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Abstract
Key message  Sparse testing using genomic prediction can be efficiently used to increase the number of testing envi-
ronments while maintaining selection intensity in the early yield testing stage without increasing the breeding budget.
Abstract  Sparse testing using genomic prediction enables expanded use of selection environments in early-stage yield testing 
without increasing phenotyping cost. We evaluated different sparse testing strategies in the yield testing stage of a CIMMYT 
spring wheat breeding pipeline characterized by multiple populations each with small family sizes of 1–9 individuals. Our 
results indicated that a substantial overlap between lines across environments should be used to achieve optimal prediction 
accuracy. As sparse testing leverages information generated within and across environments, the genetic correlations between 
environments and genomic relationships of lines across environments were the main drivers of prediction accuracy in multi-
environment yield trials. Including information from previous evaluation years did not consistently improve the prediction 
performance. Genomic best linear unbiased prediction was found to be the best predictor of true breeding value, and there-
fore, we propose that it should be used as a selection decision metric in the early yield testing stages. We also propose it as a 
proxy for assessing prediction performance to mirror breeder’s advancement decisions in a breeding program so that it can 
be readily applied for advancement decisions by breeding programs.

Introduction

Genomic prediction (GP) is a statistical method to predict 
the genetic potential of unobserved lines based on genomic 
information. It has been identified as a viable tool to accel-
erate genetic gain and to reduce phenotyping costs in plant 
breeding programs, particularly as genotyping costs become 
cheaper than phenotyping costs (Crossa et al. 2010; Juliana 
et al. 2019; Santantonio et al. 2020; Atanda et al. 2021a). 
GP is a flexible approach that can be implemented at differ-
ent stages in a breeding program and for different purposes, 
depending on the objectives and overall breeding strategy.

The CIMMYT global spring wheat breeding program 
uses two yield testing stages to identify parents for the 
next breeding cycle and promising candidates to advance 
based on high and stable yield across managed selection 
environments (SEs) (Suppl. Figure 1). These candidates are 
then tested internationally through collaborative trials with 
partners selecting elite lines for use as parents in national 
breeding programs and/or for variety release. The SEs are 
defined by varying sowing time and management conditions 
in a single location (Ciudad Obregon, Mexico). Although 
the SEs were defined within a single location, they are con-
structed to predict the performance in global target popula-
tions of environments (Crespo-Herrera et al. 2021). In the 
initial yield testing stage (denoted PYT, or stage 1), lines 
with desirable agronomic and grain traits, and resistance 
to diseases, especially rusts, are evaluated for yield poten-
tial in an optimal five irrigations bed planting environment 
to discard low yielding lines while maintaining a range of 
maturity. Accurately capturing genotype x environment 
(GxE) interaction is critical in identifying promising lines 
with the greatest potential to perform in international trials 
(Falconer and Mackay 1996; Cooper et al. 1995; Moham-
madi and Amri 2011). Therefore, selected lines from stage 

Communicated by Huihui Li.

 *	 Sikiru Adeniyi Atanda 
	 sikiruandfriends@gmail.com

 *	 Alison R. Bentley 
	 a.bentley@cgiar.org

1	 International Maize and Wheat Improvement Center 
(CIMMYT), Texcoco, Mexico

2	 Section of Plant Breeding and Genetics, School of Integrative 
Plant Sciences, Cornell University, Ithaca, NY, USA

http://orcid.org/0000-0001-8758-2063
http://orcid.org/0000-0001-9502-4352
http://orcid.org/0000-0001-9522-9585
http://orcid.org/0000-0001-9429-5855
http://orcid.org/0000-0001-5519-4357
http://crossmark.crossref.org/dialog/?doi=10.1007/s00122-022-04085-0&domain=pdf


	 Theoretical and Applied Genetics

1 3

1 are further evaluated in a subsequent Elite Yield Trial 
(denoted EYT, or stage 2) in six SEs. This two-stage process 
of identifying superior performing lines is time consuming 
and costly, requiring two consecutive cycles of yield testing. 
Therefore, a key objective of the CIMMYT spring wheat 
program is shortening the selection cycle by advancing lines 
directly to multi-environment trials in year 1 using GP to 
discard lines with low genomic best linear unbiased pre-
dictions (GBLUPs) for grain yield and other relevant traits 
(Suppl. Figure 1).

Sparse testing, in which the phenotyping of lines is split 
across environments, is a robust strategy to help achieve two 
objectives, specifically (1) increased number of lines tested 
across multiple, diverse environments and (2) increased 
number of testing environments while maintaining the same 
selection intensity (Burgueño et al. 2012; Jarquin et al. 2020; 
Atanda et al. 2021b). The latter is the proposed usage of GP 
in CIMMYT spring wheat breeding where phenotypic data 
across SEs serve as a calibration model to predict GBLUPs 
to make earlier selection of promising lines for international 
trials (Suppl. Figure 1).

The size of the full-sib family in the CIMMYT spring 
wheat breeding program in the early yield testing stage is 
relatively small. Therefore, the dataset used in this study, 
individuals within a family were likely to be absent across 
environments (contrary to Atanda et al. (2021b)), and the 
size of the calibration set is relatively small in each envi-
ronment. Both factors are likely to influence the prediction 
accuracy when applying sparse testing in the early yield test-
ing stage. Good prediction accuracies have been reported 
within bi-parental populations and lower prediction accura-
cies across populations due to inconsistent quantitative trait 
loci (QTL)-marker linkage phase across populations (Clark 
et al. 2012; Lehermeier et al. 2014; Brandariz and Bernardo 
2019; Atanda et al. 2021a). However, in a scenario where 
the prediction and calibration set are heterogeneous, the 
effect of changes in LD-marker phase across populations on 
prediction accuracy might be minimal. Consequently, we 
evaluated the efficiency of sparse testing with GP when the 
prediction and calibration set are heterogeneous using dif-
ferent sparse testing strategies defined by the proportion of 
overlapping lines across SEs to identify an optimal strategy 
without sacrificing selection accuracy. The sparse testing is 
implemented in stage 1 (where current stage 2 will become 
stage 1), and thus the dataset used here mimics the data 
architecture expected in direct stage 2 by skipping stage 
1 when GBLUP will be used to select promising lines for 
further testing (Suppl. Figure 1). In addition, past breeding 
lines with genotypic and phenotypic data in relevant envi-
ronments constitute a resource to increase the size of the 
calibration set (Mangin et al. 2019; Brandariz and Bernardo 
2019; Auinger et al. 2021; Atanda et al. 2021a). Here, we 
also evaluate the merit of using past breeding information 

to increase the size of training set without increasing costs 
for sparse testing using GP.

In most plant breeding programs, the genetic value of 
genotypes is estimated through adjusted best linear unbiased 
estimates (BLUEs) (Falconer and Mackay 1996; Santantonio 
et al. 2020; Bernardo 2020; Lell et al. 2021). Theoretically, 
breeding value is a predictor of selection candidate potential 
to produce superior progenies in the next generation. How-
ever, true breeding value is unknown; thus, the efficiency of 
the advancement decision depends on a selection metric that 
is predictive of the true breeding value. In animal breeding, 
GBLUP estimated from phenotypic information of an indi-
vidual and relatives using a marker or pedigree relationship 
matrix in mixed model equations is widely used as a selec-
tion metric for candidates (Zhang et al. 2011; Junjie and 
Shengjie 2019). Recently, adoption of GBLUP as a selection 
decision metric is gaining traction in plant breeding (Ber-
nardo 2020; Lell et al. 2021), Therefore, we propose and 
test the use of GBLUP as an advancement decision metric 
for low to medium traits heritability, especially in the early 
yield testing stages in order to improve selection accuracy.

Prediction accuracy is often assessed as Pearson correla-
tion between predicted GBLUP and the BLUE (Crossa et al. 
2014; Zhang et al. 2019). However, this more closely reflects 
predictive ability rather than accuracy, and a proxy for pre-
diction accuracy is needed to reflect the breeding program 
advancement decision strategy. Therefore, we assessed the 
prediction performance of sparse testing aided GP as the 
proportion of lines that overlap between select top 20% lines 
using the Smith Hazel selection index (Smith 1936; Hazel 
1943) with GBLUP from the prediction model and GBLUP 
estimated from full data across the SEs.

Using breeding data from the CIMMYT spring wheat 
program the overall objective of this study was to test sparse 
testing strategies using GP via a number of approaches, 
namely: (1) highlighting selection accuracy using GBLUP 
as a selection metric for line advancement decisions in direct 
stage 2 skipping stage 1 testing; (2) determining the optimal 
sparse testing aided GP strategy in direct stage 2 trials; (3) 
determining the contribution of historical data to increas-
ing the calibration set size and improving prediction accu-
racy of untested lines across SEs without increasing cost; 
and (4) determining the appropriate method for evaluating 
prediction accuracy to closely mirror breeder advancement 
decisions.

Materials and methods

Plant material and field evaluation

The genetic material used in this study consisted of F4:8 
(stage 1) and F4:9 (stage 2) CIMMYT spring wheat 
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breeding lines. The genetic material was classified into 
three datasets (denoted DS1, DS2 and DS3). DS1 con-
sisted of 1260 stage 1 lines grouped into 45 trials, each 
with 28 entries and two checks, evaluated for grain yield 
(GY) and other agronomic traits in an optimal five irriga-
tion bed planting SE (B5IR). Each trial was planted in 
an alpha-lattice incomplete block design with two repli-
cates in the 2019–2020 crop season at Norman E. Bor-
laug research station, Ciudad Obregon, Sonora, Mexico 
(27° 29′ N, 109° 56′ W). DS2 consisted of the 280 stage 
2 lines advanced from the DS1 1260 lines based on GY 
performance, agronomic, disease, grain zinc and process-
ing quality traits. They were evaluated in six SEs at the 
same location in the 2020–2021 season. In each SE, the 
lines were grouped into five trials, each with 56 entries and 
4 checks, and the trials were planted in an alpha-lattice 
incomplete block design with two replicates.

The SEs were defined by a combination of factors 
including planting date, irrigation, and planting condition 
(flat or bed) as follows:

1.	 Optimal planting date and five irrigations bed planting 
(B5IR). Approximately 500 mm of water was applied 
through flood irrigation. Optimal planting date implies 
planting during the third week of November to first week 
of December.

2.	 Optimal planting date and five irrigations flat planting 
(F5IR), with the same total amount of water applied as 
B5IR, through drip irrigation.

3.	 Optimal planting date and two irrigations bed planting 
(B2IR). Approximately 250 mm of water was applied 
through flood irrigation.

4.	 Optimal planting date and drought stress flat planting 
(FDRIP). Approximately 180  mm of water applied 
through drip irrigation.

5.	 Early heat stress bed planting (BEHT). Lines were 
planted about 3 weeks earlier (1st week of November) 
than the optimal planting date with the aim of evaluating 
the lines for heat tolerance during the early growth stage. 
Approximately 500 mm of water was applied through 
flood irrigation.

6.	 Late heat stress bed planting (BLHT). Contrary to 
BEHT, lines were sown 90 days after optimal planting 
date to evaluate the lines for heat tolerance during the 
flowering and grain filling stages of the plant. Approxi-
mately 500 mm of water was applied through flood irri-
gation.

DS3 consisted of the stage 2 lines advanced from 
2018–2019 stage 1 (data not used) and consisted of 253 
lines evaluated in six SEs at the same location in the 
2019–2020 season.

To account for spatial variation in the field, the trials were 
sown as a grid of (6, 8, 6) rows and (15, 15, 15) columns for 
DS1, DS2 and DS3 data, respectively.

DS2 advanced lines from DS1, and DS3 lines were geno-
typed using genotyping-by-sequencing (GBS) and 93,349 
SNP markers were generated. After removing SNPs with 
more than 20% missing values and with a minor allele fre-
quency less than 5%, 20,985 SNPs remained and were used 
for the analysis. Missing SNPs imputed with Beagle 5.1 
(Browning et al. 2018).

Cross‑validation scheme

We evaluated the efficiency of two sparse testing GP scenar-
ios based on the approach reported by Jarquin et al. (2020):

1.	 Phenotyping a different set of lines in each SE, i.e. lines 
were not repeated across SEs. In this scenario, the 280 
lines in DS2 were divided into six unique sets with some 
SEs having 46 lines, while others had 47 lines in the 
calibration set (Fig. 1). Therefore, the prediction set in 
each SE consisted of 234 lines where 46 lines were con-
sidered tested, and 233 lines when 47 lines were consid-
ered tested in the SE. Splitting of lines across the SEs 
was repeated 30 times.

2.	 A subset of lines overlapping across the SEs to allow 
borrowing of information across SEs while varying the 
number of lines that serve as connectivity across the 
SEs. We considered the following sets of lines as over-
lapping across SEs: 10, 20, 30, 40 and 50% of the DS2 
(n = 280) (Fig. 1B and Suppl. Figure 2:3). When 10% of 
the total lines overlapped across the SEs, the remaining 
252 lines were divided into six unique sets. Thus, in total 
70 lines were used as a calibration set in each SE to pre-
dict the genetic value of the prediction set (210 lines) in 
each SE. For 20, 30, 40 and 50% of the total DS2 lines, 
58, 88, 112 and 142, respectively, overlapped across the 
SEs. The calibration sets for each SE for the four differ-
ent overlapping sizes were 95, 120, 140 and 165 lines, 
respectively. The prediction sets in each SE for the four 
overlapping scenarios were 185, 160, 140 and 115 lines, 
respectively. Again, the process of line allocation across 
the SEs was repeated 30 times for each overlapping size 
scenario.

For all the cross-validation schemes, DS1 and DS3 were 
used separately to increase the size of the calibration set. The 
contribution to accuracy of prediction in each SE was then 
evaluated independently for both DS1 and DS3.

We report two measures of the prediction accuracy: firstly, 
the Pearson correlation of the predicted GBLUP or PBLUP 
and the best linear unbiased estimates (BLUE) calculated 
using all observed records of tested and untested lines in 
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each SE. Secondly, we used a Smith–Hazel (SH) selection 
index (Smith 1936; Hazel 1943) to define the top 20% of 
candidates based on GBLUP of the lines estimated from full 
data and GBLUP (estimated and predicted) of lines in the 
six SEs obtained from the prediction model. Accuracy was 
estimated as the proportion of lines that intersected between 
individuals selected using the GBLUP estimates of the lines 
from full data and the GBLUP obtained from the predic-
tion model. To calculate the SH index, we used the genetic 
(from Eqs. 1 and 2) and phenotypic variance–covariance 

matrices and vector of economic weight (0.25, 0.1, 0.3, 0.2, 
0.1, 0.05) that optimized the ability to select promising can-
didates across the SEs, thus maximizing genetic gain. The 
latter method was used to reflect the advancement decision 
strategy in the early yield testing stages in the CIMMYT 
spring wheat breeding program (Suppl. Figure 1).

To assess the accuracy of GBLUP as a selection decision 
metric in the early yield testing stages, we estimate the BLUE 
and GBLUP of the 1260 DS1 lines and the 280 DS2 advanced 
lines using the full data set. Given that the 1260 DS1 lines 

Fig. 1   Allocation of 280 DS2 lines to the six SEs. Each column rep-
resents a discreet SE and the green sections in each column corre-
spond to unique lines tested in each SE. A: The green sections cor-
respond to 46 or 47 lines unique to each SE with no overlapping lines 

across the SEs. B: The pink section represents 28 lines (10% of DS2 
lines) that overlapped across the SEs, and the green sections are the 
42 DS2 lines unique to each SE
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were only evaluated in a single SE (B5IR), only information 
from this SE was used for this analysis. We calculated the 
Pearson correlation of the GBLUP obtained for the complete 
280 DS2 lines as well as BLUEs in the two stages of yield 
testing. We also measured accuracy as percentage of lines that 
intersect between select top (10, 20, 30, 40 and 50%) lines in 
the two testing stages to account for possible selection inten-
sity in the early yield testing stage.

Genomic selection models

We fitted a multi-environment linear mixed model in 
ASREML (Gilmour 1999) for the sparse testing aided GP 
analysis using DS2, combined DS1 and DS2 as well as com-
bined DS2 and DS3 as follows:

For single-environment analysis, to evaluate the efficiency 
of GBLUP as a selection decision metric in the early yield test-
ing stages we fitted a linear mixed model as follows:

where y (n × 1) is the vector of phenotypes of the lines meas-
ured in the environments (1…k), μ is the overall mean and 
�n (n × 1) is a of vector ones, b1 is a fixed effect of replica-
tion, u1 is a random effect of SE, u1.1 is the random effect 
of the genomic effect of g-th line, u2 is the random effect 
of the interaction between the genomic effect of g-th line 
and k-th SE, u2.1 is the random effect of replication nested 
within trial, u3 is the random effect of the trial, u4 is the ran-
dom effect of replication nested within SE and trial, u4.1 is 
the random effect of replication nested within SE, trial and 
year for the multi-year dataset, u4.2 is the random effects of 
incomplete block nested within replication and trial, u5 is the 
random effects of incomplete block nested within replica-
tion, trial and SE, u5.1 is the random effects of incomplete 
block nested within replication, trial, SE and year for the 
multi-year dataset. The number of fixed and random effects 
are represented as n and p, while Xn and Zp are incidence 
matrices for fixed and random effects, respectively. The vari-
ance of the random effects u2 , u2.1, u3 , u4 , u4.1 , u4.2 , u5 and 
u5.1 was assumed to be distributed as:

where Ip and �2
up

 are the identity matrix and variance of the 
p-th random effect expect u2.1 where I is either genomic (G) 
or pedigree (A) relationship matrix. In Eqs. 1 and 2, the 
random GEI effect u2 is defined as the Kronecker product 

(1)
y = �n� + X1b1 + Z1u1 + Z2u2 + Z3u3 + Z4u4 + Z5u� + �

(2)
y = �n� + X1b1 + Z1u1 + Z2u2 + Z3u3 + Z4.1u4.1 + Z5.1u�.� + �

(3)
y = �n� + X1b1 + Z1.1u1.1 + Z2.1u2.1 + Z3u3 + Z4.2u4.2 + �

(4)up ∼ N
(
�, Ip�

2
up

)

( ⊗ ) between G or A relationship matrix with dimension g × g 
and the k × k variance–covariance matrix of the genomic 
effect of lines in and between SEs ( Go ). For combined DS1 
and DS2 analysis, the G or A relationship matrix is a block 
diagonal matrix such that only 280 lines that overlap across 
the two datasets were used in the analysis as the remaining 
980 lines do not have marker information.

The covariance of the genomic effect of the line u2 in 
multi-environment model can be represented as:

where Go Go Go represents the k × k variance–covariance 
matrix of the genomic effect of lines in the SEs. The diago-
nal of the Go matrix is the additive genetic variance σ2

gk
 

within the k-th SE. The off-diagonal ( �g1k ) elements repre-
sent the genetic covariance between SEs.

The factor analytic (FA) model which is a parsimonious 
approach for fitting GEI and complex covariance struc-
ture among environments (Piepho 1998; Smith et al. 2001; 
Crossa et al. 2004; Oakey et al. 2016; Smith and Cullis 
2018) was used in this study. We use the extended FA 
(XFA) model that allows a non-full rank variance matrix 
for the GEI effects; therefore, the mixed model equation 
is sparser, resulting in reduced computational require-
ments compared to the standard FA model, as reported 
in Thompson et al. (2003) and Meyer (2009). In general, 
FA identifies one or few factors underlying the correlation 
among environments by their relationship to unobservable 
latent variables. Thus, GEI is modeled as an interaction 
between the genomic effect of the g-th line and one or few 
factors underlying the environmental influences on the line 
(Piepho 1998; Smith et al. 2001; Crossa et al. 2004; Kelly 
et al. 2007).

FA model for Cov(ug, u
′

g
 ) is expressed as:

where Λ is a k × m matrix of loading factors and the col-
umns of Λ are associated with the environmental loadings 
for the m-th latent factor. Ψ is a k × k heterogeneous diagonal 
matrix with specific environment genetic variances 

(
�k

)
 on 

the diagonal and zero covariance between environments.
The residual variance for Eqs. 1, 2 and 3 can be speci-

fied as:

(5)u2 ∼ N
[
0,
(
G⊗ Go

)]

(6)Cov
(
u, u� = Go ⊗ G

)

(7)Go ⊗ G =

⎡
⎢⎢⎢⎢⎣

𝜎2
g1

𝜎g12 ⋯ 𝜎g1k

𝜎g21 𝜎2
g2

⋯ ⋯

𝜎gk1
⋮

⋮

⋱

…

⋮

𝜎2
gk

⎤
⎥⎥⎥⎥⎦
⊗ G

(8)(��� +�)⊗ G
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where R is a block diagonal matrix with the error variances 
within SEs expect for Eq. 3. To allow separate spatial covari-
ance structure within SEs, R for each SE was defines as:

�2
k
 is the spatial residual variance in k-th SE and 

��1
(
p
�

)
⊗ ��1

(
pr
)
 is the Kronecker product of first-

order autoregressive processes across columns and rows, 
respectively.

Plot-level heritability for k-th SE was derived from the 
variance components obtained from the model as:

where �2
gk

 and �2
εk

 are the genetic, residual variance estimates 
for k-th SE.

Best linear unbiased estimates (BLUEs) for the lines were 
computed using Eqs. 1–3 while allowing u2 and u2.1 to be 
fixed instead of random. The BLUEs were used as reference 
genotypic value to compare the PBLUP or GBLUP models.

Results

GBLUP gives higher correlation values compared 
to BLUEs for stage 1‑to‑2‑line advancement

As expected, GBLUP was found to be a more effective 
metric for line advancement from stage 1 (DS1) to stage 2 
(DS2). The GBLUP correlation between the two yield test-
ing stages was 0.45 compared to 0.35 when BLUEs were 
used as the advancement decision metric (Fig. 2). GBLUP 
consistently improved selection accuracy compared to 
BLUE as the selection decision metric based on the pro-
portion of lines that overlap between the two testing stages 
for the select top (10, 20, 30, 40 and 50%) of lines (Suppl. 
Figure 4).

Heritability was high within SEs and genetic 
correlations varied significantly between pairs 
of SEs

The plot-level heritability for SEs in DS2 (stage 2) ranged 
from moderate to high except BEHT which had a low plot-
level heritability value of 0.18 (Fig. 3). Similar results were 
obtained in the analyses when DS1 or DS3 were used to 
augment the calibration set in DS2 (Suppl. Figures 5 and 
6). The genetic correlation between SEs in DS2 ranged from 
− 0.04 to 0.67. Furthermore, when SEs were defined across 

(9)� ∼ N(0,R)

(10)Rk = 𝜎2
k

[
���

(
pc
)
⊗ ���

(
pr
)]

(11)h2
k
=

�2
gk

�2
gk
+ �2

�k

years (B5IR, F5IR, B2IR, FDRIP, BEHT, BLHT and B5IR*; 
with B5IR* representing the B5IR SE in DS1 (stage 1)), 
the genetic correlation between SEs ranged from − 0.05 
to 0.85 (Suppl. Figure 5). The genetic correlation between 
B5IR* and B5IR was high and positive (0.80), whereas that 
between B5IR* and B2IR, and FDRIP was negative (− 0.11 
and − 0.05, respectively). In the analysis where DS3 was 
used to increase the size of calibration set in DS2, most of 
the SEs in DS3 denoted by (**) suffix have moderate to high 
genetic correlation with SEs in DS2 (Suppl. Figure 6).

Predictive ability increases dependent 
on heritability, SE correlations and calibration set 
size using different spare testing strategies

Predictive ability increased with higher heritability and 
genetic correlation between SEs. The BEHT SE had the low-
est plot-level heritability (0.18) and had consistently low 
predictive ability irrespective of the sparse testing strategy 
and prediction model used (Fig. 4). Higher predictive ability 
was generally observed in each SE with increased number of 
genotypes overlapping across SEs. For instance, using only 
the DS2 the predictive ability increased by 42, 111, 59, 64, 
989 and 67%, respectively, when 50% of the genotypes over-
lapped across the SEs (B5IR, F5IR, B2IR, FDRIP, BEHT, 
BLHT) compared to non-overlap of genotypes across the 

Fig. 2   Correlation estimates between the 280 lines selected from 
1260 lines in stage 1 and further evaluated in stage 2 using GBLUP 
and BLUE calculated from complete dataset as the selection criteria. 
GBLUP_stage 1 and GBLUP_stage 2 denote GBLUP estimates of the 
same 280 lines in stage 1 using DS1 and stage 2 using DS2, respec-
tively. Similarly, BLUE_stage 1 and BLUE_stage 2 represent BLUE 
estimates of the lines in stage 1 and stage 2, respectively
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SEs. However, the predictive ability did not increase lin-
early with expansion in the number of lines that connected 
the SEs.

The augmentation of the calibration set with DS1 or DS3 
improved predictive ability of untested lines for some SEs, 
especially with DS1 using only the 280 lines evaluated in 
the B5IR SE. For example, when lines were not repeated 
across SEs, the predictive ability of the 234 lines in F5IR SE 
increased by 21 and 1% using DS1 and DS3, respectively, to 
augment the calibration set. While it increased by 5 and 8% 
in FDRIP SE using DS1 and DS2, respectively, to increase 
the size of the calibration set. In general, the use of DS1 to 
augment the calibration set improved predictive ability in 
each SE compared to DS3. However, the result of the popu-
lation structure of the datasets assessed by spectral decom-
position of the genomic relationship matrix of the lines in 
DS2 and DS3 shows significant overlap across the datasets 
(Suppl. Figure 7). This possibly indicates that genetic cor-
relation between environments influences predictive ability 
in multi-environment genomic prediction.

The prediction performance of the PBLUP model was 
similar to the GBLUP model which is not surprising as DS2 
consisted of multiple populations with family sizes that 
ranged from 1 to 9 (Suppl. Figure 8). However, the predic-
tive ability was lowest when DS3 was combined with the 

calibration set in each SE. For example, with no overlap-
ping lines across SEs, using the DS3 to increase the calibra-
tion set size resulted in a predictive ability obtained from 
the PBLUP model across the SEs ranging from 4 to 31%, 
while the prediction ability obtained from the GBLUP model 
ranged from 9 to 46% across the SEs.

Mimicking selection advancement decision strategy 
as proxy for prediction performance

The prediction performance improved with increasing size of 
the calibration set, further corroborating the importance of 
genetic connectivity across SEs/environments in sparse test-
ing (Fig. 5). Contrary to the prediction performance in each 
SE, prediction accuracy was higher using DS3 to increase 
the size of the calibration set compared to DS1 which sug-
gests the relevance of including information from all SEs. 
In general, the addition of DS1 or DS3 to increase the size 
of the calibration set did not consistently improve predic-
tion accuracy. This prediction accuracy method reflects the 
advancement decision strategy in early yield testing stage 
of the CIMMYT spring wheat breeding program utilizing 
GBLUP and selection indices to select parent for the next 
breeding cycle and candidates for further testing.

Fig. 3   Plot-level heritability 
(diagonal) and genetic cor-
relation between pairs of SEs 
(upper diagonal) from factor 
analytic model analysis of 
complete DS2
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Discussion

Genomic prediction is a powerful tool to reduce selection 
cycle time and increase selection intensity (Meuwissen et al. 
2001; Burgueño et al. 2012; Jacobson et al. 2014; Oakey 
et al. 2016; Crossa et al. 2017; Santantonio et al. 2020). 
This study aimed to examine sparse testing using GP for 
increasing first-year yield trial testing across SEs with lines 
advanced based on GBLUP without increasing breeding 
costs. Sparse testing using GP in which new lines are evalu-
ated in different but genetically correlated environments 

relies on utilization of information from closely related 
individuals within and across environments using multi-
environment models (Burgueño et al. 2012; Jarquin et al. 
2020; Atanda et al. 2021b).

The multiple populations with small family size rang-
ing in our study from 1 to 9 individuals imply individuals 
within a family are likely to be absent across environments 
and this might suggest low predictive ability observed when 
non-overlapping lines were randomly distributed in differ-
ent SEs. In this scenario, genetic correlation between pairs 
of SEs was estimated through replication of alleles across 

Fig. 4   Predictive ability of untested lines in each SE for the differ-
ent sparse testing strategies. The different colors denote SEs (B2IR, 
B5IR, BEHT, BLHT, F5IR and FDRIP). G, G* and G** represent 
predictive ability obtained as the Pearson correlation of the predicted 
GBLUPs to the observed BLUEs. The suffix (* and **) represents 

predictive ability obtained when calibration set was augmented with 
DS1 and DS3, respectively. Also, A, A* and A** represent predictive 
ability obtained as the Pearson correlation of the predicted PBLUPs 
to the observed BLUEs with the suffix (* and **) as above



Theoretical and Applied Genetics	

1 3

SEs. Generally, increases in genetic connectivity across SEs 
improved modeling of the genotype by environment inter-
action. This gave more efficient correlation estimates and 
consequently better use of information from related lines 
tested in correlated SEs. Therefore, the improved predictive 
ability with increased number of lines connecting the SEs 
suggests that the efficiency of sparse testing aided GP relies 
on leveraging information within and across environments 
(Burgueño et al. 2012; Jarquin et al. 2020).

Jarquin et al. (2020) reported improved predictive ability 
by increasing the number of lines that overlapped across 
three environments. Due to the data structure, our study did 
not exclusively investigate factors that might contribute to 
the proportion of lines that should overlap across the SEs to 
obtain optimal predictive ability, and this is acknowledged as 
a key limitation of the study. We hypothesize factors such as 
population size, the number of crosses per parent, number of 
half-sib families, yield testing stage and expected predictive 
ability might largely influence the proportion of lines that 

overlapped across SEs. Further studies are required to exam-
ine the magnitude of each individual factor and their combi-
nations on the fraction of lines that overlap across environ-
ments. This will enable optimal/desired predictive ability 
when implementing sparse testing using GP in breeding.

Given the multiple populations that constitute the datasets 
used in this study, we suspect differences in QTL-marker 
linkage phase across the populations might affect the pre-
dictive ability. The observed predictive ability might be 
due to the number of QTLs segregating across the popula-
tion limiting the influence of QTL-marker linkage phase. 
Although this assumption was not evaluated here, it was 
previously reported by Schopp et al. (2017). The authors 
reported improved predictive ability obtained for half-sib 
families compared to un-related families due to higher seg-
regation of QTLs among half-sib families rather than con-
sistency of QTL-marker linkage phases across the families. 
Theoretically, predictive ability improves with increased 
size of the calibration set. Previous studies (Habier et al. 

Fig. 5   Prediction accuracies obtained for the different allocation of 
lines to SEs using proportion of lines that intersect between select top 
20% lines based on SH selection index model using GBLUP from the 

prediction model and GBLUP estimates from full data across the SEs. 
The suffix (* and **) represents prediction accuracy obtained when 
calibration set was augmented with DS1 and DS3, respectively
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2007; Clark et al. 2012; Riedelsheimer et al. 2013; Lee et al. 
2017; Campos et al. 2013; Atanda et al. 2021a; Lopez-Cruz 
et al. 2021) have emphasized the influence of size of the 
calibration set and the influence of degree of relatedness 
between calibration and prediction set on predictive ability. 
Considering the degree of genetic variation in the prediction 
set, there is minimal possibility of improvement by apply-
ing genetic optimization criteria accounting for relatedness 
between prediction set and the individuals in DS3 in our 
study. This is because it is unlikely to have the same QTL 
segregating across all the populations in the prediction set. 
In Atanda et al. (2021a) and Brandariz and Bernardo (2019), 
historical data were optimized around each bi-parental popu-
lation. The optimized individuals from historical data were 
assumed to be in the same QTL-marker LD phase with full-
sibs in the prediction population resulting in improved pre-
dictive ability. However, in the current study the prediction 
set comprised several populations with few progenies per 
cross; therefore, relatedness between individuals in DS3 and 
the prediction set was ambiguous and did not consistently 
improve predictive performance.

Unsurprisingly, the predictive performance of the PBLUP 
model was similar to the GBLUP model. For across popula-
tion predictions and based on the architecture of the dataset 
used in this study, the predictive ability depends largely on 
the variation in genomic and pedigree relationship between 
families. Therefore, the PBLUP model was able to track 
segregating QTLs across the families and thus explained a 
large proportion of the genetic variance among the families. 
This result agreed with previous studies (Crossa et al. 2010; 
Albrecht et al. 2011; Schopp et al. 2017; Basnet et al. 2019; 
Calleja-Rodriguez et al. 2020).

In a breeding program, accurate estimate of selection can-
didates’ breeding value is critical as a predictor of genetic 
potential and the ability to generate superior progenies in 
the subsequent generation (Falconer and Mackay 1996; Gall 
and Bakar 2002; Zhang et al. 2011; Crossa et al. 2021). In 
practice, programs are unlikely to have an estimate of true 
breeding value of genotypes; however, GBLUP can be used 
as a surrogate of true breeding value. This is especially true 
for traits with inherent low to medium heritability such as 
grain yield (Henderson 1975; Gall and Bakar 2002; Zhang 
et al. 2011; Lell et al. 2021) particularly in the early yield 
testing stages where genetic merit of lines is evaluated in 
few environments. According to Lell et al. (2021), the use of 
GBLUP or BLUE as selection criteria will be influenced by 
the reliability of the available information (evaluation stage) 
as well as whether the assumption of genotype independence 
can be valid in the evaluation stage. As a result, GBLUP 
superiority over BLUE or BLUE superiority over GBLUP 
cannot be generalized across evaluation stages. The model 
underlying BLUE assumes all lines were independent, while 
GBLUP model incorporates genomic relationship between 

lines allowing use of the phenotypic information from indi-
vidual lines and relatives (Henderson 1975; Lell et al. 2021). 
In the early yield testing stage where genetic merit of lines is 
evaluated in few environments, our results indicate GBLUP 
improved selection accuracy compared to BLUE as selec-
tion decision metric. Other factors that contribute to pheno-
typic expression such as environmental variables can also 
be adjusted for in the GBLUP model to achieve estimation 
of genetic merit of lines that is potentially close to the true 
breeding value of the lines (Jarquín et al. 2014; Monteverde 
et al. 2019; Costa-Neto et al. 2021; Crossa et al. 2021).

Conclusion

The results from our study show that GBLUP should be used 
as an advancement decision metric and parental selection 
criteria in the early yield testing stages, where genetic merit 
of lines is evaluated in few environments. For programs 
implementing sparse testing GP for multi-environment 
yield trials, consideration should be given to the propor-
tion of lines that overlap across environments in the early 
yield testing stages to increase the size of the SE or selection 
intensity. Our study suggests including a substantial num-
ber of common lines across environments to ensure precise 
estimation of genetic correlation between environments and 
to enable improved modeling of GxE interaction effects. In 
general, sparse testing using GP is a promising strategy for 
increasing genetic gain in a breeding program by optimizing 
testing across SE while keeping the breeding costs constant.
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