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Abstract

In this thesis, we deal with several persistence problems for fractional processes.

Persistence concerns the event that a stochastic process has a long excursion staying

below or above a certain barrier. A central question in this context is the analysis

of the probability of this event � the so-called persistence probability.

We �rst consider the persistence probabilities of integrated fractional Brownian mo-

tion and fractionally integrated Brownian motion. While it is well-known that these

persistence probabilities decay asymptotically polynomially, their polynomial rates

are unknown except for the special cases of Brownian motion and integrated Brow-

nian motion. We show that for both processes, the polynomial rate is a continuous

function in the Hurst parameter and determine its asymptotic behaviour at the

boundaries of the respective parameter domain.

Subsequently, we study persistence probabilities of mixed processes, such as mixed

fractional Brownian motion. Precisely, we consider the sum of two self-similar cen-

tred Gaussian processes with di�erent self-similarity indices and show that, un-

der non-negativity assumptions of covariance functions and some further minor

conditions, the persistence probability of the sum decays asymptotically polyno-

mially with the same polynomial rate as for the single process with the greater

self-similarity index. In particular, this determines the polynomial rate of the per-

sistence probability of mixed fractional Brownian motion.

Lastly, we give estimates for the persistence probabilities of further fractional pro-

cesses of interest, namely the bifractional Brownian motion and the fractional

Ornstein-Uhlenbeck process.
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Zusammenfassung

In dieser Dissertation befassen wir uns mit verschiedenen Persistence-Problemen

für fraktionale Prozesse. Mit Persistence ist das Ereignis einer langen Exkursion

eines stochastischen Prozesses gemeint, bei der dieser unter- oder oberhalb einer

bestimmten Schranke bleibt. Eine zentrale Fragestellung in diesem Kontext ist

die Analyse der Wahrscheinlichkeit jenes Ereignisses � die sogenannte Persistence-

Wahrscheinlichkeit.

Zunächst betrachten wir die Persistence-Wahrscheinlichkeiten der integrierten frak-

tionalen Brownschen Bewegung sowie der fraktional integrierten Brownschen Be-

wegung. Während es wohlbekannt ist, dass diese Persistence-Wahrscheinlichkeiten

asymptotisch polynomiell abfallen, ist die polynomielle Rate nur in den Spezialfällen

der Brownschen Bewegung und der integrierten Brownschen Bewegung bekannt.

Wir zeigen, dass bei beiden Prozessen die polynomielle Rate eine stetige Funk-

tion vom Hurst-Parameter ist, und bestimmen ihr asymptotisches Verhalten an den

Rändern des jeweiligen De�nitionsbereiches des Parameters.

Anschlieÿend beschäftigen wir uns mit den Persistence-Wahrscheinlichkeiten von

gemischten Prozessen wie der gemischten fraktionalen Brownschen Bewegung.

Um genau zu sein, betrachten wir die Summe zweier selbstähnlicher zentrierter

Gauÿprozesse mit unterschiedlichen Selbstähnlichkeitsindizes und zeigen, dass,

unter der Annahme von nicht-negativen Kovarianzfunktionen und einiger weit-

erer unwesentlicher Bedingungen, die Persistence-Wahrscheinlichkeit der Summe

asymptotisch polynomiell abfällt, und zwar mit der gleichen polynomiellen Rate

wie bei demjenigen Einzelprozess, der den gröÿeren Selbstähnlichkeitsindex besitzt.

Insbesondere wird damit die polynomielle Rate der Persistence-Wahrscheinlichkeit

der gemischten fraktionalen Brownschen Bewegung bestimmt.

Abschlieÿend geben wir noch Abschätzungen für die Persistence-Wahrscheinlich-

keiten weiterer relevanter fraktionaler Prozesse, nämlich der bifraktionalen Brown-

schen Bewegung und des fraktionalen Ornstein-Uhlenbeck-Prozesses.
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Chapter 1

Introduction

This thesis deals with so-called persistence problems for stochastic processes. Per-

sistence concerns the event that a real-valued stochastic process stays below or

above a �xed barrier for an untypically long time. While this is a classical topic in

probability theory for Markov processes, such as Brownian motion, random walks

and Lévy processes, research on this type of problem for fractional processes has

just begun, as many powerful tools of the Markovian setting are not applicable

anymore. The aim of this thesis is to make further contributions to �ll the gap

regarding persistence results for fractional Brownian motion and related processes.

In this chapter, we state the general persistence problem we are concerned with, we

motivate where the interest for these persistence problems comes from and we give

an overview of known results and related literature.

1.1 The general problem

For a real-valued stochastic process X = (Xt)t≥0 and a barrier x ∈ R, the so-called
(one-sided) persistence probabilities of X are given by

P

(︄
sup

t∈[0,T ]

Xt ≤ x

)︄
, T > 0,

or, alternatively, by

P
(︃

inf
t∈[0,T ]

Xt ≥ −x

)︃
, T > 0.

1



2 CHAPTER 1. INTRODUCTION

Typically, these probabilities tend to zero for T → ∞ and the goal is to determine

the asymptotic rate of decay. In this thesis, we mainly deal with self-similar centred

Gaussian processes, i.e., we consider processes X whose �nite-dimensional distribu-

tions are centred Gaussian and which satisfy (Xct)
d
= (cHXt) for some H > 0 and

all c > 0. Thus, due to the fact that centred Gaussian distributions are symmetric,

the above two ways of de�ning persistence probabilities are equivalent. Further, due

to self-similarity, we have X0 = 0 a.s., implying P
(︁
supt∈[0,T ] Xt ≤ x

)︁
= 0 for x < 0

and all T > 0 (which also holds for x = 0, if we exclude degenerate cases where the

persistence probability for x = 0 does not tend to zero), whereas, for x > 0, self-

similarity yields P
(︁
supt∈[0,T ] Xt ≤ x

)︁
= P

(︁
supt∈[0,x−1/HT ] Xt ≤ 1

)︁
for T > 0. Hence,

w.l.o.g., we can restrict ourselves to determining the asymptotic rate of the per-

sistence probabilities for the barrier x = 1. For self-similar processes, one expects

asymptotically polynomial decay, i.e.,

P

(︄
sup

t∈[0,T ]

Xt ≤ 1

)︄
= T−θ+o(1), T → ∞, (1.1)

where θ = θ(X) ∈ (0,∞) is the so-called persistence exponent of X.

1.2 Motivation

Persistence probabilities appear in many �elds of applied probability. In physics,

the �rst interest for persistence came from the so-called droplet condensation prob-

lem: In the context of the formation of dew, the condensation of water vapor on

a substrate can be modelled in a way that the expected fraction of the surface of

the substrate which was never covered by water is given by a persistence probabil-

ity. This was discovered due to the fact that this fraction decays asymptotically

polynomially in time just like the persistence probability in (1.1), see [48]. Moti-

vated by this observation, persistence properties of various dynamical systems in

non-equilibrium states were studied by theoretical physicists and in many cases,

persistence probabilities turned out to be related to relevant properties of the sys-

tem. In particular, persistence exponents often serve as a simple measure of how

fast the corresponding system returns to its equilibrium. Models involving frac-

tional Brownian motion and related processes have received considerable attention

in recent years. For instance, the inviscid Burgers equation, where the initial veloc-

ity is given by a fractional Brownian motion, was studied extensively in the context

of persistence, see [75], [78], [58] and [56]. For an overview of persistence problems
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and results from the perspective of theoretical physics, we refer to the surveys [72],

[22] and [47] as well as the monographs [51] and [68].

As a further motivation, we want to mention applications in �nance and insurance.

An investor, for example, who considers selling a stock performing badly might be

interested in the probability that the stock price returns to his input price in a given

time, which is clearly the counterpart to a persistence probability. Further, when

dealing with limit orders to buy or sell a stock, persistence probabilities occur, as

the event that the order will not be executed in a given time is clearly a persistence

event. Note in this context that due to long memory, especially fractional and

mixed fractional Brownian motion play a major role in �nance, see e.g. [27] and

[3]. In insurance, one deals with so-called ruin probabilities, where ruin concerns

the event that the costs of an insurance portfolio exceed the sum of initial capital

and received insurance premiums. If one considers this event on a �nite time frame,

the ruin probability represents again the counterpart to a persistence probability.

Note, however, that in the typical setting, the probability that the ruin never occurs

is positive so that one is rather interested in the asymptotic behaviour of the ruin

probability (on an in�nite time frame) when the initial capital tends to in�nity, see

[34] for classical results and [7] for results in the context of a modi�ed notion of

ruin.

1.3 Known results

In this section, we give an overview of the existing results for (one-sided) persis-

tence probabilties of (time-continuous Gaussian) fractional processes which form

the basis of our results in Chapters 3 to 5. Further related results for the two-

sided persistence problem, discrete-time processes or non-Gaussian processes will

be summarized in Section 1.4. For a recent overview of mathematical results for

persistence probabilities in general, we refer to the survey [16].

Fractional Brownian motion. Recall that the fractional Brownian motion

(FBM) BH with Hurst parameter H ∈ (0, 1) is the unique normalized centred

Gaussian process with a.s. continuous sample paths which is H-self-similar and

which has stationary increments, i.e., BH satis�es � additionally to the property

of self-similarity we have already mentioned � the condition (BH
t+h − BH

h )
d
= (BH

t )
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for all h > 0. For H = 1/2, these properties imply independent increments so that

W := B1/2 is a usual Brownian motion.

Let us thus recall shortly the classical result for Brownian motion. The strong

Markov property of Brownian motion implies the re�ection principle, which states

that (W̃ t) := (Wt1t≤τ + (2Wτ − Wt)1t>τ ), the Brownian motion re�ected at a

stopping time τ, has the same law as the original Brownian motion W, see e.g. [61,

Theorem 2.19]. Setting τ := inf{t ≥ 0: Wt = 1} then determines the persistence

probabilities of W explicitly, namely

P

(︄
sup

t∈[0,T ]

Wt ≤ 1

)︄
= 1− P

(︄
sup

t∈[0,T ]

Wt > 1

)︄
= 1− P(WT > 1)− P(τ < T,WT ≤ 1)

= 1− P(WT > 1)− P(W̃ T ≥ 1)

= P(|WT | ≤ 1) ∼
√︃

2

π
T−1/2, T → ∞,

(1.2)

which in particular shows the asymptotic behaviour as in (1.1) with persistence

exponent θ(W ) = 1/2. Here and elsewhere, f(x) ∼ g(x) stands for lim f(x)/g(x) =

1.

For H ̸= 1/2, however, these powerful Markov techniques are not applicable any-

more. For H < 1/2, the increments of BH are negatively correlated, whereas for

H > 1/2, the increments are positively correlated and even exhibit long-range de-

pendence, i.e.,
∑︁∞

n=1 E[BH
1 (BH

n+1 − BH
n )] = ∞. While these properties are nice for

applications, the intrinsical non-Markovian structure makes it hard to derive persis-

tence results. Even for the few fractional processes where results are available, they

are typically in the form (1.1) and it remains an open problem to determine the

exact asymptotic order as in (1.2). For the FBM, Molchan could derive the result

T−(1−H)e−c
√
log T ≤ P

(︄
sup

t∈[0,T ]

BH
t ≤ 1

)︄
≤ T−(1−H)ec

√
log T (1.3)

for some c > 0 and T large enough, see [59], which yields the persistence exponent

θ(BH) = 1 − H. The crucial part in the proof was to show that the persistence

probabality of FBM has � up to terms of lower order � the same asymptotic order

as the expectation

I(T ) := E

[︄(︃∫︂ T

0

eB
H
t dt

)︃−1
]︄

(1.4)
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of the functional
(︂∫︁ T

0
eB

H
t dt

)︂−1

, which is some sort of a smoothed out counterpart

of the rough indicator 1supt∈[0,T ] B
H
t ≤1. Heuristically, there is the following connection

between the functional and the indicator: The typical paths of BH contributing to

the persistence event, i.e., which satisfy BH
t ≤ 1 for all t ∈ [0, T ], rather tend to

escape to −∞ than to oscillate around the origin. But these are exactly those

paths for which the functional is large and which contribute to I(T ) the most,

consequently.

For I(T ), one was able to determine the exact asymptotic order: In [59, State-

ment 1], it was shown that

I(T ) ∼ H E
[︃
max
t∈[0,1]

BH
t

]︃
T−(1−H), T → ∞, (1.5)

by using an argument which goes back to Kawazu and Tanaka, see [41, Section 2.2].

They considered the Brownian motion, but basically used only self-similarity and

stationary increments (and the existence of the moment-generating function of the

maximum) so that Molchan could easily adapt the argument for the FBM. It seems

plausible that in fact, the persistence probability of BH and I(T ) have even the

same exact asymptotic order. But still up to now, unfortunately, the result in (1.3)

could only be slightly improved: For H > 1/2, there exists c > 0 such that

c−1T−(1−H)(log T )−1/(2H) ≤ P

(︄
sup

t∈[0,T ]

BH
t ≤ 1

)︄
≤ c T−(1−H)

for T large enough, see [11, Theorem 12], while for H < 1/2, there exists c > 0 such

that

c−1T−(1−H)(log T )−1/(2H) ≤ P

(︄
sup

t∈[0,T ]

BH
t ≤ 1

)︄
≤ T−(1−H)(log T )c

for T large enough, see [11, Theorem 12] and [5, Theorem 1]. The result in [5] was

achieved by �nding another way to relate I(T ) to the persistence probabilities of

BH , whereas the result in [11] was deduced from stronger results for the persistence

probabilities of discrete-time analogues of FBM, which we will discuss a little bit

more detailed in Section 1.4.

Integrated FBM. Now, we consider the (one-sided) integrated version of BH ,

given by IHt :=
∫︁ t

0
BH

s ds, t ≥ 0. Again, we �rst discuss the Brownian case H = 1/2,

which is the integrated Brownian motion Vt :=
∫︁ t

0
Ws ds, t ≥ 0. The process V

itself is non-Markovian, but in contrast to BH and IH for H ̸= 1/2, this is not
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intrinsical: As W is a Markov process, the pair (V,W ) also is, and consequently, a

similarly strong result as in (1.2) could be shown for the persistence probabilities of

integrated Brownian motion via Markov techniques. In 1962, using the transition

density of (V,W ), McKean obtained among other results the joint distribution of

the time when integrated Brownian motion �rst returns to zero, if the corresponding

Brownian motion is started at 1, together with the absolute value of the Brownian

motion at this time, see [50]. Based on this formula, in 1971, Goldman deduced

an explicit expression for the density of the distribution of the �rst hitting time of

integrated Brownian motion at 1, if the corresponding Brownian motion is started

at 0, see [37]. In particular, he showed the following asymptotics for this density:

P(τ1 ∈ dt)

dt
∼ c t−5/4, t → ∞,

for some c > 0, where τ1 := inf{t ≥ 0: Vt = 1}. Since the persistence probabilities
of V can be written as P

(︁
supt∈[0,T ] Vt ≤ 1

)︁
= P(τ1 ≥ T ) for T > 0, this implies

P

(︄
sup

t∈[0,T ]

Vt ≤ 1

)︄
=

∫︂ ∞

T

P(τ1 ∈ dt)

dt
dt ∼ 4c T−1/4, T → ∞, (1.6)

yielding θ(V ) = 1/4. Later, Sinai (see [77]; re�nements of Isozaki and Watanabe

in [40]) generalized the result to straight line boundaries (instead of the constant

boundary 1) by considering approximating discrete-time processes and using the

techniques he developed to deduce the same persistence exponent 1/4 for the inte-

grated simple random walk.

However, as for the persistence probabilities of FBM, the proofs for the Brownian

case cannot be adapted to the general case, since Markov tools, such as transition

densities or the re�ection principle, are not available anymore. Due to the fact

that IH is a self-similar centred Gaussian process with a non-negative covariance

function, one knows that the persistence probabilities of integrated FBM (IFBM)

behave asymptotically as in (1.1) with some persistence exponent θI(H) := θ(IH) ∈
(0,∞) (cf. Corollary 2.6). Except for the Brownian case H = 1/2, though, where

we have already seen that θI(1/2) = 1/4, the exact value of θI(H) is unknown.

Based on numerical simulations, Molchan and Khokhlov stated in 2004 the conjec-

ture

θI(H) = H(1−H), H ∈ (0, 1), (1.7)

see [58], which was surprising due to its symmetry w.r.t. H = 1/2. As already

seen in the context of the correlation of the increments, the processes BH and thus
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also IH are very di�erent processes for H < 1/2 and H > 1/2. Further note that

there evidentially is no symmetry in the two-sided persistence problem of IFBM (cf.

Section 1.4 for more details). For the one-sided problem nevertheless, the symmetric

conjecture has not been disproven for almost 20 years now, and over the years, more

and more evidence in favour of the conjecture could be gained.

The �rst analytical estimate was deduced in [54], where it was shown that there

exists ρ ∈ (0, 1/2) such that ρH(1−H) ≤ θI(H) ≤ 1−H for H ∈ (0, 1). The upper

bound is due to the fact that the one-sided persistence exponent is always bounded

from above by the two-sided persistence exponent of a process (in the case that both

exponents exist) and that the two-sided persistence exponent of IFBM is bounded

from above by 1 − H (in fact given by 1 − H; cf. Section 1.4 for more details).

The lower bound was proven by estimating the auto-covariance function of the

Lamperti transform of IFBM to an auto-covariance function, where results for the

persistence exponent of the corresponding stationary Gaussian process are available,

and applying Slepian's lemma (cf. Chapter 2 for more details). This is a standard

technique in the context of persistence of self-similar Gaussian processes, which

could be further exploited to improve both upper and lower bound. In [55], resulting

from an inequality of the auto-covariance functions of the Lamperti transform of

IFBM with Hurst parameter H and 1−H, respectively, the relation

θI(1−H) ≤ θI(H) for H < 1/2, (1.8)

was used, together with another estimate by Slepian's lemma, to improve the lower

bound to

θI(H) ≥ 1

2
min(H, 1−H) for H ∈ (0, 1). (1.9)

Note that (1.8) itself is of interest, as it represents one direction of the proof that θI
has indeed the point of symmetry H = 1/2, which would be θI(1−H) = θI(H). In

[57], further relations of the auto-covariance functions of the Lamperti transforms

of FBM and IFBM were used, by applying again Slepian's lemma, to improve the

upper bound to

θI(H) ≤ min(H, 1−H) for H ∈
(︃
0,

1√
13

]︃
∪
(︃
3

4
, 1

)︃
,

θI(H) ≤
√︃

1−H2

12
for H ∈

(︃
1√
13

,
1

2

]︃
, and

θI(H) ≤ 1/4 for H ∈
(︃
1

2
,
3

4

]︃
. (1.10)
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Figure 1.1 illustrates the conjecture (1.7) as well as the proven possible range of the

persistence exponent of IFBM, given by the bounds (1.9) and (1.10). In Theorem

3.1, we will strengthen this analytical evidence for the conjecture (1.7) by showing

that θI is a continuous function, which is asymptotically equivalent to the conjecture

(1.7) at the boundaries 0 and 1 of the domain of the Hurst parameter H ∈ (0, 1).

H

θI

0 1

1
4

1
2

Figure 1.1: Conjecture of Molchan and Khokhlov (dashed line) and upper and lower

bounds proven by Molchan (solid lines) for the (one-sided) persistence exponent of

IFBM.

Fractionally integrated Brownian motion. For a Brownian motion W and

H > 0, let us now consider the fractionally integrated Brownian motion (FIBM)

with Hurst parameter H, given by

RH
t :=

∫︂ t

0

(t− s)H− 1
2 dWs, t ≥ 0.

Note that this is well-de�ned due to the fact that E[
∫︁∞
0
(t − s)2H−1 d⟨W ⟩s∧t] =∫︁ t

0
s2H−1 ds < ∞ for H > 0. For H > 1/2, the stochastic Fubini theorem, see

e.g. [67, Theorem IV.65], yields the following alternative representation for RH :

1

Γ(H + 1/2)
RH

t =
H − 1/2

Γ(H + 1/2)

∫︂ t

0

∫︂ t

0

1u≥s(t− u)H−3/2 du dWs

=
1

Γ(H − 1/2)

∫︂ t

0

(t− u)H−3/2

∫︂ t

0

1u≥s dWs du

=
1

Γ(H − 1/2)

∫︂ t

0

Wu(t− u)H−1/2−1 du, (1.11)

which is the Riemann-Liouville fractional integral of W of order H − 1/2. For this

reason, the FIBM is also called Riemann-Liouville process. Further note that the

Riemann-Liouville fractional integral of W for integer orders n ∈ N is given by the
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n-times integrated version of the Brownian motion W, since∫︂ t

0

Ws1

(t− s1)
n−1

(n− 1)!
ds1 =

∫︂ t

0

d

ds1

∫︂ s1

0

Ws2

(s1 − s2)
n−1

(n− 1)!
ds2 ds1

=

∫︂ t

0

∫︂ s1

0

Ws2

(s1 − s2)
n−2

(n− 2)!
ds2 ds1

= · · · =
∫︂ t

0

∫︂ s1

0

· · ·
∫︂ sn−1

0

Wsn dsn . . . ds1 (1.12)

by the Leibniz integral rule. For H ∈ (0, 1), the FIBM RH is closely related to the

FBM BH via the Mandelbrot-van Ness integral representation, which states that

RH
t +

∫︂ 0

−∞
(t− s)H− 1

2 − (−s)H− 1
2 dWs, t ≥ 0,

is an independent decomposition of FBM (with a non-normalized variance), see

e.g. [53, Theorem 1.3.1]. It is well-known that RH shares many properties with BH ,

such as H-self-similarity, continuous sample paths and, for H ∈ (1/2, 1), long-range

dependence of the increments (which are non-stationary in the case of RH). In

some literature, especially in econometrics, RH is introduced as an alternative type

of FBM, see [49]. Regarding persistence, however, the two processes behave quite

di�erently.

As for IFBM, due to the fact that RH is a self-similar centred Gaussian process with

a non-negative covariance function, one knows that the persistence probabilities of

RH decay asymptotically polynomially as in (1.1) with some persistence exponent

θR(H) := θ(RH) ∈ (0,∞). Note that R1/2 equals the Brownian motion W by

de�nition and that R3/2 equals the integrated Brownian motion V by (1.11). Thus,

we have already seen that θR(1/2) = 1/2 and that θR(3/2) = 1/4. Except for these

two Brownian cases, though, the exact value of θR(H) is unknown. Nevertheless,

similarly to the case of IFBM, there are some estimates for θR which in particular

show that the persistence exponents of FIBM and FBM do not coincide, as we will

outline now.

By using the fact that fractionally integrating twice with orders α1 > 0 and α2 > 0

is equivalent to fractionally integrating once with the order α1 + α2, it was shown

in [9] that θR is non-increasing on [1/2,∞). Together with the identity θR(3/2) =

1/4, this implies θR(H) ≥ 1/4 for H ∈ [1/2, 3/2], which shows that θR(H) and

θ(BH) = 1 − H cannot coincide for H ∈ (3/4, 1). Furthermore, by again using

the technique of estimating the auto-covariance function of the Lamperti transform

and applying Slepian's lemma, it was deduced in [9, Corollary 4.1] that it holds
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θR(H) ≥ θR(∞) for H ≥ 1/2, where θR(∞) := − limT→∞
1
T
P(supt∈[0,T ] Zt ≤ 0)

denotes the persistence exponent (of exponential decay, in contrast to polynomial

decay in (1.1); cf. Chapter 2 for more details) of the centred Gaussian process Z

with covariance function (s, t) ↦→ 1/ cosh(|t− s|/2). In fact, continuity lemmas for

persistence exponents, which were proven in the years that followed (cf. Lemma

3.3), imply even θR(H) → θR(∞) for H → ∞. In [55, Proposition 2.3], it was

shown that θR(∞) ≥ 1/(4
√
3), whereas [66] gives evidence in favour of the equality

θR(∞) = 3/16.

In Chapter 3, we will be concerned with the behaviour of θR(H) for H → 0: We

will show in Theorem 3.2 that θR tends to ∞ and that the asymptotic behaviour

is in the range H−1 to H−2, which is again quite contrary to the behaviour of the

persistence exponent θ(BH) = 1−H of FBM.

Fractional Ornstein-Uhlenbeck process. Now, at �rst sight, we leave our ba-

sical setting of self-similar centred Gaussian processes. Consider the stochastic

di�erential equation (SDE)

X0 = ξ,

dXt = −λXt dt+ dWt, (1.13)

where λ > 0, W is a Brownian motion and ξ is a random variable independent of

(Wt)t≥0 with E[ξ2] < ∞. The Ornstein-Uhlenbeck process (OU process) is de�ned

as the unique strong solution Uλ of the SDE (1.13) for the initial condition ξ :=∫︁ 0

−∞ eλs dWs, which is given by

Uλ
t =

∫︂ t

−∞
e−λ(t−s) dWs, t ≥ 0. (1.14)

Due to the the fact that W is a centred Gaussian process with stationary incre-

ments, the process Uλ is a stationary centred Gaussian process, where stationarity

means (Uλ
t+h)t≥0

d
= (Uλ

t )t≥0 for all h > 0. For stationary processes Z, one expects

asymptotically exponential decay of the persistence probabilities, i.e.,

P

(︄
sup

t∈[0,T ]

Zt ≤ x

)︄
= e−T (θx+o(1)), T → ∞, (1.15)

for x ∈ R, where θx = θx(Z) ∈ (0,∞) is also called persistence exponent and, in

contrast to the case of self-similar processes, usually depends on the barrier x.
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Nevertheless, this has a deep connection to persistence problems of self-similar pro-

cesses. As Uλ is a stationary centred Gaussian process, its distribution is charac-

terized uniquely by the auto-covariance function, which is given by

E[Uλ
0 U

λ
t ] = e−λt E

[︄(︃∫︂ 0

−∞
eλs dWs

)︃2
]︄
= e−λt E

[︄(︃∫︂ ∞

0

e−λs dWs

)︃2
]︄

= e−λt

∫︂ ∞

0

e−2λs ds =
1

2λ
e−λt (1.16)

for t ≥ 0, where we used centredness ofW as well as the independence of (Wt)t<0 and

(Wt)t>0 in the �rst, the identity (W−t)
d
= (Wt) in the second and the Itô isometry

in the third step. This is the auto-covariance function of the stationary centred

Gaussian process
1√
2λ

e−λtWe2λt , t ≥ 0, (1.17)

which is thus an alternative representation of the OU process Uλ. This is the so-

called Lamperti transform of the scaled Brownian motion (Wt2λ/
√
2λ), which is

a λ-self-similar process (cf. Chapter 2). In general, the Lamperti transformation

provides a bijective way to transform self-similar processes into stationary processes

and vice versa.

Using this alternative representation and the powerful Markov tools available for

Brownian motion yields the classical persistence result for the OU process in the

case of the barrier x = 0, which was �rst deduced in [76], but which can also be

found in [69, Section IX] and in [79]. One has

P

(︄
sup

t∈[0,T ]

Uλ
t ≤ 0

)︄
= P

(︄
sup

t∈[1,e2λT ]

Wt ≤ 0

)︄

=

∫︂ 0

−∞
P

(︄
sup

t∈[1,e2λT ]

Wt −W1 ≤ −x

⃓⃓⃓⃓
⃓ W1 ∈ dx

)︄
P(W1 ∈ dx)

=
1√
2π

∫︂ ∞

0

P

(︄
sup

t∈[0,e2λT−1]

Wt ≤ x

)︄
e−x2/2 dx

=
1√
2π

∫︂ ∞

0

P(|We2λT−1| ≤ x) e−x2/2 dx

=
1

2
− 1

π
arctan

(︂√︁
e2λT − 1

)︂
=

1

π
arcsin

(︁
e−λT

)︁
∼ 1

π
e−λT , T → ∞, (1.18)

where we used the Markov property as well as the stationary increments of W in

the third, the re�ection principle in the fourth, the integral formula [38, eq. 6.285.1]
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in the �fth and the functional equation arctanx = π/2− arctan 1
x
for x > 1 as well

as the identity arcsinx = arctan(x/
√
1− x2) for |x| < 1 in the sixth step. This

yields the persistence exponent θ0(U
λ) = λ. For general barriers x ̸= 0, tools for

stationary centred Gaussian processes imply that the persistence exponent θx(Uλ) ∈
(0,∞) exists (by non-negativity and integrability of the auto-covariance function,

see Proposition 2.2) and that the function x ↦→ θx(U
λ) is continuous (cf. [35,

Lemma 1.1]). Further, clearly, x ↦→ θx(U
λ) is non-increasing since the persistence

probability is non-decreasing in x. For x > 0, one additionally knows that θx(Uλ) is

given as a solution of some explicit equation and that limx→∞ θx(U
λ) = 0, see [74],

where this is contained as a result for persistence probabilities of W with square

root boundaries, due to the representation (1.17).

Due to the two representations (1.14) and (1.17) of the OU process, there are two

ways to de�ne fractional analogues of Uλ. For H ∈ (0, 1), let BH be an FBM

with Hurst parameter H. We �rst consider the fractional generalization of the

representation (1.17). As BH is H-self-similar, the scaled FBM (BH
t2λ

/
√
2λ) is 2λH-

self-similar and its Lamperti transform is given by

ZH,λ
t :=

1√
2λ

e−2λHtBH
e2λt , t ≥ 0, (1.19)

cf. Chapter 2. Note that the persistence probabilities of ZH,λ for the barrier x = 0

can be written as

P

(︄
sup

t∈[0,T ]

ZH,λ
t ≤ 0

)︄
= P

(︄
sup

t∈[1,e2λT ]

BH
t ≤ 0

)︄
, T > 0,

and it is well-known that P
(︁
supt∈[1,T ] B

H
t ≤ 0

)︁
and P

(︁
supt∈[0,T ] B

H
t ≤ 1

)︁
have � up

to terms of lower order � the same asymptotic behaviour for T → ∞ (cf. Corollary

2.6). Thus, using the persistence result (1.3) for BH , these persistence probabilities

of ZH behave asymptotically as in (1.15) with persistence exponent θ0(Z
H,λ) =

2λ θ(BH) = 2λ(1−H).

In Chapter 5, we will be concerned with the fractional generalization of the repre-

sentation (1.14), which was introduced in [26]. For λ > 0, the so-called fractional

OU process is given by

UH,λ
t :=

∫︂ t

−∞
e−λ(t−s) dBH

s , t ≥ 0,

which was shown to be well-de�ned for all H ∈ (0, 1) as a Riemann-Stieltjes in-

tegral, by using that
∫︁ t

−∞ BH
s eλs ds is well-de�ned (due to the Hölder continuity
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of the sample paths of BH and the invariance of BH under time inversion) and

applying an integration by parts formula for Riemann-Stieltjes integrals (cf. [26,

Proposition A.1]). Further, it was shown in [26] that this is the unique stationary

solution with continuous sample paths of the SDE dXt = −λXt dt+ dBH
t , which is

the fractional analogue of the SDE (1.13). Except for the Brownian case H = 1/2,

the distributions of UH,λ and ZH,λ are quite di�erent. In [26, Theorem 2.3], for

example, it was proven that the auto-covariance function of UH,λ decays polyno-

mially for H ̸= 1/2. On the contrary, the auto-covariance function of ZH,λ decays

exponentially, as

4λE[ZH,λ
0 ZH,λ

t ] = e−2λHt + e2λHt −
(︁
eλt − e−λt

)︁2H
= e−2λHt −

∞∑︂
n=1

(−1)n
(︃
2H

n

)︃
e2λt(H−n)

= e−2λHt + 2H e−2λ(1−H)t + o(e−2λt), t → ∞,

by the binomial theorem. Also regarding persistence, they behave very di�erently.

We will show in Proposition 5.5 that for H > 1/2, it holds θx(UH,λ) = 0 for every

x ∈ R, i.e., that in this case, the persistence probability of the fractional OU process

does not have a true exponential decay as in (1.15).

Figure 1.2 illustrates the results presented in this section.

H

θ

0 1 2

1

1
2

1
4

1
2

3
2

FIBM

IBM

BM/OU

IFBM
FBM

Figure 1.2: Relation of the persistence exponents of FBM, Brownian motion (BM),

integrated Brownian motion (IBM), IFBM, FIBM and OU process for λ = 1/2

(OU). For IFBM with parameter H ∈ (0, 1), we shift the function by 1 because

H-IFBM corresponds to (H + 1)-FIBM.
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1.4 Related work

In this section, we mention further results for persistence probabilities of fractional

processes which do not �t directly into the setting of this thesis.

Two-sided persistence problem. All the processes X = (Xt)t≥0 considered in

the previous section can be extended to two-sided processes (Xt)t∈R. Thus, one can

also consider the two-sided persistence probabilities of X given by

P

(︄
sup

t∈[−T,T ]

Xt ≤ 1

)︄
, T > 0,

and for self-similar processesX, where in the two-sided case, H-self-similarity means

(Xct)
d
= (|c|HXt) for all c ∈ R, one expects again

P

(︄
sup

t∈[−T,T ]

Xt ≤ 1

)︄
= T−θ′+o(1), T → ∞,

for some persistence exponent θ′ = θ′(X) ∈ (0,∞). Note that this is no substantial

new problem for processes X for which (Xt)t≥0 and (Xt)t<0 are independent, as in

this case

P

(︄
sup

t∈[−T,T ]

Xt ≤ 1

)︄
= P

(︄
sup

t∈[−T,0]

Xt ≤ 1

)︄
· P

(︄
sup

t∈[0,T ]

Xt ≤ 1

)︄

= P

(︄
sup

t∈[0,T ]

Xt ≤ 1

)︄2

,

where we used (X−t)
d
= (|� 1|HXt) = (Xt). This is ful�lled for Markov processes

and integrated Markov processes, where PX0 is trivial, so that we can infer from

the one-sided persistence results that θ′(W ) = 2 θ(W ) = 1 for the Brownian motion

and θ′(V ) = 2 θ(V ) = 1/2 for the integrated Brownian motion.

For fractional processesX, however, this is typically not the case and one has to solve

the one-sided and two-sided case completely separately. A priori, one only has � in

the case that both persistence exponents exist � the estimate θ′(X) ≥ θ(X), since

trivially P
(︁
supt∈[−T,T ] Xt ≤ 1

)︁
≤ P

(︁
supt∈[0,T ] Xt ≤ 1

)︁
. For the FBM, it was shown

by Molchan in 1999 that θ′(BH) = 1, independent of H, see [59, Theorem 3]. This

is a consequence of the fact that the distribution of the position of the maximum

of BH on a symmetric interval w.r.t. the origin has a �nite density. Furthermore,
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in contrast to the one-sided case, the two-sided persistence exponent could also be

determined for the IFBM. The upper bound θ′(IH) ≤ 1−H for H ∈ (0, 1) is due to

a relation of the two-sided persistence probability of IFBM and the inviscid Burgers

equation with FBM initial velocity that was established in [58], although up to 2017,

the existence of θ′(IH) had only been known for H ≥ 1/2. In 2017, by discretizing

the problem and considering the expectation of a useful functional, Molchan could

derive the lower bound θ′(IH) ≥ 1 − H for H ∈ (0, 1), see [56], which proved the

existence of θ′(IH) for H < 1/2 and simultaneously showed that θ′(IH) equals 1−H

for all H ∈ (0, 1).

Discrete-time processes. Similarly, one can consider one-sided and two-sided

persistence probabilities of fractional discrete-time processes (Xn)n∈Z, given by

P(maxn=0,...,N Xn ≤ x) and P(maxn=−N,...,N Xn ≤ x), respectively, for N ∈ N and

x ∈ R. For discrete-time analogues of the processes discussed in the previous section,

one expects that the persistence probabilities have the same asymptotic behaviour

in N as the persistence probabilities of the corresponding continuous-time process

in T, in particular that persistence exponents coincide in the case they exist. By

Donsker's theorem, discrete-time analogues of Brownian motion are given by cen-

tred random walks with �nite variance. By classical results going back to Sparre

Andersen and Rogozin, see [80], [81] and [70], one knows that, for x ≥ 0,

P
(︃

max
n=0,...,N

Sn ≤ x

)︃
∼ cxN

−1/2, N → ∞,

where (Sn) is a centred random walk with �nite variance and cx > 0 is a constant

dependent on x and the distribution of S1. Note that due to the Markov property of

(Sn), this directly implies a similar result for the two-sided persistence probabilities,

where the persistence exponent doubles to 1.

A fractional analogue to Donsker's theorem, the functional central limit theorem for

strong dependence and light tails, see e.g. [87, Theorem 4.6.1], provides the discrete-

time analogues of FBM. These are given by sums of stationary centred sequences

which are either assumed to be Gaussian or to have a representation as a so-called

linear process and to ful�ll a certain moment condition, and for which the variance

of the sum increases asymptotically as cn2H for some c > 0, where H ∈ (0, 1) is

the Hurst parameter of the corresponding FBM. This in particular includes the

trivial discrete-time analogue of FBM, fractional Gaussian noise (BH
n ), but in fact

de�nes a much larger class of discrete-time processes. For this reason, starting with
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Molchan's result for the FBM from 1999, it took a long time to deduce a similar

result for discrete-time analogues of FBM. In particular, one had to �nd new proof

techniques which do not rely on self-similarity anymore, as this property does not

make sense for discrete-time processes. In [11, Theorem 11], it was shown that in

the case of sums (SH
n ) of stationary centred Gaussian sequences which additionally

satisfy infn∈N E[SH
n SH

1 ] > 0, it holds, for x ≥ 0,

c−1
x N−(1−H)(logN)−1/2 ≤ P

(︃
max

n=0,...,N
SH
n ≤ x

)︃
≤ N−(1−H)ecx

√
logN (1.20)

for some cx > 0 and N large enough. Note that the additional assumption

infn∈N E[SH
n SH

1 ] > 0 is only needed for the upper bound to pass over from the

persistence probability for the barrier −1 to the persistence probability for a barrier

x > 0. In [11], this is done for x = 1, but the argument works for any x > 0. Further

note that exactly this argument (which is a change of measure using functions in

the reproducing kernel Hilbert space; cf. Proposition 2.3) adds the factor ec
√
logN .

In the case H ≥ 1/2, under the stronger assumption of non-negative covariances of

the stationary centred Gaussian sequence, one could derive by Slepian's lemma (cf.

Proposition 2.1) the optimal upper bound cxN
−(1−H). Later, in [6, Corollary 8],

the strong assumption infn∈N E[SH
n SH

1 ] > 0 could be replaced by a rather moderate

assumption on the spectral measure of the stationary centred Gaussian sequence to

deduce the same result as in (1.20).

In [6], it was further shown that � analogously to the continuous-time case � the

two-sided persistence exponent of sums of stationary centred Gaussian sequences,

for which the variance of the sum increases asymptotically as cn2H and which sat-

isfy the assumption on the spectral measure, is given by 1, independent of H ([6,

Theorem 1]), and that the two-sided persistence exponent of integrals of these sums

(which are discrete-time analogues of IFBM) is given by 1 − H ([6, Theorem 2]).

Other results for discrete-time fractional processes include weighted sums of sta-

tionary centred Gaussian sequences (cf. [14]), random walks in random scenery (cf.

[11]), random walks in random environment (cf. [10]), and branching processes in

correlated random environment (cf. [24] and [10]).

Non-Gaussian fractional processes. Although most of the proof techniques

for the results that we discussed previously crucially rely on Gaussianity (cf. Chap-

ter 2), there are also a few results for persistence probabilities of non-Gaussian

fractional processes. In [15], persistence probabilties of so-called Hermite processes,
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which generalize the FBM to non-Gaussian H-self-similar processes with stationary

increments, were studied. One expects that these persistence probabilities all decay

asymptotically polynomially with persistence exponent 1−H, just as for the FBM.

This could be shown for the Hermite process of order 2, the so-called Rosenblatt pro-

cess, by establishing a decorrelation inequality similar to Slepian's inequality (which

requires Gaussianity and thus cannot be applied; cf. Proposition 2.1). For the Her-

mite processes of higher order, upper and lower bounds for persistence probabilities

with non-matching barriers were proven.

Furthermore, the proofs for the presented results for discrete-time fractional pro-

cesses only partially rely on Gaussianity and thus also yield (weaker) results for

non-Gaussian fractional processes. In particular, one can deduce the following re-

sult for non-Gaussian discrete-time analogues of FBM, which is not published in the

corresponding paper: As already mentioned, the non-Gaussian discrete-time ana-

logues for the FBM with Hurst parameter H ∈ (0, 1), given by the functional central

limit theorem [87, Theorem 4.6.1], are sums Sn =
∑︁n

i=1 Xi, n ∈ N, of stationary
centred sequences (Xi)i∈N, where V[Sn] ∼ cn2H for some c > 0 and n → ∞, and

additionally, (Xi) has a representation as a linear process and ful�lls some moment

condition. In this context, linear processes are of the form
∑︁

j∈Z ci−jξj, i ∈ N, where
(ξj) is the so-called innovation process � a centred i.i.d. sequence with �nite vari-

ance � and (cj) is a square-summable sequence of constants. If one further assumes

cj ≥ 0 for all j ∈ Z and E|ξ0|p < ∞ for all p > 2, the results of [11] imply

N−(1−H)+o(1) ≤ P
(︃

max
n=0,...,N

Sn ≤ 1

)︃
≤ cN−(1−H)

for some c > 0 and N → ∞. The upper bound is due to the fact that, by [31,

p. 63], the assumption cj ≥ 0 for all j ∈ Z implies that, for every i ∈ N, the
family X1, . . . , Xi of random variables is positively associated. Then, one applies

[11, Theorem 8] together with [11, Proposition 9]. Note that the condition of [11,

Theorem 8] is ful�lled for B := E[supt∈[0,1]B
H
t ] due to the fact that the functional

central limit theorem holds for (Sn) and that, by the association of X1, . . . , Xi

and [62, Theorem 2], one has E[(maxn=0,...,N Sn)
2] ≤ V[SN ] for N ∈ N so that

the renormalized maximum is bounded in L2. The lower bound follows from [11,

Theorem 5], together with the fact that, by [73, Theorem 1.4.1], the assumption

E|ξ0|p < ∞ for all p > 2 implies E[(S1)
β
−] = E[(X1)

β
−] ≤ E|X1|β < ∞ for all β > 2.

Note that [11, Theorem 5] even demands E[(S1)
β
−] < ∞ for all β > 0, but the

assumption is only used in the proof for large β.
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1.5 Outline

In Chapter 2, we will introduce the central tools for dealing with persistence prob-

abilities of self-similar centred Gaussian processes, which we will need in the proofs

of the results of Chapters 3 to 5. In particular, in Proposition 2.4, we will de-

duce a new result for the reproducing kernel Hilbert space (RKHS) of self-similar

centred Gaussian processes, which could be of independent interest, and which, to-

gether with Slepian's lemma, provides an easy way to derive the equality of the

persistence exponents of a self-similar centred Gaussian process and its Lamperti

transform. Later, in Chapter 4, this result on the RKHS will be crucial to prove

the persistence result for general mixed processes.

In Chapter 3, we will then consider the persistence probabilities of integrated FBM

(IFBM) and fractionally integrated Brownian motion (FIBM). In both cases, we

will show that the persistence exponent is a continuous function in the respective

Hurst parameter. Further, for the IFBM with Hurst parameterH, we will determine

the asymptotic behaviour of the persistence exponent at the boundaries 0 and 1 of

the domain of H, which is in accordance with the conjecture (1.7) of Molchan and

Khokhlov (Theorem 3.1). For the FIBM with Hurst paramter H, we will determine

the asymptotic behaviour of the persistence exponent for H → 0 (Theorem 3.2).

Thereafter, in Chapter 4, we will study persistence probabilities of mixed processes,

which are given by sums of self-similar centred Gaussian processes with di�erent

indices of self-similarity. We will �rst prove our main result, which states that under

the assumptions of non-negative covariances and some further minor conditions,

the persistence probability of the sum decays asymptotically polynomially with the

persistence exponent of the single process with the greater index of self-similarity

(Theorem 4.1). Afterwards, we will use this result to deduce corollaries for the

mixed FBM, the mixed IFBM and the mixed FIBM.

Lastly, in Chapter 5, we will consider the persistence probabilities of bifractional

Brownian motion (biFBM), which is a generalization of FBM, and of the fractional

Ornstein-Uhlenbeck (fOU) process. For the biFBM, we will prove lower and upper

bounds for subsets of the parameter domain which unfortunately do not intersect

(Proposition 5.1). For the fOU process with Hurst parameter H, we will show that

for H > 1/2, the persistence probability does not have a true exponential decay,

i.e., the persistence exponent equals zero (Proposition 5.5).
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Remark. This thesis is mainly based on the articles [12] and [13]; see also the remarks

at the end of each chapter.
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Chapter 2

Fundamental tools

In this chapter, we present the general tools which will help us in Chapters 3 to

5 to deal with persistence probabilities of self-similar centred Gaussian processes.

First, in Section 2.1, we recall Slepian's lemma, which turns an inequality for the

covariances of two centred Gaussian random vectors with same variances into an in-

equality for their persistence probabilities. In Section 2.2, we will then explain how

self-similar processes can be transformed via the so-called Lamperti transforma-

tion into stationary processes and what this means for their respective persistence

probabilities. This is relevant since one consequence of Slepian's lemma is that

for stationary centred Gaussian processes with a non-negative covariance function

(and some additional condition on the sample paths), the persistence exponent as in

(1.15) exists. Subsequently, in Section 2.3, we will introduce the so-called reproduc-

ing kernel Hilbert space (RKHS), for which it is well-known that shifts by elements

of this function space do not change the persistence exponent in the case it exists.

Afterwards, we will show a new result for the RKHS of self-similar centred Gaussian

processes, which allows us to state general conditions under which the persistence

exponents of a self-similar process and its Lamperti transform are identical, and

which will help us in Chapter 4 to prove the main theorem.

2.1 Slepian's lemma

As the name suggests, Slepian's lemma in its original version was proven in [79,

Lemma 1] by Slepian, where the probabilities of two centred Gaussian random

21



22 CHAPTER 2. FUNDAMENTAL TOOLS

vectors being non-negative, respectively, were estimated. In the usual, more general

form, see e.g. [42, Corollary 3.12], the statement is as follows:

For n ∈ N, let (X1, . . . , Xn) and (Y1, . . . , Yn) be centred Gaussian random vectors

in Rn, respectively, such that E[X2
i ] = E[Y 2

i ] and E[XiXj] ≤ E[YiYj] for all i, j =

1, . . . , n. Then, for all (x1, . . . , xn) ∈ Rn,

P(Xi ≤ xi ∀i = 1, . . . , n) ≤ P(Yi ≤ xi ∀i = 1, . . . , n). (2.1)

By setting xi :≡ x, one directly concludes that in the discrete-time case, an in-

equality in the covariance functions of centred Gaussian processes with identical

variances implies the same inequality in the persistence probabilities. Due to the

continuity of P, the inequality (2.1) also holds for n = ∞, i.e., for countable families

X and Y of random variables. To be able to go over to continuous-time processes

X and Y, the natural additional assumption is separability, since in this case, their

suprema are determined by countable subsets of time indices.

Recall that a real-valued stochastic process (Xt)t∈T on a probability space (Ω,F ,P),
with (T, d) being a separable metric space (e.g. [0, T ] or [0,∞) with the Euclidean

metric), is called separable if there exists a countable subset D ⊆ T and a set

Ω0 ∈ F of probability P(Ω0) = 0 such that, for every t ∈ T, ε > 0 and ω ∈ Ωc
0,

Xt(ω) ∈ {Xs(ω) : s ∈ D, d(s, t) < ε},

where the closure is taken in R ∪ {∞}, see e.g. [42, p. 45]. In view of the fact that

we want to consider processes (Xt)t≥0 with a.s. càdlàg paths in Chapter 4, note that

a.s. right-continuous sample paths imply separability, by taking e.g.D := Q∩[0,∞).

Then, the continuous-time analogue of (2.1) is given as follows, which is [19,

Lemma 1.2.5].

Proposition 2.1. Let (T, d) be a separable metric space, (Xt)t∈T and (Yt)t∈T be two

real-valued separable centred Gaussian processes, and f : T → R be a measurable

function whose set of discontinuity points is at most countable.

(a) If E[X2
t ] = E[Y 2

t ] and E[XsXt] ≤ E[YsYt] for all s, t ∈ T, then

P(Xt ≤ f(t)∀t ∈ T) ≤ P(Yt ≤ f(t)∀t ∈ T).

(b) If T = [0,∞) and E[XsXt] ≥ 0 for all s, t ≥ 0, then, for all T1, T2 > 0,

P(Xt ≤ f(t)∀t ∈ [0, T1]) · P(Xt ≤ f(t)∀t ∈ [T1, T1 + T2])

≤ P(Xt ≤ f(t)∀t ∈ [0, T1 + T2]).
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Note that part (b) directly follows from part (a) by considering the process (X̃ t)t≥0

given by Kolmogorov's existence theorem, for which (X̃ t)t<T1

d
= (Xt)t<T1 as well

as (X̃ t)t≥T1

d
= (Xt)t≥T1 , and for which (X̃ t)t<T1 and (X̃ t)t≥T1 are independent, and

taking a separable modi�cation, which is possible by construction and due to the

fact that X is separable.

2.2 Lamperti transformation

For H > 0, let X = (Xt)t>0 be an H-self-similar process, i.e., for all c > 0, it holds

(Xct)
d
= (cHXt). It is easy to see that then, the so-called Lamperti transform of X,

given by

Zτ := e−τHXeτ , τ ∈ R,

is a stationary process, i.e., (Zτ+h)
d
= (Zτ ) for all h ∈ R. Also conversely, if (Zτ )τ∈R

is a stationary process, setting Xt := tHZlog t, t > 0, yields an H-self-similar process

so that there is a bijective relation between H-self-similar processes on (0,∞) and

stationary processes on R.

Persistence probabilities of a self-similar process X and its Lamperti transform Z

are related as follows. One has, by de�nition of the Lamperti transform, for the

persistence probability of Z with barrier x ∈ R,

P

(︄
sup

τ∈[0,T ]

Zτ ≤ x

)︄
= P

(︄
sup

t∈[1,eT ]

Xt − x tH ≤ 0

)︄
, T > 0. (2.2)

For x := 0, the right hand side looks quite similar to the persistence probability

of the self-similar X as de�ned in (1.1), where we explained that changing the

(constant) barrier does not a�ect the asymptotic polynomial order of the persistence

probability in the self-similar setup. Thus, if indeed

P

(︄
sup

τ∈[0,T ]

Zτ ≤ 0

)︄
= e−T (θ+o(1)), T → ∞, (2.3)

for some persistence exponent θ ∈ (0,∞), it seems plausible that also

P

(︄
sup

t∈[0,T ]

Xt ≤ 1

)︄
= T−θ+o(1), T → ∞, (2.4)

with the same exponent θ, which we have already seen for fractional Brownian

motion and its Lamperti transform. In the following, we want to develop su�-
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cient conditions under which this is true for general self-similar centred Gaussian

processes.

We start with a result stating su�cient conditions under which (2.3) holds, which

essentially is a consequence of Slepian's lemma.

Proposition 2.2. Let (Zτ )τ≥0 be a separable stationary centred Gaussian process

with a non-negative auto-covariance function r(τ) := E[Z0Zτ ], τ ≥ 0. Then, for

every x ∈ R, the persistence exponent

θx(Z) := − lim
T→∞

1

T
logP

(︄
sup

τ∈[0,T ]

Zτ ≤ x

)︄
∈ [0,∞]

exists. If, moreover, Z is a.s. right-continuous at 0 and r is not the zero function,

then

θx(Z) ∈ [0,∞) for all x ∈ R.

If, moreover, Z has a.s. càdlàg sample paths and
∫︁∞
0

r(τ) dτ < ∞, then

θx(Z) ∈ (0,∞) for all x ∈ R.

Proof. The �rst statement (existence in [0,∞]) is a direct consequence from Propo-

sition 2.1 (b), implying due to stationarity that − logP
(︁
supτ∈[0,T ] Zτ ≤ x

)︁
, T > 0, is

subadditive, and Fekete's lemma (see e.g. [82, Lemma 1.2.1]). In particular, Fekete's

lemma yields

θx(Z) = inf
T>0

− logP
(︁
supτ∈[0,T ] Zτ ≤ x

)︁
T

,

which is clearly in [0,∞] and equals ∞ if and only if P
(︁
supτ∈[0,T ] Zτ ≤ x

)︁
= 0 for

all T > 0. In this case, continuity of P implies

0 ≥ lim
T→0

P

(︄
sup

τ∈[0,T ]

Zτ < x

)︄
= P

(︄ ⋃︂
T>0, T∈Q

{︄
sup

τ∈[0,T ]

Zτ < x

}︄)︄
,

which equals P(Z0 < x) if Z is a.s. right-continuous at 0. If r is not the zero

function, Z0 is non-trivially normal distributed so that P(Z0 < x) > 0, implying the

second statement.

The third statement can be proven by basically performing exactly the steps in the

proof of [14, Lemma 3.2(a)]. But since the result there assumes a.s. continuous

sample paths and the proof is not too long, we include it here.
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Fix M > 1 and set si := Mi for i ∈ N0. Then, for T > M and N := ⌊ T
M
⌋, one

estimates

P

(︄
sup

τ∈[0,T ]

Zτ ≤ x

)︄
≤ P

(︄
max

i=0,...,N−1
sup

τ∈[si,si+1]

Zτ ≤ x

)︄

≤ P
(︃

max
i=0,...,N−1

∫︂ si+1

si

Zτ dτ ≤ x

)︃
, (2.5)

where the integral in the last probability is well-de�ned, since it is a.s. an integral

of a càdlàg function over a �nite interval. Let us set ζ2 :=
∫︁ 1

0

∫︁ 1

0
r(|τ1 − τ2|) dτ1 dτ2

and Xi := ζ−1
∫︁ si+1

si
Zτ dτ for i ∈ N0. Then, the right-hand side of (2.5) equals

P(maxi=0,...,N−1Xi ≤ ζ−1x) and (Xi)i∈N0 is a stationary centred Gaussian process

due to the fact that Z is. Consequently, (X0, . . . , XN−1) is a centred Gaussian

vector with covariance matrix

B(i, j) = B(0, |i− j|) = ζ−2

∫︂ 1

0

∫︂ s|i−j|+1

s|i−j|

r(|τ1 − τ2|) dτ1 dτ2, i, j = 0, . . . , N − 1.

We estimate, by using the non-negativity of r,

max
i=0,...,N−1

∑︂
j ̸=i

B(0, |i− j|) ≤ 2
N−1∑︂
i=1

B(0, i) ≤ 2 ζ−2

∫︂ 1

0

∫︂ ∞

M

r(τ1 − τ2) dτ1 dτ2

≤ 2 ζ−2

∫︂ ∞

M−1

r(τ) dτ =: εM ,

where limM→∞ εM = 0, as
∫︁∞
0

r(τ) dτ < ∞ by assumption. Thus, the Gershgorin

discs (cf. [36]) are centred at B(0, 0) = 1 and have radius at most εM . Since B is

real and symmetric, all eigenvalues of B are real and Gershgorin's circle theorem

yields that all eigenvalues lie within [1− εM , 1 + εM ]. We get

P
(︃

max
i=0,...,N−1

Xi ≤ ζ−1x

)︃
=

∫︂
(−∞, ζ−1x)N

(2π)−N/2(detB)−1/2e−zTB−1z/2 dz

≤ (2π(1− εM))−N/2 P
(︃
N (0, 1) ≤ ζ−1x√

1− εM

)︃N

=: βN
M ,

where limM→∞ βM = 1√
2π

P(N (0, 1) ≤ ζ−1x) < 1. Thus, there exists M0 > 1

such that βM0 < 1. Together with (2.5), we get, for T > M0, the estimate

P
(︁
supτ∈[0,T ] Zτ ≤ x

)︁
≤ βN

M0
. Taking logarithms, dividing by T and letting T → ∞,

this yields −θx(Z) ≤ log(βM0)/M0 < 0 and thus the assertion.

For a long time, the comparatively strong assumption of non-negative covariances

had been the only condition for which the existence of the persistence exponent of
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general stationary centred Gaussian processes had been known. Recently, in [35],

this assumption could be replaced by a rather moderate assumption on the spectral

measure of the stationary process. In this thesis, though, the existence result as in

Proposition 2.2 is completely adequate for our purposes.

Suppose (Xt)t≥0 is a separable self-similar centred Gaussian process with a non-

negative covariance function. Then, its Lamperti transform (Zτ )τ∈R is a separable

stationary centred Gaussian process with a non-negative auto-covariance function

and Proposition 2.2 yields (2.3) for a persistence exponent θ ∈ [0,∞]. By (2.2), this

implies P
(︁
supt∈[1,T ] Xt ≤ 0

)︁
= T−θ+o(1) for T → ∞. Now, (2.4) follows, if one is able

to show that P
(︁
supt∈[1,T ]Xt ≤ 0

)︁
and P

(︁
supt∈[0,T ] Xt ≤ 1

)︁
have the same asymptotic

polynomial order for T → ∞. Let us now explain how this can be done.

The typical approach is to show inequalities in both directions. One direction is a

direct consequence of Proposition 2.1(b). Due to non-negative covariances,

P

(︄
sup

t∈[0,T ]

Xt ≤ 1

)︄
≥ P

(︄
sup
t∈[0,1]

Xt ≤ 1

)︄
· P

(︄
sup

t∈[1,T ]

Xt ≤ 1

)︄

≥ P

(︄
sup
t∈[0,1]

Xt ≤ 1

)︄
· P

(︄
sup

t∈[1,T ]

Xt ≤ 0

)︄
= T−θ+o(1), T → ∞.

(2.6)

Note that the last equality is trivial for θ = ∞, whereas for θ < ∞, the fact that

P(supt∈[x,1]Xt ≤ 0) = P(supt∈[1,1/x] Xt ≤ 0) = xθ+o(1) for x → 0 implies that

P

(︄
sup
t∈[0,1]

Xt ≤ 1

)︄
≥ P

(︄
sup
t∈[0,x]

Xt ≤ 1

)︄
· P

(︄
sup
t∈[x,1]

Xt ≤ 0

)︄
> 0

for some x > 0.

For the inverse direction, it is useful to see that

P

(︄
sup

t∈[1,T ]

Xt ≤ 0

)︄
≥ P

(︄
sup

t∈[0,T ]

Xt + h(t) ≤ 1

)︄
(2.7)

holds for any (deterministic) measurable function h : [0,∞) → R satisfying h(t) ≥ 1

for all t ≥ 1. In view of this estimate, it su�ces to show that there exists such a

function h for which additionally holds that the persistence probabilities of X and

of the shifted process X + h have the same asymptotic polynomial order. As we

will see in the next section, this is the case, if X has a.s. càdlàg sample paths and

if there exists such h in the so-called reproducing kernel Hilbert space of X.
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2.3 Reproducing kernel Hilbert space

Recall that for a non-empty set T and a kernel K : T × T → R, a Hilbert space

H ⊆ {f : T → R} with inner product ⟨·, ·⟩H is called reproducing kernel Hilbert

space (RKHS) with reproducing kernel K, if

kt := K(·, t) ∈ H for all t ∈ T, and (2.8)

h(t) = ⟨h, kt⟩H for all t ∈ T and all h ∈ H. (2.9)

Further recall that such an RKHS exists if and only if K is symmetric and positive

de�nite and the RKHS is unique in this case, see e.g. [71, Theorem 2.2]. Thus,

there is a bijective relation between centred Gaussian processes and RKHSs, by

considering covariance functions as reproducing kernels.

For a centred Gaussian process X = (Xt)t∈T, let us denote by HX the RKHS of X,

i.e., the RKHS with reproducing kernel K(s, t) := E[XsXt], s, t ∈ T. It is easy to

see that

HX =
{︂
t ↦→ E[ξXt]

⃓⃓⃓
ξ ∈ HX := span{Xt : t ∈ T}

}︂
, (2.10)

where the closure is in L2. This is due to the fact that ξ ∈ span{Xt : t ∈ T} is

mapped linearly to h := E[ξX·] ∈ span{kt : t ∈ T} with ⟨h1, h2⟩HX
= ⟨ξ1, ξ2⟩L2 , that

span{Xt : t ∈ T} is dense in HX , and that span{kt : t ∈ T} is dense in HX . Note

here that property (2.8) ensures that span{kt : t ∈ T} ⊆ HX , whereas property (2.9)

implies that 0 ∈ HX is the only element orthogonal to span{kt : t ∈ T}, so that this
is indeed a dense subspace of HX .

As already mentioned, the importance of the RKHS in the context of persistence is

that, if some condition on the sample paths of X is satis�ed, shifts by functions in

the RKHS of X do not change the asymptotic polynomial order of the persistence

probability of X. This is a consequence of the fact that functions in the RKHS of

X are so-called admissible shifts, i.e., functions h for which the distribution of the

shifted process X + h is absolutely continuous w.r.t. the distribution of the process

X. Let us recall this result, which is the so-called Cameron-Martin formula, see

e.g. [44, Theorems 9.3/9.4].

Let X be a centred Gaussian process taking values in some topological space E such

that the distribution of X on E is a Radon measure, where E is the Borel-σ-algebra

of E, i.e.,

P(X ∈ A) = sup{P(X ∈ B) : B ⊆ A, B ∈ E , B compact} (2.11)
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for all A ∈ E . Then, for all A ∈ E and h := E[ξX·] ∈ HX =: H, where ξ ∈ HX , it

holds

P(X + h ∈ A) = E
[︂
eξ−∥h∥2H/2

1X∈A

]︂
. (2.12)

Note that this result is quite elementary in the �nite-dimensional case: For n ∈ N,
let E := Rn with the Euclidean topology and X ∼ N (0, K), where K ∈ Rn×n is a

symmetric positive-de�nite matrix. Then, we have

HX ⊆ Rn = {Kλ : λ ∈ Rn} = span{kt : t = 1, . . . , n} ⊆ HX ,

i.e., all shifts are admissible, and HX = {λTX : λ ∈ Rn}. One easily deduces that,

for h = Kλ ∈ Rn, ξ = λTX and A ∈ B(Rn), it indeed holds√︁
(2π)n detK P(X + h ∈ A) =

∫︂
A−h

e−zTK−1z/2 dz

=

∫︂
A

e−(z−h)TK−1(z−h)/2 dz

=

∫︂
A

e−zTK−1z/2+λT z−λTKλ/2 dz

=
√︁

(2π)n detK E
[︂
eξ−∥h∥2H/2

1X∈A

]︂
,

where we used that ∥h∥2H = ∥ξ∥2L2 = E[(λTX)2] = λTKλ.

In the in�nite-dimensional case, however, this is highly non-trivial and we refer to

[44] for the proof. By applying Hölder's inequality and the reverse Hölder inequality,

respectively, for arbitrary p > 1 to the right-hand side of (2.12) and then optimizing

in p, the Cameron-Martin formula implies the following upper and lower bounds for

the quotient P(X + h ∈ A)/P(X ∈ A), which is [9, Proposition 1.6].

Proposition 2.3. Let X be a centred Gaussian process taking values in some topo-

logical space E such that the distribution of X on E is a Radon measure, where E

is the Borel-σ-algebra of E. Then, for all A ∈ E with P(X ∈ A) ∈ (0, 1) and all

h ∈ HX =: H, it holds

P(X + h ∈ A)

P(X ∈ A)
≥ e−

√
2∥h∥2H log(1/P(X∈A))−∥h∥2H/2.

If additionally ∥h∥2H < 2 log(1/P(X ∈ A)), then also

P(X + h ∈ A)

P(X ∈ A)
≤ e

√
2∥h∥2H log(1/P(X∈A))−∥h∥2H/2.

Remark. (i) The assumption (2.11) is always satis�ed if E is a separable complete

metric space, since in this case, every probability measure on E is a Radon

measure, see [20, Theorems 1.1/1.4].
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(ii) In [9, Proposition 1.6], it is assumed that E is a Banach space, but this is

used in the proof only to be able to apply the Cameron-Martin formula. As

we want to consider processes (Xt)t≥0 with a.s. càdlàg sample paths and thus

take E := D[0,∞) with the Skorokhod topology, we need the more general

assumptions made in [44, Theorem 9.3].

(iii) In [9, Proposition 1.6], the upper bound is stated without the additional as-

sumption. However, it is proven by applying Hölder's inequality for p =(︂
1−

√︁
∥h∥2H/(2 log(1/P(X ∈ A)))

)︂−1

, which is not well-de�ned without the

additional assumption, see also [6, Proposition 3]. Nevertheless, note that in

the context of persistence, the typical application is to consider A := AT ∈ E

such that limT→∞ P(X ∈ AT ) = 0, and that in this case, the condition is

always ful�lled for T large enough.

Before we present the mentioned result for the RKHS of self-similar centred Gaus-

sian processes, let us consider the RKHS HW of a Brownian motion W = (Wt)t≥0,

which is given by

HW =

{︃
h : [0,∞) → R

⃓⃓⃓⃓
h(0) = 0, h is di�erentiable a.e.,

∫︂ ∞

0

(h′(t))2 dt < ∞
}︃

(2.13)

with inner product ⟨h1, h2⟩HW
=
∫︁∞
0

h′
1(t)h

′
2(t) dt. This is due to the fact that in

this case, we have kt(s) = s∧ t for s, t ≥ 0. Note that span{kt : t ≥ 0} is a subspace

of the right-hand side of (2.13), and that by property (2.9) of HW , it holds

⟨ks, kt⟩HW
= s ∧ t =

∫︂ s∧t

0

1 du =

∫︂ ∞

0

(s ∧ u)′(t ∧ u)′ du =

∫︂ ∞

0

k′
s(u)k

′
t(u) du

for s, t ≥ 0. Together with the fact that the derivatives of elements of span{kt : t ≥
0} � piecewise constant functions with compact support � are dense in the space of

continuous functions with compact support, which again are dense in L2([0,∞)),

this implies the identity (2.13).

Thus, there are functions in the RKHS of W growing faster than tγ for t → ∞ if

and only if γ < 1/2. Recall here that we have already seen in Section 1.3 that the

persistence exponent of the OU process depends on the barrier x, which in view

of (2.2) means that HW cannot contain any function growing as t1/2. It seems

plausible that for general H-self-similar centred Gaussian processes, this transfers

in the sense that one can take γ < H. Still, this has only been known for speci�c

processes, such as fractional Brownian motion (cf. [18, Section 4] for H > 1/2
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and [65, Section 6] for general H ∈ (0, 1)), integrated fractional Brownian motion

(by using the result for fractional Brownian motion and representation (2.10)) or

fractionally integrated Brownian motion (by using representation (2.10) and the

seen result (2.13) for Brownian motion).

In the following, we will show that for general H-self-similar centred Gaussian pro-

cesses ful�lling some additional assumptions, there exists a function h in the RKHS

growing faster than tγ for any γ < H, which will be crucial in the proof of Theorem

4.1. Secondary, we will show that this function can be chosen in a way such that

h(t) ≥ 1 for t ≥ 1. Thus, it will also be suitable for the estimate (2.7) to deduce the

equality of the persistence exponents of the self-similar process and its Lamperti

transform.

This will be done by going over to the Lamperti transform and using a representation

of the RKHS of Gaussian stationary processes (GSPs) with a continuous auto-

covariance function via the spectral measure. Recall that for a GSP Z = (Zτ )τ∈R

with a continuous auto-covariance function r(τ) := cov(Z0, Zτ ), τ ∈ R, Bochner's
theorem provides a unique �nite measure µ on (R,B(R)), satisfying

r(τ) =

∫︂
R
eiτx dµ(x), τ ∈ R, (2.14)

which is called spectral measure of Z, see e.g. [4, Theorem 1.2.7]. The RKHS of Z

can then be written in the form

HZ =

{︃
τ ↦→

∫︂
R
φ(x)e−iτx dµ(x)

⃓⃓⃓⃓
φ ∈ L2(µ)

}︃
. (2.15)

This is due to the fact that, by (2.14), it holds
∫︁
R e

itxe−iτx dµ(x) = kt(τ) for t, τ ∈ R.
Thus, φ ∈ span{eit · : t ∈ R} is mapped linearly to h :=

∫︁
R φ(x)e

−ix · dµ(x) ∈
span{kt : t ∈ R} with ⟨h1, h2⟩HZ

= ⟨φ1, φ2⟩L2(µ). Further, since µ is �nite, the

subspace span{eit · : t ∈ R} is dense in L2(µ).

Using this representation, we �rst get the following result for the RKHS of Z.

Proposition 2.4. Let Z = (Zτ )τ∈R be a real-valued GSP with a continuous auto-

covariance function. If the spectral measure of Z is abolutely continuous w.r.t. the

Lebesgue measure in some neighbourhood of the origin and the corresponding spectral

density is bounded away from zero, then for every α ∈ (0, 1/2), there exists h ∈ HZ

satisfying h(τ) ∼ c τα−1 for τ → ∞ and some c > 0 as well as h(τ) > 0 for τ ≥ 0.

Remark. Note that, by (2.15), if the spectral density p exists on whole R, any
function h ∈ HZ in the RKHS of Z is the Fourier transform of a function of the
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form φ · p, where φ ∈ L2(µ). In view of Tauberian theorems for Fourier transforms,

see e.g. [21, Theorem 4.10.3], one would expect that h(τ) ∼ c τα−1 holds for τ → ∞
and some α ∈ (0, 1) if and only if φ(x)p(x) ∼ c′ x−α for x → 0, which is in accordance

with the condition α ∈ (0, 1/2).

Proof. Let α ∈ (0, 1/2). Similary to the proof of [6, Proposition 5], we will �rst

construct a function h1 ∈ HZ with the desired asymptotic behaviour, which un-

fortunately may attain non-positive values up to some τ0 > 0. Afterwards, we

will show the existence of another function h2 ∈ HZ which is non-negative on

[0,∞), even positive on [0, τ0], and decays faster than h1. Then, the function

h := h1 + 2maxτ∈[0,τ0] |h1(τ)|/minτ∈[0,τ0] h2(τ) · h2 yields the assertion.

By assumption, there exists a spectral density p : (−x0, x0) → [c0,∞) of µ|(−x0,x0)

for some c0, x0 > 0, where µ denotes the spectral measure of Z.

Construction of h1: We set φ1(x) := 1|x|<x0 |x|−α/p(x). Then, we have∫︂
R
φ2
1(x) dµ(x) = 2

∫︂ x0

0

x−2α/p(x) dx ≤ 2 c−1
0

∫︂ x0

0

x−2α dx < ∞

as α < 1/2. Thus φ1 ∈ L2(µ). For the h1 corresponding to φ1 (as in (2.15)), we get

h1(τ) =

∫︂
R
φ1(x)e

−iτx dµ(x) =

∫︂
R
φ1(x) cos(τx) dµ(x)

= 2

∫︂ x0

0

x−α cos(τx) dx = 2τα−1

∫︂ τx0

0

y−α cos(y) dy ∼ c τα−1

for c := 2
∫︁∞
0

y−α cos(y) dy and τ → ∞. Note that due to α < 1, the fact that ·−α is

decreasing and ful�lls limx→∞ x−α = 0, the fact that the integrals of cos(·) over any
interval are uniformly bounded, and Dirichlet's test, the integral in the de�nition

of c exists and is positive. Further note that this fails for α ≤ 0.

Construction of h2: Due to the asymptotic behaviour of h1, there exists τ0 > π/x0

such that h1(τ) > 0 for τ ≥ τ0. Let g : R → [0,∞) be a smooth even function with

g(x) > 0 for |x| < π/(2τ0) and g(x) = 0 otherwise.

We set f := g ∗ g and φ2(x) := 1|x|<π/τ0 f(x)/p(x). Then φ2 ∈ L2(µ) as∫︂
R
φ2
2(x) dµ(x) =

∫︂ π/τ0

−π/τ0

f 2(x)/p(x) dx ≤
2πmaxx∈[−π/τ0,π/τ0] f

2(x)

c0τ0
< ∞,

where we used that π/τ0 < x0. Note that by de�nition of f and g, we have f(x) = 0
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for |x| ≥ π/τ0. Thus, the h2 corresponding to φ2 ful�lls

h2(τ) =

∫︂
R
φ2(x)e

−iτx dµ(x) =

∫︂
R
f(x)e−iτx dx

=

(︃∫︂
R
g(x)e−iτx dx

)︃2

=

(︃∫︂
R
g(x) cos(τx) dx

)︃2

⎧⎨⎩> 0, if |τ | ≤ τ0,

≥ 0, otherwise,

where we used in the second line that the Fourier transform of a convolution is given

by the product of the Fourier transforms of the convoluted functions as well as that

g vanishes outside of (−π/(2τ0), π/(2τ0)) by de�nition. Furthermore, by integration

by parts, we have

h2(τ) =

∫︂
R
f(x)e−iτx dx =

1

(iτ)2

∫︂
R
f ′′(x)e−iτx dx

≤
2πmaxx∈[−π/τ0,π/τ0] |f ′′(x)|

τ0
· τ−2.

Applying this to the Lamperti transform of a self-similar process gives the following

corollary.

Corollary 2.5. For H > 0, let X = (Xt)t≥0 be an H-self-similar process such that

the Lamperti transform of X satis�es the conditions of Proposition 2.4. Then, for

every α ∈ (0, 1/2), there exists h ∈ HX satisfying h(t) ∼ c tH(log t)α−1 for t → ∞
and some c > 0 as well as h(t) ≥ 1 for t ≥ 1.

Proof. Let α ∈ (0, 1/2) and Zτ := e−τHXeτ , τ ∈ R, be the Lamperti transform of

X. Proposition 2.4 yields the existence of a function h̃ ∈ HZ and c0 > 0 such that

h̃(τ) ∼ c0 τ
α−1 for τ → ∞ and h̃(τ) > 0 for all τ ≥ 0.

By representation (2.10), this implies that there exists a random variable ξ ∈ HZ

such that h̃(τ) = E[ξZτ ], τ ∈ R. Plugging in the de�nition of Z, this gives

eτH h̃(τ) = E[ξXeτ ] for τ ∈ R and h0(t) := tH h̃(log t) = E[ξXt] for t > 0. Since

span{Zτ : τ ∈ R} = span{Xt : t > 0} and thus HZ = HX , we get h0 ∈ HX , by using

again (2.10). Further, h0 is a continuous function (by the continuity of the covari-

ance function) and satis�es h0(t) ∼ c0 t
H(log t)α−1 for t → ∞ as well as h0(t) > 0

for all t ≥ 1. In particular, we have h0(t) → ∞ for t → ∞. Thus, there exists

t0 > 1 such that h0(t) ≥ 1 for t ≥ t0. Setting h := h0/(mint∈[1,t0] h0(t) ∧ 1) yields

the assertion for c := c0/(mint∈[1,t0] h0(t) ∧ 1).

Finally, we deduce the result giving su�cient conditions under which the persistence

exponents of X and Z coincide.
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Corollary 2.6. For H > 0, let (Xt)t≥0 be an H-self-similar centred Gaussian pro-

cess with a.s. càdlàg sample paths and Zτ := e−τHXeτ , τ ∈ R, be its Lamperti

transform. Let us further assume that the auto-covariance function of Z is contin-

uous, non-negative, integrable and not the zero function. Then, it holds

P

(︄
sup

t∈[0,T ]

Xt ≤ 1

)︄
= T−θ+o(1), T → ∞,

where θ := − limT→∞
1
T
logP

(︁
supτ∈[0,T ] Zτ ≤ 0

)︁
∈ (0,∞).

Proof. The existence of θ = θ0(Z) ∈ (0,∞) follows from Proposition 2.2. Further,

we have already seen in (2.6) that the non-negativity of the covariance function

implies P
(︁
supt∈[0,T ] Xt ≤ 1

)︁
≥ T−θ+o(1).

For the upper bound, we want to apply Proposition 2.3 for the process X and the

function h ∈ HX given by Corollary 2.5. Note that, since r(τ) := E[Z0Zτ ], τ ∈ R,
is assumed to be integrable and � by de�nition of the spectral measure µ of Z (cf.

(2.14)) � represents the characteristic function of the �nite measure µ, the inversion

theorem for characteristic functions yields dµ(x) = p(x) dx on R with the density

p(x) =
1

2π

∫︂
R
e−iτxr(τ) dτ → 1

2π

∫︂
R
r(τ) dτ ∈ (0,∞), x → 0,

so that the conditions of Corollary 2.5 are ful�lled.

By assumption, X takes values in D[0,∞), the space of càdlàg functions on [0,∞).

In [86, Theorem 2.6], it is shown thatD[0,∞) together with the Skorokhod topology

is metrizable as a separable complete metric space so that, as already mentioned in

the remark after Proposition 2.3, every probability measure on this space is a Radon

measure. In particular, the distribution of X on the Borel-σ-algebra w.r.t. the

Skorokhod topology ful�lls the assumption (2.11) and Proposition 2.3 is applicable.

We take A := AT := {f ∈ D[0,∞) : supt∈[0,T ) f(t) ≤ 1}, which is closed w.r.t. the

Skorokhod topology and thus element of the Borel-σ-algebra. Indeed, if (fn) ⊆
AT converges to f0 ∈ D[0,∞), then the Skorokhod convergence implies pointwise

convergence for all continuity points of f0. Consequently, it holds f0(t) ≤ 1 for

all continuity points t ∈ [0, T ). By choice of the interval [0, T ) and due to right-

continuity of f0, this already implies f0(t) ≤ 1 for all t ∈ [0, T ) and thus f0 ∈ AT .
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Hence, Proposition 2.3 yields

P

(︄
sup

t∈[0,T ]

Xt ≤ 1

)︄
≤ P(X ∈ AT )

≤ P(X + h ∈ AT ) e
√

2∥h∥2H log(1/P(X∈AT ))+∥h∥2H/2

≤ P(X + h ∈ AT ) e
√

2∥h∥2H(θ+o(1)) log T+∥h∥2H/2

≤ P

(︄
sup

t∈[1,T ]

Xt ≤ 0

)︄
e(1+o(1))

√
2∥h∥2Hθ log T = T−θ+o(1), T → ∞,

where we used that supt∈[0,T ] Xt ≤ 1 implies supt∈[0,T ) Xt ≤ 1 in the �rst, the lower

bound of Proposition 2.3 in the second, (2.6) in the third and (2.7) in the fourth

step. Recall that here we use the property h(t) ≥ 1 for t ≥ 1, in the way that in

this case, Xt + h(t) ≤ 1 for t ∈ [0, T ) implies Xt ≤ 1 − h(t) ≤ 0 for t ∈ [1, T ). To

deduce the fourth step, we further use that supt∈[1,T ) Xt = supt∈[1,T ] Xt holds a.s.,

since X is even a.s. continuous at any �xed deterministic time.

Remark. Proposition 2.4 and Corollary 2.5 appeared in the journal Journal of

Physics A: Mathematical and Theoretical in the article Persistence probabilities of

mixed FBM and other mixed processes, see [13, Lemma 7 / Corollary 8].



Chapter 3

Persistence probabilities of

integrated fractional Brownian

motion and fractionally integrated

Brownian motion

In this chapter, we are concerned with the persistence probabilities of two related

processes � the integrated fractional Brownian motion (IFBM) and the fractionally

integrated Brownian motion (FIBM) � and determine the asymptotic behaviour of

the persistence exponents at the boundaries of their respective domain of the Hurst

parameter.

3.1 Introduction and main results

Recall that for H ∈ (0, 1), the IFBM IH = (IHt )t≥0 is given by

IHt :=

∫︂ t

0

BH
s ds, t ≥ 0,

where (BH
t )t≥0 is an FBM with Hurst parameter H. Note that the H-self-similarity

of BH implies that IH is (H + 1)-self-similar. As we will see, the auto-covariance

function of the Lamperti transform of IH is continuous, non-negative and integrable

35
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so that Corollary 2.6 implies the existence of the persistence exponent

θI(H) := − lim
T→∞

1

log T
logP

(︄
sup

t∈[0,T ]

IHt ≤ 1

)︄
∈ (0,∞).

However, as already mentioned in Section 1.3, its value is unknown unless H = 1/2.

Recall that I1/2 is integrated Brownian motion, where it was shown via Markov

techniques that θI(1/2) = 1/4 (cf. (1.6)). Further recall that for the general case

H ∈ (0, 1), there are some analytical estimates (see (1.9), (1.10) and Figure 1.1)

and the conjecture (1.7).

We show that θI is continuous and determine the asymptotic behaviour of θI(H)

for H → 0 and H → 1, which is in accordance with the conjecture (1.7). This is

our �rst main result in this chapter.

Theorem 3.1. The function H ↦→ θI(H) is continuous on (0, 1). Further, θI(H) ∼
H as H → 0 and θI(H) ∼ 1−H as H → 1.

For the second result, recall that for H > 0, the FIBM RH = (RH
t )t≥0, also known

as Riemann-Liouville process, is given by

RH
t :=

∫︂ t

0

(t− s)H− 1
2 dWs, t ≥ 0,

whereW = (Wt)t≥0 is a Brownian motion. Note that RH is H-self-similar due to the

fact that W is 1/2-self-similar. Again, we will see that the auto-covariance function

of the Lamperti transform of RH is continuous, non-negative and integrable so that,

by Corollary 2.6, also the persistence exponent

θR(H) := − lim
T→∞

1

log T
logP

(︄
sup

t∈[0,T ]

RH
t ≤ 1

)︄
∈ (0,∞)

exists. However, similarly to the IFBM, its value is unknown except for the Brown-

ian cases. Recall that a Fubini argument shows that, for n ∈ N0, the FIBM Rn+1/2

is the n-times integrated version of the Brownian motion W (cf. (1.11) and (1.12)).

Thus, it holds θR(1/2) = 1/2 (Brownian motion) and θR(3/2) = 1/4 (integrated

Brownian motion). Further recall that θR is non-increasing on [1/2,∞) (cf. [9]).

We show that θR is continuous and that, for H → 0, the exponent θR(H) tends to

in�nity and is in the range H−1 to H−2. This is our second main result.

Theorem 3.2. The function H ↦→ θR(H) is continuous on (0,∞). Further,
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(a) lim infH→0 θR(H)H > 0 and

(b) θR(H)H2 ≤ 142 for H ∈ (0, 1/2).

For H → ∞, we will see that the auto-covariance function of the Lamperti trans-

form of RH converges to the auto-covariance function τ ↦→ 1/ cosh(τ/2) (see (3.12)

below), which is non-negative and integrable. Further, it was shown in [30, eq. (1.4)]

that the corresponding stationary centred Gaussian process Z has a representation

as an Itô integral w.r.t. Brownian motion so that there exists a modi�cation with

continuous sample paths. Thus, by Proposition 2.2, the corresponding stationary

centred Gaussian process Z has a persistence exponent θR(∞) := θ0(Z) ∈ (0,∞).

Now, it is an easy consequence of continuity theorems for persistence exponents (see

[28, Theorem 1.6], [29, Lemma 3.1], or [14, Lemma 3.6]; these results are summa-

rized in Lemma 3.3 below in a way suitable for our purposes) that θR(H) → θR(∞)

as H → ∞. Moreover, recall that one knows that θR(∞) ≥ 1/(4
√
3) (cf. [55]) and

that there is evidence in favour of the equality θR(∞) = 3/16 (cf. [66]).

The rest of this chapter is organized as follows. We �rst sketch the general proof

technique in the next subsection. Section 3.2 then contains the proofs related to

Theorem 3.1, while Section 3.3 is devoted to the proofs related to Theorem 3.2.

Ideas of the proofs

The �rst step in our proofs is to go over to Gaussian stationary processes (GSPs)

by considering the Lamperti transforms of the self-similar processes IH and RH .

Consequently, we consider the Lamperti transform of IH de�ned by

UH
τ :=

√︁
2(1 +H) e−(1+H)τ IHeτ , τ ∈ R,

where the normalization constant is given in order to have a unit variance process.

Similarly, we consider the normalized Lamperti transform of RH de�ned by

V H
τ :=

√
2H e−τHRH

eτ , τ ∈ R.

The basic idea of our proofs is then as follows. First, we convince ourselves that the

auto-covariance functions of UH and V H are indeed continuous, non-negative and

integrable so that Corollary 2.6 is applicable, yielding that the persistence exponents

of the Lamperti transform and the corresponding self-similar process coincide.
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The next step in proving Theorem 3.1 (Theorem 3.2 is proven similarly, but the

argument is much more technical) is to consider the GSP (UH
τ/H)τ∈R as H → 0

and the GSP (UH
τ/(1−H))τ∈R as H → 1. Their persistence exponents are given by

θI(H)/H and θI(H)/(1 − H), respectively, as a quick computation shows. We

will show that in both of these cases, the respective auto-covariance function of

that GSP tends to the auto-covariance function τ ↦→ e−τ , which is the (normalized)

auto-covariance function of the Ornstein-Uhlenbeck process (OU process) for λ := 1

(cf. (1.16)). Recall that this OU process has persistence exponent 1 (cf. (1.18)).

Then, we use the following lemma, which is [14, Lemma 3.6] together with [14,

Remark 3.8], [28, Theorem 1.6], and [14, Lemma 3.10], to conclude the convergence

of the persistence exponents θI(H)/H → 1 as H → 0 and, respectively, θI(H)/(1−
H) → 1 as H → 1.

Lemma 3.3. For k ∈ N, let (Z(k)
τ )τ≥0 be a centered GSP with non-negative auto-

covariance function Ak(τ), τ ≥ 0, satisfying Ak(0) = 1. Suppose that Ak(τ) → A(τ)

for k → ∞ and all τ ≥ 0, where A : [0,∞) → [0, 1] is the auto-covariance function

of a centered GSP (Zτ )τ≥0.

(a) If Z(k) and Z have continuous sample paths, and the conditions

lim
L→∞

lim sup
k→∞

∞∑︂
τ=L

Ak

(︂τ
ℓ

)︂
= 0 for every ℓ ∈ N, (3.1)

lim sup
ε↓0

|log ε|η sup
k∈N, τ∈[0,ε]

(1− Ak(τ)) < ∞ for some η > 1, (3.2)

lim sup
τ→∞

logA(τ)

log τ
< −1 (3.3)

are ful�lled, then

lim
k,T→∞

1

T
logP

(︃
sup

τ∈[0,T ]

Z(k)
τ ≤ 0

)︃
= lim

T→∞

1

T
logP

(︃
sup

τ∈[0,T ]

Zτ ≤ 0

)︃
. (3.4)

(b) If A(τ) = 0 for all τ > 0 and (3.1) is ful�lled, then

− lim
k,T→∞

1

T
logP

(︃
sup

τ∈[0,T ]

Z(k)
τ ≤ 0

)︃
= ∞.

Remark. Note that the statements in [14] and [28] concern the probabilities

P(supτ∈[0,T ] Z
(k)
τ < 0) and P(supτ∈[0,T ] Zτ < 0) (instead of ≤). However, due

to Gaussianity, stationarity and continuous sample paths, the distributions of

supτ∈[0,T ] Z
(k)
τ and supτ∈[0,T ] Zτ are, for every k ∈ N and T ≥ 0, absolutely

continuous w.r.t. the Lebesgue measure, see [84, Theorem 3]. Thus, it holds

P(supτ∈[0,T ] Z
(k)
τ = 0) = P(supτ∈[0,T ] Zτ = 0) = 0 for every k ∈ N and T ≥ 0.
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The lemma says that if the auto-covariance functions of the processes Z(k) converge

pointwise to the auto-covariance function of the process Z and the technical condi-

tions (3.1)�(3.3) are satis�ed, then the persistence exponents of the processes Z(k)

converge to the persistence exponent of the process Z. Here, the existence of the

persistence exponents, i.e., the existence of the (negative) limits in (3.4), follows

from Proposition 2.2.

3.2 Proofs for the case of IFBM

In this section, we prove Theorem 3.1. We start with a lemma giving important

properties of the auto-covariance function of UH . In [54, Lemma 2], the auto-

covariance function ρH(τ) = E
[︁
UH
0 UH

τ

]︁
was found to be

ρH(τ) =
(1 +H)

(︁
e−Hτ + eHτ

)︁
1 + 2H

+

(︁
eτ/2 − e−τ/2

)︁2 (1+H)

2 (1 + 2H)
− e(1+H)τ + e−(1+H)τ

2 (1 + 2H)

for τ ≥ 0 and shown to be non-increasing on (0,∞).

By the binomial theorem, we also have the following useful representation:

ρH(τ) =
(1 +H)

(︁
e−Hτ + eHτ

)︁
1 + 2H

+

∑︁∞
k=0(−1)k

(︁
2+2H

k

)︁
e−τ(k−1−H)

2 (1 + 2H)
− e(1+H)τ + e−(1+H)τ

2 (1 + 2H)

=
(1 +H) e−Hτ

1 + 2H
+

∑︁∞
k=2(−1)k

(︁
2+2H

k

)︁
e−τ(k−1−H)

2 (1 + 2H)
− e−(1+H)τ

2 (1 + 2H)
, (3.5)

which even holds for τ = 0 due to the fact that the exponent 2+2H is positive, see

e.g. [1]. This gives the following asymptotics.

Lemma 3.4. For all τ ≥ 0,

lim
H→0

ρH

(︂ τ

H

)︂
= lim

H→1
ρH

(︃
τ

1−H

)︃
= e−τ .

Proof. Considering (3.5) for the argument τ/H yields

ρH

(︂ τ

H

)︂
=

(1 +H) e−τ

1 + 2H
+

∑︁∞
k=2(−1)k

(︁
2+2H

k

)︁
e−τ(k−1−H)/H

2 (1 + 2H)
− e−τ(1+H)/H

2 (1 + 2H)
(3.6)
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As H < 1, we estimate, for all k ≥ 2,⃓⃓⃓⃓(︃
2 + 2H

k

)︃⃓⃓⃓⃓
=

2H + 2

1
· 2H + 1

2
· · · |2H + 4− k|

k − 1
· |2H + 3− k|

k

≤ 4 · 3
2
· 1 · · · 1 = 6. (3.7)

Therefore, we can majorize (−1)k
(︁
2+2H

k

)︁
e−τ(k−1−H)/H , k ≥ 2, by the sequence

6 e−τ(k−2), k ≥ 2, which is summable for τ > 0, to conclude with the dominated

convergence theorem that, for all τ > 0,

ρH

(︂ τ

H

)︂
=

(1 +H) e−τ

1 + 2H
+ o(1) → e−τ , H → 0.

Similarly, by considering (3.5) for the argument τ/(1−H), we get

ρH

(︃
τ

1−H

)︃
=

(1 +H) e−τH/(1−H)

1 + 2H

+

∑︁∞
k=2(−1)k

(︁
2+2H

k

)︁
e−τ(k−1−H)/(1−H)

2 (1 + 2H)
− e−τ(1+H)/(1−H)

2 (1 + 2H)

=
(1 +H) e−τ

2
+

∑︁∞
k=3(−1)k

(︁
2+2H

k

)︁
e−τ(k−1−H)/(1−H)

2 (1 + 2H)
+ o(1)

=
(1 +H) e−τ

2
+ o(1) → e−τ , H → 1,

for all τ > 0, where we again used (3.7) to be able to apply the dominated conver-

gence theorem. Noting that ρH(τ/H) = ρH(τ/(1−H)) = 1 = e−τ for τ = 0 �nishes

the proof.

Proof of Theorem 3.1. First observe that ρH is continuous, non-negative and inte-

grable. For the non-negativity, note that

E
[︁
IHs IHt

]︁
=

∫︂ s

0

∫︂ t

0

E
[︁
BH

r BH
u

]︁
dr du, s, t ≥ 0,

and that the covariance function (s, t) ↦→ E
[︁
BH

s BH
t

]︁
= (s2H + t2H − |t− s|2H)/2 is

non-negative. For the integrability, consider (3.5) to deduce that ρH(τ) ∼ 1+H
1+2H

e−Hτ

for τ → ∞ and H < 1/2, whereas ρH(τ) ∼ 1+H
2

e−(1−H)τ for τ → ∞ and H > 1/2.

Thus, Corollary 2.6 is applicable and it holds

θI(H) = − lim
T→∞

1

T
logP

(︄
sup

τ∈[0,T ]

UH
τ ≤ 0

)︄
.
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The case H → 0. Observe that

θI(H)

H
= − 1

H
lim
T→∞

1

T
logP

(︄
sup

τ∈[0,T ]

UH
τ ≤ 0

)︄

= − 1

H
lim
T→∞

1

T/H
logP

(︄
sup

τ∈[0,T/H]

UH
τ ≤ 0

)︄

= − lim
T→∞

1

T
logP

(︄
sup

τ∈[0,T ]

UH
τ/H ≤ 0

)︄
. (3.8)

By Lemma 3.4, the auto-covariance function τ ↦→ ρH(τ/H) of (UH
τ/H)τ≥0 converges

pointwise as H → 0 to τ ↦→ e−τ . As already mentioned, this is the auto-covariance

function of the OU process for λ := 1, which has persistence exponent 1 (cf. (1.18)).

So, as soon as we have also proven that the persistence exponents converge, the

desired convergence θI(H)/H → 1 as H → 0 follows. In order to achieve this,

we want to apply Lemma 3.3(a), i.e., we check the conditions (3.1)�(3.3) for the

process (UH
τ/H)τ≥0 with the auto-covariance function τ ↦→ ρH(τ/H). Obviously,

(3.3) is ful�lled for the limiting auto-covariance function τ ↦→ e−τ .

To check (3.1), note that for H < 1/2 and every k ≥ 4, one has

(−1)k
(︃
2 + 2H

k

)︃
= −2H + 2

1
· 2H + 1

2
· 2H

3
· 1− 2H

4
· 2− 2H

5
· · · k − 3− 2H

k
< 0 (3.9)

and also (−1)k
(︁
2+2H

k

)︁
= −2H+2

1
· 2H+1

2
· 2H

3
< 0 for k = 3. Thus, considering (3.6)

and estimating all negative terms by zero, we get

ρH

(︂ τ

H

)︂
≤ (1 +H) e−τ

1 + 2H
+

(1 +H) e−(1−H)τ/H

2
≤ 7 e−τ

4

for H < 1/2, where the right-hand side is independent of H and integrable in τ .

Similarly, for (3.2), we write, for every H < 1/2 and ε > 0, using the non-increasing

character of ρH and the fact that 1− e−x ≤ x,

sup
τ∈[0,ε]

(︂
1− ρH

(︂ τ

H

)︂)︂
= 1− ρH

(︂ ε

H

)︂
= ρH

(︃
0

H

)︃
− ρH

(︂ ε

H

)︂
=

(1 +H) (1− e−ε)

1 + 2H
− 1− e−(1+H)ε/H

2 (1 + 2H)

+

∑︁∞
k=2(−1)k

(︁
2+2H

k

)︁ (︁
1− e−ε(k−1−H)/H

)︁
2 (1 + 2H)

≤ ε+

(︃
1 +H

2
− 1

2(1 + 2H)

)︃(︁
1− e−ε/H

)︁
≤ ε+

(3 + 2H) ε

2(1 + 2H)
≤ 3 ε. (3.10)
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The case H → 1. Similarly to (3.8),

θI(H)

1−H
= − lim

T→∞

1

T
logP

(︄
sup

τ∈[0,T ]

UH
τ/(1−H) ≤ 0

)︄
,

and by Lemma 3.4, the auto-covariance function τ ↦→ ρH(τ/(1−H)) of (UH
τ/(1−H))

converges pointwise as H → 1 to τ ↦→ e−τ . Again, this is the auto-covariance

function of the OU process with persistence exponent 1. Applying Lemma 3.3(a)

for the process (UH
τ/(1−H))τ≥0 completes the proof of the asymptotics, subject to

checking the technical conditions (3.1) and (3.2).

Considering (3.9) for H > 1/2, we see that (−1)k
(︁
2+2H

k

)︁
< 0 for k = 3 and

(−1)k
(︁
2+2H

k

)︁
> 0 for k ≥ 4. So, estimating again the negative terms by 0, we

get

ρH

(︃
τ

1−H

)︃
≤ (1 +H) e−Hτ/(1−H)

1 + 2H
+

(1 +H) e−τ

2

+
1

2(1 + 2H)

∞∑︂
k=4

(−1)k
(︃
2 + 2H

k

)︃
e−τ(k−1−H)/(1−H)

≤

(︄
2 +

1

2 (1 + 2H)

∞∑︂
k=4

(−1)k
(︃
2 + 2H

k

)︃)︄
e−τ

=

(︃
5

2
+ (1 +H)

(︃
H

3
− 1

2

)︃)︃
e−τ ≤ 13 e−τ

6

for H ∈ (1/2, 1), where in the last equality, again by the binomial theorem, we used

the fact that
∑︁∞

k=0(−1)k
(︁
2+2H

k

)︁
= (1− 1)2+2H = 0. This shows (3.1).

Condition (3.2) can be veri�ed similarly to (3.10), since in this case

sup
τ∈[0,ε]

(︃
1− ρH

(︃
τ

1−H

)︃)︃
= ρH

(︃
0

1−H

)︃
− ρH

(︃
ε

1−H

)︃
=

(1 +H) (1− e−ε)

2
+

(1 +H)
(︁
1− e−Hε/(1−H)

)︁
1 + 2H

− 1− e−(1+H)ε/(1−H)

2 (1 + 2H)

+
1

2 (1 + 2H)

∞∑︂
k=3

(−1)k
(︃
2 + 2H

k

)︃(︁
1− e−ε(k−1−H)/(1−H)

)︁
≤ ε+

(︃
1 +H

1 + 2H
− H(1 +H)

3

)︃
ε

1−H

+
H(1 +H)(2H − 1)

12

(︁
1− e−(3−H)ε/(1−H)

)︁
− 1

2 (1 + 2H)

(︁
1− e−(1+H)ε/(1−H)

)︁
+

∞∑︂
k=5

(−1)k
(︃
2 + 2H

k

)︃
(k − 1−H) ε

1−H
,
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where we used again 1 − e−x ≤ x and estimated εH/(1 −H) ≤ ε/(1 −H) as well

as ε (2−H)/(1−H) ≥ ε/(1−H) in the last step. Note that

1 +H

1 + 2H
− H(1 +H)

3
=

(3 + 2H)(1 +H)(1−H)

3(1 + 2H)
;

that

H(1 +H)(2H − 1)

12

(︁
1− e−(3−H)ε/(1−H)

)︁
− 1

2 (1 + 2H)

(︁
1− e−(1+H)ε/(1−H)

)︁
≤
(︃
H(2H − 1)(3−H)

12
− 1

2 (1 + 2H)

)︃(︁
1− e−(1+H)ε/(1−H)

)︁
=

H(4H2 − 1)(3−H)− 6

12 (1 + 2H)

(︁
1− e−(1+H)ε/(1−H)

)︁
< 0,

for H ∈ (0, 1) and ε > 0 since (1−x3−H)/(1−x1+H) < (3−H)/(1+H) for x ∈ (0, 1);

and that, for k ≥ 5,

(−1)k
(︃
2 + 2H

k

)︃
k − 1−H

1−H
=

2H + 2

k − 2
· (k − 1−H)(2H + 1)

k − 1
· 2H

k
· 2H − 1

1

× 2− 2H

2(1−H)
· 3− 2H

3
· · · k − 3− 2H

k − 3

≤ 4

k − 2
· 3 · 2

k
· 1 · · · 1 =

24

k(k − 2)
,

which is summable in k. Putting these facts together, we get, for every η > 1,

lim sup
ε→0

|log ε|η sup
H∈(1/2,1),τ∈[0,ε]

(︃
1− ρH

(︃
τ

1−H

)︃)︃
≤ lim sup

ε→0
|log ε|η ε sup

H∈(1/2,1)

(︄
1 +

(3 + 2H)(1 +H)

3(1 + 2H)
+

∞∑︂
k=5

24

k(k − 2)

)︄
= 0 < ∞.

Finally, the continuity of θI follows from that of H ↦→ ρH(τ) and Lemma 3.3(a),

since it is easily seen that conditions (3.1)�(3.3) are satis�ed for the sequence τ ↦→
ρH(τ), H ∈ [H0 − δ,H0 + δ], with �xed H0 ∈ (0, 1), small δ > 0, and H → H0.

3.3 Proofs for the case of FIBM

In this section, we prove Theorem 3.2. For this purpose, we �rst need the following

two lemmas on the auto-covariance function of V H . The auto-covariance function
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rH(τ) = E
[︁
V H
0 V H

τ

]︁
can be found, e.g., in [45, eq. (12)] and reads

rH(τ) =
4H

1 + 2H
e−τ/2

2F1

(︃
1,

1

2
−H,

3

2
+H, e−τ

)︃
(3.11)

with the standard notation for the Gauss hypergeometric function.

Note here that, for τ > 0,

2F1

(︃
1,

1

2
−H,

3

2
+H, e−τ

)︃
=

∞∑︂
n=0

Γ(n+ 1/2−H)

Γ(1/2−H)

(︃
Γ(n+ 3/2 +H)

Γ(3/2 +H)

)︃−1

e−nτ

=
∞∑︂
n=0

(n+ 1/2−H) · · · (1/2−H)

(n+ 3/2 +H) · · · (3/2 +H)
e−nτ

→
∞∑︂
n=0

(−1)ne−nτ =
1

1 + e−τ
, H → ∞, (3.12)

where we used that the modulus of the fraction in the second equality is bounded

by 1 and we consequently could interchange limit and sum by the dominated con-

vergence theorem. Thus, as stated at the beginning of this chapter, rH(τ) →
2e−τ/2/(1 + e−τ ) = 1/ cosh(τ/2) for H → ∞.

Moreover, we have the following representation.

Lemma 3.5. For all τ,H > 0,

e−τ/2 − rH(τ) =
1− 2H

1 + 2H
e−τ/2 (1− e−τ )2H 2F1

(︃
1

2
+H, 2H,

3

2
+H, e−τ

)︃
.

Proof. The result follows by applying the Euler transform of 2F1 and from the

formula

e−τ/2 − rH(τ) =
1− 2H

1 + 2H
e−τ/2 (1− e−τ ) 2F1

(︃
1,

3

2
−H,

3

2
+H, e−τ

)︃
.

To verify this formula note that after plugging in the de�niton of rH , we are left

with showing

4H 2F1

(︃
1,

1

2
−H,

3

2
+H, x

)︃
+ (1− 2H)(1− x) 2F1

(︃
1,

3

2
−H,

3

2
+H, x

)︃
= 1 + 2H

for every H > 0 and x ∈ (0, 1). But this contiguous relationship is easily obtained

in equating the coe�cients of xn in the two series.
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Let us now analyse the behaviour of the rescaled auto-covariance function rH(τ/γ)

with γ = γH → ∞ as H → 0.

Lemma 3.6. Let γ = γH be a function tending to in�nity with H → 0. If γ−2H → c

for H → 0 and some c ∈ [0, 1], then rH(τ/γ) → 1− c for H → 0 and all τ > 0.

Proof. By Lemma 3.5,

e−τ/(2γ) − rH

(︃
τ

γ

)︃
∼ (1− e−τ/γ)2H2F1

(︃
1

2
+H, 2H,

3

2
+H, e−τ/γ

)︃
as H → 0. Now (1− e−τ/γ)2H ∼ (τ/γ)2H → c as H → 0 and⃓⃓⃓⃓

2F1

(︃
1

2
+H, 2H,

3

2
+H, e−τ/γ

)︃
− 1

⃓⃓⃓⃓
=

Γ(3/2 +H)

Γ(1/2 +H) Γ(2H)

∞∑︂
n=1

Γ(n+ 1/2 +H) Γ(n+ 2H)

Γ(n+ 3/2 +H)
· e

−nτ/γ

n!

=
1 + 2H

2Γ(2H)

∞∑︂
n=1

Γ(n+ 2H)

(n− 1)!
· e−nτ/γ

(n+ 1/2 +H)n

≤ 1

Γ(2H)

∞∑︂
n=1

n−2 → 0, H → 0.

Proof of Theorem 3.2. Again, we �rst note that rH is indeed continuous, non-

negative and integrable. For the integrability, observe that, by (3.11),∫︂ ∞

0

rH(τ) dτ =
4H Γ(3/2 +H)

(1 + 2H) Γ(1/2−H)

∞∑︂
n=0

Γ(1/2−H + n)

Γ(3/2 +H + n)

∫︂ ∞

0

e−τ(n+1/2) dτ

=
2H Γ(1/2 +H)

Γ(1/2−H)

∞∑︂
n=0

Γ(1/2−H + n)

Γ(1/2 +H + n) (n+ 1/2) (n+ 1/2 +H)
< ∞.

(3.13)

Consequently, Corollary 2.6 yields

θR(H) = − lim
T→∞

1

T
logP

(︄
sup

τ∈[0,T ]

V H
τ ≤ 0

)︄
.

Now, similarly to (3.8), for every γ, we have

θR(H)

γ
= − lim

T→∞

1

T
logP

(︄
sup

τ∈[0,T ]

V H
τ/γ ≤ 0

)︄
.
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We will show θR(H)/γ → ∞ for any function γ = γH with γ ≪ H−1, where

f(x) ≪ g(x) means lim f(x)/g(x) = 0. This proves part (a).

Let γ = γH be a function satisfying γ → ∞ and γ ≪ H−1 as H → 0. Since

limH→0 γ
−2H ≥ limH→0H

2H = 1 and limH→0 γ
−2H ≤ limH→0 1

−2H = 1, it follows

from Lemma 3.6 that rH(τ/γ) → 0 for H → 0 and all τ > 0. To conclude the

assertion θR(H)/γ → ∞, we want to apply Lemma 3.3(b) and thus have to check

(3.1) for the auto-covariance function τ ↦→ rH(τ/γ).

Indeed, by (3.13), one has for every ℓ ∈ N,∫︂ ∞

0

rH

(︃
τ

ℓγ

)︃
dτ = ℓγ

∫︂ ∞

0

rH(τ) dτ

∼ 2ℓγH
∞∑︂
n=0

(︃
n+

1

2

)︃−2

=: c · ℓγH, H → 0,

and thus, for every ℓ, L ∈ N,

lim sup
H→0

∞∑︂
τ=L

rH

(︃
τ

ℓγ

)︃
≤ lim sup

H→0

∫︂ ∞

L−1

rH

(︃
τ

ℓγ

)︃
dτ

≤ lim sup
H→0

∫︂ ∞

0

rH

(︃
τ

ℓγ

)︃
dτ = c ℓ lim sup

H→0
γH = 0,

where we used that rH is non-negative and non-increasing, which is easily seen by

(3.11).

Now, we prove part (b). We will show that

rH(τ) ≥ (1− |τ |H)+ = E[SH/2
0 SH/2

τ ]

for H ∈ (0, 1/2) and all τ ∈ R, where (SH
τ ) is the so-called fractional Slepian's

process (see [55, Section 2.3]). Then, Proposition 2.1(a) implies that θR(H) ≤
θS(H/2), where θS(H) denotes the persistence exponent of (SH

τ ), and the assertion

follows by [55, Proposition 2.9].

We have

1− 2H

1 + 2H
2F1

(︃
1

2
+H, 2H,

3

2
+H, e−τ

)︃
≤ 1− 2H

1 + 2H
2F1

(︃
1

2
+H, 2H,

3

2
+H, 1

)︃
=

1− 2H

1 + 2H
· Γ(3/2 +H) Γ(1− 2H)

Γ(3/2−H)
=

Γ(1/2 +H) Γ(1− 2H)

Γ(1/2−H)

=
Γ(1/2 +H)

Γ(1/2)
· Γ(1−H)

22H
≤ 1, H ∈

(︃
0,

1

2

)︃
,
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where we used the Legendre duplication formula in the last equality and the mono-

tonicity of Γ(·) on (1/2, 1) as well as the fact that

Γ(1−H) = Γ

(︃
2H · 1

2
+ (1− 2H) · 1

)︃
≤
(︃
Γ

(︃
1

2

)︃)︃2H

· (Γ(1))1−2H = πH ≤ 22H , 2H ∈ (0, 1),

(due to the logarithmic convexity of Γ(·)) in the last inequality. Together with

Lemma 3.5, this gives

rH(τ) ≥ e−τ/2
(︂
1−

(︁
1− e−τ

)︁2H)︂ ≥ e−τ/2
(︁
1− τ 2H

)︁
= ϕ(τ)

(︁
1− τH

)︁
for τ ≥ 0, where ϕ(τ) := e−τ/2(1+τH). Now, φ(τ) := 1+τH−eτ/2 satis�es φ(0) = 0,

φ(1) = 2−
√
e > 0, and

φ′′(τ) = −H(1−H)τ−(2−H) − eτ/2

4
< 0, τ ≥ 0,

which implies φ(τ) ≥ 0 and thus ϕ(τ) ≥ 1 for τ ∈ [0, 1]. This shows rH(τ) ≥
(1 − |τ |H)+ for τ ∈ [0, 1] and, due to the symmetry and the non-negativity of rH ,

even for all τ ∈ R.

Finally, similarly to the proof of Theorem 3.1, the continuity of θR follows from the

continuity of H ↦→ rH(τ) and Lemma 3.3(a), since the sequence τ ↦→ rH(τ), H ∈
[H0−δ,H0+δ], with �xed H0 ∈ (0,∞), small δ > 0, and H → H0 ful�lls conditions

(3.1)�(3.3). One easily checks (3.1) and (3.3), while for checking (3.2), we note that

1− rH(ε) = 1− e−ε/2 + e−ε/2 − rH(ε) ≤
ε

2
+ cH0ε

2(H0−δ)

for suitable cH0 and small ε using Lemma 3.5, with τ replaced by ε, and the fact

that 1− e−x ≤ x.

Remark. Most parts of this chapter appeared in the Russian journal Teoriya Veroy-

atnostei i ee Primeneniya as well as in its English translation Theory of Probability

and its Applications in the article Asymptotics of the persistence exponent of inte-

grated fractional Brownian motion and fractionally integrated Brownian motion, see

[12].
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Chapter 4

Persistence probabilities of mixed

processes

In this chapter, we study persistence probabilities of mixed processes, i.e., sums of

self-similar processes with di�erent self-similarity indices. In the setting of centred

Gaussian processes with non-negative covariances, we will �rst show a general re-

sult and then consider several mixed processes of the literature. In particular, we

determine the persistence exponent of mixed fractional Brownian motion.

4.1 Introduction

Mixed fractional Brownian motion (mixed FBM) MH,α is de�ned as

MH,α
t := Wt + αBH

t , t ≥ 0, (4.1)

where α ∈ R \ {0}, H ∈ (0, 1), BH is an FBM with Hurst parameter H and W is

an independent Brownian motion. This process was �rst introduced by Cheridito in

[25] and has turned out to be useful in the modelling of stock prices, as it provides

models with long memory and no arbitrage, see e.g. [25, Section 6] and [3]. Note

that this process still has stationary increments, but is not self-similar itself.

We will derive a persistence result for a more general class of sums of self-similar cen-

tred Gaussian processes with di�erent self-similarity indices, covering not only the

mixed FBM MH,α, but also e.g. the case of completely correlated mixed FBM intro-

duced in [32]. Note that the latter process neither is self-similar nor has stationary

49
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increments. Thus, our result contributes to the amount of rather rare persistence

results for stochastic processes violating both the properties of self-similarity and

stationary increments. As seen in Chapter 2, self-similarity is a valuable property

in the context of persistence as in this case, one is able to apply the Lamperti trans-

formation to get a stationary process and concerning persistence, many powerful

tools are available for the class of stationary Gaussian processes. In the case that

self-similarity is not available, the property of stationary increments turned out to

be appropriate as another property that can be used to prove the existence of the

persistence exponent, see [11]. Besides, one could derive persistence results even

outside of the Gaussian setting if one assumes both self-similarity and stationary

increments, see [15] and [60].

The outline of this chapter is as follows. In Section 4.2, we will introduce the class

of mixed processes which are suitable for our purposes and present our main result

that for these processes, the persistence probability decays asymptotically polyno-

mially with the persistence exponent of the self-similar process with the greater

self-similarity index. In Section 4.3, we will then use this result to derive persis-

tence results for the (completely correlated) mixed FBM and other explicit mixed

processes of interest. Finally, in Section 4.4, we will prove the main result.

4.2 Main result

Recall that for H > 0, a stochastic process (Xt)t≥0 is called H-self-similar if (Xct)
d
=

(cHXt). We consider the sum of two self-similar centred Gaussian processes with

di�erent self-similarity indices, i.e., XH+Y K , where XH is an H-self-similar centred

Gaussian process, Y K is a K-self-similar centred Gaussian process and K < H. The

main result of this paper, which is given in the following theorem, states that under

the assumption that XH and XH + Y K have non-negative covariance functions,

respectively, and that the conditions of Corollary 2.6 hold for XH , the persistence

probability of XH + Y K has � up to terms of lower order � the same asymptotic

behaviour as the persistence probability of XH .

Theorem 4.1. For 0 < K < H, let XH and Y K be self-similar centred Gaussian

processes with a.s. càdlàg sample paths and self-similarity indices H and K, re-

spectively. Let us assume that the covariance functions of the processes XH and

XH + Y K are non-negative, respectively, and that the auto-covariance function
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τ ↦→ cov(XH
1 , e−τHXH

eτ ) of the Lamperti transform of XH is continuous, integrable

and not the zero function. Then, it holds

P

(︄
sup

t∈[0,T ]

XH
t + Y K

t ≤ 1

)︄
= T−θX+o(1), T → ∞,

where

θX := − lim
T→∞

1

log T
logP

(︄
sup

t∈[0,T ]

XH
t ≤ 1

)︄
∈ (0,∞)

denotes the persistence exponent of XH .

The result remains true if one replaces Y K by a �nite sum of self-similar centred

Gaussian processes Y Ki with self-similarity indices Ki < H, as our proof in Section

4.4 can be easily adapted to this setting. From a mathematical point of view, it

would be an interesting open problem to study the persistence probability when

Y K is replaced by a (well-de�ned) in�nite sum of the form
∑︁∞

i=1 αiY
Ki , where

e.g. supi Ki = H, as in this case, our proof technique does not work anymore.

Note that the assumptions on XH together with Corollary 2.6 guarantee the exis-

tence of θX ∈ (0,∞). For the mixed process XH+Y K on the contrary, the condition

of non-negative covariances does not yield the existence of a persistence exponent

a priori, since the mixed process is not self-similar anymore. Further note that

we do not need any direct assumption on the covariance function of Y K or on the

correlation of XH and Y K . Thus, in particular, XH and Y K do not need to be

independent and a persistence exponent of Y K does not necessarily have to exist.

4.3 Mixed FBM and further corollaries

Mixed FBM. Let us now come back to the case of mixed FBM, which we de�ned

in (4.1). Note that this is a special case of the so-called fractional mixed FBM, which

covers all linear combinations of independent FBMs with di�erent Hurst parameters,

see [33] and [52]. Recall that the FBM BH has the covariance function (s, t) ↦→
1
2

(︁
t2H + s2H − |t− s|2H

)︁
, which is non-negative. Due to the independence of the

underlying FBMs, this directly implies also the non-negativity of the covariance

function of the (fractional) mixed FBM. Note that the continuous and integrable

function τ ↦→ 1
2

(︁
eHτ + e−Hτ − |eτ/2 − e−τ/2|2H

)︁
is the auto-covariance function of
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the Lamperti transform of BH . Further recall that we have seen in (1.3) that

P

(︄
sup

t∈[0,T ]

BH
t ≤ 1

)︄
= T−(1−H)+o(1), T → ∞.

This yields the following corollary of Theorem 4.1 for the (fractional) mixed FBM.

Corollary 4.2. For 0 < K < H < 1, let BH and BK be independent FBMs with

Hurst parameters H and K, respectively, and a, b ∈ R with ab ̸= 0. Then

P

(︄
sup

t∈[0,T ]

aBH
t + bBK

t ≤ 1

)︄
= T−(1−H)+o(1), T → ∞.

In particular, for the mixed FBM as de�ned in (4.1), we have

P

(︄
sup

t∈[0,T ]

MH,α
t ≤ 1

)︄
= T−(1−max{ 1

2
,H})+o(1), T → ∞.

Note that the local behaviour of fractional mixed FBM is completely di�erent: In

[85], it was shown that aBH + bBK is locally equivalent to bBK if and only if

H −K > 1/4.

Completely correlated mixed FBM. Recall that Corollary 4.2 assumes the

independence of BH and BK . As already mentioned, Theorem 4.1 also covers

the case of completely correlated mixed FBM. Under this term, it was introduced

recently in [32], while the process itself had already been studied as the driving

process of an SDE in [53, Section 3.2.3]. The de�nition is as follows. Let BH be an

FBM with Hurst parameter H ∈ (0, 1). Then, there exists a Brownian motion W

such that

BH
t =

∫︂ t

0

kH(t, s) dWs, t ≥ 0, (4.2)

where kH is the so-called Molchan-Golosov kernel, see [63, Section 5.1.3] and (4.5)

and (4.6) below. Completely correlated mixed FBM (ccmFBM) XH,a,b is given by

XH,a,b
t := aWt + bBH

t , t ≥ 0, (4.3)

where a, b ∈ R with ab ̸= 0 and W is the same Brownian motion as in (4.2).

Similarly to the fractional mixed FBM, as k1/2 ≡ 1 (see (4.6)), one can generalize

XH,a,b to linear combinations aBH + bBK of fractional Brownian motions generated

by the same Brownian motion W via the Molchan-Golosov kernels kH and kK with
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di�erent Hurst parameters H and K, which were discussed recently in [64] and

which we want to call fractional ccmFBM. Using the Itô-isometry, the fractional

ccmFBM has the covariance function

(s, t) ↦→ a2E[BH
s BH

t ] + b2E[BK
s BK

t ]

+ ab

∫︂ s∧t

0

(kH(t, u)kK(s, u) + kH(s, u)kK(t, u)) du. (4.4)

Set C(H) :=

√︃
2H Γ( 3

2
−H)Γ(H+ 1

2)
Γ(2−2H)

. Then, for H > 1/2 and 0 < s < t, we have

kH(t, s) =
C(H)

Γ
(︁
H − 1

2

)︁ s 1
2
−H

∫︂ t

s

uH− 1
2 (u− s)H− 3

2 du ≥ 0, (4.5)

whereas for H ≤ 1/2 and 0 < s < t, it holds

kH(t, s)

=
C(H)

Γ
(︁
H + 1

2

)︁ (︃(t2
s
− t)H− 1

2 + (
1

2
−H)s

1
2
−H

∫︂ t

s

uH− 3
2 (u− s)H− 1

2 du

)︃
≥ 0. (4.6)

Thus, the covariance function of the (fractional) ccmFBM is non-negative, if ab > 0,

and Theorem 4.1 together with (1.3) gives the following corollary.

Corollary 4.3. For 0 < K < H < 1 and a Brownian motion W, de�ne BH
t :=∫︁ t

0
kH(t, s) dWs and BK

t :=
∫︁ t

0
kK(t, s) dWs. Further let a, b ∈ R with ab > 0. Then

P

(︄
sup

t∈[0,T ]

aBH
t + bBK

t ≤ 1

)︄
= T−(1−H)+o(1), T → ∞.

In particular, for the ccmFBM as de�ned in (4.3), we have

P

(︄
sup

t∈[0,T ]

XH,a,b
t ≤ 1

)︄
= T−(1−max{ 1

2
,H})+o(1), T → ∞.

Mixed integrated FBM. Recall that for H ∈ (0, 1), the integrated FBM

(IFBM) IH is the (H + 1)-self-similar centred Gaussian process given by

IHt :=

∫︂ t

0

BH
s ds, t ≥ 0.

Further recall our earlier discussions in Section 1.3 and in Chapter 3 about the

persistence results for IFBM. One knows that the persistence exponent θI(H) ∈
(0,∞) of IH exists, that the inequalities (1.9) and (1.10) are ful�lled and that it
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holds θI(1/2) = 1/4 in the Brownian case. Moreover, we have seen in Theorem 3.1

that θI is continuous and satis�es θI(H) ∼ H as H → 0 as well as θI(H) ∼ 1−H

as H → 1, which supports the conjecture (1.7).

As we have already convinced ourselves at the beginning of the proof of Theorem 3.1

that the auto-covariance function of the Lamperti transform of IH is continuous and

integrable, Theorem 4.1 yields the following corollary for mixed integrated FBM.

Corollary 4.4. For 0 < K < H < 1, let BH and BK be independent FBMs

with Hurst parameters H and K, respectively, and a, b ∈ R with ab ̸= 0. Let

IHt =
∫︁ t

0
BH

s ds and IKt =
∫︁ t

0
BK

s ds. Further let θI : (0, 1) → (0,∞) denote the

persistence exponent of IFBM depending on the Hurst parameter. Then

P

(︄
sup

t∈[0,T ]

aIHt + bIKt ≤ 1

)︄
= T−θI(H)+o(1), T → ∞.

Of course, the same result also holds for the integral of (fractional) ccmFBM, again

in the case ab > 0, as the only di�erence in verifying the assumptions of Theorem

4.1 is that the covariance function of the mixed process has additional summands.

But these are given as the double integral of the additional summands in (4.4),

which is again non-negative if ab > 0.

Mixed fractionally integrated Brownian motion. As a last example, we want

to consider mixed fractionally integrated Brownian motion (mixed FIBM), which

was introduced as mixed Riemann-Liouville process in [23, Section 8]. Recall that

for H > 0, the FIBM RH is the H-self-similar process given by

RH
t :=

∫︂ t

0

(t− s)H− 1
2 dWs, t ≥ 0.

Again, recall our earlier discussions in Section 1.3 and in Chapter 3 about the

persistence results of FIBM. Similarly to IFBM, one knows that the persistence

exponent θR(H) ∈ (0,∞) of RH exists, but its exact value is unknown except for

the Brownian cases, where θR(1/2) = 1/2 (Brownian motion) and θR(3/2) = 1/4

(integrated Brownian motion). Further, one knows that θR is non-increasing on

[1/2,∞). In Theorem 3.2, we have seen that θR is continuous and that θR(H) → ∞
for H → 0, where the asymptotic behaviour is in the range H−1 to H−2.

Since we have already convinced ourselves at the beginning of the proof of Theorem

3.2 that the auto-covariance function of the Lamperti transform of RH is continuous

and integrable, Theorem 4.1 yields the following corollary.
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Corollary 4.5. For 0 < K < H and independent Brownian motions W (1) and

W (2), de�ne RH
t :=

∫︁ t

0
(t−s)H− 1

2 dW
(1)
s and RK

t :=
∫︁ t

0
(t−s)K− 1

2 dW
(2)
s . Let a, b ∈ R

with ab ̸= 0 and θR : (0,∞) → (0,∞) denote the persistence exponent of FIBM

depending on the Hurst parameter. Then

P

(︄
sup

t∈[0,T ]

aRH
t + bRK

t ≤ 1

)︄
= T−θR(H)+o(1), T → ∞.

Again, in the case ab > 0, the same result also holds for the completely corre-

lated mixed FIBM, where RH and RK are generated by the same Brownian motion

(instead of two independent Brownian motions), as the covariance function of the

mixed process gets additional summands which are non-negative.

4.4 Proof of the main result

In this section, we give the proof of Theorem 4.1. The main idea is as follows. We

restrict the interval [0, T ] of persistence to an interval [a(T ), T ], where a(T ) has

to be small enough such that the asymptotic polynomial order of the persistence

probability does not change and large enough such that we are able to control

the range of the process Y K on the interval [a(T ), T ]. It turns out that a(T ) :=

(log T )p for p large enough is a suitable choice. The following lemma shows that the

probability that Y K
t exceeds tγ for γ > K on the interval [a(T ), T ] is of neglectable

order.

Lemma 4.6. Let Y K be as in Theorem 4.1, θ ≥ 0, γ > K and δ > 0. Then there

exists p ≥ e2 such that for T large enough, it holds

P
(︁
∃t ∈ [(log T )p, T ] :

⃓⃓
Y K
t

⃓⃓
> tγ

)︁
≤ T−θ−δ.

Proof. We estimate

P
(︁
∃t ∈ [(log T )p, T ] :

⃓⃓
Y K
t

⃓⃓
> tγ

)︁
≤

⌊T ⌋∑︂
s=⌊(log T )p⌋

P
(︁
∃t ∈ [s, s+ 1] :

⃓⃓
Y K
t

⃓⃓
> tγ

)︁
≤

⌊T ⌋∑︂
s=⌊(log T )p⌋

P

(︄
sup

t∈[s,s+1]

⃓⃓
Y K
t

⃓⃓
> sγ

)︄
. (4.7)
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For s = ⌊(log T )p⌋, . . . , ⌊T ⌋ and σ2
K := V[Y K

1 ]∨supt∈[1,2]V[Y K
t −Y K

1 ], we may further

estimate

P

(︄
sup

t∈[s,s+1]

⃓⃓
Y K
t

⃓⃓
> sγ

)︄

≤ P
(︃⃓⃓

Y K
s

⃓⃓
>

sγ

2

)︃
+ P

(︄
sup

t∈[s,s+1]

⃓⃓
Y K
t

⃓⃓
> sγ,

⃓⃓
Y K
s

⃓⃓
≤ sγ

2

)︄

≤ P
(︃
|N (0, 1)| > sγ−K

2σK

)︃
+ P

(︄
sup

t∈[s,s+1]

⃓⃓
Y K
t

⃓⃓
−
⃓⃓
Y K
s

⃓⃓
>

sγ

2

)︄

≤ c1 e
−s2(γ−K)/(8σ2

K) + P

(︄
sup

t∈[s,s+1]

⃓⃓
Y K
t − Y K

s

⃓⃓
>

sγ

2

)︄

= c1 e
−s2(γ−K)/(8σ2

K) + P

(︄
sup

t′∈[1,1+s−1]

⃓⃓
Y K
t′ − Y K

1

⃓⃓
>

sγ−K

2

)︄
(4.8)

for some constant c1 > 0 and T large enough, where we used self-similarity of Y K

in the second, the reverse triangle inequality in the third, and again self-similarity

in the fourth step.

Now, we estimate the probability in (4.8) as follows:

P

(︄
sup

t′∈[1,1+s−1]

⃓⃓
Y K
t′ − Y K

1

⃓⃓
>

sγ−K

2

)︄
≤ P

(︄
sup

t′∈[1,2]

⃓⃓
Y K
t′ − Y K

1

⃓⃓
>

sγ−K

2

)︄

≤ P

(︄
sup

t′∈[1,2]

(︁
Y K
t′ − Y K

1

)︁
>

sγ−K

2

)︄
+ P

(︄
sup

t′∈[1,2]

(︁
Y K
1 − Y K

t′

)︁
>

sγ−K

2

)︄

= 2P

(︄
sup
t∈[1,2]

(︁
Y K
t − Y K

1

)︁
>

sγ−K

2

)︄
. (4.9)

The last probability is a probability of large deviation of a bounded Gaussian ran-

dom function and can therefore be estimated by the tail of a one-dimensional Gaus-

sian distribution.

More precisely, by e.g. [44, Theorem 12.1], there exist constants c2 > 0 and d ∈ R
such that

P

(︄
sup
t∈[1,2]

(︁
Y K
t − Y K

1

)︁
>

sγ−K

2

)︄
≤ c2 e

sγ−K/2−(sγ−K/2+d)
2
/(2σ2

K).

Together with (4.9) and (4.8), this yields for s = ⌊(log T )p⌋, . . . , ⌊T ⌋:

P

(︄
sup

t∈[s,s+1]

⃓⃓
Y K
t

⃓⃓
> sγ

)︄
≤ e−s2(γ−K)/(8σ2

K)+c3sγ−K

≤ e−(log T )2(γ−K)p/(8σ2
K)+c0(log T )(γ−K)p
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for constants c3, c0 > 0. Combining this with (4.7), we get

P
(︁
∃t ∈ [(log T )p, T ] :

⃓⃓
Y K
t

⃓⃓
> tγ

)︁
≤ (T − (log T )p + 2) e−(log T )2(γ−K)p/(8σ2

K)+c0(log T )(γ−K)p

.

Taking e.g. p = max{1/(γ − K), e2}, the right-hand-side decays faster than any

polynomial, which shows the assertion.

Thus, we can estimate the persistence probability of XH + Y K on [a(T ), T ] by the

persistence probability of XH shifted by t ↦→ tγ on [a(T ), T ]. As seen in Proposition

2.3, shifting a Gaussian process by a deterministic function does not change the

asymptotic polynomial order of the persistence probability if the function belongs

to the reproducing kernel Hilbert space (RKHS) of the process. Therefore, we have

to estimate t ↦→ tγ on [a(T ), T ] by a function in the RKHS of XH . The assumptions

of Theorem 4.1 together with Corollary 2.5 guarantee that this is possible if γ < H,

so that we are ready to give the proof of Theorem 4.1.

Proof of Theorem 4.1. First observe that the assumptions of Corollary 2.6 are ful-

�lled so that the persistence exponent θX ∈ (0,∞) indeed exists. Further note

that we have seen in the proof of Corollary 2.6 that the integrability of the auto-

covariance function of the Lamperti transform of XH implies that the Lamperti

transform of XH satis�es the condition on the spectral measure of Corollary 2.5.

Thus, by taking e.g. α := 1/4 in Corollary 2.5, there exists a function h ∈ HXH

such that h(t) ∼ c tH(log t)−3/4 for t → ∞ and some c > 0. We additionally choose

γ with K < γ < H, δ > 0 and p according to Lemma 4.6 for θ := θX .

Similarly as in the proof of Corollary 2.6, the a.s. càdlàg sample paths of XH

imply that the distribution of XH on the Borel-σ-algebra of D[0,∞) w.r.t. the

Skorokhod topology is a Radon measure, so that Proposition 2.3 is applicable.

Further, the set A := AT := {f ∈ D[0,∞) : supt∈[(log T )p,T ) f(t) ≤ 1} is closed

w.r.t. the Skorokhod topology and thus element of the Borel-σ-algebra of D[0,∞).

Proposition 2.3 together with the fact that θX ∈ (0,∞) exists consequently yields

P
(︁
supt∈[(log T )p,T ] X

H
t ± h(t) ≤ 1

)︁
P
(︁
supt∈[(log T )p,T ] X

H
t ≤ 1

)︁ = T o(1), T → ∞, (4.10)

where we additionally used that the suprema of XH and XH ± h, respectively, on

[(log T )p, T ) and [(log T )p, T ] coincide a.s. due to the fact that h is continuous (by
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construction in Corollary 2.5 and the continuity of the covariance function) and

that XH is even a.s. continuous at any �xed deterministic time.

Upper bound: It holds

P

(︄
sup

t∈[0,T ]

XH
t + Y K

t ≤ 1

)︄

≤ P
(︁
∃t ∈ [(log T )p, T ] :

⃓⃓
Y K
t

⃓⃓
> h(t)

)︁
+ P

(︄
sup

t∈[(log T )p,T ]

XH
t − h(t) ≤ 1

)︄

≤ P
(︁
∃t ∈ [(log T )p, T ] :

⃓⃓
Y K
t

⃓⃓
> tγ

)︁
+ P

(︄
sup

t∈[(log T )p,T ]

XH
t ≤ 1

)︄
T o(1)

≤ T−θX−δ +
P
(︁
supt∈[0,T ] X

H
t ≤ 1

)︁
P
(︁
supt∈[0,(log T )p] X

H
t ≤ 1

)︁ T o(1)

≤ T−θX−δ + T−θX+o(1)(log T )p θX+o(1) T o(1)

≤ T−θX+o(1)

for T large enough. Here, the second inequality uses (4.10) and the property of

h that h(t) ∼ c tH(log t)−3/4 > tγ for t large enough, while the third inequality is

Lemma 4.6 together with Proposition 2.1(b).

Lower bound: The opposite reasoning gives

T−θX+o(1) = P

(︄
sup

t∈[0,T ]

XH
t ≤ 1

)︄

≤ P

(︄
sup

t∈[(log T )p,T ]

XH
t + h(t) ≤ 1

)︄
T o(1)

≤ P
(︁
∃t ∈ [(log T )p, T ] :

⃓⃓
Y K
t

⃓⃓
> h(t)

)︁
T o(1)

+ P

(︄
sup

t∈[(log T )p,T ]

XH
t + Y K

t ≤ 1

)︄
T o(1)

≤ P
(︁
∃t ∈ [(log T )p, T ] :

⃓⃓
Y K
t

⃓⃓
> tγ

)︁
T o(1)

+ P

(︄
sup

t∈[(log T )p,T ]

XH
t + Y K

t ≤ 1

)︄
T o(1)

≤ T−θX−δ +
P
(︁
supt∈[0,T ] X

H
t + Y K

t ≤ 1
)︁

P
(︁
supt∈[0,(log T )p] X

H
t + Y K

t ≤ 1
)︁ T o(1),

where we used (4.10) in the second and Lemma 4.6 as well as Proposition 2.1(b) in

the �fth step. Precisely here, we use the assumption of non-negative covariances of
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XH + Y K . So we have

P

(︄
sup

t∈[0,T ]

XH
t + Y K

t ≤ 1

)︄
≥ T−θX+o(1) P

(︄
sup

t∈[0,(log T )p]

XH
t + Y K

t ≤ 1

)︄
. (4.11)

We then further estimate the right-hand side of (4.11) by replacing T in (4.11) by

(log T )p and get

P

(︄
sup

t∈[0,T ]

XH
t + Y K

t ≤ 1

)︄

≥ T−θX+o(1)(log T )−p θX+o(1) P

(︄
sup

t∈[0,(p log log T )p]

XH
t + Y K

t ≤ 1

)︄
. (4.12)

We set f0(T ) := log log T and fN(T ) := log p+log fN−1(T ) for N ≥ 1. Using (4.11)

iteratively then gives

P

(︄
sup

t∈[0,T ]

XH
t + Y K

t ≤ 1

)︄

≥ T−θX+o(1)(log T )(−p θX+o(1))(N+1) P

(︄
sup

t∈[0,(pfN (T ))p]

XH
t + Y K

t ≤ 1

)︄

= T−θX+o(1)+
(log log T )(N+1)

log T
(−p θX+o(1)) P

(︄
sup

t∈[0,(pfN (T ))p]

XH
t + Y K

t ≤ 1

)︄
, (4.13)

for N ∈ N. This can be seen by induction: The induction base is (4.12), while for

the induction step, one has to note that

(log((pfN−1(T ))
p))p = (p(log p+ log fN−1(T )))

p = (pfN(T ))
p .

Now we consider the function

φp(x) := log p+ log x, x ∈ [2,∞).

This is a contraction with Lipschitz constant 1/2. The Lipschitz constant can be

computed by the fact that φ′
p(x) = 1/x ≤ 1/2 for x ≥ 2, while the self-map property

of φp is deduced from the fact that log p ≥ 2 holds by Lemma 4.6. Thus, the Banach

�xed-point theorem yields a unique �xed-point ap ≥ 2 of φp, which does not depend

on T . Further, as fN(T ) = φp(fN−1(T )), we can estimate

|fN(T )− ap| ≤
2−N

1− 1
2

|f1(T )− f0(T )|

= 21−N |log p+ log log log T − log log T | ≤ 21−N · 3 log log T
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for N ∈ N and T large enough, see e.g. [2, Theorem 1.1(iii)]. For NT :=

⌈(log log log T + log 6)/ log 2⌉, this implies

|fNT
(T )− ap| ≤ 21−NT · 3 log log T ≤ 1.

Considering (4.13) for N := NT consequently yields

P

(︄
sup

t∈[0,T ]

XH
t + Y K

t ≤ 1

)︄
≥ T−θX+o(1) P

(︄
sup

t∈[0,(p fNT
(T ))p]

XH
t + Y K

t ≤ 1

)︄

≥ T−θX+o(1) P

(︄
sup

t∈[0,(p (1+ap))p]

XH
t + Y K

t ≤ 1

)︄
= T−θX+o(1),

which �nishes the proof.

Remark. Most parts of this chapter appeared in the journal Journal of Physics A:

Mathematical and Theoretical in the article Persistence probabilities of mixed FBM

and other mixed processes, see [13].



Chapter 5

Persistence probabilities of further

fractional processes

In this chapter, we are concerned with the persistence probabilities of two further

fractional processes of the literature � the so-called bifractional Brownian motion,

which is a generalization of fractional Brownian motion, and the fractional Ornstein-

Uhlenbeck process, which we have already seen in Section 1.3.

5.1 Bifractional Brownian motion

For H > 0 and K ∈ (0, 2) with either H ≤ 1, HK < 1 or H > 1, 2HK ≤ 1, the

bifractional Brownian motion (biFBM) BH,K = (BH,K
t )t≥0 is de�ned as the centred

Gaussian process with the covariance function

E
[︂
BH,K

t BH,K
s

]︂
:=

1

2K

(︂(︁
t2H + s2H

)︁K − |t− s|2HK
)︂
, t, s ≥ 0. (5.1)

Note that BH,K generalizes the fractional Brownian motion (FBM) BH since for

H ∈ (0, 1) and K = 1, (5.1) becomes the covariance function of BH . This process

was introduced in [39] for H ∈ (0, 1] and K ∈ (0, 1], motivated by the fact that

the property of stationary increments of FBM turned out to be appropriate for

applications, when one is interested in small increments of a process, whereas it

appeared inadequate for modelling large increments. In particular, it was shown

in [39] that for H ∈ (0, 1] and K ∈ (0, 1], the function (5.1) is indeed a covariance

function, i.e., that it is positive de�nite. Later, in [17], it was proven that this is

61
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also the case for K ∈ (1, 2) if HK < 1. By [43], the conditions K ≤ 2 and HK ≤ 1

are even necessary for the existence of BH,K . Recently, in [83], it was shown that

BH,K exists also for H > 1 if 2HK ≤ 1.

We will see that our results below hold whenever the process BH,K exists and ad-

ditionally, slightly stronger assumptions than the necessary conditions are ful�lled,

namely K < 2 and HK < 1. So any potential extension of the range of (H,K)

where existence of BH,K is proven would extend also the validity of our results.

The biFBM BH,K is an HK-self-similar process, as is easily seen by (5.1). Further

important properties transfer from HK-FBM to BH,K , such as long-range depen-

dent increments for HK > 1/2 (cf. [46, Corollary 4.3] for K ≤ 1 and [17, Proposi-

tion 2.6] for K > 1) and the existence of a locally Hölder continuous modi�cation

for any index of (0, HK) (cf. [39, Proposition 3.1] for H ≤ 1, K ≤ 1; [17, Propo-

sition 2.5] for H < 1, K > 1; and [83, Proposition 1.5] for H > 1). Nevertheless,

since it is well-known that (up to normalization) the only self-similar centred Gaus-

sian process with stationary increments is FBM, BH,K has no stationary increments

unless K = 1.

Using self-similarity, as presented in Chapter 2, we can transform BH,K into a

stationary centred Gaussian process by considering its Lamperti transform ZH,K ,

which has the auto-covariance function

E
[︂
ZH,K

0 ZH,K
τ

]︂
=

1

2K

(︂(︁
eHτ + e−Hτ

)︁K −
(︁
eτ/2 − e−τ/2)2HK

)︁)︂
, τ ≥ 0. (5.2)

Note that the monotonicity of ·2H implies eHτ +e−Hτ ≥ (eτ/2)2H ≥ (eτ/2−e−τ/2)2H ,

which, by the montonicity of ·K , again implies (eHτ + e−Hτ )K ≥ (eτ/2 − e−τ/2)2HK

so that the auto-covariance function (5.2) is non-negative and, clearly, continuous.

Further, it holds, by the binomial theorem,

2K E
[︂
ZH,K

0 ZH,K
τ

]︂
=

∞∑︂
k=1

(︃
K

k

)︃
eHτ(K−2k) −

∞∑︂
n=1

(−1)n
(︃
2HK

n

)︃
eτ(HK−n)

= Ke−Hτ(2−K) + 2HKe−τ(1−HK) + o(e−(1∧2H)τ ), τ → ∞,

where we estimated all terms of the �rst sum with k ≥ 2 by o(e−2Hτ ) and all terms

of the second sum with n ≥ 2 by o(e−τ ). As K < 2 and HK < 1, this shows that

the auto-covariance function (5.2) is also integrable. Thus, Corollary 2.6 yields

P

(︄
sup

t∈[0,T ]

BH,K
t ≤ 1

)︄
= T−θB(H,K)+o(1), T → ∞, (5.3)
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where θB(H,K) := − limT→∞
1
T
logP

(︁
supτ∈[0,T ] Z

H,K
τ ≤ 0

)︁
∈ (0,∞).

As already mentioned, the process BH,1 for H < 1 is just the FBM so that we

have seen in (1.3) that it holds θB(H, 1) = 1 − H for H < 1. For the general

persistence exponent of biFBM, we have the following upper and lower bounds,

which unfortunately hold on disjoint parameter domains (except for the FBM case

K = 1).

Proposition 5.1. For H > 0 and K ∈ (0, 2) with either H ≤ 1, HK < 1 or

H > 1, 2HK ≤ 1, let

θB(H,K) = − lim
T→∞

1

log T
logP

(︄
sup

t∈[0,T ]

BH,K
t ≤ 1

)︄

denote the persistence exponent of BH,K. Then, it holds

(a) θB(H,K) ≤ 1−HK for K ≥ 1, and

(b) θB(H,K) ≥ 1−HK for K ≤ 1 and 2HK ≤ 1.

Recall that 1−HK = θB(HK, 1). Using this identity, part(a) in the case 2HK ≤ 1

as well as part(b) of Proposition 5.1 are an immediate consequence of Proposition

2.1(a) and the following lemma.

Lemma 5.2. Let RH,K(t, s) := E[BH,K
s BH,K

t ] be the covariance function of BH,K

as given in (5.1). Then, it holds, for every t, s ≥ 0,

(a) RH,K(t, s) ≥ RHK,1(t, s) for K ≥ 1 and 2HK ≤ 1, and

(b) RH,K(t, s) ≤ RHK,1(t, s) for K ≤ 1 and 2HK ≤ 1.

Proof. Let w.l.o.g. t ≥ s ≥ 0. If s = 0, it holds BH,K
s = BHK,1

s = 0 a.s. by

self-similarity so that the statement is trivial. For s > 0, we have

s−2HK(RH,K(t, s)−RHK,1(t, s))

= 2−K

(︄(︃
t

s

)︃2H

+ 1

)︄K

− 2−1

(︄(︃
t

s

)︃2HK

+ 1

)︄
+
(︁
2−1 − 2−K

)︁(︃ t

s
− 1

)︃2HK

=: f

(︃
t

s

)︃
.
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Now, we have to show f(u) ≥ 0 for K ≥ 1 and 2HK ≤ 1 as well as f(u) ≤ 0

for K ≤ 1 and 2HK ≤ 1. The function f : [1,∞) → R ful�lls f(1) = 0 and is

di�erentiable with derivative

f ′(u) = 2−KK
(︁
u2H + 1

)︁K−1 · 2Hu2H−1 −HKu2HK−1

+
(︁
2−1 − 2−K

)︁
· 2HK (u− 1)2HK−1

= HKu2HK−1

(︃
2−K+1

(︁
1 + u−2H

)︁K−1 − 1

+
(︁
1− 2−K+1

)︁ (︁
1− u−1

)︁2HK−1
)︃
, u ≥ 1.

As 1 − u−1 ≤ 1 and 2HK ≤ 1, we have (1 − u−1)2HK−1 ≥ 1. Now, depending on

whether K ≥ 1 or K ≤ 1, we have further (1+u−2H)K−1 ≥ 1 or (1+u−2H)K−1 ≤ 1,

respectively, and 1− 2−K+1 ≥ 0 or 1− 2−K+1 ≤ 0, respectively. This leads to

f ′(u) ≥ HKu2HK−1
(︁
2−K+1 · 1− 1 +

(︁
1− 2−K+1

)︁
· 1
)︁
= 0

for all u ≥ 1, if K ≥ 1, and

f ′(u) ≤ HKu2HK−1
(︁
2−K+1 · 1− 1 +

(︁
1− 2−K+1

)︁
· 1
)︁
= 0

for all u ≥ 1, if K ≤ 1, implying the assertion.

The proof of Proposition 5.1(a) in the case 2HK > 1 is based on the fact that the

increment process (BH,K
t+T − BH,K

T )t≥0 of BH,K at time T converges for T → ∞ in

the sense of �nite-dimensional distributions to a (non-normalized) FBM with Hurst

parameter HK. This was proven in [46] for K < 1, by using a decomposition which

is only available for K < 1, but by just considering the covariances of the centred

Gaussian processes, the result also follows in the general case, which is the following

proposition.

Proposition 5.3. For H > 0 and K ∈ (0, 2) with either H ≤ 1, HK < 1 or

H > 1, 2HK ≤ 1, it holds(︂
BH,K

t+T −BH,K
T

)︂
t≥0

fdd→
(︂
2(1−K)/2BHK,1

t

)︂
t≥0

, T → ∞.

Proof. As both sequence and limit are centred Gaussian processes, it su�ces to
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show convergence of the covariance functions. It holds, for s, t ≥ 0, T > 0,

fH,K(s, t, T ) := 2K E
[︂(︂

BH,K
s+T −BH,K

T

)︂(︂
BH,K

t+T −BH,K
T

)︂]︂
− 2E

[︂
BHK,1

s BHK,1
t

]︂
=
(︁
(t+ T )2H + (s+ T )2H

)︁K −
(︁
(t+ T )2H + T 2H

)︁K
−
(︁
(s+ T )2H + T 2H

)︁K
+ 2KT 2HK

= T 2HK

⎛⎝(︄(︃ t

T
+ 1

)︃2H

+
(︂ s
T

+ 1
)︂2H)︄K

−

(︄(︃
t

T
+ 1

)︃2H

+ 1

)︄K

−
(︃(︂ s

T
+ 1
)︂2H

+ 1

)︃K

+ 2K

)︄
. (5.4)

Using the Taylor expansion (1 + x)α = 1 + αx + α(α − 1)x2/2 + o(x2) for α = 2H

and α = K, respectively, and x → 0, we get

T−2HK fH,K(s, t, T )

=

(︃
1 + 2H

t

T
+H(2H − 1)

t2

T 2
+ 1 + 2H

s

T
+H(2H − 1)

s2

T 2
+ o(T−2)

)︃K

−
(︃
1 + 2H

t

T
+H(2H − 1)

t2

T 2
+ o(T−2) + 1

)︃K

−
(︃
1 + 2H

s

T
+H(2H − 1)

s2

T 2
+ o(T−2) + 1

)︃K

+ 2K

= 2K

(︄(︃
1 +H

t+ s

T
+

H(2H − 1)

2

t2 + s2

T 2
+ o(T−2)

)︃K

−
(︃
1 +H

t

T
+

H(2H − 1)

2

t2

T 2
+ o(T−2)

)︃K

−
(︃
1 +H

s

T
+

H(2H − 1)

2

s2

T 2
+ o(T−2)

)︃K

+ 1

)︄

= 2K

(︄
K(K − 1)

2

(︃
H
t+ s

T

)︃2

− K(K − 1)

2

(︃
H

t

T

)︃2

−K(K − 1)

2

(︂
H

s

T

)︂2
+ o(T−2)

)︃
= 2K

K(K − 1)

2
H2 2 ts

T 2
+ o(T−2), T → ∞. (5.5)

This implies limT→∞ fH,K(s, t, T ) = 0 for every s, t ≥ 0, whenever we take H,K > 0

with HK < 1.

In view of this convergence result, it seems plausible that θB(H,K) = θB(HK, 1) =

1−HK. However, our technique to use this result is based on applying Proposition
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2.1(b) for the increment process of BH,K , which only gives an estimate in one direc-

tion and additionally requires non-negatively correlated increments. The following

lemma shows that this approach is possible for K ≥ 1 and 2HK > 1.

Lemma 5.4. If K ≥ 1, it holds, for every t, s ≥ 0, T > 0,

E
[︂(︂

BH,K
s+T −BH,K

T

)︂(︂
BH,K

t+T −BH,K
T

)︂]︂
≥ 0. (5.6)

If moreover 2HK > 1, it also holds, for every t ≥ 0, T > 0,

E
[︂
BH,K

T

(︂
BH,K

t+T −BH,K
T

)︂]︂
≥ 0. (5.7)

Proof. Since the covariance function of BHK,1 is non-negative, it su�ces for (5.6)

to show that fH,K as de�ned in (5.4) is non-negative for K ≥ 1. Note that

fH,K(s, 0, T ) = 0 for all s ≥ 0, T > 0, and that

∂

∂t
fH,K(s, t, T )

= 2HK(t+ T )2H−1
(︂(︁

(t+ T )2H + (s+ T )2H
)︁K−1 −

(︁
(t+ T )2H + T 2H

)︁K−1
)︂
≥ 0

(5.8)

for all s, t ≥ 0, T > 0, if K ≥ 1.

For (5.7), note that it holds, for t ≥ 0, T > 0,

E
[︂
BH,K

T

(︂
BH,K

t+T −BH,K
T

)︂]︂
=

(︃
T 2H

2

)︃K
⎛⎝(︄1 + (︃1 + t

T

)︃2H
)︄K

−
(︃

t

T

)︃2HK

− 2K

⎞⎠
=

(︃
T 2H

2

)︃K

φ

(︃
1 +

t

T

)︃
for φ(u) := (1+u2H)K − (u− 1)2HK − 2K , u ≥ 1. The function φ satis�es φ(1) = 0

and is di�erentiable with derivative

φ′(u) = K
(︁
1 + u2H

)︁K−1 · 2Hu2H−1 − 2HK(u− 1)2HK−1

≥ 2HK
(︁
u2H(K−1) · u2H−1 − (u− 1)2HK−1

)︁
≥ 0, u ≥ 1, (5.9)

where we used K ≥ 1 for the �rst and 2HK > 1 for the second inequality.

Remark. (i) Note that for K ≤ 1 and 2HK < 1, one gets the opposite inequality

in (5.9). Hence, (5.7) is violated in this case. Furthermore, numerical calcula-

tions show that (5.7) is also violated for K < 1 and 2HK > 1 if 2HK is close

to 1, as well as for K > 1 and 2HK < 1 if 2HK is su�ciently far away from

1.
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(ii) For K < 1, one gets the opposite inequality in (5.8). Thus, fH,K is non-

positive in this case. Nevertheless, it seems plausible numerically that fH,K

could be dominated by the covariance of BHK,1 so that (5.6) could still be

ful�lled in this case.

Now, we are ready to give the proof of Proposition 5.1.

Proof of Proposition 5.1. Lemma 5.2 together with Proposition 2.1(a) implies part

(b) as well as part (a) under the additional assumption 2HK ≤ 1. Thus, it remains

to show (a) in the case 2HK > 1.

Recall that we have seen in (5.3) that the persistence exponents of BH,K and its

Lamperti transform coincide, i.e.,

θB(H,K) = − lim
T→∞

1

log T
logP

(︄
sup

t∈[1,T ]

BH,K
t ≤ 0

)︄
.

Further recall that θB(HK, 1) = 1−HK.

Step 1: Relating the persistence probability of BH,K to persistence probabilities of

increments of BHK,1.

Let T > 0, N > 1. Setting cT := P(supt∈[1,T+1] B
H,K
t ≤ 0)/2, we estimate

P

(︄
sup

t∈[1,T+N ]

BH,K
t ≤ 0

)︄
≥ P

(︄
sup

t∈[1,T+1]

BH,K
t ≤ 0

)︄
· P

(︄
sup

t∈[T+1,T+N ]

BH,K
t ≤ 0

)︄

≥ 2 cT P

(︄
BH,K

T ≤ 0, sup
t∈[T+1,T+N ]

BH,K
t −BH,K

T ≤ 0

)︄

≥ 2 cT P
(︂
BH,K

T ≤ 0
)︂
· P

(︄
sup

t∈[T+1,T+N ]

BH,K
t −BH,K

T ≤ 0

)︄

= cT P

(︄
sup

t∈[1,N ]

BH,K
t+T −BH,K

T ≤ 0

)︄

= cT P

(︄
sup

τ∈[0,logN ]

σ−1
τ,T Y T

eτ ≤ 0

)︄
, (5.10)

where we set Y T
t := BH,K

t+T − BH,K
T and σ2

τ,T := V[Y T
eτ ]. In the �rst and the third

step, we applied Proposition 2.1(b) using non-negative covariances of BH,K and

(5.7), respectively.
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For s, τ ≥ 0, Proposition 5.3 yields

AT (s, s+ τ) := cov
(︁
σ−1
s,T Y T

es , σ
−1
s+τ,T Y T

es+τ

)︁
=

E
[︁
Y T
esY

T
es+τ

]︁√︂
V[Y T

es ] · V
[︁
Y T
es+τ

]︁
→ RHK,1(e

s, es+τ )√︁
RHK,1(es, es) ·RHK,1(es+τ , es+τ )

=
1

2
e−HKτ

(︂
1 + e2HKτ − (eτ − 1)2HK

)︂
=: A∞(0, τ), T → ∞,

(5.11)

which is the auto-covariance function of the Lamperti transform of BHK,1. To get

an estimate of the corresponding persistence probabilities, we proceed analogously

to the proof of the lower bound of (1.18) in [28]. We �rst show

lim inf
T→∞

inf
s≥0

P

(︄
sup

τ∈[0,M ]

σ−1
τ,T Y T

es+τ ≤ 0

)︄
≥ P

(︄
sup

τ∈[0,M ]

e−HKτBHK,1
eτ ≤ 0

)︄
(5.12)

for any M > 0.

Step 2: The crucial inequality for the proof of (5.12).

As in the proof of Proposition 5.3, we set, for s, t ≥ 0, T > 0,

f(s, t, T ) := fH,K(s, t, T ) :=
(︁
(t+ T )2H + (s+ T )2H

)︁K −
(︁
(t+ T )2H + T 2H

)︁K
−
(︁
(s+ T )2H + T 2H

)︁K
+ 2KT 2HK .

Then, we have

AT (s, s+ τ)

=
21−KRHK,1(e

s, es+τ ) + 2−Kf(es, es+τ , T )√︁
21−Ke2HKs + 2−Kf(es, es, T ) ·

√︁
21−Ke2HK(s+τ) + 2−Kf(es+τ , es+τ , T )

=
A∞(0, τ) + 2−1f(1, eτ , T e−s) e−HKτ√︁

1 + 2−1f(1, 1, T e−s) ·
√︁
1 + 2−1f(1, 1, T e−se−τ )

≥ A∞(0, τ) + 2−1f(1, 1, T e−s) e−HKτ√︁
1 + 2−1f(1, 1, T e−s) ·

√︁
1 + 2−1f(1, 1, T e−se−τ )

=

(︄
1−

√︁
1 + 2−1f(1, 1, T e−s) ·

√︁
1 + 2−1f(1, 1, T e−se−τ )− 1√︁

1 + 2−1f(1, 1, T e−s) ·
√︁

1 + 2−1f(1, 1, T e−se−τ )

)︄
A∞(0, τ)

+
2−1e(2−2HK)τf(1, 1, T e−s)√︁

1 + 2−1f(1, 1, T e−s) ·
√︁
1 + 2−1f(1, 1, T e−se−τ )

· e−(2−HK)τ , (5.13)
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where we used the identities RHK,1(e
s, es+τ ) = e2HKseHKτA∞(0, τ) (cf. (5.11)) as

well as f(α s′, α t′, α T ′) = α2HKf(s′, t′, T ′) for α, s′, t′, T ′ > 0 (cf. (5.4)) in the

second equality and the monotonicity of f(s, t, T ) in t for K ≥ 1 (cf. (5.8)) in the

inequality.

Now, we want to estimate (5.13) to get an inequality of the form

AT (s, s+ τ) ≥ (1− εT )A∞(0, τ) + εT D(0, τ) (5.14)

for all M > 0, τ ∈ [0,M ] and s ∈ [0, t∗T ], where (εT )T>0 is a null sequence which

does not depend on s or τ, (t∗T )T>0 is a sequence tending to in�nity and D is the

covariance function of a stationary centred Gaussian process with continuous sample

paths satisfying D(0, 0) = 1.

Step 3: The derivation of (5.14).

We set t∗T := log log T and D(0, τ) := e−(2−HK)τ , which is (up to normalization) the

auto-covariance function of the Ornstein-Uhlenbeck process for λ := 2 − HK (cf.

(1.16)). Let M > 0. We will show that there exists T0 > 0 independent of τ such

that

f(1, 1, T ′e−τ ) ≤ e(2−2HK)τf(1, 1, T ′) for all T ′ ≥ T0 and τ ∈ [0,M ]. (5.15)

Then, (5.15) for T ′ := Te−s, together with (5.13) and the fact that 1 ≤ e(2−2HK)τ

for HK ≤ 1 and all τ ≥ 0, implies

AT (s, s+ τ)

≥

(︄
1−

√︁
1 + 2−1f(1, 1, T e−s) ·

√︁
1 + 2−1e(2−2HK)τf(1, 1, T e−s)− 1√︁

1 + 2−1f(1, 1, T e−s) ·
√︁

1 + 2−1f(1, 1, T e−se−τ )

)︄
A∞(0, τ)

+
2−1e(2−2HK)τf(1, 1, T e−s)√︁

1 + 2−1f(1, 1, T e−s) ·
√︁

1 + 2−1f(1, 1, T e−se−τ )
· e−(2−HK)τ

≥ A∞(0, τ)

+
2−1e(2−2HK)τf(1, 1, T e−s)√︁

1 + 2−1f(1, 1, T e−s) ·
√︁

1 + 2−1f(1, 1, T e−se−τ )

(︁
e−(2−HK)τ − A∞(0, τ)

)︁
(5.16)

for all T such that T (log T )−1 ≥ T0, all s ∈ [0, log log T ] and τ ∈ [0,M ].

Using the non-negativity of f for K ≥ 1 (cf. (5.8)) together with the convergence
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result (5.5) (in T ′ := Te−s → ∞ uniformly in s ∈ [0, log log T ]), we have

2−1e(2−2HK)τf(1, 1, T e−s)√︁
1 + 2−1f(1, 1, T e−s) ·

√︁
1 + 2−1f(1, 1, T e−se−τ )

≤ 2−1e(2−2HK)τf(1, 1, T e−s)

= 2K−1e(2−2HK)τ T 2HKe−2HKs
(︁
K(K − 1)H2T−2e2s + o(T−2e2s)

)︁
≤ 2KK(K − 1)H2e(2−2HK)M

(︃
log T

T

)︃2−2HK

=: εT → 0, T → ∞,

where the second inequality holds for T large enough. Noting that e2HKτ − (eτ −
1)2HK ≥ 1 for 2HK > 1 and thus A∞(0, τ) ≥ e−HKτ ≥ e−(2−HK)τ (as 2 − HK >

HK), (5.16) leads to

AT (s, s+ τ) ≥ A∞(0, τ) + εT
(︁
e−(2−HK)τ − A∞(0, τ)

)︁
,

which is (5.14).

Step 4: Showing (5.15).

Adding the next order in the Taylor expansions in (5.5) yields

2−KT−2HK f(1, 1, T )

=

(︃
1 +

2H

T
+

H(2H − 1)

T 2
+

H(2H − 1)(2H − 2)

3T 3
+ o(T−3)

)︃K

− 2

(︃
1 +

H

T
+

H(2H − 1)

2T 2
+

H(2H − 1)(2H − 2)

6T 3
+ o(T−3)

)︃K

+ 1

=
H2K(K − 1)

T 2
+

K(K − 1)

2

(︃
2 · 2H

T
· H(2H − 1)

T 2
− 4 · H

T
· H(2H − 1)

2T 2

)︃
+

K(K − 1)(K − 2)

6

(︃
8H3

T 3
− 2 · H

3

T 3

)︃
+ o(T−3)

=
H2K(K − 1)

T 2
− H2K(K − 1)(1−HK)

T 3
+ o(T−3), T → ∞.

Hence,

2−K
(︁
Te−τ

)︁−2HK (︁
e(2−2HK)τf(1, 1, T )− f(1, 1, T e−τ )

)︁
=

H2K(K − 1)(1−HK)

T 3

(︁
e3τ − e2τ

)︁
+ o
(︁
T−3

(︁
e3τ − e2τ

)︁)︁
, T → ∞,

where the convergence of o(T−3(e3τ − e2τ )) is uniform in τ ∈ (0,M ]. This im-

plies that there exists T0 > 0 independent of τ such that e(2−2HK)τf(1, 1, T ) −
f(1, 1, T e−τ ) ≥ 0 for all T ≥ T0 and τ ∈ [0,M ], as desired.
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Step 5: Concluding (5.12) with (5.14) and Slepian's lemma.

Let (Uτ )τ≥0 be a version with continuous sample paths of the Ornstein-Uhlenbeck

process for λ := 2−HK, independent of Y T . Then, (5.14) and Proposition 2.1(a)

lead to

P

(︄
sup

τ∈[0,M ]

σ−1
τ,T Y T

es+τ ≤ 0

)︄

≥ P

(︄
sup

τ∈[0,M ]

(︂√
1− εT e−HKτBHK,1

eτ +
√
εT Uτ

)︂
≤ 0

)︄

≥ P

(︄
sup

τ∈[0,M ]

e−HKτBHK,1
eτ ≤ −2 ε

1/4
T , sup

τ∈[0,M ]

Uτ < ε
−1/4
T

)︄

≥ P

(︄
sup

τ∈[0,M ]

e−HKτBHK,1
eτ ≤ −2 ε

1/4
T

)︄
− P

(︄
sup

τ∈[0,M ]

Uτ ≥ ε
−1/4
T

)︄

for all M > 0, s ∈ [0, log log T ] and T large enough such that εT ≤ 3/4, thus in

fact for all s ≥ 0. Here, we used that if e−HKτBHK,1
eτ ≤ −2 ε

1/4
T , Uτ < ε

−1/4
T , and

εT ≤ 3/4, then it holds
√
1− εT e−HKτBHK,1

eτ +
√
εT Uτ ≤ (1 − 2

√
1− εT )ε

1/4
T ≤ 0.

Noting that supτ∈[0,M ] Uτ is �nite a.s. for any M > 0, this shows (5.12).

Final Step: Let M ∈ (0, logN). Considering (5.10), we deduce

P

(︄
sup

t∈[1,T+N ]

BH,K
t ≤ 0

)︄
≥ cT P

(︄
sup

τ∈[0,M ]

σ−1
τ,T Y T

eτ ≤ 0

)︄
· P

(︄
sup

τ∈[M,2M ]

σ−1
τ,T Y T

eτ ≤ 0

)︄

· · ·P

⎛⎝ sup
τ∈[(⌈ logN

M ⌉−1)M,⌈ logN
M ⌉·M]

σ−1
τ,T Y T

eτ ≤ 0

⎞⎠
≥ cT

(︄
P

(︄
sup

τ∈[0,M ]

e−HKτBHK,1
eτ ≤ 0

)︄
− ξ

(M)
T

)︄⌈ logN
M ⌉

,

where (ξ
(M)
T )T>0 is a suitable sequence converging to 0 for T → ∞. Here, we used

(5.6) together with Proposition 2.1(b) in the �rst and (5.12)
⌈︁
logN
M

⌉︁
-times in the

second step. Taking the logarithm, dividing by logN and letting N → ∞ then

gives

−θB(H,K) ≥ 1

M
log

(︄
P

(︄
sup

τ∈[0,M ]

e−HKτBHK,1
eτ ≤ 0

)︄
− ξ

(M)
T

)︄
.

By letting T → ∞ and then M → ∞, we conclude −θB(H,K) ≥ −θB(HK, 1).
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5.2 Fractional Ornstein-Uhlenbeck process

Recall that for λ > 0 and H ∈ (0, 1), the fractional Ornstein-Uhlenbeck process

(fOU process) is given by

UH,λ
t :=

∫︂ t

−∞
e−λ(t−s) dBH

s , t ≥ 0,

where BH is a fractional Brownian motion (FBM) with Hurst parameter H. Further

recall that for H = 1/2, this is the OU process, which equals in distribution the

Lamperti transform of (scaled) Brownian motion (cf. (1.17)). For the Lamperti

transform ZH,λ of (scaled) FBM, as de�ned in (1.19), it is a consequence of (1.3)

and Corollary 2.6 that

θ0(Z
H,λ) = − lim

T→∞

1

T
logP

(︄
sup

t∈[0,T ]

ZH,λ
t ≤ 0

)︄
= 2λ(1−H).

The fOU process for H ̸= 1/2 behaves very di�erently regarding persistence. We

show that, for H > 1/2, the persistence probabilities of UH,λ do not have a true

exponential decay, i.e., that the persistence exponent equals zero.

Proposition 5.5. For λ > 0, H ∈ (1/2, 1) and x ∈ R, it holds

θx(U
H,λ) = − lim

T→∞

1

T
logP

(︄
sup

t∈[0,T ]

UH,λ
t ≤ x

)︄
= 0.

Proof. For H ̸= 1/2, the auto-covariance function of UH,λ is given by

E
[︂
UH,λ
0 UH,λ

t

]︂
= e−λt E

[︃∫︂ 0

−∞
eλu dBH

u

(︃∫︂ 0

−∞
eλv dBH

v +

∫︂ t

0

eλv dBH
v

)︃]︃
= e−λt

(︄
E

[︄(︃∫︂ 0

−∞
eλu dBH

u

)︃2
]︄

+H(2H − 1)

∫︂ 0

−∞
eλu
∫︂ t

0

eλv(v − u)2H−2 dv du

)︃
, t ≥ 0,

where we used [26, Lemma 2.1] in the second step. This function is non-negative

for H > 1/2. Thus, Proposition 2.2 yields the existence of θx(UH,λ).

Further, [26, Theorem 2.3] states E[UH,λ
0 UH,λ

t ] ∼ λ−2H(2H − 1)t2H−2 for t → ∞
and H ̸= 1/2. Thus, for H > 1/2,∫︂ ∞

0

E
[︂
UH,λ
0 UH,λ

t

]︂
dt ≥ 1

2
λ−2H(2H − 1)

∫︂ ∞

t0

t2H−2 dt = ∞.
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Together with continuous sample paths, this implies θx(UH,λ) = 0 for H > 1/2 and

every x ∈ R, see [14, Lemma 3.2].

Remark. For H < 1/2, the asymptotics E[UH,λ
0 UH,λ

t ] ∼ λ−2H(2H − 1)t2H−2 for

t → ∞ imply that the auto-covariance function of UH,λ is not non-negative so

that Proposition 2.2 cannot be applied in this case to deduce the existence of the

persistence exponent.
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