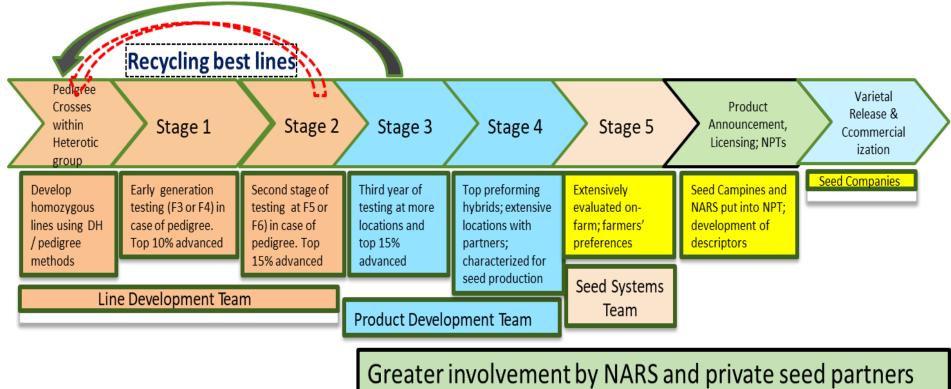
Implementation of Genomic Selection in CIMMYT – Africa Maize Breeding Program

<u>Yoseph Beyene</u>, M. Gowda, J. Crossa, M. Olsen; K. Robbins, P. Perez, J. Burgueno, and BM. Prasanna

Presentation to the EiB Breeding Optimization Community of Practice Monthly Meeting, 12 May 2022



CIMMYT Maize Breeding Pipelines in ESA

Code	Pipeline description	Target Countries	Est. Area (M ha)
EA-PP1	Early/intermediate-maturing, white maize varieties with drought-tolerance, NUE and resistance to GLS, TLB, Ear rots, MSV and MLN , and suitable for food use in Eastern African tropical rainfed dry/wet mid-altitude areas.	Ethiopia, Kenya, Uganda, Tanzania (Northern)	3.17
EA-PP2	Late-maturing, white maize varieties with drought tolerance, NUE, and resistance to GLS, TLB, MSV, common rust, and ear rots, adapted to Eastern African tropical rainfed wet, upper mid-altitude areas, and used mainly for food purposes.	Ethiopia, Kenya, Uganda, Tanzania (Southern)	3.38
EA-PP3	Late-maturing, multiple stress-tolerant white maize varieties for the Eastern African tropical rainfed highlands and used mainly for food purposes.	Ethiopia, Kenya, Uganda, Tanzania (Southern)	1.75
SA-PP1	Intermediate/late maturing, nitrogen-use efficient (NUE), drought- and heat-tolerant white maize varieties for the Southern African tropical rainfed mid-altitude/transition areas and used mainly for food purposes.	Mozambique, Zimbabwe, Malawi, Zambia, Tanzania (Southern); drought-prone smallholder farm areas in South Africa	3.74
SA-PP2	Early-maturing, drought-, heat- and low soil pH stress-tolerant white maize varieties for the Southern African dry/wet lowland and mid-altitude areas and used mainly for food purposes.	Zimbabwe, Malawi, Zambia, Tanzania (Southern), drought- prone smallholder farmers, about 2-3% of total maize area)	2.03

CIMMYT Maize Breeding: Stage-Gate Process

- Stage 1 First testcross evaluation; one tester; 2 reps, 3-5 sites
- Stage 2 Selected lines (10-15% S.I.) from Stage 1 trials; 3 testers; 2 reps, 8-10 sites
- Stage 3 Selected lines from Stage 2 trials (15% S.I.); Cross with 5 testers; 2 reps, 10-15 locations
- Stage 4 (Regional On-station Trials) Best products from Stage 3; 2 rows, 3 reps, 25-35 locations
- Stage 5 (Regional On-Farm Trials) 30-50 on-farm trials per Product Profile; Farmers' preferences
- Final Product Advancement Meeting to identify products/pre-commercial hybrids to be announced to the partners through CIMMYT Website

Criteria for Product Advancement

Stage 1 to Stage 2 [Line Development Team]

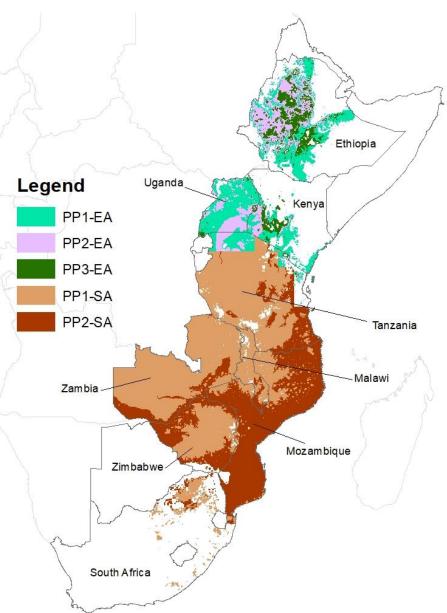
- Line entering Stage 1 TC are pre-selected for disease resistance (e.g., MSV, MLN) using markers.
- GEBV of the line analyzed
- Hybrid performance (yield under optimal, and abiotic and biotic stresses)
- Selection intensity of 10-15% applied
- Independent culling/selection index
- Number of lines used in Stage 1 varies from 1000 to 1500.

Stage 2 to Stage 3 [Line Development Team]

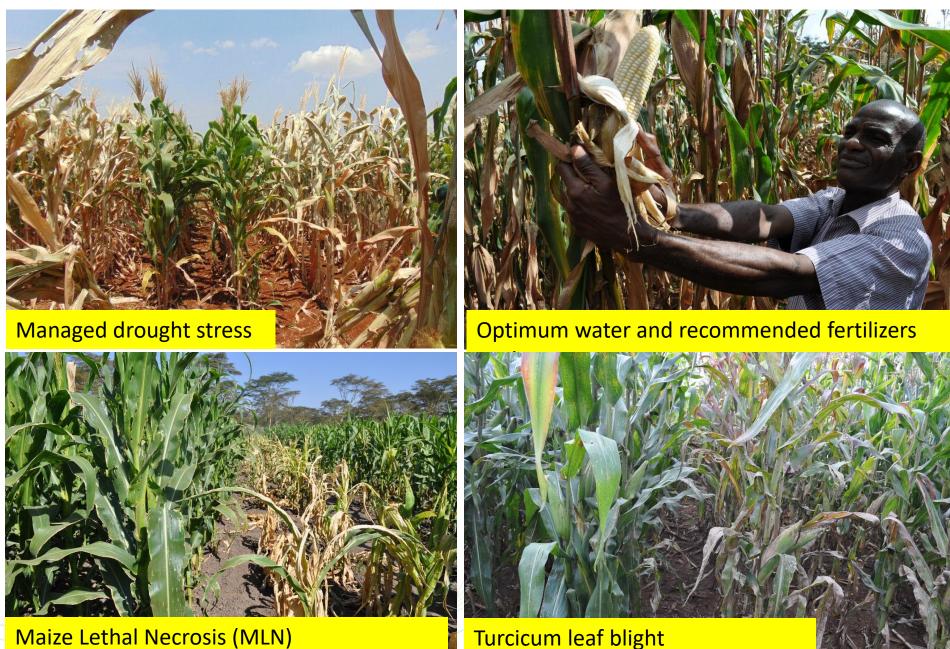
- GCA of the line with testers
- Hybrid performance at more locations relative to Stage 1 (optimal; abiotic and biotic stresses)
- Sites with low heritability (<0.10) discarded
- Selection intensity of 10-15% applied.
- Lines selected for recycling

Stage 3 to Stage 4 [Product Development Team; Advancement Committee]

Hybrid performance at more locations (10-15) relative to Stage 2 (optimal; abiotic and biotic stresses)


CIMMYT

- Sites with low heritability (<0.10) discarded
- Selection intensity of 15% applied


Trait Packages and Advancement Thresholds

Basic Traits	Product target	PHB30G19, DK777, H517	
Yield	>10% greater than commercial checks)	1	
Grain color	White	1	
Maturity	Equivalent to best check	1	
Plant height	±10 cm of best check	2	
Ear height	±10 cm of best check	2	Legend
Grain moisture	Equivalent to best check	2	
Drought tolerance	>10% > mean of checks	1	PP1-EA
Nitrogen use efficiency (NUE)	>10% > mean of checks	2	PP2-EA
TLB resistance	<4.0 (1-9 scale)	1	DD4 CA
GLS resistance	<4.0 (1-9 scale)	1	PP1-SA
MSV resistance	<3.0 (1-9 scale)	1	PP2-SA
Common rust resistance	<4.0 (1-9 scale)	2	
Fusarium ear rot resistance	Less than 10% incidence	1	Zambia
Bare tips (poor husk cover)	Less than 10% incidence	1	
MLN resistance	10 % > of the mean of checks	1	
Value-added traits	Product target	Market priority	
Striga tolerance	>10% or equal to the best trait checks	2	
FAW resistance	≤5 leaf damage; ≤3 ear damage (1-9 scale)	2	Sou

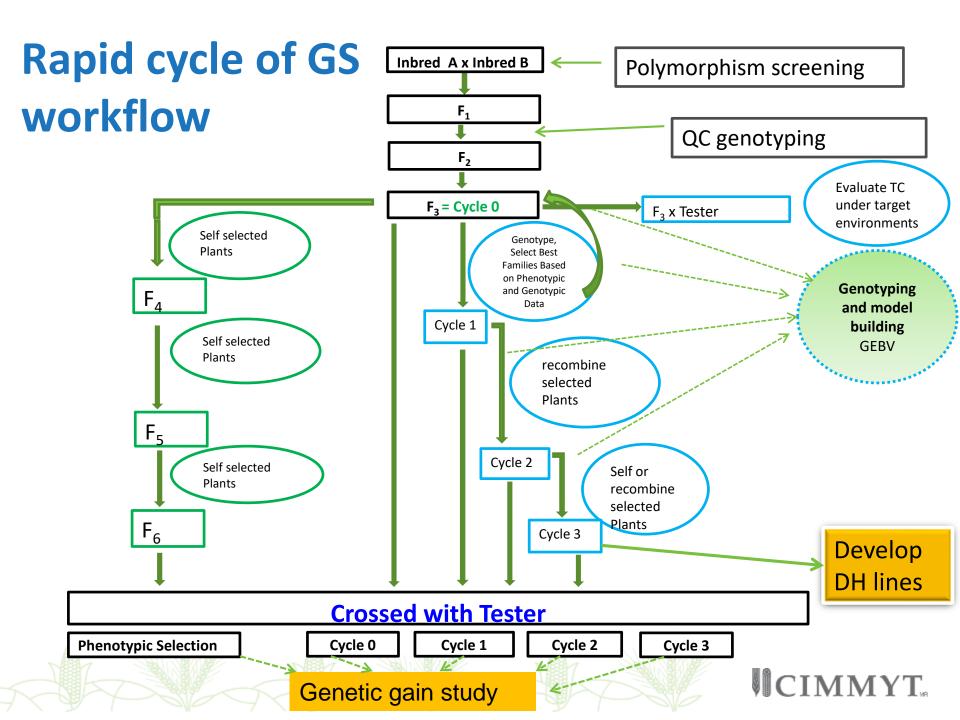
1 = top priority; 2 = lower priority.

Sampling TPEs

Turcicum leaf blight

GS being applied at CIMMYT maize breeding to accelerate the rate of genetic gain in two ways

1. Rapid cycle genomic selection (RCGS)

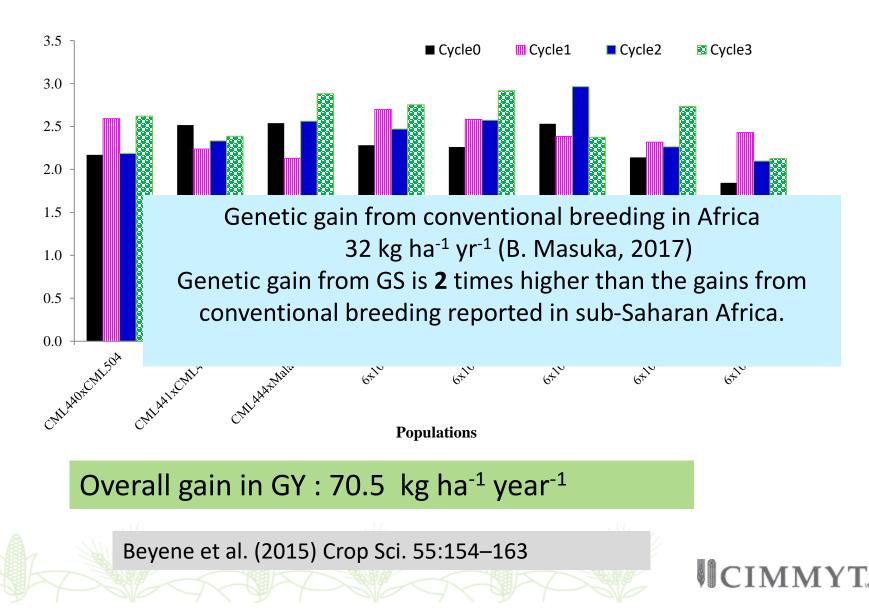

2. Predict the performance of un-phenotyped genotypes at an early stage of testing

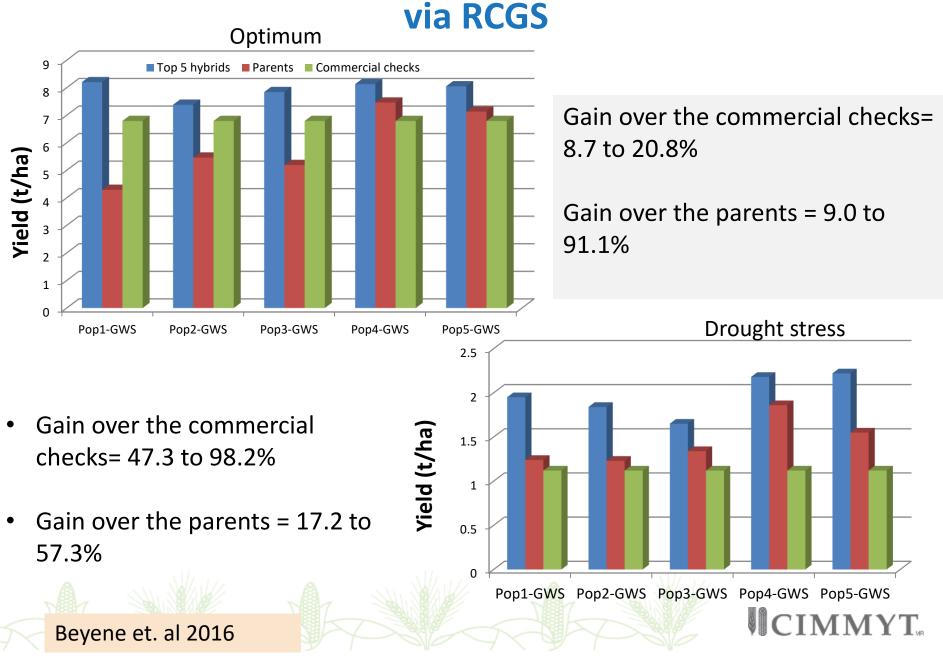
Rapid generation advancement using GS

- 34 bi-parental populations (total =6252 F_{2:3}, each with aprox. 184 progenies)
- Each pop. phenotyped in 2-4 managed water-stressed, 3-4 wellwatered environments, and genotyped with low and high-density markers
- Genetic gain studies completed for 18 populations

Training set: TC evaluation under Optimum, Drought and Diseases

Optimum


Drought


Diseases

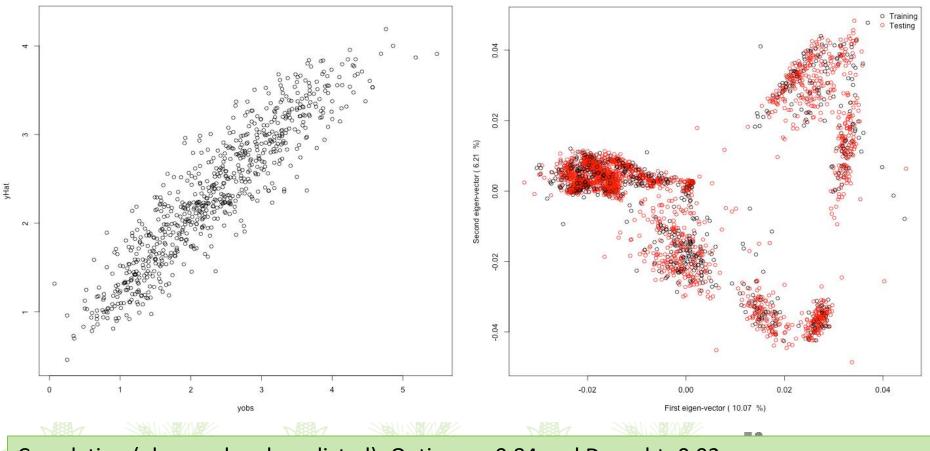
RCGS results: Gain in grain yield under drought environments in SSA

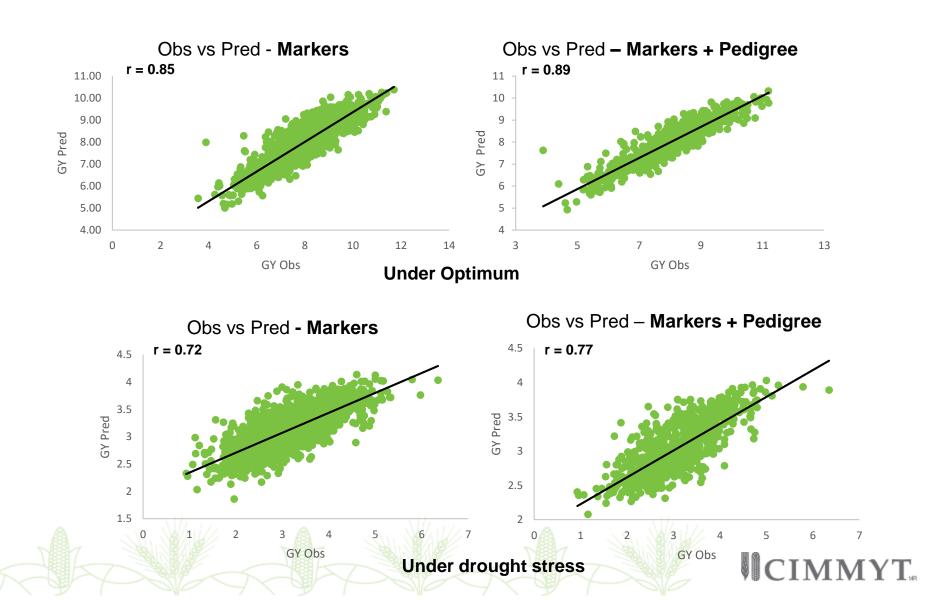
Grain yield (Mg/ha)

Performance of hybrids developed from lines derived

Lines developed through RCGS are being used as the parent of allocated hybrids to partners

Line	Parent in # allocated hybrids
CKLMARS1C3S50268	1
CKLMARS1C3S50080	2
CKLMARS1C3S50113	3
CKLMARS1C3S50140	2
CKLMARS1C3S50137	1


DT tolerant and susceptible hybrids at Kiboko-2021


Genomic selection using "test half-predict-half" strategy

- # lines genotyped (Stage I)= 2511
- # DH lines phenotyped (test crosses) =855
- # sites=2 optimum and one managed drought
- The phenotypic data were used to predict the remaining untested lines

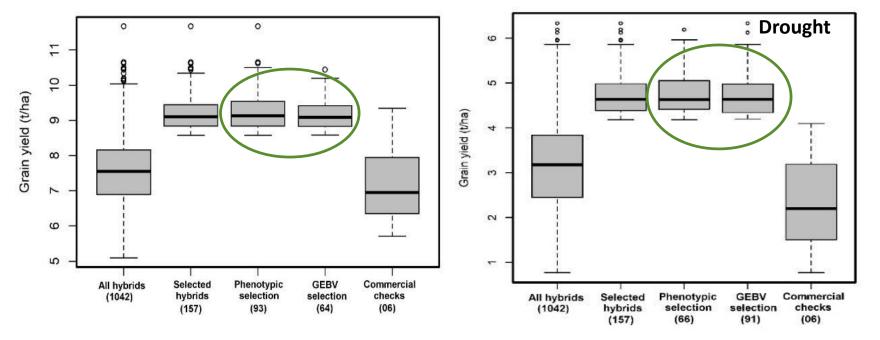
Correlation (observed and predicted): Optimum: 0.84 and Drought: 0.92

Genomic selection using test half-predict-half strategy –incorporating pedigree

Cross-validated prediction accuracy within and across testers

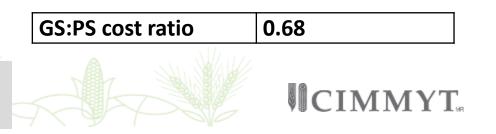
Management/trait	Tester 1	Tester 2	Across testers
	111	742	853
GY-WW	0.16±0.12	0.60±0.03	0.67±0.05
GY-WS	0.22±0.18	0.64±0.07	0.65±0.05
MOI-WW	0.16±0.14	0.58±0.01	0.65±0.04
MOI- WS	0.44±0.16	0.61±0.06	0.57±0.05
AD-WW	0.41 ±0.13	0.70 ±0.07	0.75 ±0.04
AD- WS	0.49±0.20	0.63±0.04	0.67±0.05
PH-WW	0.14±0.12	0.65±0.03	0.70±0.03
PH-WS	0.17±0.12	0.72±0.04	0.72±0.04

Advancement of lines based on GEBV and PS:


Population	CML536/LPS-F64
# DH genotyped	166
# DH lines phenotyped	88
# lines selected based on Phenotype	21
# lines selected based on GEBV	19

Check	GY(t/ha)_Opt	GY(t/ha)_MD	MOI-Opt	PH_Opt
H517	6.5	1.8	16.4	267.4
Pioneer 30G19	6.2	2.9	17.9	254.5
WH505	7.6	3.1	17.9	257.3
Heritability	0.64	0.52	0.3	0.8
Genotype Variance	0.70	0.21	0.3	79.8
GenxLoc Variance	0.13		0.3	16.2
Residual Variance	2.06	0.39	4.0	81.5
Grand Mean	6.81	3.10	18.2	248.8
LSD	1.43	0.93	1.4	11.6
CV	21.07	20.27	10.9	3.6
n Replicates	2	2	2	2
n Locations	3	1	3	3

		Observed	Predicted		Observed	Predicted
		GY BLUE	GY BLUE		GY BLUE	GY BLUE
SN	name	optimal	optimal		drought	drought
1	CKDHL152921	9.1	7.6		3.1	3.1
2	CKDHL152857	8.8	7.6		4	4
3	CKDHL152610	8.4	7.7		4.7	3.8
4	CKDHL152563	8.4	7.7		4.2	3.6
5	CKDHL152554	8.3	7.7		3.6	3.3
6	CKDHL152653	8.3	7.8		3.3	3.3
7	CKDHL152616	8.2	7.3		4.3	4.1
8	CKDHL152617	8.2	7.2		3.8	3.4
9	CKDHL152821	8.2	7.3		3	3.1
10	CKDHL152733	8.1	7.5		4.2	3.4
11	CKDHL152658	8.1	7.2		3.4	3.2
12	CKDHL152638	8.1	7.5		3.6	3.1
13	CKDHL152976	8	7.5		3.3	3.4
14	CKDHL152591	8	7.6		3.7	3.6
15	CKDHL152906	7.6	7.2		3.6	3.2
16	CKDHL152751	7.5	7.3		3.6	3.8
17	CKDHL152769	7.4	7.2		4.7	3.8
18	CKDHL153005	7.4	7.1		4	3.7
19	CKDHL152929	7.3	7		3.9	3.8
20	CKDHL152866	7.1	7.2		4.3	3.7
21	CKDHL152962	7	7		4.3	3.5
1	CKDHL152820	NA	7.6		NA	3.5
2	CKDHL152994	NA	7.5		NA	3.7
3	CKDHL152529	NA	7.5		NA	3.5
4	CKDHL152590	NA	7.5		NA	3.3
5	CKDHL152811	NA	7.4		NA	3.8
6	CKDHL152682	NA	7.4		NA	3.4
7	CKDHL152579	NA	7.4		NA	3.5
8	CKDHL152927	NA	7.4		NA	3.5
9	CKDHL152759	NA	7.4		NA	3.9
10	CKDHL152890	NA	7.4		NA	3.3
11	CKDHL152689	NA	7.4		NA	3.1
12	CKDHL152632	NA	7.3		NA	3.3
13	CKDHL152773	NA	7.3		NA	3.9
14	CKDHL152862	NA	7		NA	3.9
15	CKDHL152813	NA	7		NA	3.8
16	CKDHL152879	NA	7.2		NA	3.8
17	CKDHL152777	NA	7	C	NA	3.7
18	CKDHL152849	NA	7.2		NA	3.7
19	CKDHL152778	NA	7.2		NA	3.6


Comparison of GS vs PS

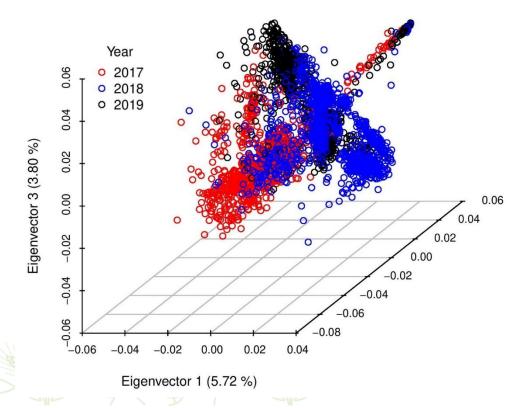
Category	# lines	# testers	# of hybrids
All stage II hybrids	348	3	1042
Hybrids advance through phenotype	176	3	526
Hybrids advance through GEBV	172	3	516

Stage1 TC: 50% Phenotyping + 50% genotyping

Beyene et al (2019). *Front. Plant Sci.* 10:1502. doi: 10.3389/fpls.2019.01502

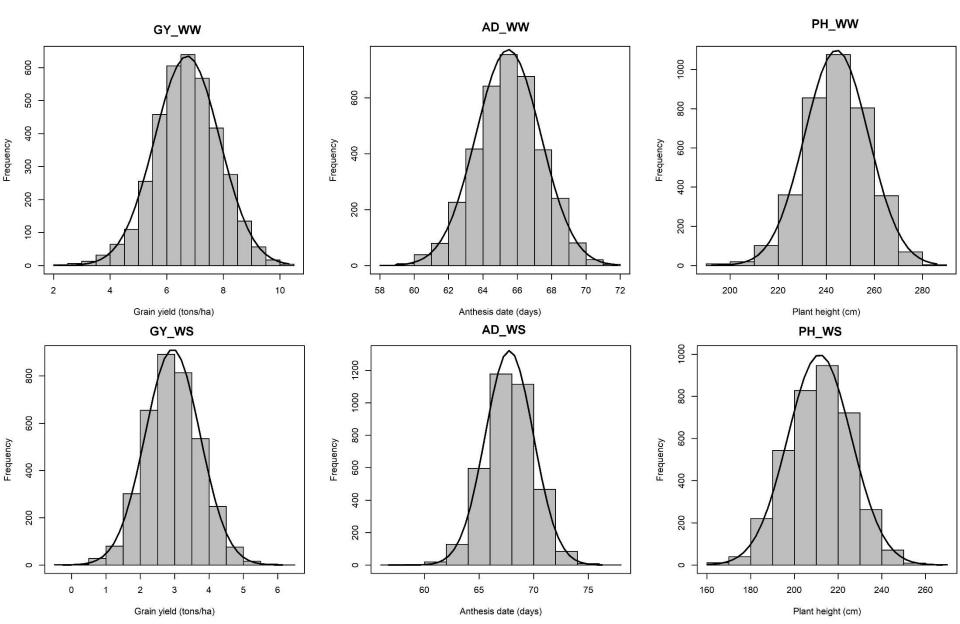
Performance of the top hybrids (advanced via phenotypic and GEBV) for grain yield and other agronomic traits compared to the best check under optimum and drought conditions

Entry	Pedigree	Advanceme nt	Optimum (GY/ha)	% increase	Drought (GY/t)	AD	%MOI	TLB	% ER
20	(CML543/CML566)//CKDHL150421	Phenotype	9.5	20.4	3.9	72.3	19.2	2.1	3.1
97	(CML395/CML444)//CKDHL1500213	GEBV	9.4	19.1	3.8	75.2	20.1	2.2	1.3
86	(CML543/CML566)//CKDHL1500261	GEBV	9.1	14.7	5.1	73.0	20.0	2.1	1.3
58	(CML395/CML444)//CKDHL150399	Phenotype	9.0	13.6	3.8	72.9	19.7	2.2	2.7
55	(CML395/CML444)//CKDHL1500041	Phenotype	8.9	12.8	3.8	72.7	19.5	2.5	1.8
76	(CML395/CML444)//CKDHL150431	GEBV	8.9	12.7	3.3	73.0	20.6	2.0	0.5
77	(CML543/CML566)//CKDHL150431	GEBV	8.8	11.0	4.3	74.3	21.6	2.3	5.5
126	(CML322/CML543)//CKDHL1500215	GEBV	8.7	10.0	4.4	70.7	19.5	2.0	3.9
56	(CML543/CML566)//CKDHL1500041	Phenotype	8.7	9.8	3.6	74.2	18.2	2.0	4.6
65	(CML543/CML566)//CKDHL150342	Phenotype	8.7	9.6	3.5	73.1	19.1	2.5	1.6
98	(CML543/CML566)//CKDHL1500213	GEBV	8.7	9.1	3.7	76.0	21.3	2.5	0.9
21	(CML322/CML543)//CKDHL150421	Phenotype	8.5	7.6	3.2	70.1	19.5	2.0	0.8
11	(CML543/CML566)//CKDHL150339	Phenotype	8.5	7.5	4.8	73.6	20.4	2.4	1.9
137	WH505		7.9		3.3	73.9	18.8	2.3	1.0
136	PH 30G19		7.9		3.6	67.8	20.7	2.0	4.1
139	DK 777		7.1		3.9	71.9	18.4	2.6	5.5
138	H516		6.7		2.2	69.9	18.2	2.0	6.6
140	DK 8031		5.7		2.1	66.9	16.9	2.2	8.7
	Heritability		0.6		0.5	0.9	0.6	0.6	0.4
	Grand Mean		7.5		3.6	72.6	19.7	2.5	3.3
	LSD		1.3		1.4	1.4	1.8	0.7	4.2
	CV	, <u>.</u>	16.3	<u>A</u>	18.6	1.9	9.1	16.1	113.6
	n Locations	. Shill	5		1	5	5	2	4

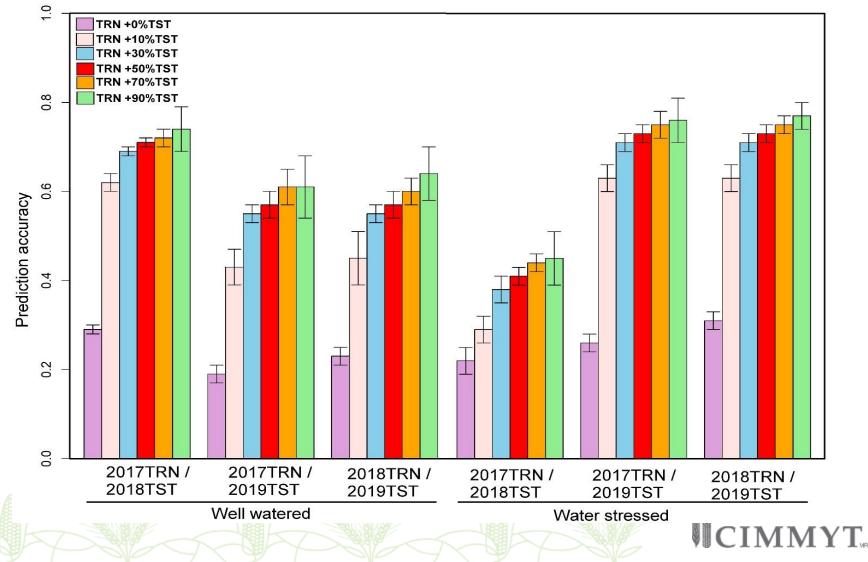

GS using historical Data – Prediction across

		Training ast	
	2017 data (N)	Training set (TRN): 2017 data + x % of 2018)	Testing set (TST): (100-x) % 2018
Converia 1		923 (0%)	1423
Scenario 1		1065 (10%)	1281
	923	1035 (30%)	996
	923	1635 (50%)	712
		1919 (70%)	427
		2204 (90%)	142
	2017+ 2018 pooled data(N)	Training set: 2017 + 2018 + x % of 2019	Testing set: (100-x) % 2019
		2346 (0%)	722
Scenario 2		2418 (10%)	650
	2346	2563 (30%)	505
	2340	2707 (50%)	361
		2851 (70%)	217
		2996 (90%)	117

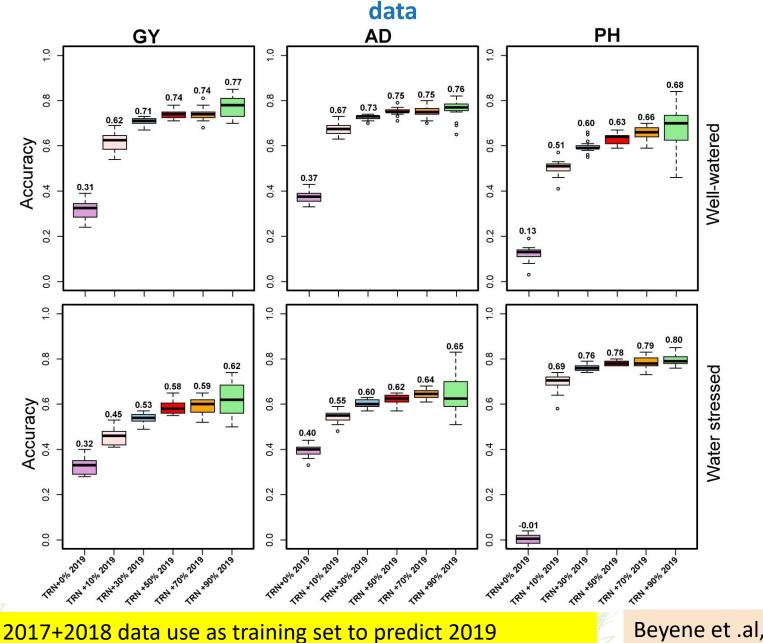
Years


Year	Number of lines phenotyped and genotyped records	Management
2017	923	Optimum and manged drought
2018	1423	Optimum and manged drought
2019	722	Optimum and manged drought
Total	3068	

5173 markers (after QC)

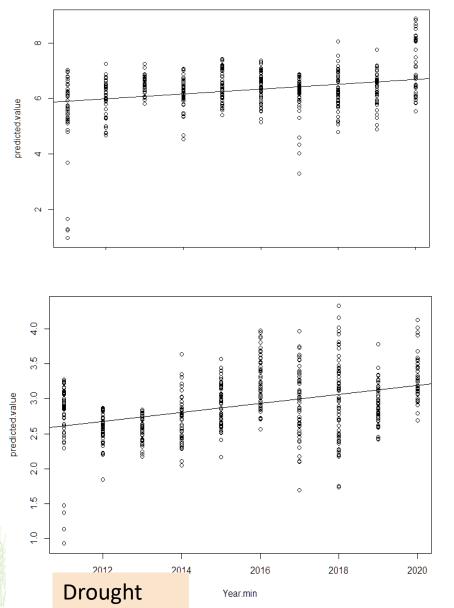


Beyene et.al 2021


Phenotypic distribution of GY, AD and PH under optimum (top) and managed drought (bottom) conditions

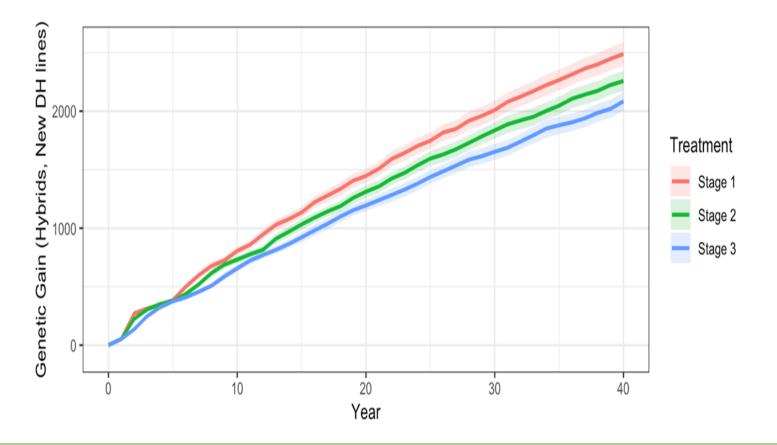
Prediction accuracies for grain yield using one-year data to predict another year's data and converting 10%, 30%, 50%, 70% and 90% of the data from the TST to TRN

Results of Predication Across Years when two years data used to predict third-year



Beyene et .al, 2021

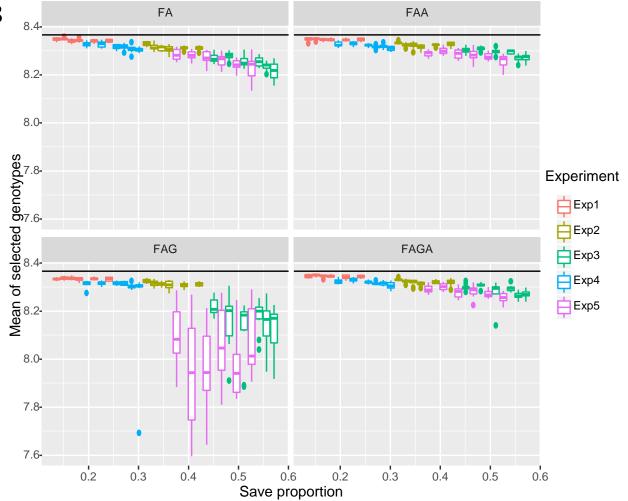
Genetic gain estimation Grain yield (2011-2020)


Year	Optimum	Drought
2011	45	50
2012	44	44
2013	39	39
2014	43	43
2015	51	51
2016	53	53
2017	54	54
2018	65	65
2019	44	44
2020	38	38
Total	476	481
Genetic gain (%)	1.61	2.4

Optimum

YT.

Simulation for Recycling Lines at Early Stage of Testing



Simulations results comparing the current recycling at Stage 3 vs recycling after Stage 1 and 2 testing using data from EA-PP1. Recycling after Stage 1 or Stage 2 could deliver increase genetic gain by **17% and 9%** compared to recycling at Stage 3, respectively

CIMMYT

Sparse phenotyping to sample TPE

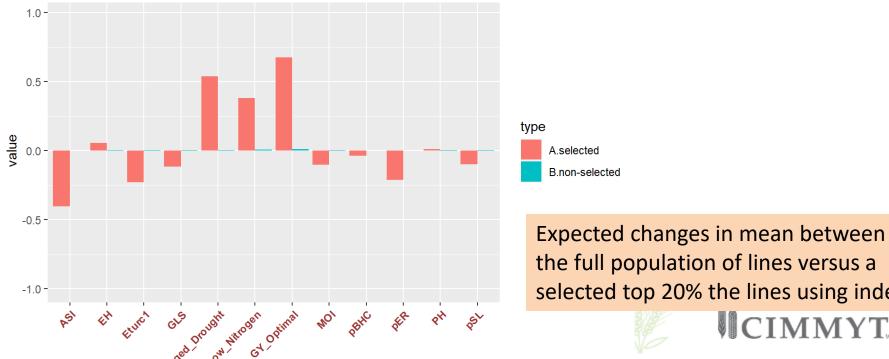
- Phenotypic data for 2018 Stage II trials (900 hybrids)
- Evaluated at 5 locations in Kenya
- Genotypic data for lines used in stage II trials
- Different experimental layout for spare testing
- 4 types of analysis:
- Factorial analysis (FA),
- FA + CoP
- FA+ Marker data
- FA+ Marker + CoP

The horizontal black line is the mean of the hybrids selected under complete phenotyping (8.36 t/ha)

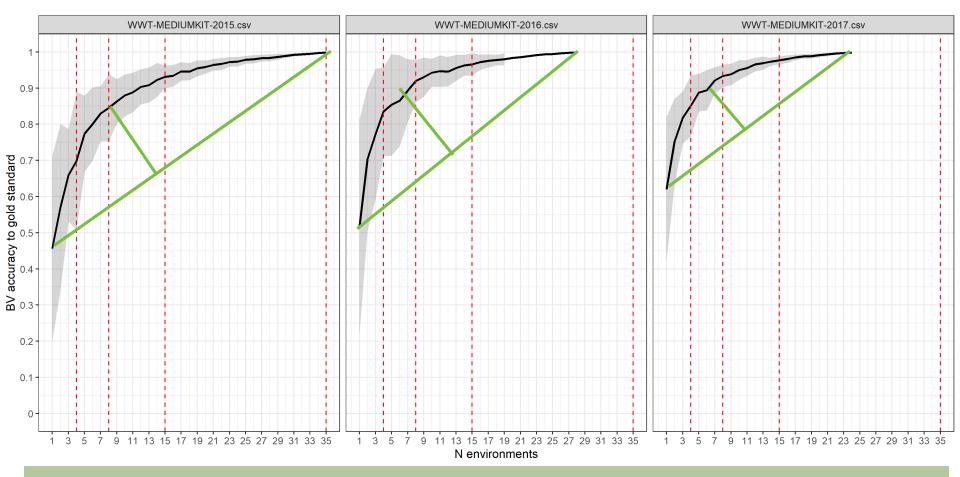
Conclusion: By saving 30% the phenotypic cost, 90% of the best hybrids were common between complete phenotyping and sparse phenotyping

Incorporating a selection index for selecting parents for recycling (DESIRE software)

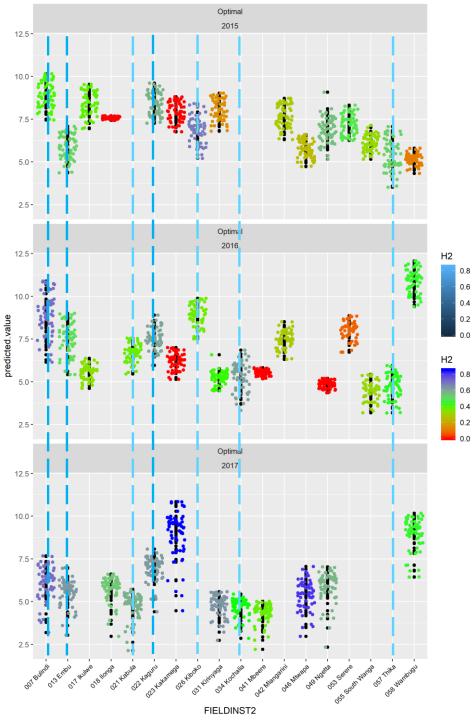
No. of Entries	600
No. of Test Hybrids	588
No. of Checks	12
No. of Lines	198
No. of Testers	3


Traits used for SI	H2
GY_Managed_Drought	0.83
GY_Managed_Low_Nitrogen	0.46
GY_Optimal	0.86
pER	0.90
pSL	0.87
рВНС	0.85
Eturc1	0.81
MOI	0.88
РН	0.95
EH	0.97
GLS	0.73
ASI	0.92

A.selected B.non-selected

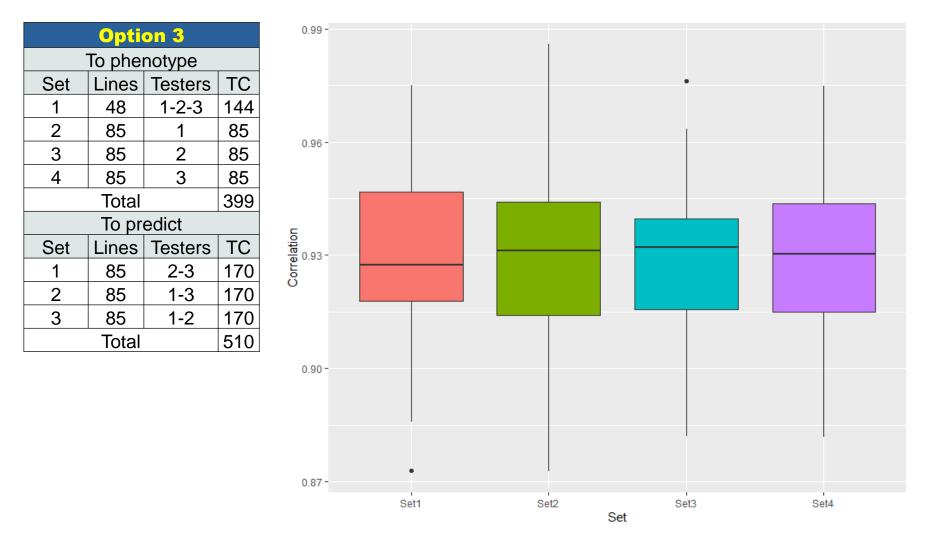

Example of	genetic
merit	

selected top 20% the lines using index.


Line	Merit	Rank
CKDHL1715901	1.96	1
CKDHL1715896	1.77	2
CKDHL1715915	1.34	3
CKDHL1715480	-1.33	196
CKDHL1715260	-1.49	197
CKDHL1720872	-1.34	198

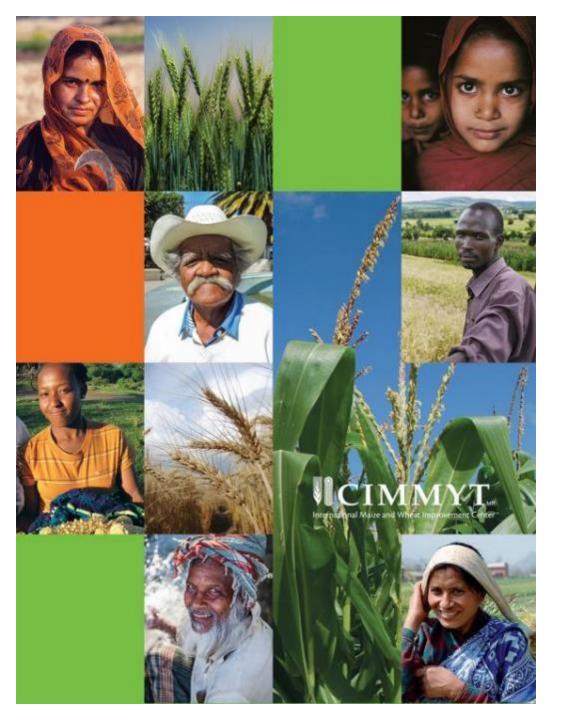
Retrospective analysis for identifying optimal number of environment to sample TPE

Results from cross validation to know the accuracy between real (across the entire TPE) and estimated BV when selecting a given number of environments.


Optimizing recycling through retrospective analysis to identify locations with high heritability and high genetic variance

Results from single environment heritability across 3 years of data. We assume that environments with highest H2 and genetic variance represent the best locations for applying selection

CIMMYT.


Results of sparse testcrossing

Spearman correlation between observed and predicted line-breeding value (n=50). Set 1 line crossed with all testers, set 2-4 lines crossed with one tester, predicted with the other two testers.

Lessons learned

- 1. Proper planning and coordination among
 - Conventional/ molecular breeder/Biometrician/ quantitative geneticist
- 2. Reliable service provider for efficient data turnaround time from leaf sampling to genotyping and data analysis.
- 3. Reasonable database for phenotypic and genotypic data storage/Links phenotypes with genotypes
- 4. Use of common genotyping platform to facilitate data sharing, reducing duplication and increase efficiency

Thank you for your interest!