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A B S T R A C T   

The occurrence of high temperature and heavy rain events during the monsoon season are a major climate risk 
affecting aquaculture production in Bangladesh. Despite the advances in the seasonal forecasting, the develop
ment of operational tools remains a challenge. This work presents the development of a seasonal forecasting 
approach to predict the number of warm days (NWD) and number of heavy rain days (NHRD) tailored to 
aquaculture in two locations of Bangladesh (Sylhet and Khulna). The approach is based on the use of meteo
rological and pond temperature data to generate linear models of the relationship between three-monthly 
temperature and rainfall statistics and NWD and NHRD, and on the evaluation of the skill of three operational 
dynamical models from the North American Multi-Model Ensemble (NMME) project. The linear models were 
used to evaluate the forecasts for two seasons and 1-month lead time: May to July (MJJ), forecast generated in 
April, and August to October (ASO), forecast generated in July. Differences were observed in the skill of the 
models predicting maximum temperature and rainfall (Spearman correlation, Root Mean Square Error, Bias 
statistics, and Willmott’s Index of Agreement,), in addition to NWD and NHRD from linear models, which also 
vary for the target seasons and location. In general, the models show higher predictive skill for NWD than NHRD, 
and for Sylhet than in Khulna. Among the three evaluated NMME models, CanSIPSv2 and GFDL-SPEAR exhibit 
the best performance, they show similar features in terms of error metrics, but CanSIPSv2 presents a lower 
interannual standard deviation.   
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Practical implications  

Mache Bhate Bangali. This adage translates as “fish and rice are 
what makes a Bengali”. This expression is rather true since rice 
farming, fishing and aquaculture are a major source of livelihood 
in Bangladesh. This densely populated and low-lying deltaic 
country in the humid sub-tropics has landscape conditions 
permitting the production of a diversity of diverse aquacultural 
products, many of which are grown by small-scale and resource- 
poor farmers. Aquaculture is therefore important as an economic 
activity that sustains livelihoods and contributes to household 
nutrition. However, aquaculture production in Bangladesh is 
subject to the challenge of coping with adverse meteorological 
events associated with intense rains affecting operations and 
management decision and high temperatures that often induce 
physiological stress to fishes and affect oxygen solubility. We hy
pothesized that the availability of actionable climatic information 
generated and provided on an adequate time scale to allow 
effective decision-making by farmers could help mitigate the ef
fects of adverse meteorological conditions through modifications 
aimed at more appropriate farm management. However, there is a 
gap in the availability and accessibility of tailored climate infor
mation for decision-making in the aquaculture sector. This paper 
aims to develop a seasonal-scale early warning system for high 
temperature and heavy rainfall events in two locations where 
aquaculture is an important activity in Bangladesh (Sylhet and 
Khulna districts), in order to generate actionable information for 
farm operations, and that can be easily implemented as an early 
warning system by agencies such as the Bangladesh Meteorolog
ical Department. As explained in this paper and a previous work 
by Hossain et al. (2021), events of high temperatures and intense 
rains were recognized by local farmers and experts as a priority 
when requesting climate information services. 

The seasonal forecast developed in this research is based on a 
hybrid approach combining the use of state-of-the-art dynamic 
general circulation models (GCMs) and the empirical relationship 
between the number of high temperature and intense precipita
tion events above a fixed threshold and their seasonal averages 
over two locations in Bangladesh. The currently available seasonal 
forecasts from GCMs provide information on a monthly basis but 
the targeted events (relevant for aquaculture) occur on daily 
scales. On the other hand, multiple GCMs are currently available 
as part of the North American Multi-Model Ensemble (NMME) 
project and few of them provides operational and near real time 
forecasts. Consequently, in this work we focused on the evaluation 
of GCMs that can be potentially used to generate and deliver 
seasonal forecasts as climate services to aquaculture farmers in 
Bangladesh. In this way, the forecast of the number of warm days 
and rainy days from May to July and from August to October, the 
period of the year when important aquaculture operations de
cisions are taken, with one month of lead time for each period, was 
evaluated using outputs from three NMME GCMs and verified 
using ground observations of pond and air temperature and 
rainfall data. 

The main practical implications of the results from this research 
are related both with the possibility of developing a seasonal early 
warning system for adverse events based on the assessment and 
use of GCMs climate predictions, and how this information should 
be transferred for decision-making, but also with regard to the 
aspects that must be taken with care, and that can be improved in 
future works. In this sense, the sequence of steps necessary to 
develop the proposed early warning system are explained so that it 
can be implemented flexibly. However, the pond temperature data 
used covers a limited time period (two seasons), and were 
considered as representative of the regional aquaculture. 
Certainly, the latter can be improved in the future by using longer 
time series and locations, in order to generate robust statistical 
models linking pond and air temperature, as well as daily events 
and seasonal averages. In addition, the results show that the 

CanSIPSv2 and GFDL-SPEAR GCMs show the best overall perfor
mance for the two locations and targeted variables. However, in 
practice GCMs are constantly modified in their structure, therefore 
any recommendation about the use of a specific model may not be 
valid in a scenario in which the ranking of their performance is 
altered or new models are incorporated to NMME, which implies 
that the development of a real-time seasonal forecast must be 
accompanied by a GCMs evaluation program, as well as the 
incorporation of quality observations. Although this work is 
mainly focused on the climate services generation stage, we have 
also provided information that can be used by stakeholders in the 
translation and transfer stages in order to build resilience in an 
economically relevant productive sector in a country highly 
exposed to the impacts of climate variability and change.   

1. Introduction 

Bangladesh, the densely populated sub-tropical country in South 
Asia, has favorable natural conditions for fish and shellfish production 
due to its long coastline, flat terrain, and its status as the primary delta of 
the regions’ largest rivers. Among the three main fish and shellfish 
production categories found in Bangladesh, inland aquaculture con
tributes the most to total production (56% in 2016), followed by inland 
capture (28%) and marine fisheries (16%) (Shamsuzzaman et al., 2017). 
Aquaculture and fisheries are two of the fastest growing sectors in 
Bangladesh, where they have grown to be significant contributors to 
country’s economy, food provision (as primary source of animal protein) 
and income source for rural households and for processing, transporting, 
and marketing industries. Recent statistics show that fish production 
increased by more than 2.3 times, from to 1,781 to 4,134 million metric 
tonnes, between 2000 and 2016, with an increasing share of production 
from aquaculture (Shamsuzzaman et al., 2020). Both fresh water and 
coastal aquaculture in Bangladesh is characterized by intensified pro
duction practices and growing use of technologies to cultivate carp and 
catfish species including Rui (Labeo rohita), Atla (Catla catla), Mrigal 
(Cirrhinus cirrhosus), Pangas (Pangasius pangasius) and Tilapia (Oreo
chromis niloticus) (Shamsuzzaman et al., 2017). Coastal aquaculture is 
conversely dominated by shrimp (Penaeus monodon) and prawn (Mac
robrachrium rosenbergii), which have become an export product of eco
nomic relevance (Paul and Vogl, 2011). 

Aquaculture in Bangladesh can be seriously affected by adverse 
events associated with weather and climate variability, whose effects 
vary depending on the species grown and period of their development 
and reproductive cycle, affecting farm production and the livelihoods of 
small-scale farms. Adverse events include recurring extreme events such 
as flash floods, heavy rainfall episodes and heatwaves, each of which can 
inflict significant losses to production and aquacultural infrastructure 
(Islam et al., 2014b, Montes et al., 2021a). This is especially the case for 
inland freshwater farmers that have adopted fewer climatic adaptation 
measures compared to coastal areas (Islam et al., 2019). The latter is in 
turn enhanced by Bangladesh’s high population density and low adap
tation capacities (Shahid et al., 2016), which suggests that operational 
products for risk management with the potential of buffering the im
pacts of adverse weather events through informed decision making are 
necessary (Spillman et al., 2011; Bell et al., 2013). Furthermore, unfa
vorable long-term climatic projections highlight the importance of 
adapting farmers to both current and future possible risks (Ahmed and 
Diana, 2015). The lack of reliable, relevant and targeted weather fore
casts and advisories remains a critical lacuna in aquaculture and fish
eries that increases the vulnerability of the sector and reduces its growth 
potential (Islam et al., 2014a; Hossain et al., 2021). Progressive im
provements of weather forecasting by the Bangladesh Meteorological 
Department (BMD) has made it possible to provide useful and actionable 
information (e.g. for high temperature events or tropical cyclones). BMD 
is also active in collaborative efforts to develop climate information 
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relevant to aquaculture, although they remain underdeveloped. 
Recent advances and improvements in both dynamical and statistical 

modeling for weather and climate prediction have allowed the devel
opment of various products and services focused on the use of climate 
information and data in decision support systems. Numerous efforts 
have been carried out so that the scientific products can be transferred to 
users by extension institutions effectively and efficiently, with increased 
opportunities for feedback from users to iteratively improve products 
(Hewitt et al., 2013). In this way, dynamical and statistical seasonal 
forecasting have been implemented and delivered to aquaculture 
farmers as climate information services in other countries. Examples 
include forecasts of sea surface temperature (SST) and precipitation for 
marine farming operations in Australia (Hobday et al., 2016), rainfall 
and air temperature forecasts relevant to prawn aquaculture (Spillman 
et al., 2015), and pond water temperature to assist salmon farms, also in 
Australia (Spillman and Hobday, 2014). The skill in the seasonal fore
casting of coastal SST by a set of dynamical models was also evaluated 
by Hervieux et al. (2019) in North America. Nevertheless, the benefits of 
targeted climate information lie in the possibility of improving decision- 
making at appropriate time-scales, including days, weeks or months, 
each of which should be aimed at reducing exposure to hazards and 
optimizing resource use efficiency (Spillman et al., 2015). While short- 
term decisions such as pond management or whether to fish or harvest 
can be aided by weather forecasting, medium-term planning in terms of 
mitigation options for high temperatures, feeding management, or 
species selection, to which seasonal climate anomalies are relevant can 
benefit from the availability of seasonal forecasts (Hobday et al., 2016; 
WorldFish, 2020). In a nutshell, a successful implementation of an early 
warning system advising pre-emptive and climate responsive aquacul
tural practices will depend on the appropriate choice of variables, 
timescales, lead times, along with a collaborative design co-design 
process between end-users and climate information producers (Buon
tempo et al., 2014; Stiller-Reeve et al., 2016). 

This paper responds by focusing on the preliminary steps needed to 
develop a framework for seasonal early warning system for high tem
perature and intense precipitation events that can assist pond aquacul
ture farmers in Bangladesh to take improved management decisions that 
safeguard production and protect their livelihoods. The performance 
evaluation of a set of operational General Circulation Models (dynamical 
models) belonging to the North American Multi-Model Ensemble 
(NMME) project (Kirtman et al., 2014) has been done for their skill in 
predicting these events. A simple approach has been adopted based on 
the linear relationship between the number of events of high tempera
tures and intense precipitation and monthly average values of temper
ature and rainfall. The manuscript is organized as follows: we describe 
the two study locations in Bangladesh in terms of climate, relevance of 
the aquaculture sector, and the definition of seasonal climate advisories. 
We then describe the ground-truth dataset and NMME models used, to 
later explain the way in which a set of customized forecasts relevant to 
aquaculture were developed and verified. Finally, we present fore
casting results and discuss their potential use for an operational seasonal 
early warning system. 

2. Study area, data used and forecasting approach 

2.1. Study area and aquaculture in the Sylhet and Khulna divisions 

The study was carried out in the Khulna and Sylhet divisions of 
Bangladesh (Fig. 1). These divisions are geographically contrasting in 
terms of climate (section 3.1), and aquacultural systems have been 
described as having moderate to high vulnerability to climate variability 
and change (Islam et al., 2019). Aquaculture in Sylhet and Khulna is a 
major source of nutrition, income, employment and livelihood for rural 
communities and the economies of both divisions. Aquaculture 

production in ponds reaches 52% of the country’s total (BBS, 2017), and 
north Khulna and Sylhet have 12% and 3% Bangladesh’s pond fish 
production, respectively (BBS, 2017), indicating significant prospect in 
driving development and strengthening rural economy. 

Khulna division has about 250,000 ha of high potential land for 
coastal pond aquaculture with an annual average catch of 3,5 tons/ha. 
In addition, a potential area of 180,000 ha is available for shrimp culture 
(Kashem et al., 2017). Currently, aquaculture is carried out over a total 
area of about 67,062 ha, which covers 65.28% of total inland water of 
Khulna (DoF, 2018). Major native culture species are bata (Labeo bata), 
mirigal (Cirrhina mrigala), tilapia (Orechromis nilotica), grass carp (Cte
nopharyngodon idealla), silver carp (Hypopthalmichthys nobilis), pungus 
(Pungassius suchi), rui (Labeo rohita), catla (Catla catla) and thai koi 
(Anabas testudineus). Khulna is also known as a major shrimp producing 
district across the southern part of Bangladesh. Brackish water giant 
tiger shrimp (Penaeus monodon) and fresh water river prawn (Macro
brachium rosenbergii) are the main cultivated species (Azim et al., 2002), 
with a total production in 2014–2015 of 192,975 tons (BBS, 2017). 

The Sylhet division is known as a depressed basin (haor) ecosystem 
and deeply flooded aquatic region covering 24,500 km2 (Chakraborty, 
2009), providing natural conditions for aquaculture. A number of beels 
(large lakes) and haors (large swamps) cover this saucer-shaped area. 
Currently, 17,009 ha are under aquaculture production in Sylhet (FRSS, 
2017), with a culture fish production ranging from 25,000 to 50,000 
tons (Shamsuzzaman et al., 2017). The most cultivated species in Sylhet 
are tilapia (Oreochromis niloticus), koi (Anabas testudineus) and carps 
such as rui (Labeo rohita), catla (Catla catla), kalibaush (Labeo calbasu), 
and mrigal (Cirrhina mrigala) (Hemal et al., 2017). 

Fig. 1. Map of Bangladesh showing the location of BMD stations in the Khulna 
and Sylhet divisions (blue circles). Black lines are administrative divisions. 
Black plus sign corresponds to the NMME GCMs grid points. 
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2.2. Defining warm and heavy rain days for aquaculture in Sylhet and 
Khulna 

Along with the rapid expansion of intensive aquaculture farming, 
particularly tilapia and carps in Sylhet and shrimp in Khulna region, 
losses associated with climate variability are also a concern (Rahman 
et al., 2013; Matin et al., 2016). Flash floods and high temperature 
events are key climatic constraints for aquaculture (Siddiqua et al., 
2019). During a recent dialogue on climate information services for 
aquaculture, a wide range of stakeholders identified extreme tempera
ture and rainfall events as the most relevant climatic variables affecting 
operations and management decisions (WorldFish, 2020). Similarly, 
high temperatures and heavy rainfall events were found as the adverse 
climatic phenomena with highest economic damage in Khulna. Heavy 
rains can inundate up to 25% of the total land surface of this district 
(Rashid et al., 2014). Conversely, the Sylhet region corresponds to one of 
the rainiest areas in Bangladesh (Montes et al., 2021a). 

In order to prioritize the relevant variables to be considered in a 
seasonal early warning system, we organized discussions with fish 
farmers and conducted formal interviews with aquaculture and meteo
rological experts as part of the CGIAR Capacitating Farmers and Fishers 
to Manage Climate Risks in South Asia (CaFFSA) project, which were 
complemented with literature review. The critical temperature and 
rainfall thresholds corresponding with the developmental phase of 
economically important and widely cultivated fish species in Khulna and 
Sylhet region were defined. Fish farmers typically start growing tilapia 
and rohu fingerlings in May and harvest in November. Hence, we have 
selected grow out phase of these two main species during this period. 
Water temperature directly affects fish physiology, and specifically 
breeding, spawning, and speed of growth, with high temperatures 
exceeding thresholds disrupting these processes (WorldFish, 2020). 
Temperature also affects management decisions including pond refill, 
feeding times, decisions on lime application, and pond fertilization. 
Aquaculture experts recognized that rohu and tiger shrimp can survive a 
water temperature of 30 ◦C, while tilapia fish can tolerate water tem
perature up to 32 ◦C, but physiological stress conditions occur when 
temperature exceeds those values (Hossain et al., 2021). In consequence, 
we defined 30 ◦C as a target maximum temperature threshold to define 
warm days for aquaculture in the study areas. 

Similarly, precipitation can affect the growth environment for fish. 
Heavy rainfall can lower dissolved oxygen and pH levels, and can further 
imbalance water temperature (WorldFish, 2020). Experts from the 
Bangladesh Meteorological Department defined a rainfall intensity of 
44 mm/day as a threshold for heavy rain events, and aquaculture ex
perts agreed that when the rainfall exceeds a value in the range of 40 
mm/day, can not only cause mortality of fingerlings, but also changes in 
water quality and damages to pond infrastructure. Therefore, we 
adopted 44 mm/day as rainfall threshold to define heavy rain days for 
aquaculture operations (Hossain et al., 2021). To our knowledge, no 
previous literature guidelines on rainfall thresholds for aquaculture 
operations in South Asia are available. 

2.3. Datasets 

2.3.1. Daily pond temperature and meteorological data 
Daily pond water temperature data from January 2018 through 

December 2019 were obtained from two farm fishery units belonging to 
the Bangladesh Rural Advancement Committee (BRAC). The fisheries 
are located in the Gutudia union (89.48◦E, 22.82◦N) of Dumuria Upa
zilla of Khulna district, and in the Motiganz union (91.71◦E, 24.28◦N) of 
Srimanagal Upazilla of Sylhet district. Data were collected over two 
ponds averaging a surface of 0.4 ha and 1.5 m depth. Temperatures were 
measured with a digital thermometer every day between 8:00 AM and 
9:00 AM, and between 4:30 PM − 5:30 PM (local time) at approximately 
15–25 cm below the pond surface. Temperatures are measured at those 
two times of the day given that they correspond to the hours in which 

minimum and maximum daily values typically occur, as it has been 
reported in previous studies (Losordo and Piedrahita, 1991). 

In addition to pond temperatures, daily air temperature (maximum 
and minimum) and precipitation data from two synoptic weather sta
tions provided by BMD were used (Fig. 1). These stations, located in 
Sylhet (91.88◦E, 24.89◦N) and Khulna (89.55◦E, 22.80◦N) divisions, 
spanned the period 1981 through 2019, but slightly shorter period was 
used in the analysis, as presented below. 

2.3.2. General circulation models for seasonal forecasting 
Hindcasts (also referred to as retrospective forecasts) from three 

General Circulation Models (GCM) belonging to the North American 
Multi-Model Ensemble (NMME) project phase 2 (Kirtman et al., 2014) 
were studied to evaluate their skill in reproducing seasonal precipitation 
and maximum temperatures indices over the two study locations in 
Bangladesh. These models, listed in Table 1 (details can be found in the 
corresponding reference), were selected since they provide real-time 
operational forecasts which can be used for a framework to build an 
early warning system. Seasonal hindcasts data with spatial resolution of 
1◦ × 1◦ (Fig. 1) were obtained from the Columbia University’s Inter
national Research Institute (IRI) Data Library1. The models have 
different number of ensemble members representing different initiali
zation methods, which were averaged to generate an ensemble mean. 
These three models include the Canadian Seasonal to Interannual Pre
diction System Version 2 (CanSIPSv2), the National Aeronautics and 
Space Administration (NASA) Global Modeling and Assimilation Office 
(GMAO) Subseasonal-To-Seasonal (S2S) forecasting system (NASA- 
GEOS-S2S-2), and Geophysical Fluid Dynamics Laboratory (GFDL) 
Seamless System for Prediction and EArth System Research (GFDL- 
SPEAR) (Table 1). Following the data availability from the three models, 
CanSIPSv2 and NASA-GEOS-S2S-2 data were obtained for years 1982 
through 2016, and GFDL-SPEAR for years 1991 through 2016 for the 
lead-1 (initial conditions of April for predicting MJJ and July for ASO) 
hindcasts. 

2.4. Forecasting approach 

2.4.1. General methodology 
As previously presented (section 2.2), the days above a selected 

threshold of 30 ◦C maximum temperature (warm days) and 44 mm 
day− 1 rainfall intensity (heavy rain days) were selected as target vari
ables to be predicted for aquaculture. However, since GCMs provide 
only monthly average of maximum temperature and total precipitation, 
a transformation function between the two variables was defined 
considering their linear relationship. In this way, linear regressions be
tween MJJ and ASO maximum temperature and average precipitation 
(predictor variables) from BMD stations and total number of warms days 

Table 1 
List of the three NMME models used, the responsible institutions, number of 
ensemble members, and reference.  

Model 
acronym 

Institution Number of 
ensemble 
members 

Reference 

CanSIPSv2 Canadian Centre for 
Meteorological and 
Environmental Prediction 
(CCMEP) 

20 Lin et al., 
2020 

NASA- 
GEOS- 
S2S-2 

National Aeronautics and 
Space Administration (NASA), 
Goddard Space Flight Center 

4 Borovikov 
et al., 2017 

GFDL- 
SPEAR 

Geophysical Fluid Dynamics 
Laboratory 

15 Delworth and 
et al. (2020)  

1 https://iridl.ldeo.columbia.edu/SOURCES/.Models/.NMME/. 
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(NWD) and number of rainy days (NHRD) (predictand variables) were 
performed. Subsequently, the resulting linear models were used to 
generate a seasonal forecast of NWD and NHRD using the 3-month mean 
maximum temperature and precipitation from bias corrected NMME 
models’ outputs (section 2.4.2). Finally, the overall performance of 
NMME models and the ensemble multi-model mean (MME) generated 
by averaging the three models was assessed in terms of predicted NWD 
and NHRD. Forecast skill was evaluated using Spearman rank correla
tion, the widely used Root Mean Square Error and Bias statistics, and the 
Index of Agreement, presented below. A flow diagram schematically 
describing the main steps of the forecasting approach is shown in Fig. 2. 

The performance of the three NMME models, along with the MME, 
was assessed in terms of the seasonal forecasting of two 3-months target 
periods and 1-month lead time initialization for the closest GCM grid cell 
to the BMD weather stations (Sylhet and Khulna). The target periods are 
from May through July (MJJ), initialization in April, and from August 
through October (ASO), initialization in July. These two periods span 
the pre-monsoon, monsoon, and post-monsoon season. For every year 
(1982–2016 and 1991–2016 according to the model), two forecasts 
were evaluated for two variables (NWD and NHRD) and for 6 model 
forecasts (including MME). 

2.4.2. Bias correction of GCMs: The standardized-reconstruction technique 
Outputs from dynamical climate models are often biased given the 

inherent complexity of simulating the climate system (Acharya et al., 

2014). As a way to mitigate this problem, multiple statistical methods 
for model bias corrections have been developed, for instance Quantile 
Mapping, Principal Component Regression, or regression-based 
methods. We used the Standardized-reconstruction technique (Pan and 
van den Dool, 1998) to correct systematic biases in maximum temper
ature and precipitation from NMME models. We selected this method as 
it has been previously reported as more skillful than others in correcting 
GCM outputs over the Indian subcontinent (Acharya et al., 2013a). 

We implemented the method to correct biases in each of the three 
NMME raw maximum temperature and precipitation seasonal datasets, 
taking BMD stations data as an observational reference. The method 
consists of two steps. The first step corresponds to the standardization of 
the model annual (MJJ and ASO) time series to be corrected, which is 
applied for every i year as: 

SFi =

(
Mi − Mj

σMj

)

(1)  

where Mi is the model maximum temperature or precipitation value of 
year i, Mj the mean of the remaining j years (removing i), σMj the stan
dard deviation of the remaining j years, and SFi the standardization 
factor for year i. Secondly, the bias corrected value for year i is obtained 
by adjusting the systematic error of the model by projecting the long- 
term observed climatology and standard deviation to the model value as: 

Zi = SFi × σOj +Oj (2) 

Fig. 2. Flow diagram of the proposed approach of seasonal forecasting of NWD and NHRD. See text for acronyms.  
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where Zi corrected model value for year i, σOj the standard deviation of 
observations for the remaining j years, and Oj the mean of observations 
for the remaining j years (removing i). Correcting the value of year i 
using statistics from the remaining j years (‘training’ dataset) is a form of 
leave-one-out cross-validation that can be used when applying the bias 
correction method. 

2.4.3. Verification metrics for evaluation of GCMs 
We employed a set of verification metrics for GMCs evaluation: 

Spearman rank correlation, the Root Mean Square Error (RMSE), the 
Bias statistics, and the Willmott’s Index of Agreement, in order to 
examine the performance of the models and the MME. Spearman rank 
correlation measures the association between ranked values of two 
variables. Given that correlations are insensitive to biases, we also used 
the RMSE and the Bias statistics. In addition, we used the skill metric 
proposed by Willmott (1982) called Index of Agreement (d) to evaluate 
the performance bias corrected NMME seasonal forecasting. This index, 
which has the advantage of being bounded between 0 and 1, combines 
both the difference (error) and correlation forecast and observations, 
and is calculated as: 

d = 1 −

[ ∑
i(fi − Oi)

2

∑
i(|fi − O| + |Oi − O| )

2

]

(3)  

where fi and Oi are the forecast and observations of year i, respectively, 
and O is the observations climatology. The closer d is to 1, the higher the 
efficiency of the model in producing the forecast. We calculated d both 
for the set of three models and for the ensemble mean MME, which was 
calculated for the common period 1991–2016. The efficacy of Index of 
Agreement in assessing GCM outputs over the Indian subcontinent has 
been discussed in previous studies (Acharya et al., 2013a; Acharya et al., 
2013c). 

3. Results 

3.1. Climatology of temperature and precipitation in Khulna and Sylhet 

Time series of annual rainfall and temperatures are displayed in 
Fig. 3, along with their mean annual cycles. Total rainfall differs 
considerably between Sylhet and Khulna (Fig. 3a). Sylhet and Khulna 
average 4,125 mm year− 1 and 1,830 mm year− 1, respectively. As seen in 

Fig. 3. Climatology of precipitation and air temperature in Sylhet and Khulna from BMD stations data: (a) time series of total annual rainfall (1981–2019), (b) 5-day 
moving average of the mean rainfall annual cycle, (c) mean annual minimum (Tmin) and maximum (Tmax) temperature, and (d) 5-day moving average of the mean 
annual cycle of minimum (Tmin) and maximum (Tmax) temperature. 
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the annual cycle of precipitation (Fig. 3b), the two stations show a strong 
seasonality, with an increasing rate around March, which is significantly 
higher in Sylhet, with a peak around June, and a declining rate in 
October associated with the monsoon demise. Both the higher total 
rainfall and the significantly higher rate of increase in Sylhet are the 
result of factors such as the occurrence of intense pre-monsoon precip
itation originated by local rainstorms (Basher et al., 2018), both an 
earlier monsoon onset and later withdrawal (Stiller-Reeve et al., 2015; 
Montes et al., 2021b), and also by interactions between low-level 
moisture transport and topography (Ahmed et al., 2020). On the other 
hand, Fig. 3c shows that annual mean maximum (Tmax) and minimum 
(Tmin) air temperatures are slightly higher in Khulna, with an interan
nual average Tmax (Tmin) in Khulna of 31.3 ◦C (21.8 ◦C) and in Sylhet of 
30.2 ◦C (20.6 ◦C). These differences are likely associated with the lower 
seasonal rainfall of Khulna. In fact, the mean annual cycle of the Tmax 
(Fig. 3d) shows a seasonal warming regulated by the increasing rainfall 
rates (Fig. 3b), effect that is more pronounced in Sylhet. Tmax is espe
cially higher in Khulna from March to June before the establishment of 
the monsoon. Tmin is systematically higher in Khulna maybe due to other 
factors such as elevation or sea proximity. 

3.2. Number of warm days and rainy days: climatology and linear models 

As explained in section 2.4.1, the adopted approach seeks to generate 
seasonal predictions of NWD and NHRD from NMME 3-monthly Tmax 
and precipitation. The first step consisted of the analysis of the rela
tionship between daily maximum pond temperature (Tpond) and Tmax in 
order to establish a threshold Tmax value when Tpond is above the pre
viously identified 30 ◦C. Fig. 4 shows Tmax and Tpond recorded in Sylhet 
and Khulna in 2018 and 2019. Days when Tpond exceeded 30 ◦C and the 
corresponding Tmax during those days are also displayed. The number of 
days above 30 ◦C, and in general Tpond, is higher in Sylhet (Fig. 4a-4b) 
than in Khulna (Fig. 4d-4e); they typically occur between May and 
October, and differences between temperatures are higher in Khulna. 
The temperature range is wider in Sylhet, with Tpond (Tmax) values 
ranging between 21 ◦C and 37 ◦C (25 ◦C and 38 ◦C), and from 26 ◦C to 
33 ◦C (28 ◦C and 39 ◦C) in Khulna. According to the linear relationship 
between Tpond and Tmax, a Tmax value of 33 ◦C and 32 ◦C in Sylhet and 
Khulna, respectively, as a threshold for air temperature would be 
reasonable choice to define NWD considering that the corresponding 

percentiles 35% and 13% of those threshold temperatures would allow 
removing values that might be too low, considering the longer length of 
the time series to be analyzed in the following steps. 

In a similar way, the daily precipitation threshold of 44 mm/day 
identified through expert interviews as heavy rainfall that can cause 
fingerlings mortality and unfavorable water conditions problems in 
pond aquaculture was analyzed in the context of the climatological 
precipitation values in Sylhet and Khulna. Fig. 5 shows the resulting 
histograms of daily rainfall (≥1 mm/day) and the corresponding per
centiles 95%, 99% and of 44 mm/day. As expected, the threshold value 
of 44 mm/day equates to a lower percentile in Sylhet (82%) than in 
Khulna (92%). Based on these results, the selected threshold of 44 mm/ 
day allows most of the rainfall events that can be statistically identified 
as extreme events to be considered in the forecasting, so that the 
threshold of 44 mm/day was subsequently used to determine NHRD. 

The linear relationship between observed 3-month average Tmax and 
NWD, and 3-month average precipitation and NHRD is displayed in 
Fig. 6 for both MJJ and ASO. Linear models generated from linear 
regression are presented in Table 2. For the case of NWD (Fig. 6a and 
6b), our results show a good linear fit between Tmax and NWD, with R2 

values that vary between 0.71 and 0.9 and Spearman correlations from 
0.84 to 0.94, all statistically significant (α = 0.05). The linear relation
ship between 3-month average rainfall and the NHRD of Fig. 6c-6d 
shows a linear regression fit that is similarly statistically significant but 
at a slightly lower level, with R2 values ranging between 0.6 and 0.79 
and Spearman correlation from 0.81 to 0.9, indicating a better fit for 
NWD than for NHRD. Finally, previous analysis resulted in a set of linear 
equations, displayed in Fig. 6, which will be used for the seasonal 
forecast in MJJ and ASO, using the predictor X (3-month Tmax and 
precipitation) to obtain the predictand Y (NWD, NHRD), as shown 
below. 

3.3. The skill of NMME seasonal forecasting of Tmax, rainfall, NWD and 
NHRD 

NMME models were evaluated in terms of their performance pre
dicting Tmax, rainfall, NWD and NHRD, for the two target periods MJJ 
and ASO, and 1-month (April and July, respectively) lead time. We 
report in Table 3 the biases in raw (not bias-corrected) and bias- 
corrected NMME models’ predictions of Tmax and rainfall. It can be 

Fig. 4. Scatter plot between daily maximum pond and air temperature for (a) Sylhet and (b) Khulna. The corresponding air temperature when pond temperature 
equals 30 ◦C according to the linear fit is shown in red. The shaded area corresponds to the 95% confidence interval. 
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seen that biases are highly variable for temperature and precipitation 
and the selected models, exhibiting a performance that range from 
− 0.4 ◦C to 6.8 ◦C in the case of raw Tmax predictions, and from 1 mm to 
− 534 mm in the case of not bias-corrected rainfall. In general, these 
results suggest that the use of a bias correction method is necessary to 
improve the skill of the predictions, which is observed in Table 4, and 
presented below. 

The forecast skill of bias corrected NMME models and MME using the 
standardized-reconstruction technique and in terms of Spearman rank 
correlation and RMSE is presented in Table 4 and Fig. 7, respectively, 
which shows the corresponding matrices of skill metrics. The bias is not 
presented here since after applying the correction method, resulting 
biases reached values close to zero. As described in previous studies in 
Bangladesh (e.g. Kelley et al., 2020), Spearman rank correlation varies 
widely among models and for Tmax and rainfall. Table 4 shows that 
correlations are mostly positive for both Tmax and rainfall, except for 
NASA-GEOS-S2S-2 rainfall, where negative correlations are observed. 
Although these correlations are within the range of previous assessments 
of NMME models’ outputs (e.g. Slater et al., 2019), results show varying 
skill for each variable and model, and also a higher skill for Tmax than for 
rainfall. The latter is not unexpected given the higher difficulties of 
predicting precipitation than temperature. Moreover, and although the 
heterogeneous performance of NMME models, Table 4 shows that 
CanSIPSv2 and GFDL-SPEAR present the higher and more consistent 
skill in terms of Spearman correlation for both Tmax and rainfall. On the 
other hand, RMSE (Fig. 7a and 7b) after bias correction varies widely 
according to the predicted variable and model used. In general, variables 
such as Tmax and rainfall ASO in Khulna seem to be consistently well 
represented by the models, and models such as NASA-GEOS-S2S-2 
exhibit a divergent skill predicting temperature and rainfall. Similar, 
lower consistency between models is observed for variables such as Tmax 
MJJ in Khulna. 

The skill of NMME models predicting NWD and NHRD was assessed 
by using the Willmott’s Index of Agreement (d). However, a slightly 
different approach that for Tmax and rainfall was used in the current 
study. Performance evaluation was carried out by comparing outputs 
using the linear models generated from BMD stations’ temperature and 
precipitation data and presented in Fig. 6. In this way, NWD and NHRD 
obtained by the linear models using BMD data were considered as ob
servations in the calculation of d. The matrix of d values for all three 

NMME models and MME and variables is presented in Fig. 8a, where 
values closer to 1 suggest higher mean skill (Acharya et al., 2013b). A 
wide range of d values can be observed in Fig. 8a, which range from 0.25 
to 0.78, with a median of 0.53. In terms of variables, it is observed that 
NWD has in general higher values of d than NHRD. Also, the lowest skill 
was obtained for NHRD MJJ in Khulna, with an among-models average 
d of 0.33. On the other hand, NWD ASO in Sylhet exhibits a higher skill 
in its predictability when models are compared, with an among-models 
average d of 0.7. Regarding the models, GFDL-GFDL-SPEAR shows the 
higher individual skill, with a d of 0.76 predicting NWD ASO in Sylhet. It 
is worth noting that ASO rainfall prediction in Sylhet has both relatively 
higher positive Spearman correlation and lower RMSE (Table 4), metrics 
that are captured by the Index of Agreement d. 

The implementation of a seasonal early warning system of NWD and 
NHRD should be carried out in an effective and organized manner. The 
above results imply that although the poorer and better performance in 
terms of d were obtained for NWD ASO in Sylhet and NHRD MJJ in 
Khulna, respectively, an appropriate option might be the selection of the 
model (or MME) that performs better predicting NWD and NHRD both 
for Sylhet and Khulna, and for the two target periods MJJ and ASO. For 
this, the overall skill is presented in Fig. 8b, where boxplots of d were 
calculated for each model, including MME, taking the 8 individual 
values presented in Fig. 8a, represented by rows. Among the 3 NMME 
models and MME, CanSIPSv2 and GFLD-SPEAR provide similar skill for 
both NWD and NHRD, with a median (mean) of 0.58 (0.61) and 0.57 
(0.65), respectively, followed by MME and NASA-GEOS-S2S-2, which 
provides poorer overall performance. However, a lower amplitude 
(interannual variability) is observed for CanSIPSv2 than GFDL-SPEAR, 
with a standard deviation of 0.09 and 0.19 in d, respectively, which 
can be corroborated in the first row of Fig. 8a, which shows more ho
mogeneous d values for both NWD and NHRD. The latter implies that it 
would be expected a higher consistency in the forecast generated by 
CanSIPSv2 over time compared to GFDL-SPEAR. 

In order to illustrate the performance of the proposed approach 
predicting NWD and NHRD, Fig. 9 shows the time series of NWD and 
NHRD for Khulna and Sylhet and for MJJ and ASO obtained by the 
corresponding linear model using CanSIPSv2 and observations as an 
example. The predictands can be highly variable in time and for both 
locations, and the time series of both NWD observations and models 
show an increasing trend in MJJ and ASO, and an interannual variability 

Fig. 5. Histograms of daily precipitation (≥1 mm/day; 1982–2016) in (a) Sylhet and (b) Khulna from May through October. Vertical lines represent the selected 
threshold of 44 mm/day and percentiles 95% and 99%. 
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that is better captured by CanSIPSv2 in Sylhet than in Khulna. On the 
other hand, no trend is observed in NHRD, but in this case CanSIPSv2 is 
able to reproduce the regional and seasonal differences. It is also 
observed that CanSIPSv2 reproduces better NHRD in Sylhet during the 
MJJ season, during ASO in Khulna. In addition, the model is able to 
reproduce the interannual variability, with an average difference in 
standard deviation between observations and hindcasts that is lower 
than one event per year for both NWD and NHRD (results not shown). 
However, and despite the fact that the correlations between 

observations and forecasts are mostly statistically significant, in some 
cases they can be considered as low. 

4. Discussion and conclusions 

The main goal of this work was to develop a framework for the 
seasonal forecasting of high temperatures and intense precipitation 
events that can affect aquaculture in two locations in Bangladesh and 
validating the method using NMME models’ outputs to facilitate the 

Fig. 6. Linear relationship (1981–2019) between (a)-(b) seasonal mean maximum temperature and total number of warm days, and (c)-(d) mean seasonal pre
cipitation and total number of heavy rain days during May through July (MJJ) and August to October (ASO) for Sylhet and Khulna. Lines are the fit generated by the 
corresponding linear model. The shaded area corresponds to the 95% confidence interval. 

Table 2 
Linear models generated to estimate NWD and NHRD from 3-month average maximum temperature (MTmax) and rainfall (Rain) in Sylhet and Khulna. MJJ: May to 
July, ASO: August to October.   

NWD NHRD  

MJJ ASO MJJ ASO 

Sylhet NWD = 12.91 × MTmax − 374.24 NWD = 16.87 × MTmax − 504.04 NHRD = 0.03 × Rain − 5.31 NHRD = 0.03 × Rain − 3.41 
Khulna NWD = 11.07 × MTmax − 301.79 NWD = 17.75 × MTmax − 513.25 NHRD = 0.03 × Rain − 4.49 NHRD = 0.02 × Rain − 1.91  
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implementation of an early warning system for farmers and stake
holders. The seasonal forecasts are expected to improve aquacultural 
management decisions based on the information provided. Although 
significant additional work is needed to develop systems that ‘translate’ 
seasonal forecast information into advisories that can easily be under
stood and applied by fish farmers, this work presents an important first 
step towards this goal. 

Hindcast monthly runs (lead 1 for MJJ and ASO, 1982–2016 and 
1991–2016) from three NMME dynamical models along with the multi- 
model ensemble were evaluated in their performance using a simple 
approach to predict NWD and NHRD based on linear models. Skillful 

seasonal predictions of NWD and NHRD were obtained for 1-month lead 
time and two target seasons (MJJ and ASO). Although linear models 
generated based on meteorological observations of 3-month average 
maximum temperature and precipitation exhibit a statistically signifi
cant fit, multiple sources of error can make the forecast of estimated 
NWD and NHRD not perfect. For instance, threshold values for the 
definition of NWD and NHRD were taken from expert opinions and no 
empirical evidence on the impact of the NWD and NHRD criteria on 
aquaculture activities over Khulna and Sylhet was considered as a cri
terion. In this way, a long-term observational assessment of the impact 
of high temperatures and heavy rain events on the physiology of 

Table 3 
Bias in Tmax and rainfall, and for the two target periods May-June-July (MJJ) and August-September-October (ASO), for not bias-corrected and bias-corrected NMME 
models seasonal forecasting.    

CanSIPSv2 NASA-GEOS-S2S-2 GFDL-SPEAR Ensemble mean   

Not bias- 
corrected 

Bias- 
corrected 

Not bias- 
corrected 

Bias- 
corrected 

Not bias- 
corrected 

Bias- 
corrected 

Not bias- 
corrected 

Bias- 
corrected 

Tmax (◦C) Khulna 
MJJ 

− 0.8 0 6.8 0 1.5 − 0.1 1.4 − 0.1 

Sylhet MJJ − 2.6 0 6.3 0 − 0.7 − 0.1 0.9 − 0.2 
Khulna 
ASO 

− 1.9 0 − 0.4 0 − 0.4 − 0.2 − 1.0 − 0.1 

Sylhet 
ASO 

− 4.7 0 − 0.7 0 − 1.2 − 0.3 − 2.3 − 0.2 

Rainfall (mm/ 
month) 

Khulna 
MJJ 

− 6 0 − 534 0 − 181 8 − 231 15 

Sylhet MJJ 392 1.5 − 409 1 − 3 9 1 14 
Khulna 
ASO 

166 1 58 1 87 35 124 29 

Sylhet 
ASO 

126 1 130 1 265 37 196 35  

Table 4 
Spearman rank correlation for Tmax and rainfall, and for the two target periods May-June-July (MJJ) and August-September-October (ASO), between NMME models, 
including MME, and observations in Khulna and Sylhet.    

CanSIPSv2 NASA-GEOS-S2S-2 GFDL-SPEAR Ensemble mean 

Tmax (◦C) Khulna MJJ  0.42  0.22  0.51  0.33 
Sylhet MJJ  0.43  0.00  0.62  0.37 
Khulna ASO  0.44  0.01  0.49  0.18 
Sylhet ASO  0.55  0.31  0.68  0.67 

Rainfall (mm/month) Khulna MJJ  0.24  − 0.21  0.04  0.02 
Sylhet MJJ  0.22  0.04  0.46  0.26 
Khulna ASO  0.38  − 0.04  0.14  0.08 
Sylhet ASO  0.16  − 0.03  − 0.05  − 0.04  

Fig. 7. Matrices of RMSE for (a) Tmax and (b) rainfall, and for the two target periods MJJ and ASO, between NMME models, including MME, and observations in 
Khulna and Sylhet. 

C. Montes et al.                                                                                                                                                                                                                                 



Climate Services 26 (2022) 100292

11

cultivated species and infrastructure, for example, seems to be highly 
necessary to be able to understand more appropriately the relationship 
between climate risks and aquaculture production in Bangladesh. The 
foregoing should be accompanied by research that allows establishing 

threshold values of NWD leading to stress conditions for each species of 
aquaculture interest and for different stages of their growth cycle, and 
the NHRD that can act as a hydrometeorological hazard damaging 
infrastructure and consequently generating stress conditions. Regarding 

Fig. 8. (a) Matrix of Index of Agreement (d) between NWD and NHRD for NMME models. (b) Boxplot of global d obtained from NMME models for NWD and NHRD 
and for the two locations and target periods (MJJ, ASO). In (b), central red line shows the median and circle the mean, box edges are the 25th and 75th percentiles, 
and dashed lines extend to the most extreme values not considered outliers. Horizontal dashed line in (b) corresponds to the global among-model mean d. 

Fig. 9. Time series (1982–2016) of (a) NWD and (b) NHRD obtained with the linear models using station observations (Obs) and outputs from the CanSIPSv2 model 
(Fcst). Spearman correlations between observations and forecast (r) and p value for statistical significance are also displayed. 
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the use of climate information, we selected the closest model grid to the 
weather station from models of 1◦ × 1◦ resolution, which of course can 
be translated into a smoothing effect of local variability in climate. The 
foregoing corresponds to a recurring source of error when working with 
GCMs, since these models are not able of well capture the variability 
induced especially by topography (e.g. orographic precipitation), for 
which statistical and dynamical downscaling is often used (Ménégoz 
et al., 2013). Although the above might not be a major issue in Ban
gladesh’s flat terrain conditions, a product of higher grid resolution 
could certainly reduce the uncertainty associated with the coarse reso
lution of the GCMs. At the same time, linear models allow the estimation 
of daily NWD and NHRD from monthly data with a variable reliability. 
However, the differences among GCMs in terms of physical schemes, 
parameterizations, and forcing, are a major source of differences 
determining the accuracy of the forecasting, beyond the complexity of 
predicting the climate system at seasonal scales. 

Despite the above, results show that it is possible to statistically link 
the occurrence of weather events on a daily scale to monthly climate in 
the context of the development of practical applications, aquaculture 
farming in the present case. In this sense, after statistically removing the 
strong bias of the models, the evaluation of seasonal forecasts of NWD 
and NHRD showed, on the one hand, high differences in the perfor
mance of the models, but at the same time it was possible to identify the 
models (CanSIPSv2 and GFDL-SPEAR) providing the most reliable 
global results for Khulna and Sylhet. The latter can be valuable in the 
context of developing an operational early warning system, where both 
the most reliable model or the ensemble mean could be selected to 
deliver a final forecast product, as it has been previously done for the 
prediction of other variables (e.g. Kelley et al., 2020), considering also 
that the prediction skill can be improved when the ensemble mean is 
used (Acharya et al., 2013b). However, the use of a previously identified 
best fit model (or MME) should be an ongoing activity by climate ser
vices providers, since GCMs such as the ones used in this work are 
constantly evaluated and modified by the corresponding institutions. 

The present work focuses on the evaluation of the NMME models, 
which is part of the climate information services generation stage. In this 
sense, it is important to consider that the development and maintenance 
of GCMs as such as those evaluated in this work is a continuous process 
in search of improvements in the representation of the climate system. 
This is of relevance at the moment of implementing an operational early 
warning system based on dynamical models since the configuration of a 
particular selected model may change over time which makes a 
continuous evaluation of its performance necessary (Kirtman et al., 
2014). In the present case, whatever method used to present and deliver 
forecasts to decision makers, the first step corresponds to bias correction 
of the new forecast generated in April and July for the upcoming three 
months (MJJ and ASO) using the forecasts of previous years. In addition 
to the generation of climate information, effective translation and 
transfer (delivery) of generated information are crucial additional next- 
steps (Spillman and Hobday, 2014). Furthermore, a scaling plan should 
also be considered in future work in order to reach more aquaculture 
producing areas and species, involving relevant actors and facilitators to 
improve the services provided (e.g. Blundo-Canto et al., 2021). 

As stated, in addition to the continuous review of the generation 
stage associated with the above, the translation and delivery of the 
forecast in an adequate form that is easy to understand and use by 
stakeholders is of great relevance. For instance, Spillman et al. (2014) 
suggest that probability distributions of both forecast and observed 
climatologies can be used for experienced forecast users for salmon 
farmers in Australia. The same authors and Spillman et al. (2015) 
translated seasonal temperature forecasts into terciles-based probabi
listic pie charts. In addition, the generated information can also be 
tailored to specific actions in aquaculture in the target area. Properly 
planned advisories can mitigate the inaccuracies inherent in climate 
forecasts and substantially improve decision making in aquaculture 
avoiding larger economic damage and enhance productivity. In 

Bangladesh, an actionable seasonal forecasting can provide information 
on adverse events that can be used by aquaculture producers for oper
ations planning regarding unsuitable climate conditions (e.g. Hobday 
et al., 2018). Information about adverse meteorological events can assist 
fish-farmers make decisions on pond preparation, fingerling stocking, 
production volume, maintenance and harvesting schedule. These 
climate-sensitive management decisions are crucial for aquaculture 
operations in managing climate risks, reducing costs and ensuring 
business profit (Hossain et al., 2021). In any case, the above must be 
conceived as a co-production process that requires the interaction with 
farmers and relevant local research and development institutions and 
individuals such as aquaculture extensionists in order to find the best fit 
between targeted forecasts and users’ possibilities, which is a subse
quent stage of iterative work. Climate services for aquaculture in 
developing countries are in a stage of infancy and no major efforts are 
reported so far in South Asia. As such, the current efforts are expected to 
provide an initial momentum for such efforts in the region. 
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