKHS of Z.

Proposition 2.4. Let Z = (Z,;);er be a real-valued GSP with a continuous auto-
covariance function. If the spectral measure of Z is abolutely continuous w.r.t. the
Lebesgue measure in some neighbourhood of the origin and the corresponding spectral
density is bounded away from zero, then for every a € (0,1/2), there exists h € Hy
satisfying h(7) ~ c7 ! for 7 — oo and some ¢ > 0 as well as h(7) > 0 for 7 > 0.

Remark. Note that, by (2.15), if the spectral density p exists on whole R, any
function h € Hz in the RKHS of Z is the Fourier transform of a function of the
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form - p, where ¢ € L?(u). In view of Tauberian theorems for Fourier transforms,
see e.g. [21, Theorem 4.10.3], one would expect that h(7) ~ ¢7*~! holds for 7 — oo
and some « € (0, 1) if and only if p(z)p(z) ~ ¢ = for & — 0, which is in accordance
with the condition a € (0,1/2).

Proof. Let a € (0,1/2). Similary to the proof of [0, Proposition 5|, we will first
construct a function h; € Hy with the desired asymptotic behaviour, which un-
fortunately may attain non-positive values up to some 75 > 0. Afterwards, we
will show the existence of another function hy € Hy which is non-negative on
[0,00), even positive on [0, 79|, and decays faster than h;. Then, the function

h := hy + 2max,cpo,7] |h1(7)|/ min,cp,7] ho(T) - he yields the assertion.

By assumption, there exists a spectral density p: (—zo,zo) — [co,00) Of ft](—z0.20)

for some ¢y, g > 0, where p denotes the spectral measure of Z.

Construction of hy: We set ©1(x) 1= Ljgj<q, |2|~*/p(2). Then, we have

o o
/ O3 (x) dp(r) = 2/ 7% /p(r)dr < 2051/ 772 dr < 00
R 0 0

as o < 1/2. Thus ¢, € L*(u). For the h; corresponding to ¢ (as in (2.15)), we get

fMﬂ=Aw@M“%M@=A%@MMmMM@
= 2/ % cos(tx) dz = 2771 / Yy~ “cos(y)dy ~ cT* !
0 0

for ¢ := 2 [*y~*cos(y) dy and 7 — oo. Note that due to a < 1, the fact that -~ is
decreasing and fulfills lim, ., z=* = 0, the fact that the integrals of cos(-) over any
interval are uniformly bounded, and Dirichlet’s test, the integral in the definition

of ¢ exists and is positive. Further note that this fails for a < 0.

Construction of hy: Due to the asymptotic behaviour of hq, there exists 79 > m/z¢
such that hy(7) > 0 for 7 > 79. Let g: R — [0, 00) be a smooth even function with
g(x) > 0 for || < 7/(27) and g(z) = 0 otherwise.

We set f:= g g and ps(z) := Ljgj<r/r, f(2)/p(x). Then ¢y € L*(n) as

/7o
[ Awrauta) = [ 1) fp() do < T RSeelmmann) @)
R

—7/70 CoTo

where we used that 7/79 < xy. Note that by definition of f and g, we have f(z) =0
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for |x| > m/719. Thus, the hy corresponding to ¢ fulfills

/R%(fﬁ)@” du() = /}R f(a)e ™ da

» 21 >0, if 7| <7,
= /g(x)e Trdr ) = /g(m) cos(tx) dz
R R >0, otherwise,

where we used in the second line that the Fourier transform of a convolution is given

hQ(T)

by the product of the Fourier transforms of the convoluted functions as well as that
g vanishes outside of (—m/(27),7/(279)) by definition. Furthermore, by integration
by parts, we have

ha(T) :/Rf(:c)em”dx: (Z,i)Q/Rf”(:c)ei” dx

2T MmaXge[—n/79,m/70] |f”(ZE)| . 7_72

To

]

Applying this to the Lamperti transform of a self-similar process gives the following

corollary.

Corollary 2.5. For H > 0, let X = (X})i>0 be an H-self-similar process such that
the Lamperti transform of X satisfies the conditions of Proposition [2.4. Then, for
every o € (0,1/2), there erists h € Hx satisfying h(t) ~ ctf(logt)*~! for t — oo
and some ¢ > 0 as well as h(t) > 1 fort > 1.

Proof. Let a € (0,1/2) and Z, := e "X, 7 € R, be the Lamperti transform of
X. Proposition yields the existence of a function h € Hz and ¢y > 0 such that
h(t) ~ o ! for 7 — oo and h(r) > 0 for all 7 > 0.

By representation (2.10), this implies that there exists a random variable £ € Hy
such that A(r) = E[¢Z,], 7 € R. Plugging in the definition of Z, this gives
e h(r) = E[¢X,-] for 7 € R and ho(t) := t"h(logt) = E[¢X,] for t > 0. Since
span{Z,: 7 € R} = span{X;: t > 0} and thus H; = Hx, we get hy € Hx, by using
again (2.10]). Further, hq is a continuous function (by the continuity of the covari-
ance function) and satisfies ho(t) ~ cot(logt)®~* for t — oo as well as hy(t) > 0
for all ¢ > 1. In particular, we have hy(t) — oo for ¢ — oo. Thus, there exists
to > 1 such that ho(t) > 1 for t > ;. Setting h := ho/(mingep 4] ho(t) A 1) yields
the assertion for ¢ := ¢/ (mingep 4] ho(t) A 1). O

Finally, we deduce the result giving sufficient conditions under which the persistence

exponents of X and Z coincide.
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Corollary 2.6. For H > 0, let (X;)i>o be an H-self-similar centred Gaussian pro-
cess with a.s. cadlag sample paths and Z, = e "H X, 7 € R, be its Lamperti
transform. Let us further assume that the auto-covariance function of Z is contin-

uous, non-negative, integrable and not the zero function. Then, it holds

Pl sup X, <1 | =700, T — oo,
t€[0,T]

where 0 := —limy_,o logIP’(supTe[O,T] Z. <0) € (0,00).

Proof. The existence of 6§ = 6y(Z) € (0, 00) follows from Proposition 2.2 Further,
we have already seen in (2.6) that the non-negativity of the covariance function
implies P(sup;cjo ) Xy < 1) > 7000,

For the upper bound, we want to apply Proposition for the process X and the
function h € Hx given by Corollary Note that, since r(7) := E[ZoZ,], T € R,
is assumed to be integrable and — by definition of the spectral measure p of Z (cf.
(2.14))) — represents the characteristic function of the finite measure y, the inversion

theorem for characteristic functions yields du(z) = p(x) dxz on R with the density

(@) = = /Remr(T) dr — 2i/Rr(T> drc (0,00), 70,

T o 7r
so that the conditions of Corollary are fulfilled.

By assumption, X takes values in D|0, 00), the space of cadlag functions on [0, 00).
In [86, Theorem 2.6, it is shown that D[0, co) together with the Skorokhod topology
is metrizable as a separable complete metric space so that, as already mentioned in
the remark after Proposition every probability measure on this space is a Radon
measure. In particular, the distribution of X on the Borel-o-algebra w.r.t. the
Skorokhod topology fulfills the assumption (2.11f) and Proposition is applicable.

We take A := Ap = {f € D[0,00): sup,jo7) f(t) < 1}, which is closed w.r.t. the
Skorokhod topology and thus element of the Borel-o-algebra. Indeed, if (f,) C
Ar converges to fy € D0, 00), then the Skorokhod convergence implies pointwise
convergence for all continuity points of fo. Consequently, it holds fo(t) < 1 for
all continuity points ¢ € [0,7"). By choice of the interval [0,7") and due to right-
continuity of fy, this already implies fo(t) < 1 for all ¢t € [0,T) and thus fo € Ar.
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Hence, Proposition [2.3] yields

IP’( sup X; < 1) <P(X € Ar)

te[0,T

\/QH}LH%10%(1/P(X€AT))+||h||$-L/2
(X +h e AT) e

<P
<P(X +h € Ap) eV IO 0T+ nl3, /2

< IP’( sup X; < 0) e(1+o(0)/2IHIESlog T _ =0+o(1) T — oo,
te([1,T]

where we used that sup,co 7 X¢ < 1 implies sup,cjg ) X¢ < 1 in the first, the lower

bound of Proposition in the second, in the third and in the fourth

step. Recall that here we use the property h(t) > 1 for ¢ > 1, in the way that in

this case, X; + h(t) <1 for ¢t € [0,T) implies X; <1 —h(t) <0 fort € [1,T). To

deduce the fourth step, we further use that sup,c; 1y Xt = supey ) X¢ holds as.,

since X is even a.s. continuous at any fixed deterministic time. O

Remark. Proposition and Corollary appeared in the journal Journal of
Physics A: Mathematical and Theoretical in the article Persistence probabilities of

mized FBM and other mized processes, see [13, Lemma 7 / Corollary 8|.



Chapter 3

Persistence probabilities of
integrated fractional Brownian
motion and fractionally integrated

Brownian motion

In this chapter, we are concerned with the persistence probabilities of two related
processes — the integrated fractional Brownian motion (IFBM) and the fractionally
integrated Brownian motion (FIBM) — and determine the asymptotic behaviour of
the persistence exponents at the boundaries of their respective domain of the Hurst

parameter.

3.1 Introduction and main results
Recall that for H € (0,1), the IFBM [ = (I),5¢ is given by
t
ItH::/ Bfds, t>0,
0

where (Bf?);>0 is an FBM with Hurst parameter H. Note that the H-self-similarity
of B implies that I” is (H + 1)-self-similar. As we will see, the auto-covariance

function of the Lamperti transform of I is continuous, non-negative and integrable

35
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so that Corollary implies the existence of the persistence exponent

0;(H) := — lim

. H <
Jim 1OngogIP’< sup I’ < 1) € (0,00).

t€[0,T]
However, as already mentioned in Section [1.3] its value is unknown unless H = 1/2.

Recall that 7'/? is integrated Brownian motion, where it was shown via Markov
techniques that 6;(1/2) = 1/4 (cf. (1.6)). Further recall that for the general case

H € (0,1), there are some analytical estimates (see (1.9), (1.10) and Figure
and the conjecture (1.7)).

We show that 6 is continuous and determine the asymptotic behaviour of 6;(H)
for H — 0 and H — 1, which is in accordance with the conjecture (1.7). This is

our first main result in this chapter.

Theorem 3.1. The function H — 0;(H) is continuous on (0,1). Further, 8;(H) ~
HasH—0and0;(H)~1—H as H— 1.

For the second result, recall that for H > 0, the FIBM RY = (RH),5,, also known

as Riemann-Liouville process, is given by
t 1
R .= / (t—s) zdW,,  t>0,
0

where W = (W,);>0 is a Brownian motion. Note that R is H-self-similar due to the
fact that W is 1/2-self-similar. Again, we will see that the auto-covariance function
of the Lamperti transform of R¥ is continuous, non-negative and integrable so that,
by Corollary also the persistence exponent

1
Op(H) = — i log P H <1
r(H) A e T 08 (tg[%%Rt < )6(0,00)

exists. However, similarly to the IFBM, its value is unknown except for the Brown-
ian cases. Recall that a Fubini argument shows that, for n € Ny, the FIBM R"+1/2
is the n-times integrated version of the Brownian motion W (cf. and (L.12)).
Thus, it holds 0r(1/2) = 1/2 (Brownian motion) and 6r(3/2) = 1/4 (integrated

Brownian motion). Further recall that 6y is non-increasing on [1/2, 00) (cf. [9]).

We show that 6y is continuous and that, for H — 0, the exponent 0z(H) tends to

infinity and is in the range H~! to H~2. This is our second main result.

Theorem 3.2. The function H — 0r(H) is continuous on (0,00). Further,
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(a) liminfy 0 0r(H)H > 0 and

(b) Or(H)H?* < 14? for H € (0,1/2).

For H — oo, we will see that the auto-covariance function of the Lamperti trans-
form of R converges to the auto-covariance function 7+ 1/ cosh(7/2) (see (3.12))
below), which is non-negative and integrable. Further, it was shown in [30} eq. (1.4)]
that the corresponding stationary centred (Gaussian process Z has a representation
as an Itod integral w.r.t. Brownian motion so that there exists a modification with
continuous sample paths. Thus, by Proposition the corresponding stationary
centred Gaussian process Z has a persistence exponent 0r(00) := 6y(Z) € (0, 00).
Now, it is an easy consequence of continuity theorems for persistence exponents (see
[28, Theorem 1.6], [29, Lemma 3.1|, or |14, Lemma 3.6]; these results are summa-
rized in Lemma [3.3| below in a way suitable for our purposes) that Og(H) — 0g(c0)
as H — oo. Moreover, recall that one knows that 0g(co) > 1/(4v/3) (cf. [55]) and
that there is evidence in favour of the equality 6r(c0) = 3/16 (cf. [66]).

The rest of this chapter is organized as follows. We first sketch the general proof
technique in the next subsection. Section then contains the proofs related to
Theorem [3.1] while Section [3.3]is devoted to the proofs related to Theorem

Ideas of the proofs

The first step in our proofs is to go over to Gaussian stationary processes (GSPs)
by considering the Lamperti transforms of the self-similar processes I and R,

Consequently, we consider the Lamperti transform of I# defined by

U .= \/201 + H) e~ [H 7 € R,

where the normalization constant is given in order to have a unit variance process.
Similarly, we consider the normalized Lamperti transform of R¥ defined by

VH .=V2He ™MRE, T €R.

T

The basic idea of our proofs is then as follows. First, we convince ourselves that the
auto-covariance functions of U¥ and V¥ are indeed continuous, non-negative and
integrable so that Corollary [2.6]is applicable, yielding that the persistence exponents

of the Lamperti transform and the corresponding self-similar process coincide.
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The next step in proving Theorem (Theorem is proven similarly, but the
argument is much more technical) is to consider the GSP (Uf;H)TeR as H — 0
and the GSP (Ugu_H))TGR as H — 1. Their persistence exponents are given by
0;(H)/H and 0;(H)/(1 — H), respectively, as a quick computation shows. We
will show that in both of these cases, the respective auto-covariance function of
that GSP tends to the auto-covariance function 7 +— e~ 7, which is the (normalized)
auto-covariance function of the Ornstein-Uhlenbeck process (OU process) for A := 1
(cf. (1.16)). Recall that this OU process has persistence exponent 1 (cf. (1.18)).
Then, we use the following lemma, which is |14, Lemma 3.6] together with [14]
Remark 3.8|, |28, Theorem 1.6], and [14, Lemma 3.10|, to conclude the convergence
of the persistence exponents 6;(H)/H — 1 as H — 0 and, respectively, 6;(H)/(1 —
H) - 1las H— 1.

Lemma 3.3. For k € N, [et (Zﬁk))TZO be a centered GSP with non-negative auto-
covariance function Ak(T), T > 0, satisfying Ax(0) = 1. Suppose that Ax(T) — A(7)
for k — oo and all T > 0, where A: [0,00) — [0, 1] is the auto-covariance function
of a centered GSP (Z;)r>0-

(a) If Z®) and Z have continuous sample paths, and the conditions

lim lim supZAk <Z> =0 for every { € N, (3.1)
L= psoo y 14
limsup [loge|”  sup (1 — Ag(7)) < 0o for some n > 1, (3.2)
€l0 keN, 7€[0,e]
log A
lim SupOg—(T) < -1 (3.3)

oo lOgT
are fulfilled, then

1 1
lim —logP( sup Zﬁk) §O> = lim —lo IP’( sup Z; §0). 3.4
k, T— o0 T & (TE[O,T] T—oo T & r€[0,T] ( )

(b) If A(t) =0 for all T >0 and is fulfilled, then
Remark. Note that the statements in [I4] and [28] concern the probabilities
P(sup, gy Z% < 0) and P(sup,¢jo Z- < 0) (instead of <). However, due
to Gaussianity, stationarity and continuous sample paths, the distributions of
SUP,¢0,7] Z%® and Sup,eo ] 4 are, for every k € N and T" > 0, absolutely
continuous w.r.t. the Lebesgue measure, see [84, Theorem 3|. Thus, it holds
P(sup, g,y Z® = 0) = P(sup ¢ Zr = 0) = 0 for every k € Nand T > 0.
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The lemma says that if the auto-covariance functions of the processes Z*) converge
pointwise to the auto-covariance function of the process Z and the technical condi-
tions (3.1)-(3.3) are satisfied, then the persistence exponents of the processes Z*)
converge to the persistence exponent of the process Z. Here, the existence of the
persistence exponents, i.e., the existence of the (negative) limits in , follows
from Proposition

3.2 Proofs for the case of IFBM

In this section, we prove Theorem We start with a lemma giving important
properties of the auto-covariance function of U¥. In [54, Lemma 2|, the auto-

covariance function py(7) = E[Uf U] was found to be

(1+ H) (e_HT + eHT) (67/2 — 6—7/2)2(1'”{) cUHE)T | o—(1+H)T
1+ 2H U rE) T 2(1+2H)

pu(T) =
for 7 > 0 and shown to be non-increasing on (0, 00).

By the binomial theorem, we also have the following useful representation:

(1 —|—H) (e—HT +€H7’)
1+ 2H

. ZzO:O(_l)k<2+k?H) e—T(k’—l—H) 6(1+H)T + e*(1+H)T

2(1+2H) 2(1+2H)
(Lt H)e ™ | ST (-1) (et et

_ _ 3.5
T+20 (1 + 2H) caramy Y

pu(T) =

which even holds for 7 = 0 due to the fact that the exponent 2+ 2H is positive, see
e.g. [1]. This gives the following asymptotics.

Lemma 3.4. For all T > 0,

() = o) =
e () = fmen (=57 ) =<7
Proof. Considering ({3.5) for the argument 7/H yields

H

- (3.6)

<T> _EDer D G O A G L A
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As H < 1, we estimate, for all £ > 2,

2+20\| 2H+2 2H+1 [2H+4—k [|2H+3—k
k N 2 k—1 k

N W —

<4.2.1...1=6. (3.7)

Therefore, we can majorize (—1)k(2+;H)e’T(k’1’H)/H, k > 2, by the sequence

6e 72k > 2 which is summable for 7 > 0, to conclude with the dominated

convergence theorem that, for all 7 > 0,

T (1+H)e " .
Ty U He  a T H-o0.
pH(H) Trom oM e — 0

Similarly, by considering ({3.5)) for the argument 7/(1 — H), we get

( . > (1 + H) e—TH/(l—H)
PH =

— i 1420
N 22022(_1)1{(2+;H)€77(k717H)/(17H) - o~ T(I+H)/(1-H)
2 (1 + 20) 2(1 + 2H)
_ (A Hyem SRR )e e o(1)
2 2(1+ 2H)
(1+H)e "

:T+O(1)—>€_T, H—1,

for all 7 > 0, where we again used (3.7 to be able to apply the dominated conver-
gence theorem. Noting that py(7/H) = pp(7/(1—H)) =1 = ¢ 7 for 7 = 0 finishes
the proof. O

Proof of Theorem (3.1, First observe that py is continuous, non-negative and inte-
grable. For the non-negativity, note that

s t
E[171]] :/ /E[Bf’Bf] drdu,  s,t>0,
0 JO

and that the covariance function (s, t) — E[BFBH] = (s* + t* — |t — s|*")/2 is

non-negative. For the integrability, consider (3.5 to deduce that pg (1) ~ 1112% e HT

for 7 — oo and H < 1/2, whereas py (1) ~ £ e=0=17 for 7 — 0o and H > 1/2.

Thus, Corollary is applicable and it holds

1
0;(H) = — lim ?log]P’< sup UH < o).

T—o0 T7€[0,T
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The case H — 0. Observe that

0r(H)

1 1
= lim —logP UH <
H HroeT 8 (TEE}} T )

1 1
= —— lim logP[ sup U7 <0
T€[0,T/H]|

1
= — lim —logP| sup Uf <0]. 3.8
T—oo T <Te[0,T] & ) (328)

By Lemma the auto-covariance function 7 — py(7/H) of (UTh/'H)TZO converges
pointwise as H — 0 to 7 — e~ 7. As already mentioned, this is the auto-covariance
function of the OU process for A := 1, which has persistence exponent 1 (cf. (1.18)).

So, as soon as we have also proven that the persistence exponents converge, the

desired convergence 0;(H)/H — 1 as H — 0 follows. In order to achieve this,

we want to apply Lemma [3.3(a), i.e., we check the conditions (B.1)—-(3.3) for the
process (UgH)TZO with the auto-covariance function 7 — py(7/H). Obviously,

(3.3) is fulfilled for the limiting auto-covariance function 7+ e~".

To check (3.1)), note that for H < 1/2 and every k > 4, one has

2.4+ 2H
—1)*
( >( ; )
9 +2 2H+1 2H 1-2H 2—2H k—3—2H

= : <0 3.9
1 2 3 4 ) k (3:9)
and also (—1)F(**27) = —2£2 211 2L < 0 for k = 3. Thus, considering (3.6)

and estimating all negative terms by zero, we get
—T —(1-H)r/H -7
pH<l>§(1+H)€ (1+H)e S76
H 14+2H 2 4
for H < 1/2, where the right-hand side is independent of H and integrable in 7.

Similarly, for (3.2)), we write, for every H < 1/2 and € > 0, using the non-increasing

character of py and the fact that 1 —e™ < z,

s (1 () =1 - ul(g) = on () - ()

(1 + H) (1 o e—e) 1 — e—(1+H)a/H

1+2H 2(1+2H)
—+§3§ﬂ(—1f(%fH)(1—6_d”4_HVH)
2(1+2H)

1+ H 1 i (3+2H)e
< — 1-— e/HY < — . 3.10
—€+( 2 %1+2HD( ) Setgaa <3 (10
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The case H — 1. Similarly to (3.8),

0r(H) 1
1 g loet o) Uria-m <0 |

and by Lemma the auto-covariance function 7 — py(7/(1 — H)) of (Uf/((l_H))

T

converges pointwise as H — 1 to 7 +— e 7. Again, this is the auto-covariance

function of the OU process with persistence exponent 1. Applying Lemma (a)
for the process (Uh; - H))T>0 Completes the proof of the asymptotics, subject to
checking the technical conditions and (3.2).

Considering (3.9) for H > 1/2, we see that (—1)*(**>"") < 0 for k¥ = 3 and

(—1)k(2+k2H) > 0 for k£ > 4. So, estimating again the negative terms by 0, we

get

T (14 H)e H/O=H) (1 4 H)e~
PH < +
1-H 1+2H 2

> 2+ 2H
7(k—1—H)/(1—H)
sram ()

=4
00

1 2+ 20\ _.
S(”mg“”k( )

5 a1 136"
—(2iaem (22 )er<
(2+(+ )<3 2))6 =75

for H € (1/2,1), where in the last equality, again by the binomial theorem, we used

the fact that Y 72 (—1)F(**27) = (1 — 1)>*2 = 0. This shows (3.1).

Condition (3.2)) can be verified similarly to (3.10]), since in this case

1 T 0 €
su — = _
oy PEN\T_H PENT_H ) PP\1_H

C(1+H)(1—e) N (1+ H) (1 — e He/0=1)) 1 _ o=(+H)e/(1-H)

1+2H 2(1+2H)

o

1 2+ 2H
- -1 k 1 — —e(k—1-H)/(1—-H)
+2(1+2H)k§( )( k >( ‘ )

1+H H(l+H) €
<e+ -
1+2H 3 1—-H

H(1+ H)(2H —1) —(3—H)e/(1—H)
+ B ( e )
1 = 2+2H (k—1—H)e
_ 1 _ (1+H 8/ 1 H
2(1—0—2H) ( € +Z 1 - H )

k=5
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where we used again 1 — e ® < z and estimated e H/(1 — H) < ¢/(1 — H) as well
ase(2—H)/(1—H) >¢/(1 — H) in the last step. Note that

1+H H(l+H) (3+2H)(1+H)(1—H).

11 2H 3 3(1+ 2H) i
that
H(l1+ H)(2H - 1) (1 — e G=Me/1=m)y _ 1 (1 — e~/ =)
12 (1 + 2H)
< H2H-1)3-H) 1 (1- 6—(1+H)5/(1—H)>
= 12 2(1+ 2H)
 H@H? - 1)(3— H)—6

(1— e~ (LHDE=/1-1)) <

Y

12(1+ 2H)

for H € (0,1) and & > 0 since (1—23~)/(1—2'"") < (3—H)/(1+H) for x € (0,1);
and that, for £ > 5,

(_1)k<2+2H)k—1—H_2H+2 (k—1-H)2H+1) 2H 2H -1

k 1-H k-2 k—1 k 1
L 2-2H 3-2H k-3-2H
20— H) 3 k—3
<t 32
k-2 "k k(k—2)

which is summable in k. Putting these facts together, we get, for every n > 1,

_ T
lim sup |log e|” sup (1 —pH( ))
e—=0 He(1/2,1),7€(0,¢] 1-H

34 2H)( >

< limsup |logel”e su 1+(

o a—>0p| & | He(l/%l)( 3(1+2H Zk‘ —2
=0 < o0.

Finally, the continuity of 6; follows from that of H — ppy(7) and Lemma [3.3(a),
since it is easily seen that conditions (3.1)—(3.3) are satisfied for the sequence 7 +—
pu(T), H € [Hy — 0, Hy + 0], with fixed Hy € (0,1), small § > 0, and H — Hy. O

3.3 Proofs for the case of FIBM

In this section, we prove Theorem [3.2] For this purpose, we first need the following

two lemmas on the auto-covariance function of V. The auto-covariance function
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ru(t) = E[V#VH] can be found, e.g., in [45] eq. (12)] and reads

4H 1 3
ru(T) = 75 g e TR (1,§—H,§+H, e_T> (3.11)

with the standard notation for the Gauss hypergeometric function.

Note here that, for 7 > 0,

1 r 1/2—H) /T 2+ H)\ !
2F1<1’§_H,2+H7€_T) (n+1/ >( (n+3/2+ >) nr

['(1/2—-H) I'(3/2+ H)
(n+1/2—H)---(1/2—H)
(n+3/24+H)---(3/2+ H)

1
N Z(_l)ne—TLT — 5o H — oo, (312)
n=0

e*’nT

Mz 10

0
o)

n

where we used that the modulus of the fraction in the second equality is bounded
by 1 and we consequently could interchange limit and sum by the dominated con-
vergence theorem. Thus, as stated at the beginning of this chapter, ry(7) —
2e"7/2/(1 +e ) = 1/ cosh(1/2) for H — oc.

Moreover, we have the following representation.

Lemma 3.5. For all 7,H > 0,

. 1—2H __ . 1 3 .
e /2—7”H(T>:1+2H6 /2<1—€ >2H2F1<§+H,2H,§+H,€ )

Proof. The result follows by applying the Fuler transform of 5F; and from the

formula

1-2H 3 3
6_7—/2 = 1+2H6_T/2(1—6_T>2F1(17——H,—+H,€_T).

—u(7) 2 2

To verify this formula note that after plugging in the definiton of rg, we are left

with showing

1 3
4H2F1(1,§—H,§+H,(L’)

3 3
+(1—2H)(1—x)2F1(1,§—H,§—|—H,x) =1+4+2H
for every H > 0 and z € (0,1). But this contiguous relationship is easily obtained

in equating the coefficients of 2™ in the two series. O]
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Let us now analyse the behaviour of the rescaled auto-covariance function rg(7/7)

with v =~y — oo as H — 0.

Lemma 3.6. Let v = vy be a function tending to infinity with H — 0. If v 21 — ¢

for H— 0 and some c € [0,1], then ry(7/v) = 1 —c for H— 0 and all 7 > 0.

Proof. By Lemma

1 3
e/ oy (Z> ~(1—e M2, (5 + H,2H, 5+ H, e—T/V)
v

as H — 0. Now (1 — e /2" ~ (7/4)?" — cas H — 0 and
1 3 .
2F1(§+H,2H,§+H,€ T/’y)—l‘
['(3/2+ H) i L(n+1/2+H)[(n+2H) e/
I'(1/2+ H)T'(2H) - I'(n+3/2+ H) n!

_1+2H i [(n+2H) e T/
C2N2H) &= (n—1)!  (n+1/2+H)n

IN

Y n =0, H—0 O
n=1

Proof of Theorem[3.2. Again, we first note that ry is indeed continuous, non-

negative and integrable. For the integrability, observe that, by (3.11)),

o _ 4HT(3/24+ H) ~=TI(1/2—H+n) i1/
/Or()dT_(1+2H T(1/2— H ; 3/2+H—i—n)/ e T dr
L 2HT(1/24 H) & T(1/2— H +n)
-~ T(1/2-H) ZF(1/2+H+n)(n+1/2)(n+1/2+H) >
(3.13)

T T .

T7€[0,7T

Now, similarly to (3.8)), for every v, we have

Or(H 1
r(H) = — lim ?logP< sup VT% §0>.

Y T—o0 r€[0,7)
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We will show 0g(H)/y — oo for any function v = vg with v < H~!, where

f(z) < g(z) means lim f(x)/g(x) = 0. This proves part (a).

Let v = vy be a function satisfying v — oo and v < H~!' as H — 0. Since
limg 0y 2% > limy_o H?" = 1 and limg_,ov 27 < limyg_ 1727 = 1, it follows
from Lemma that rg(7/7) — 0 for H — 0 and all 7 > 0. To conclude the
assertion Op(H)/y — oo, we want to apply Lemma [3.3(b) and thus have to check
for the auto-covariance function 7 +— rg(7/7).

Indeed, by (3.13]), one has for every ¢ € N,

o0 T o0
— |dr=¢ d
[[(g)ir-o s

o0 1 -2
~ 20~vH — =:c-V/vH H—0
8 z(+2) o (v, |

and thus, for every ¢, L € N,

limsuerH (%) < limsup/ TH (%) dr
H—0 “—7 Y H—-0 Jr-1 Y

< limsup/ g (l> dr = ¢/l limsupyH = 0,
0 by

H—0 H—0

where we used that rgy is non-negative and non-increasing, which is easily seen by
(3.11)).

Now, we prove part (b). We will show that
ru(r) > (1= |7["), = B[S;"2S/°]

for H € (0,1/2) and all 7 € R, where (S¥) is the so-called fractional Slepian’s
process (see [b5, Section 2.3]). Then, Proposition [2.1f(a) implies that Oz(H) <
0s(H/2), where 05(H) denotes the persistence exponent of (S), and the assertion
follows by [55, Proposition 2.9|.

We have

1—2H 1 3 1—2H 1 3
Fl=+H2H2+He )< Fl=+H 202+ H1
1+2H“(2jL ol 5+ He >_1+2H21(2+ ol o >

1-2H T(3/2+H)T(1-2H) T(1/2+H)T(1—2H)
T 142H r'(3/2—H) B r(1/2—H)

CT(1/2+ H) T(1— H) 1
= rajp 2w =t H€<O’§)’
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where we used the Legendre duplication formula in the last equality and the mono-
tonicity of I'(-) on (1/2,1) as well as the fact that

r(1—H):r(2Hé+(1—2H)-1)

< <r<-))2H (rantTH =gt <228 2H €(0,1),

(due to the logarithmic convexity of I'(+)) in the last inequality. Together with
Lemma [3.5] this gives

ru(T) > /2 (1 — (1 — S_T)QH> > ¢ 7/? (1 — 7'2H) = (1) (1 — TH)

for 7 > 0, where ¢(7) := e /2(1+77). Now, (1) := 1+7H —e7/? satisties (0) = 0,
o(1) =2— /e >0, and
/2

@ (r) = —H(1— H)r @ -

which implies ¢(7) > 0 and thus ¢(7) > 1 for 7 € [0,1]. This shows rg(r) >
(1 — |77, for 7 € [0,1] and, due to the symmetry and the non-negativity of ry,

< 0, T >0,

even for all 7 € R.

Finally, similarly to the proof of Theorem [3.1] the continuity of 6 follows from the
continuity of H — rg(7) and Lemma [3.3|a), since the sequence 7 — ry(r), H €
[Hy— 90, Hy+ 6], with fixed Hy € (0,00), small § > 0, and H — H, fulfills conditions

(3.1)—(3.3). One easily checks (3.1)) and (3.3]), while for checking (3.2]), we note that
l—ryle)=1- e /2 4 eo? ry(e) < % + cH052(H0_5)

for suitable cy, and small € using Lemma [3.5 with 7 replaced by ¢, and the fact
that 1 —e™* < z. O

Remark. Most parts of this chapter appeared in the Russian journal Teoriya Veroy-
atnoster 1 ee Primeneniya as well as in its English translation Theory of Probability
and its Applications in the article Asymptotics of the persistence exponent of inte-
grated fractional Brownian motion and fractionally integrated Brownian motion, see
[12].
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Chapter 4

Persistence probabilities of mixed

processes

In this chapter, we study persistence probabilities of mixed processes, i.e., sums of
self-similar processes with different self-similarity indices. In the setting of centred
Gaussian processes with non-negative covariances, we will first show a general re-
sult and then consider several mixed processes of the literature. In particular, we

determine the persistence exponent of mixed fractional Brownian motion.

4.1 Introduction

Mixed fractional Brownian motion (mixed FBM) M is defined as
M2 =W, +aBf,  t>0, (4.1)
where o € R\ {0}, H € (0,1), B is an FBM with Hurst parameter H and W is

an independent Brownian motion. This process was first introduced by Cheridito in
[25] and has turned out to be useful in the modelling of stock prices, as it provides
models with long memory and no arbitrage, see e.g. [25] Section 6] and [3]. Note

that this process still has stationary increments, but is not self-similar itself.

We will derive a persistence result for a more general class of sums of self-similar cen-
tred Gaussian processes with different self-similarity indices, covering not only the
mixed FBM M#7< but also e.g. the case of completely correlated mixed FBM intro-

duced in [32]. Note that the latter process neither is self-similar nor has stationary

49
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increments. Thus, our result contributes to the amount of rather rare persistence
results for stochastic processes violating both the properties of self-similarity and
stationary increments. As seen in Chapter [2] self-similarity is a valuable property
in the context of persistence as in this case, one is able to apply the Lamperti trans-
formation to get a stationary process and concerning persistence, many powerful
tools are available for the class of stationary Gaussian processes. In the case that
self-similarity is not available, the property of stationary increments turned out to
be appropriate as another property that can be used to prove the existence of the
persistence exponent, see [I1]. Besides, one could derive persistence results even
outside of the Gaussian setting if one assumes both self-similarity and stationary

increments, see [15] and [60].

The outline of this chapter is as follows. In Section we will introduce the class
of mixed processes which are suitable for our purposes and present our main result
that for these processes, the persistence probability decays asymptotically polyno-
mially with the persistence exponent of the self-similar process with the greater
self-similarity index. In Section we will then use this result to derive persis-
tence results for the (completely correlated) mixed FBM and other explicit mixed

processes of interest. Finally, in Section we will prove the main result.

4.2 Main result

Recall that for H > 0, a stochastic process (X¢):>o is called H-self-similar if (X) 4

(cX;). We consider the sum of two self-similar centred Gaussian processes with
different self-similarity indices, i.e., X +Y ¥ where X is an H-self-similar centred
Gaussian process, Y¥ is a K-self-similar centred Gaussian process and K < H. The
main result of this paper, which is given in the following theorem, states that under
the assumption that X and X + YX have non-negative covariance functions,
respectively, and that the conditions of Corollary hold for X ¥ the persistence
probability of X + Y& has — up to terms of lower order — the same asymptotic

behaviour as the persistence probability of X .

Theorem 4.1. For 0 < K < H, let X" and YX be self-similar centred Gaussian
processes with a.s. cadlag sample paths and self-similarity indices H and K, re-
spectively. Let us assume that the covariance functions of the processes X and

X" + YE are non-negative, respectively, and that the auto-covariance function
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7 — cov( X, e ™ XY of the Lamperti transform of X is continuous, integrable

and not the zero function. Then, it holds

P| sup XH +YVE <1 =10+, T — oo,
t€[0,T]

where

1
Ox := — lim TlogP( sup X/ < 1) € (0, 00)

T—00 10g te[0,7)

denotes the persistence exponent of X .

The result remains true if one replaces Y by a finite sum of self-similar centred
Gaussian processes Y% with self-similarity indices K; < H, as our proof in Section
4.4 can be easily adapted to this setting. From a mathematical point of view, it
would be an interesting open problem to study the persistence probability when
Y is replaced by a (well-defined) infinite sum of the form Y ;° ;Y% where

e.g. sup; K; = H, as in this case, our proof technique does not work anymore.

Note that the assumptions on X# together with Corollary guarantee the exis-
tence of fx € (0, 00). For the mixed process X# +Y X on the contrary, the condition
of non-negative covariances does not yield the existence of a persistence exponent
a priori, since the mixed process is not self-similar anymore. Further note that
we do not need any direct assumption on the covariance function of Y or on the
correlation of X* and Y. Thus, in particular, X? and Y¥ do not need to be

independent and a persistence exponent of Y does not necessarily have to exist.

4.3 Mixed FBM and further corollaries

Mixed FBM. Let us now come back to the case of mixed FBM, which we defined
in . Note that this is a special case of the so-called fractional mixed FBM, which
covers all linear combinations of independent FBMs with different Hurst parameters,
see [33] and [52]. Recall that the FBM B has the covariance function (s, t)
% (tzH + 828 — |t — S[QH) , which is non-negative. Due to the independence of the
underlying FBMs, this directly implies also the non-negativity of the covariance
function of the (fractional) mixed FBM. Note that the continuous and integrable

function 7+ L (ef™ 4 e ™ — |e7/2 — ¢77/2|2H) i3 the auto-covariance function of
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the Lamperti transform of B¥. Further recall that we have seen in (1.3)) that

P| sup BH <1| =710+ T — oo.
te[0,7

This yields the following corollary of Theorem [4.1] for the (fractional) mixed FBM.

Corollary 4.2. For 0 < K < H < 1, let B¥ and BX be independent FBMs with
Hurst parameters H and K, respectively, and a,b € R with ab # 0. Then

P( sup aBf +bBE < 1| =7 01+ T — oo.
te[0,7

In particular, for the mized FBM as defined in (4.1), we have

Pl sup ]\/[tH’O‘ <1] = T*(lfmax{%,H})+o(1)’ T 2 o0
t€[0,T]

Note that the local behaviour of fractional mixed FBM is completely different: In
[85], it was shown that aBf + bB%X is locally equivalent to bB%X if and only if
H-K>1/4.

Completely correlated mixed FBM. Recall that Corollary assumes the
independence of B and B®. As already mentioned, Theorem also covers
the case of completely correlated mixed FBM. Under this term, it was introduced
recently in [32], while the process itself had already been studied as the driving
process of an SDE in [53, Section 3.2.3]. The definition is as follows. Let B be an
FBM with Hurst parameter H € (0,1). Then, there exists a Brownian motion W

such that .
BY — / ku(t,s)dWV,, £ 0, (4.2)

0

where kg is the so-called Molchan-Golosov kernel, see [63, Section 5.1.3] and (4.5
and (4.6) below. Completely correlated mixed FBM (cemFBM) X% is given by

xtet.— oW, +bBE, >0, (4.3)

where a,b € R with ab # 0 and W is the same Brownian motion as in (4.2)).
Similarly to the fractional mixed FBM, as ki» = 1 (see (4.6))), one can generalize
XH:ab to linear combinations a B +bB¥ of fractional Brownian motions generated

by the same Brownian motion W via the Molchan-Golosov kernels kg and kx with
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different Hurst parameters H and K, which were discussed recently in [64] and
which we want to call fractional ccemFBM. Using the Ité-isometry, the fractional

ccemBFBM has the covariance function

(s,t) — o’E[BI B + v*E[BX BF]

sAt
+ ab/ (ku(t,u)ki(s,u) + ku(s,u)kk(t,u)) du. (4.4)
0
3 1
Set C(H) = \/21{1“(%(5)2%}1@). Then, for H > 1/2 and 0 < s < t, we have
C(H !
ku(t,s) = ﬁ sé_H/s uH_%(u - S)H_g du >0, (4.5)

whereas for H < 1/2 and 0 < s < ¢, it holds

I{ZH(t,S)
— _CH) ﬁ— P sz H tuH_% u— 8273 du
T T(H+ ) <(5 0745 - H) / (u—s)""2d ) >0. (4.6)

Thus, the covariance function of the (fractional) ccemFBM is non-negative, if ab > 0,
and Theorem together with ((1.3)) gives the following corollary.

Corollary 4.3. For 0 < K < H < 1 and a Brownian motion W, define BE =

I3 ku(t,s) AW, and BE = [ ki (t,s) AW,. Further let a,b € R with ab > 0. Then

P( sup aBM +bvBE < 1) =7 0D+ T — oo.
te(0,7)
In particular, for the ccemFBM as defined in (4.3)), we have

P| sup X/ <1 = T (-max{y,H})+o(1) T — .
te[0,7)

Mixed integrated FBM. Recall that for H € (0,1), the integrated FBM
(IFBM) I is the (H + 1)-self-similar centred Gaussian process given by

t
ItH::/ Bfds, t>0.
0

Further recall our earlier discussions in Section and in Chapter [3] about the

persistence results for IFBM. One knows that the persistence exponent 6;(H) €
(0,00) of I'l exists, that the inequalities (1.9) and (1.10) are fulfilled and that it
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holds 0;(1/2) = 1/4 in the Brownian case. Moreover, we have seen in Theorem
that 6; is continuous and satisfies 6;(H) ~ H as H — 0 as well as 6;(H) ~ 1 — H
as H — 1, which supports the conjecture (L.7)).

As we have already convinced ourselves at the beginning of the proof of Theorem
that the auto-covariance function of the Lamperti transform of I is continuous and
integrable, Theorem [4.1] yields the following corollary for mixed integrated FBM.

Corollary 4.4. For 0 < K < H < 1, let B and BX be independent FBMs
with Hurst parameters H and K, respectively, and a,b € R with ab # 0. Let
I = [[BIfds and IF = [} BKds. Further let 0; : (0,1) — (0,00) denote the
persistence exponent of IFBM depending on the Hurst parameter. Then

P( sup alll + b1 < 1| =7 0+ T — 0.
te[0,7]

Of course, the same result also holds for the integral of (fractional) ccmFBM, again
in the case ab > 0, as the only difference in verifying the assumptions of Theorem
is that the covariance function of the mixed process has additional summands.
But these are given as the double integral of the additional summands in (4.4)),

which is again non-negative if ab > 0.

Mixed fractionally integrated Brownian motion. As a last example, we want
to consider mixed fractionally integrated Brownian motion (mixed FIBM), which
was introduced as mixed Riemann-Liouville process in [23, Section 8]. Recall that
for H > 0, the FIBM R¥ is the H-self-similar process given by

t
R ::/(t—s)HidWs, t>0.
0

Again, recall our earlier discussions in Section and in Chapter |3 about the
persistence results of FIBM. Similarly to IFBM, one knows that the persistence
exponent Or(H) € (0,00) of R exists, but its exact value is unknown except for
the Brownian cases, where 6z(1/2) = 1/2 (Brownian motion) and 0g(3/2) = 1/4
(integrated Brownian motion). Further, one knows that 0 is non-increasing on
[1/2,00). In Theorem we have seen that 6 is continuous and that 6z(H) — oo
for H — 0, where the asymptotic behaviour is in the range H~! to H 2.

Since we have already convinced ourselves at the beginning of the proof of Theorem
that the auto-covariance function of the Lamperti transform of R is continuous
and integrable, Theorem yields the following corollary.
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Corollary 4.5. For 0 < K < H and independent Brownian motions WO and
W, define RY == [I(t—s)"=3 AW and RE == [1(t— )52 AW, Leta,be R
with ab # 0 and O : (0,00) — (0,00) denote the persistence exponent of FIBM
depending on the Hurst parameter. Then
P| sup aR? +bRE <1 | =7 0=UH)+e) T — .
t€[0,T

Again, in the case ab > 0, the same result also holds for the completely corre-
lated mixed FIBM, where R and R¥ are generated by the same Brownian motion

(instead of two independent Brownian motions), as the covariance function of the

mixed process gets additional summands which are non-negative.

4.4 Proof of the main result

In this section, we give the proof of Theorem [4.1} The main idea is as follows. We
restrict the interval [0, 7] of persistence to an interval [a(T),T], where a(T') has
to be small enough such that the asymptotic polynomial order of the persistence
probability does not change and large enough such that we are able to control
the range of the process Y on the interval [a(T),T]. Tt turns out that a(T) :=
(log T')? for p large enough is a suitable choice. The following lemma shows that the
probability that Y;* exceeds t” for v > K on the interval [a(T),T] is of neglectable

order.

Lemma 4.6. Let YX be as in Theorem >0, v>K and 6 > 0. Then there
exists p > e? such that for T large enough, it holds

P(3t € [logT)?,T] : |VX| > ) <T.

Proof. We estimate

7]
P(3t € [(log TP, T) : VK| >t)< > PEtels,s+1]: [V >1)
s=((logT)7 |

LT}
< Z IP’( sup | V] > 37>. (4.7)
)P]

s=|(logT t€[s,s+1
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Fors = [(logT)?],...,|T] and 0% := V[Y*|Vsup,c o V[V =Y{*], we may further

estimate
P( sup |YtK { > 57
te(s,s+1]
s7

<IP<|YK|>— IP’( sup [Vi*| > 7, [V < —>
)

s+1] 2

+ (Sup |yK|_\yK\>l>

te(s,s+1]

s K

20’[{

<IP><|N01|>

_ s
< oq e TTGR) +P< sup |V =Y > 7)
te[s,s+1]

2(v=K) /(8 K S’Y_K
=ce”’ /%) 4 P sup |Vt — V] (4.8)
te[l,14s-1] 2

for some constant ¢; > 0 and T large enough, where we used self-similarity of Y&

in the second, the reverse triangle inequality in the third, and again self-similarity

in the fourth step.

Now, we estimate the probability in (4.8)) as follows:

K s7 K x L SF
P sup }Yt, —-Y] <P| sup |Yt, Y] |>
e[, 145 1] 2 e(1,2] 2

1K 1K
<P( sup (Vi =V) > —— | +P( sup (V[ =V") > —

t'e(1,2] t'e(1,2]

y—K
:21P’<sup (YtK—YlK)>S2 > (4.9)

te(1,2]
The last probability is a probability of large deviation of a bounded Gaussian ran-
dom function and can therefore be estimated by the tail of a one-dimensional Gaus-

sian distribution.

More precisely, by e.g. [44, Theorem 12.1], there exist constants ¢; > 0 and d € R
such that

-K
P( sup (Y;K i YIK) > 372 ) < ¢y GSV_K/27(37_K/2+d)2/(20%()'

te(1,2]

Together with (4.9) and (4.8]), this yields for s = [(logT)?|,..., |T]:

Pl swp |vF|>s")< o) [(8 0% ) +es s
te(s,s+1] -

< ef(log T)20=K)P /(8 02 ) +co (log T) (V—K)P
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for constants c3, ¢y > 0. Combining this with (4.7), we get

P(3t € [(log T)?,T] : |Y,| > 17)
< (T — (log T + 2) e~ (08T 7/Soi)+eollog DO,

Taking e.g. p = max{1/(y — K), e*}, the right-hand-side decays faster than any

polynomial, which shows the assertion. O

Thus, we can estimate the persistence probability of X# + Y X on [a(T), T] by the
persistence probability of X* shifted by ¢ — 7 on [a(T'), T]. As seen in Proposition
2.3 shifting a Gaussian process by a deterministic function does not change the
asymptotic polynomial order of the persistence probability if the function belongs
to the reproducing kernel Hilbert space (RKHS) of the process. Therefore, we have
to estimate ¢ — ¢7 on [a(T"), T] by a function in the RKHS of X#. The assumptions
of Theorem [.1] together with Corollary [2.5] guarantee that this is possible if v < H,
so that we are ready to give the proof of Theorem

Proof of Theorem[{.1. First observe that the assumptions of Corollary are ful-
filled so that the persistence exponent fx € (0,00) indeed exists. Further note
that we have seen in the proof of Corollary that the integrability of the auto-
covariance function of the Lamperti transform of X implies that the Lamperti
transform of X satisfies the condition on the spectral measure of Corollary [2.5]

Thus, by taking e.g. a := 1/4 in Corollary there exists a function h € Hynu
such that h(t) ~ ctf(logt)=3/* for t — oo and some ¢ > 0. We additionally choose
v with K <+ < H, § > 0 and p according to Lemma [4.6] for 6 := 0x.

Similarly as in the proof of Corollary , the a.s. cadlag sample paths of X%
imply that the distribution of X# on the Borel-o-algebra of D[0,00) w.r.t. the
Skorokhod topology is a Radon measure, so that Proposition is applicable.
Further, the set A := Ap := {f € D[0,00): sup;c(ogryr,r) [(t) < 1} is closed
w.r.t. the Skorokhod topology and thus element of the Borel-o-algebra of D]0, o).
Proposition together with the fact that x € (0, 00) exists consequently yields

=7°D T o0, (4.10)

]P)(Supte[(logT)P,T] XtH + h(t) < 1)
P(Supte[(logT)P,T] XtH < 1)

where we additionally used that the suprema of X and X + h, respectively, on
[(logT)?,T) and [(log T)?, T] coincide a.s. due to the fact that h is continuous (by



o8 CHAPTER 4. PERSISTENCE PROB. OF MIXED PROCESSES

construction in Corollary and the continuity of the covariance function) and

that X is even a.s. continuous at any fixed deterministic time.

Upper bound: Tt holds

IP’( sup X + VK < 1>

te[0,7

<P(3te[logT)”,T) : |V;X| >h(t))+P| sup X[ —h(t) <1
te[(log T)P,T)|

<P(3te[logT)T]: |YX|>t)+P| sup XF<1|TW
te[(log T)P,T)
P(Supte[oﬂ XH < 1)
P (Supye(o,tog ) X' < 1)
< T Ox—6 —|—T Ox+o(1 (lOgT)p9X+O( )To(l)
< T*GXJFO( )

S T—OX—zS 4 To(l)

for T large enough. Here, the second inequality uses (4.10) and the property of
h that h(t) ~ ctf(logt)™/* > t7 for t large enough, while the third inequality is
Lemma 4.6 together with Proposition [2.1fb).

Lower bound: The opposite reasoning gives

T—0xFe) — IP’( sup X/ < 1)

t€[0,T]
<P sup  XH 4+ h(t)<1|T°W
€l(log T)?,T)
<P(3t € [(logT)",T] : |Y,X| > h(t)) T°V
+P sup XA +yE<1]TroW
€[(log T)P,T|

<P(3t € [(logT)",T] : |V,| > ) T°W

+P[ sup XT4+YVE<1|ToW
€[(log T')?,T)
P<Supte[0,T] XF+Yvr<1) o(1)

<TI0 W,
P(suprepo,1og 7y Xi+ + Vi < 1)

where we used (£.10)) in the second and Lemma [4.6]as well as Proposition 2.1|(b) in

the fifth step. Precisely here, we use the assumption of non-negative covariances of
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XH + YK, So we have

IP’( sup XA + VK < 1) > T—9X+°<1>JP>< sup XA +vEK < 1). (4.11)

te[0,7) t€[0,(log T)P]

We then further estimate the right-hand side of (4.11)) by replacing 7" in (4.11]) by
(log T)? and get

IP’(sup X +yk< 1)

te[0,7

2 T—@x-‘ro(l) <10g T)—p9X+O(1) IP) sup Xt[{ —+ Y;K S 11]1. (412)
te[0,(ploglog T)P]

We set fo(T) :=loglogT and fn(T') :=logp+log fx_1(T) for N > 1. Using (4.11])
iteratively then gives

P(sup XT+Yr< 1)

te[0,T
> T0x+o(l) (Jog T)(-POx-+o(1)(N+1) p sup X7 +YvK<1
te[0,(pfn (T))P]
(loglog T)(N+1)

_ pbx-to(1)+ BRI (—phx+o(1) p sup  XH4+YK<1], (4.13)
te[0,(pfn (1))

for N € N. This can be seen by induction: The induction base is (4.12), while for

the induction step, one has to note that

(log((pfn—1(T))"))" = (p(log p +log fn—1(T)))" = (pfn(T))".

Now we consider the function
op(x) :=logp+ logz, T € [2,00).

This is a contraction with Lipschitz constant 1/2. The Lipschitz constant can be
computed by the fact that ¢/ (v) = 1/x < 1/2 for x > 2, while the self-map property
of ¢, is deduced from the fact that log p > 2 holds by Lemma[4.6| Thus, the Banach
fixed-point theorem yields a unique fixed-point a, > 2 of ¢, which does not depend
on T. Further, as fn(T') = ¢,(fn-1(T)), we can estimate

-N

1x(T) = ) < T
2

|f1(T) = fo(T)]

= 2"V llogp + logloglog T — loglog T'| < 2" - 3loglog T
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for N € N and T large enough, see e.g. |2, Theorem 1.1(iii)]. For Np :=
[(logloglog T + log 6)/log 2], this implies

| g (T) — ap| <277 - 3loglog T < 1.

Considering (4.13) for N := Nr consequently yields

P sup X/ +YVE <1 | > 0xte0p sup XT+yF<1
te[0,T] te[0,(p fng (T))P]

> T~ 0x+ol)p sup X[ +Yyr<1
t€[0,(p (1+ap))?]

— T—ex-‘ro(l)

Y

which finishes the proof. O

Remark. Most parts of this chapter appeared in the journal Journal of Physics A:
Mathematical and Theoretical in the article Persistence probabilities of mized FBM

and other mized processes, see [13].



Chapter 5

Persistence probabilities of further

fractional processes

In this chapter, we are concerned with the persistence probabilities of two further
fractional processes of the literature — the so-called bifractional Brownian motion,
which is a generalization of fractional Brownian motion, and the fractional Ornstein-
Uhlenbeck process, which we have already seen in Section [1.3]

5.1 Bifractional Brownian motion

For H > 0 and K € (0,2) with either H <1, HK <lor H > 1,2HK < 1, the
bifractional Brownian motion (biFBM) B®-K = (B/"¥),. is defined as the centred
Gaussian process with the covariance function

BBBIN] = g (42 e sP) nsz0 G

Note that BfX generalizes the fractional Brownian motion (FBM) B since for
H e (0,1) and K =1, becomes the covariance function of B¥. This process
was introduced in [39] for H € (0,1] and K € (0, 1], motivated by the fact that
the property of stationary increments of FBM turned out to be appropriate for
applications, when one is interested in small increments of a process, whereas it
appeared inadequate for modelling large increments. In particular, it was shown
in [39] that for H € (0,1] and K € (0, 1], the function (5.1)) is indeed a covariance

function, i.e., that it is positive definite. Later, in [I7], it was proven that this is

61
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also the case for K € (1,2) if HK < 1. By [43], the conditions K <2 and HK <1
are even necessary for the existence of B:X. Recently, in [83], it was shown that
B"K exists also for H > 1if 2HK < 1.

BHK exists and ad-

We will see that our results below hold whenever the process
ditionally, slightly stronger assumptions than the necessary conditions are fulfilled,
namely K < 2 and HK < 1. So any potential extension of the range of (H, K)

where existence of BX is proven would extend also the validity of our results.

The biFBM B#X is an H K-self-similar process, as is easily seen by . Further
important properties transfer from HK-FBM to B#X
dent increments for HK > 1/2 (cf. [46, Corollary 4.3] for K < 1 and [17, Proposi-
tion 2.6] for K > 1) and the existence of a locally Holder continuous modification
for any index of (0, HK) (cf. [39, Proposition 3.1] for H < 1, K < 1; [T, Propo-
sition 2.5 for H < 1, K > 1; and [83 Proposition 1.5] for H > 1). Nevertheless,

since it is well-known that (up to normalization) the only self-similar centred Gaus-

, such as long-range depen-

sian process with stationary increments is FBM, B:X has no stationary increments

unless K = 1.

Using self-similarity, as presented in Chapter , we can transform BE into a
stationary centred Gaussian process by considering its Lamperti transform Z7%

which has the auto-covariance function

1
E[Zf’KZf’K] = =

Note that the monotonicity of -2 implies ef7 +e=H7 > (e7/2)2H > (7/2 — 7 7/2)2H
which, by the montonicity of -, again implies (efI™ 4+ e AT)K > (¢7/2 — ¢=7/2)2HK
so that the auto-covariance function ((5.2)) is non-negative and, clearly, continuous.

Further, it holds, by the binomial theorem,

oK E[Zé{,KZfI,K} _ Z (ij) oHT(K=2k) _ Z(_l)n <2HK) Jr(HE )
n

k=1 n=1
— Ke HT@-K) 4 o e T(1-HK) _}_0(6—(1/\2H)7')7 T = o0,

where we estimated all terms of the first sum with k& > 2 by o(e72#7) and all terms
of the second sum with n > 2 by o(e™"). As K < 2 and HK < 1, this shows that
the auto-covariance function ({5.2)) is also integrable. Thus, Corollary yields

P| sup B/ <1 | = 0K+ o0, (5.3)
t€[0,T]
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where 0p(H, K) := —lim7_o 7 log P(sup,¢p 71 Z2% < 0) € (0, 00).

As already mentioned, the process B! for H < 1 is just the FBM so that we
have seen in that it holds p(H,1) = 1 — H for H < 1. For the general
persistence exponent of biFBM, we have the following upper and lower bounds,
which unfortunately hold on disjoint parameter domains (except for the FBM case
K=1).

Proposition 5.1. For H > 0 and K € (0,2) with either H < 1, HK < 1 or
H>12HK <1, let

1
0p(H,K) = — lim Tlog]P’( sup B/ < 1)

T—oo lOg te[0,T]

denote the persistence exponent of BX. Then, it holds

(a) Op(H,K) <1—HK for K> 1, and
(b) 0p(H,K) >1—HK for K <1 and 2HK < 1.
Recall that 1 — HK = 0g(HK,1). Using this identity, part(a) in the case 2HK <1

as well as part(b) of Proposition are an immediate consequence of Proposition

2.1j(a) and the following lemma.
Lemma 5.2. Let Ry k(t,s) = E[B"X B be the covariance function of B™X
as given in (5.1). Then, it holds, for every t,s >0,

(a) Ruk(t,s) > Ruka(t,s) for K> 1 and 2HK <1, and

(b) RH,K<t; 8) S RHK’l(t,S) f07" K S 1 and 2HK S 1.

Proof. Let wlo.g. t > s > 0. If s = 0, it holds BE-X = BHEL — () as. by

self-similarity so that the statement is trivial. For s > 0, we have

SiQHK(RH’K(t, S) — RHKJ(t, S))

(o o) enie)”
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Now, we have to show f(u) > 0 for K > 1 and 2HK < 1 as well as f(u) < 0
for K <1 and 2HK < 1. The function f: [1,00) — R fulfills f(1) = 0 and is

differentiable with derivative
Flu)=2"5KK (UQH + 1)K—1 COH W2 R 2HE
+ (2727 %) 20K (u— 12"

— HIy2HE-1 (2K+1 (1 + usz)K—l 1

(1 2K (1 )P ) "

As1—wu! <1and 2HK < 1, we have (1 —u~1)?225=1 > 1. Now, depending on
whether K > 1 or K < 1, we have further (1 +u 2#)K-1 > 1 or (1+u2H)K-1 <1,
respectively, and 1 — 275+ > 0 or 1 — 275+ <0, respectively. This leads to

fllu)> HKPPE (27K — 14 (1-27%) - 1) =0
forallu>1,if K > 1, and
fllu) < HKPPE (27K — 14 (1-27%) 1) =0

for all w > 1, if K <1, implying the assertion. O

The proof of Proposition [5.1j(a) in the case 2HK > 1 is based on the fact that the
increment process (Birs — Bi™)iso of BT at time T converges for T — oo in
the sense of finite-dimensional distributions to a (non-normalized) FBM with Hurst
parameter H K. This was proven in [46] for K < 1, by using a decomposition which
is only available for K < 1, but by just considering the covariances of the centred
Gaussian processes, the result also follows in the general case, which is the following

proposition.

Proposition 5.3. For H > 0 and K € (0,2) with either H < 1, HK < 1 or
H>1,2HK <1, it holds

HEK HEK fdd 1-K)/2 pHK,1
<Bt+T B BT >t>0 - (2( g Bt >t>0’ I'= oo

Proof. As both sequence and limit are centred Gaussian processes, it suffices to
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show convergence of the covariance functions. It holds, for s, > 0, T > 0,
Fic(s,t, T) 1= 25 B[ (B = B (BILE - BIF)| - 2B | B B

- ((t + T)2H + (s + T)zH)K — ((t + T)ZH + TQH)K
- ((s + 1) _|_T2H>K | oK TR2HK

= K <(%+1>2H+ (% +1>2H)K— ((%+1>2H+1)K
- ((% + 1)2H+ 1)K+2K> . (5.4)

Using the Taylor expansion (1 + )% =1+ ax + a(a — 1)2%/2 + o(2?) for a = 2H
and a = K, respectively, and z — 0, we get

T_QHK fH K(S, t, T)

2 52 K
1+2H H2H —1)— +1+2H H(2H — 1) — T~
(—I— T+ ( )T2—|— + T+ ( )T2+0( ))

2

K
t t Ly
<1+2HT+H(2H_1)W+O<T )+1)

2 K
<1+2HT+H(2H—1)—+0(T—2)+1) + 2%

T2
—(1+H%+H(2fg_1 >
—<1+H%+H(2f£—1 ) )

oK <K(K2— 1) (Ht—iT—s) _K(KQ— 1) (H%

D (12 o)

2 T
K(K -1) 2ts
_ oK 2 —2
=2 — 5 H T +o(T77), T — . (5.5)
This implies limy_, fux(s,t,T) = 0 for every s,¢ > 0, whenever we take H, K > 0
with HK < 1. O

In view of this convergence result, it seems plausible that 0p(H, K) = 0g(HK,1) =

1— HK. However, our technique to use this result is based on applying Proposition
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2.1b) for the increment process of B which only gives an estimate in one direc-
tion and additionally requires non-negatively correlated increments. The following

lemma shows that this approach is possible for K > 1 and 2HK > 1.
Lemma 5.4. If K > 1, it holds, for everyt,s >0, T > 0,

IEKBH’K - B;‘va) (BH’K - Bsz’Kﬂ > 0. (5.6)

s+T t+T

If moreover 2HK > 1, it also holds, for everyt >0, T > 0,

]E[B}M <B{i§f - B{;LKH > 0. (5.7)

Proof. Since the covariance function of BP¥:1 is non-negative, it suffices for (5.6)
to show that fmx as defined in (5.4) is non-negative for K > 1. Note that
frr(s,0,T7)=0forall s >0, 7T >0, and that

0

— t, T

atfH,K(Sv ) )

_ 2HK(t—|—T)2H_1 (((t+T)2H+ (S_{_T)QH)Kfl . ((t_|_T)2H_‘_T2H)K71> Z 0

(5.8)

forall s,t > 0,7 >0, if K > 1.

For (5.7), note that it holds, for ¢ > 0, 7' > 0,

HEK [ pHK HK T2\ " t\*" " AN
BlBr (B - Br)] = (T> ”(”f) B (T) 2
T2H\ K t

(%) «(+3)

for p(u) := (1 +u?#)E — (u—1)2HE — 2K 4 > 1. The function ¢ satisfies (1) =0

and is differentiable with derivative

Pw) = K (1+u>)" 7 2Hu 1 — 2HK (u — 1)K
> 2H K (uHETD 2070 (y — 1)2HE) >0, u >, (5.9)

where we used K > 1 for the first and 2H K > 1 for the second inequality. [

Remark. (i) Note that for K < 1 and 2HK < 1, one gets the opposite inequality
in . Hence, is violated in this case. Furthermore, numerical calcula-
tions show that is also violated for K < 1 and 2HK > 1if 2HK is close
to 1, as well as for K > 1 and 2HK < 1 if 2H K is sufficiently far away from
1.
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(ii) For K < 1, one gets the opposite inequality in (5.8). Thus, fyx is non-
positive in this case. Nevertheless, it seems plausible numerically that fy x
could be dominated by the covariance of B75:! g0 that could still be
fulfilled in this case.

Now, we are ready to give the proof of Proposition [5.1}

Proof of Proposition[5.1. Lemma [5.2) together with Proposition 2.1(a) implies part
(b) as well as part (a) under the additional assumption 2H K < 1. Thus, it remains
to show (a) in the case 2HK > 1.

Recall that we have seen in (5.3) that the persistence exponents of B7X and its

Lamperti transform coincide, i.e.,

QB(H,K) = — lim

HK
~ ) < .
T logIP’( sup B, < 0)

te[1,T]
Further recall that 0p(HK,1) =1 — HK.

Step 1: Relating the persistence probability of B"X to persistence probabilities of

increments of BHE1L,

Let T'> 0, N > 1. Setting cr := P(sup;ep 741 B/"® < 0)/2, we estimate

IP’( sup BtH’KSO)zIP( sup BtH’KSO)-IP( sup BtH’KSO)
t€[1,T+N] te[1,T+1] te[T+1,T+N]

>2crP BZ{I’KSO, sup BtH’K—B?’KSO
te[T+1,T+N]
<

> 2@TP<B{;LK < o) -IP’( sup  BIK — pEK 0)

te[T+1,T+N]

= cTIP’< sup Bﬁ? — Bg’K < 0)

te[1,N]
=crP| sup o pYE<0], (5.10)
r€[0log N]
where we set V7 = B/IJN — BI"" and 02, := V[Y,Z]. In the first and the third
step, we applied Proposition [2.1(b) using non-negative covariances of BZ¥ and

(5.7), respectively.
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For 5,7 > 0, Proposition [5.3] yields
Ap(s,s+ 1) 1= cov (08_} v O-S_-&T,T Vi)
E[YTYT, ]
VIV VYEL]
Ryra(e®,e™7)

VRuk(es,e®) - Ruga(est, est7)
1
=5 e KT (1 + 2R (o7 — 1)2HK> =: A (0,7), T — oo,

(5.11)

which is the auto-covariance function of the Lamperti transform of B#%:1, To get
an estimate of the corresponding persistence probabilities, we proceed analogously
to the proof of the lower bound of (1.18) in [28]. We first show

liminfinf]P( sup O’;%Yﬁ;ﬁ < 0) 2]?( sup e—HKTBgK,l < O) (5.12)

T—oo 820\ 7¢[0,M] T€[0,M]

for any M > 0.
Step 2: The crucial inequality for the proof of ((5.12)).
As in the proof of Proposition [5.3] we set, for s,¢ >0, T > 0,

Fls,t,T) = Furc(s,t,T) = ((t + T + (s + T)>")" = ((¢ + T)* + 727)"
— ((s + 1) 4 7)1 2K 2HE

Then, we have

Ar(s,s+17)
B 21_KRHK,1 (687 es+7'> + 2_Kf<€s, es—f—r’ T)
= \/2171(621{1(3 4 27Kf(€s7 es, T) . \/217K62HK(S+T) + 27Kf(68+7" estT T)
B A (0,7) + 271 f(1, €7, Te®) e HET
V12 (L1, Te) - /14271 f (1,1, TeseT)
- A(0,7) + 271 f(1,1, Te™%) e KT
T V14271 (1,1, Te ) - /1 + 271 f(1,1, Te se7)
_ (1 V12 (L1 Te) - 1+ 27 (1,1, Te—ve ) — 1) A(0.7)
VI 27 (1,1,Tes) - /1 +27Lf (1,1, Te=se) o
N 2—16(2—2HK)7-f(1’ 1,T678)
V1+271 (1,1, Tes) - /1 +271f(1,1,Tese7)

e THET o (513)
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where we used the identities Ry y(e®,e577) = e21KseHETA_(0,7) (cf. (5.11)) as
well as f(as,at',aT) = K f(s/ ', T') for a,s', ¢/, 7" > 0 (cf. (5.4)) in the
second equality and the monotonicity of f(s,t,7) in ¢t for K > 1 (cf. (5.8)) in the

inequality.
Now, we want to estimate (5.13) to get an inequality of the form
Ar(s,s+7) > (1 —er)Au(0,7) + e D(0, 7) (5.14)

for all M > 0, 7 € [0, M] and s € [0,t%], where (e7)r=0 is a null sequence which
does not depend on s or 7, (t5)rs¢ is a sequence tending to infinity and D is the
covariance function of a stationary centred Gaussian process with continuous sample
paths satisfying D(0,0) = 1.

Step 3: The derivation of (5.14]).

We set t% := loglog T and D(0,7) := e~ ?~HK)7 which is (up to normalization) the
auto-covariance function of the Ornstein-Uhlenbeck process for A := 2 — HK (cf.
(1.16)). Let M > 0. We will show that there exists 75 > 0 independent of 7 such
that

f(1,1,Te™™) < @ 2HET £(1 1, 7") for all T" > Ty and 7 € [0, M]. (5.15)

Then, (5.15) for 7" := Te™*, together with (5.13) and the fact that 1 < e(?=2HK)7
for HK <1 and all 7 > 0, implies

AT(8,8+7)
1+271f(1,1,Te®) - /1 + 27 1e@2HK)T f(1,1,Te=s) — 1
Zl_\/+ f(ave)\/+ € f(vae) Aoo<077_)
VI+271f(1,1,Tes) - \/1+271f(1,1,Te %e)
+ 2_16(2_2HK)Tf(17 17T6_S) . e—(Q—HK)T
V1+271f(1,1,Te ) - \/1+271f(1,1,Te se ")

> Ax(0,7)
N 2716(272HK)TJ(‘(1, 17T678)
V14271 f(1,1,Te ) - \/1+271f(1,1,Te%e7)

(67(27HK)T . AOO(O, 7_))

(5.16)
for all T such that T'(logT)~ > Ty, all s € [0,loglog T] and 7 € [0, M].

Using the non-negativity of f for K > 1 (c¢f. (.8))) together with the convergence
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result (5.5) (in 77 := Te™® — oo uniformly in s € [0,loglog T), we have
2_16(2_2HK)Tf(1, 1, Te—s)
V1+271f(1,1,Te ) - \/1+271f(1,1,Te se)
S 2716(272HK)T‘]0(1’ 1’ Tefs)
— 2K716(272HK)T T2HK672HKS (K(K . 1)H2T72€25 + 0(T72628))

log T

< 2KK<K . 1)H26(2—2HK)M
- T

2-2HK
) =:er — 0, T — o0,

where the second inequality holds for T' large enough. Noting that €757 — (e7 —
1)K > 1 for 2HK > 1 and thus A, (0,7) > e K™ > o= Q-HE)T™ (35 9 — HK >

HK), leads to
Ap(s,5+7) > A(0,7) + &7 (e"CHEIT — A_(0,7)),
which is .
Step 4: Showing .
Adding the next order in the Taylor expansions in (5.5)) yields

o Kp=2HK £(1,1,T)
B (1 N 2H N H(2H —1) N H(2H —1)(2H - 2) N O(T_g))

T T2 373
H H@2H-1) H(2H —1)(2H —2) LSO\ 0
—2(1+= T 1
( Tt T 673 +o(T™)) +
. H?K(K —1) N K(K —1) .. 2H H(2H —1) A H(2H —1)
N T2 2 T T2 T 2772

U (S, Y ey
 HPK(K —1) HK(K —1)(1 - HK)
- T2 B T3

+0o(T™3), T — .
Hence,

2K (Tem) 2 (222K £(11,T) — f(1,1,Te™7))

2 _ _
RN 0y s, 1o

where the convergence of o(T3(e3” — €*7)) is uniform in 7 € (0, M]. This im-
plies that there exists 7, > 0 independent of 7 such that e®=2HK)7¢(1 1,T) —
f(1,1,Te ™) > 0 for all T > Ty and 7 € [0, M], as desired.
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Step 5: Concluding (5.12) with (5.14) and Slepian’s lemma.

Let (U;)r>0 be a version with continuous sample paths of the Ornstein-Uhlenbeck
process for A := 2 — HK, independent of Y7. Then, (5.14) and Proposition (a)
lead to

IP’( sup 0';771« Yeaf < O>

T€[0,M]

>P| sup (\/1 —ér e_HKTBgK’1 + \/Er UT> < 0)

T€E[0,M]

>P( sup e TETBHEY < 2t sup U, < 5;1/4>
T€[0,M] T€[0,M]

>P| sup e_lLH(TBgK’1 < -2 5;/4> - IP’( sup U, > 5;1/4>
T€[0,M] T€[0,M]

for all M > 0, s € [0,loglogT] and T large enough such that er < 3/4, thus in

fact for all s > 0. Here, we used that if e 757 BRI < 9 51T/4, U. < 5;1/4, and

eT

er < 3/4, then it holds /1 — er e HET BRI L /er U, < (1 —2y1— aT)E;M <0.
Noting that sup, ¢y yq U- is finite a.s. for any M > 0, this shows (5.12).

Final Step: Let M € (0,log N). Considering (5.10)), we deduce

IP’( sup Bf’Kg()) ZCTIP’< sup a;r}Yggo) .IP( sup cﬁ}YéfﬁO)
TE

te[1,T+N] T€[0,M] [M,2M]

P sup UT_} YE<0
re[ ([ |- [ <57 -]

5]
>cp | P| sup e HETBIARL <) — ;M) ,
T€E[0,M]

where (S(TM))T>0 is a suitable sequence converging to 0 for 7" — oco. Here, we used

(5.6) together with Proposition (b) in the first and (5.12) (%W—times in the
second step. Taking the logarithm, dividing by log N and letting N — oo then

gives

1
—0p(H,K) > Mlog (P( sup e AKTBIRT < 0) — @EFM)).

T€[0,M]

By letting ' — oo and then M — oo, we conclude —0p(H, K) > —0p(HK,1). O
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5.2 Fractional Ornstein-Uhlenbeck process

Recall that for A > 0 and H € (0,1), the fractional Ornstein-Uhlenbeck process
(fOU process) is given by
t
Ul .= / e M= qBHE ¢ >0,

where B is a fractional Brownian motion (FBM) with Hurst parameter H. Further
recall that for H = 1/2, this is the OU process, which equals in distribution the
Lamperti transform of (scaled) Brownian motion (cf. (1.17)). For the Lamperti
transform Z7* of (scaled) FBM, as defined in (L.19), it is a consequence of
and Corollary [2.6] that

T—oo te[0,7)

1
0o(Z%*) = — lim TlogP( sup Z < O> =2\(1—-H).

The fOU process for H # 1/2 behaves very differently regarding persistence. We
show that, for H > 1/2, the persistence probabilities of U* do not have a true

exponential decay, i.e., that the persistence exponent equals zero.

Proposition 5.5. For A >0, H € (1/2,1) and x € R, it holds

1
0,(UF*) = — lim Tlog[?( sup U < m) = 0.

— 1
T—o0 te[0,T]

Proof. For H # 1/2, the auto-covariance function of UH is given by
0 0 t
E[UOH’AUf’A] :e‘”E{/ e dBY (/ e dBf+/ e dBf)}
o oo 0
0 2
=e M (E ( / e dB;)! )

0 t
+H(2H — 1)/ e’\“/ (v — )2 dv du) , >0,
—00 0

where we used |26, Lemma 2.1] in the second step. This function is non-negative
for H > 1/2. Thus, Proposition yields the existence of 0, (UH*).

Further, [26, Theorem 2.3| states E[US U ~ A 2H(2H — 1)t*7-2 for t — oo
and H # 1/2. Thus, for H > 1/2,

o 1 [oe)
/ E[U(?“Uf’*] dt > SA2H(2H — 1)/ 1202 4t = o0,
0 to
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Together with continuous sample paths, this implies 0,(U*) = 0 for H > 1/2 and
every = € R, see [14, Lemma 3.2|. ]

Remark. For H < 1/2, the asymptotics E[US U ~ A 2H(2H — 1)t27-2 for
t — oo imply that the auto-covariance function of U#* is not non-negative so
that Proposition cannot be applied in this case to deduce the existence of the

persistence exponent.
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