Genomics-assisted breeding in the CIMMYT Global Wheat Program

Susanne Dreisigacker

CIMMYT Global Wheat Program - Mexico

Private Sector Public Sector

Annual seed shippments of approx. 200 000 wheat lines to approx. 450 breeding programs

Impact of CGIAR Wheat Breeding Germplasm

Percent of Spring bread wheat releases derived from CIMMYT and ICARDA by region and origin 1994-2014

Note: Percent release roughly represents area sown to CIMMYT derived wheat varieties

Lantican et al. 2016

Origin of Wheat Cultivars (Bread Wheat & Durum Wheat) released from 2001-2021 in Iran

Note: Bread wheat cultivars bred by the national wheat breeding programs have at least one parents from CIMMYT germplasm in their background.

(M. R. Jalal Kamali, 2021 unpublished data)

Continuous breeding progress for grain yield

1965-2014 in simulated environments (Cd. Obregón)

Mondal *et al.* (2020) Fifty years of semi-dwarf spring wheat breeding at CIMMYT: Grain yield progress in optimum, drought and heat stress environments. *Field Crops Research* doi: 10.1016/j.fcr.2020.107757.

Crespo-Herrera *et al.* (2021) Target population of environments for wheat breeding in India: definition, prediction and indirect genetic gains. *Frontiers in Plant Science* doi: 10.3389/fpls.2021.638520

Multidiscipline - Wheat Breeding

Genetic Resources Germplasm banks Trait collections Synthetics Translocation lines Wide Crosses

Phenotyping Field phenotyping Phenotying in controlled conditions Multi environmental trials High throughput screenings Genomics Resources Physical maps Gene and Genome Sequences DNA marker platforms Gene expression platforms Transformation protocols

Methodologies Selection schemes Modelling and Prediction

Agronomy

Improved wheat varieties

Integration of genomics tools in the CIMMYT GWP

How to funnel genomics outputs into breeding improvements?

Genomics-assisted test designs and deployment strategies

Genomics-assisted trait development pipelines

Support Services: New data base structures, genotyping, decision support tools

Examples

Parental development and line augmentation pipelines for disease resistance

Trait validation design for more complex stress adaptive traits

Genomic selection in mainstream breeding

Introgression of disease resistance genes

Source	Gene	Туре	
RL6077/AOC-YR	Lr67/Yr46/Sr55/Pm46	Pleiotropic APR	
SUJATA	Lr67/Yr46/Sr55/Pm46, YrSuj-7BL		
H-S A/2*MUNAL #1	Sr2 + Fhb1	FHB	
SWSR22T.B.	Sr22	Stem rust resistance genes	
KACHU/3/WHEAR//2*PRL/2*PASTOR	Sr25		
SHORT SR26 TRANS./4/3*CHIBIA//	Sr26		
SR32	Sr32		
W3763-SR35	Sr35		
SR47	Sr47		
SR50	Sr50		
ALPOWA	Yr39	Stripe rust resistance genes	
CHUAN NONG 19	Yr41		
BLANCA GRANDE 515	Yr5, Yr15		
SUMMIT 515	Yr5, Yr15		
YR51#5515-1	Yr51		
KOELZ W 11192:AE	Yr52		
YR57#5474-6	Yr57		
IRAGI	Yr59		
LALBMONO1*4/PVN	Yr60		
SERI//T.DIC. PI94623/AE.SQ. (1027)	Gba, QRp.slu-5AL,QRp.slu-5BL	Insect resistance	
PI592729	H25	25 26 Hessian fly resistance	
PI572542	H26		

Parental line development with new rust genes

Cross	Gene	# lines YT18-19
BOKOTA*3//RL6077/AOC-YR	Lr67	1
BORL14*3/SUJATA	Lr67 + QTL.7BL	1
HARTOG_SUMAI3 (LINE B)/2*NAVJ07/5/KIRITATI//HUW234+LR34/PRINIA/3/FRANCOLIN #1/4/BAJ #1/6/2*TAM200/PASTOR/TOBA97/3/FRNCLN/4/WHEAR//2*PRL/2*PASTOR	Sr2 + Fhb1	2
HARTOG_SUMAI3 (LINE B)/2*NAVJ07/4/MUTUS//KIRITATI/2*TRCH/3/WHEAR/KRONSTAD F2004/5/2*TAM200/PASTOR//TOBA97/3/FRNCLN/4/WHEAR//2*PRL/2*PASTOR SW/SR22T B //TACUPETO F2001*2/BRAMBLING/3/2*TACUPETO F2001*2/BRAMBLING/4/MUNAL	Sr2 + Fhb1	1
#1/5/2*MUNAL*2/WESTONIA	Sr22	1
SWSR22T.B.//TACUPETO F2001*2/BRAMBLING/3/2*TACUPETO F2001*2/BRAMBLING/4/SUP152/BAJ #1/5/2*KUTZ	Sr22	1
SWSR22T.B./FRANCOLIN #1//2*FRNCLN/3/3*WBLL1*2/BRAMBLING*2//BAVIS	Sr22	2
MUTUS*2/HARIL #1*2/3/SWSR22T.B./2*BLOUK #1//WBLL1*2/KURUKU/4/MUCUY	Sr22	4
SWSR22T.B.//TACUPETO F2001*2/BRAMBLING/3/2*TACUPETO	0.00	0
F2001^2/BRAMBLING/4/3°KACHU/3/WHEAR//2°PRL/2°PASTOR	Sr22 + Sr25 Sr25	2
SHORTENED SR26 TRANSI OCATION/4/3*CHIBIA//PRI II/CM65531/3/MISR 2/5/2*BAJ #1	Sr26	1
SHORTENED SR26 TRANSLOCATION//2*WBLL1*2/KKTS/3/BECARD/4/3*BORL14	Sr26	1
FRANCOLIN #1*2//ND643/2*WBLL1/3/SWSR22T.B./2*BLOUK #1//WBLL1*2/KURUKU/5/SHORTENED SR26		
TRANSLOCATION/4/3*CHIBIA//PRLII/CM65531/3/MISR 2/6/SWSR22T.B./2*BLOUK #1//WBLL1*2/KURUKU	Sr26 + Sr22	4
BORL14*2/SR50	Sr50	7
BORL14*3/SR50	Sr50	7
BORL14*3/BLANCA GRANDE 515	Yr5 + Yr15	13
BORL14*2/BLANCA GRANDE 515	Yr5 + Yr15	6
BLANCA GRANDE 515/2*BAJ #1	Yr5 + Yr15	4
BORL14*3/KOELZ W 11192:AE	Yr52	3
YR57#5474-6/3*BAJ #1	Yr57	2
BORL14*3/IRAGI	Yr59	2
BORL14*2/IRAGI	Yr59	1
BORL14*3//LALBMONO1*4/PVN	Yr60	3
BORL14*2//LALBMONO1*4/PVN	Yr60	1
LALBMONO1*4/PVN//3*BAJ #1	Yr60	1

Combining genes for fusarium head blight resistance

Sr2-Fhb1 recombinants introgressed in CIMMYT elite backgrounds

snp3BS-1 gwm389 snp3BS-2 gwm533 snp3BS-3 csSr2 barc147 snp3BS-11, umn10 TaHRC sts256 snp3BS-8 gwm493 Pyramiding of complementary genes

Trait augmentation pipelines

Crop*	Project Value	Product Profile	Trait	Genes
BW	Improved and diversified rust resistance	HW-OE-NM, HW-DT- NM	Stem and yellow rust	Sr22, Sr50, Sr2, Yr57, Yr59, Sr35, Yr15, Yr5, Sr47, Sr25, Sr13
BW	Enhanced Fhb resistance	HW-OE-NM, HW-DT- NM	Fusarium head blight	Fhb1, Qfhb.cim-2DLc
BW	Improved STB resistance	HW-OE-NM, HW-DT- NM	Septoria tritici Blotch	Stb6, Stb16
BW	Improved insect resistance	HW-OE-NM, HW-DT- NM	Green bug	Gb7/Gba, Gb5, QRp.slu-5AL, QRp.slu-5BL-R
BW	Novel diversity for stress tolerance (heat drought)	-	Heat/drought tolerance	LTP haplotypes from genetic resources (six haplotypes)
DW	Novel stem rust resistance gene combinations	ADW-DT+IR, ADW- HTEM	Stem rust	Sr22 + Sr25
DW	Improved grain weight/yield	ADW-DT+IR, ADW- HTEM	Grain weight	TaGW2

Evaluation of new sources for stress tolerance in physiological pre-breeding

Bread wheat diversity panel (370)

Includes best performing lines from:

- International nurseries
- Landraces/FIGS panels
- Lines derived from inter-specific hybridization

Elite primary synthetic panel (160)

Selected from 2,000 lines (i.e. with brand new hexaploid genomes) for adaptation to heat, drought and favorable conditions

Identification of genomic regions derived from novel sources

- Selected genetic resources (Synthetic hexaploid wheat and landrace) performed better under heat in the High Biomass Association Panel (HIBAP, 150 entires)
- Exome capture sequencing identified three QTL with large effect for drought tolerance, likely derived form genetic resources
- QTL validation is underway

Molero et al., unpublished

Identification of genomic regions derived from novel sources

- Three-way crossing scheme of linked top-cross populations (LTP) in the Seed of Discovery project
- Exotic parents include synthetic hexaploidy and landraces selected via FIGS
- Elite parent include lines from the spring BW breeding program

Quantification of the contribution of the exotic parents in LTPs

HB3B-Heat stress (+176-326 kg/ha in GY under heat stress)

.

Introgressed genomic regions from exotics are shown as red bars

QTL validation across germplasm panels (e.g., BWDIVPAN)

• D • H • D+H • YP

Genomic Selection in mainstream breeding

Genomic prediction in the line testing phase to enhance field trial selection

Genomic prediction ability of elite lines in the stage 1 yield trails

CGIAR

Source: Jose Crossa

Genomic prediction for more than yield in the Stage 2 yield trails

Scaling-up selections in the Stage 1 yield trails using the Stage 2 yield trails as training population for more than grain yield and stem rust

Optimizing the breeding schemes by reducing cycle time

Rapid Bulk Generation Advancement (RBGA) optimization and implementation

In summary

- ✓ Genomics technologies are increasingly used also in public sector wheat breeding
- The development and implementation of well-defined, effective deployment strategies for the many genomics outputs depending on trait complexity is becoming a significant component in breeding
- ✓ Validation of genomics outputs is time consuming and costly, often underestimated and insufficiently funded
- ✓ Evaluation of diverse germplasm remains key for future progress and genetic gain

Research Program on CGIAR

The CGIAR

W1&W2

Australia,

WHEAT receives

support from the

Governments of

Belgium, Canada,

Zealand, Norway,

Switzerland, U.K.,

U.S., and the

World Bank.

China, France,

India, Japan,

Korea,

Sweden,

Acknowledgements

Deepmala Sehgal Sue Mondal Gemma Molero Leonardo Crespo Jose Crossa Philomin Juliana David Gonzalez Ravi P. Singh Matthew Reynolds Alison Bentley

WMB team