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A B S T R A C T   

Mainstreaming the low glycemic index (GI) trait in breeding programs is constrained by low-throughput and 
high-cost clinical GI phenotyping. This study aimed to evaluate the potential of starch fine structure components 
and simulated digestion parameters in predicting GI in rice. Amylose (AM1 and AM2; r = − 0.94 and r = − 0.80, 
respectively, p < .05) and amylopectin fine structure (MCAP, SCAP, and SCAP1; r = 0.78-0.86, p < .05) measured 
through size-exclusion chromatography along with resistant starch (r = − 0.81, p < .05) in seven (7) rice ac-
cessions showed high correlation with in vivo GI. Meanwhile, starch hydrolysis extent (SH) and the corresponding 
area under the digestion curve (AUC) obtained through in vitro digestion were found to be of higher correlation 
with GI, even within shorter digestion periods of 5 min or 30 min (r = 0.96, p < .01). These results highlight the 
potential use of these parameters as predictors of GI, with improved predictive capacity through a multiple 
regression model. Higher correlations of simulated digestion AUC with GI may be due to its ability to account for 
the overall food matrix native macro- and micro-structures, gaining an added advantage over SEC method as a 
predictive tool in studying rice GI variability. Validation in a larger population is an inevitable next step.   

1. Introduction 

Shift in dietary practices and lower energy expenditure brought 
about by various socio-economic developments linked with urbaniza-
tion has led to the emergence of obesity as a serious global concern. 
Recent statistics reported that 1.9 billion adults are overweight; of them 
422 million have diabetes (World Health Organization, 2020). 
Consuming energy-rich foods and drinks create chronic hyperglycemia 
(Yan, 2014). Obesity and hyperglycemia contribute to the increased 
incidences of non-communicable diseases (NCDs) like diabetes, cardio-
vascular diseases (CVDs), hypertension, and some cancers, among 
others, which account for more than 70% of annual deaths worldwide 
(World Health Organization, 2021). 

Starch is the major source of carbohydrate in the diet. Interestingly, 
not all starches are created equal due to various intrinsic and extrinsic 
factors affecting their digestibility (Jukanti, Pautong, Liu, & Sreeniva-
sulu, 2020; Toutounji, Farahnaky, et al., 2019). Slow starch digestibility 

is an important target trait in food since high postprandial glucose levels 
have been associated with various non-communicable diseases such as 
obesity, type 2 diabetes, and cardiovascular diseases (Blaak et al., 2012). 
Monitoring the quality of carbohydrates (which account for 40–80% of 
daily energy intake) is an essential intervention for glycemic control. 
More than half of the global population, mainly in Asia, derives more 
than 50% of daily calories from rice (GRiSP, 2013). Incidentally, 60% of 
people with diabetes live in the continent (Nanditha et al., 2016), 
making rice a vital food component in diet-based solutions to the 
growing epidemic of diabetes, at least for rice-consuming populations. 

Starch-rich cereals which include rice are typically of intermediate to 
high GI (Anacleto et al., 2019; Fitzgerald et al., 2011; Kaur, Ranawana, 
& Henry, 2016; Miller, Pang, & Bramall, 1992). In rice-based diets, 
reducing the glycemic index (GI) of a variety through genetics, post-
harvest processing, cooking, and diet diversification solutions are crit-
ical (Jukanti et al., 2020). GI is a clinical measure of the tendency of food 
or drinks containing 50 g of available carbohydrates to influence the 
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blood glucose response upon intake relative to the same amount of 
glucose standard (Jenkins et al., 1981). GI classifies food as low (≤55), 
intermediate (>55–69), or high GI (≥70) (Atkinson, Foster-Powell, & 
Brand-Miller, 2008). 

With more than half of the global population being dependent on rice 
as a staple carbohydrate source, it is crucial that low GI rice cultivars are 
made available to consumers to ease the burden of NCDs. To breed low 
GI varieties, (a) understanding of the genetics of glycemic index in rice 
through genome-phenotype associations and identifying diagnostic 
markers and (b) a rapid high-throughput GI phenotyping exhibiting 
higher correlations with gold standard in vivo clinical method are pre- 
requisites. The lack of a low-cost, high-throughput in vitro method to 
replace the gold standard in vivo GI screening with human volunteers, 
which is both expensive and time-consuming, remains a serious limita-
tion. To date, in vitro technique to estimate GI has been described by 
Goñi, Garcia-Alonso, and Saura-Calixto (1997), which makes use of 
gastrointestinal enzymes pepsin, pancreatic α-amylase (AA), and amy-
loglucosidase (AMG) in the digestion of common dietary starchy foods. 
Briefly, glucose released through hydrolysis is quantified as a percentage 
of starch hydrolyzed at different time points (SH) typically 0–180 min at 
30 min intervals. Taken from a plot of these values is the area under the 
digestion curve (AUC) of the test food, whose ratio (expressed in per-
centage) with the AUC of a reference food, is referred to as hydrolysis 
index (HI). Two equations from the experiments of Goñi et al. (1997) 
were found to best estimate in vivo GI values of the test foods used in 
their study: GI = 39.21 + 0.803(SH90) (Equation 1, r = 0.909, p ≤ .05) 
which can be used to estimate GI using hydrolysis value at a single time 
point (t = 90 min), and GI = 39.71 + 0549(Hl) of food but lower linear 
correlation (Equation 2, r = 0.894, p ≤ .05) which makes use of HI 
derived from multiple time points less accurate. The said equations have 
been used in numerous studies to estimate the GI of various food 
matrices (Chung, Shin, & Lim, 2008; Germaine et al., 2008; Kim & 
White, 2012; Lal et al., 2021; Leoro, Clerici, Chang, & Steel, 2010) 
including rice (Deepa, Singh, & Naidu, 2010; Fernandes, Madalena, 
Pinheiro, & Vicente, 2020; Kale, Jha, Jha, Sinha, & Lal, 2015; Kunyanee 
& Luangsakul, 2018; Tutusaus, Srikaeo, & Diéguez, 2013). Although 
widely used, it should be noted that in vitro GI equations are derived 
from a wide range of food types with varying starch hydrolysis char-
acteristics (Goñi et al., 1997) for which the hydrolytic process was found 
to follow the first-order equation C––C∞(1-e-kt). However, some slowly 
digestible foodstuffs reach a plateau by 90 min of hydrolysis (essentially 
zero-order) and thus cannot be subjected to first-order kinetics analysis; 
which will otherwise result to unreliable C∞ values (Edwards, Cochetel, 
Setterfield, Perez-Moral, & Warren, 2019). Starch digestion is known to 
be affected primarily by starch multi-scale structure spanning hierar-
chical structural levels such as compositional, short-range, helical, 
crystalline, lamellar, and morphology structures, which is perhaps made 
further complex by proteins, lipids, and secondary metabolites that 
modify the said structures, as thoroughly reviewed elsewhere (Chi et al., 
2021). 

Several alternative protocols that differ in digestion conditions such 
as activities and incubation times were proposed (Brodkorb et al., 2019; 
Edwards et al., 2019; Fitzgerald et al., 2011; Germaine et al., 2008; 
Toutounji, Butardo, et al., 2019). In contrast to methods that aim to 
compare GI across various food matrices such as the INFOGEST method 
(Brodkorb et al., 2019), a protocol intended for a specific food such as 
rice could benefit from lower variability in food matrix composition and 
structure due to a more narrow range of protein (4.91%–12.08%) 
(Banerjee, Chandel, Mandal, Meena, & Saluja, 2011) and lipids (0.5%– 
0.8%) (Juliano, 1985, pp. 59–174) compared to a wider range when 
comparison is made across various botanic sources. 

Moreover, the association between GI and starch digestion rate has 
been previously studied by Englyst, Vinoy, Englyst, and Lang (2003). 
They classified starch into fractions that differ in their rate of hydrolysis 
in the small intestine: rapidly digestible starch (RDS), slowly digestible 
starch (SDS), and resistant starch (RS) that are hydrolyzed within the 

first 20 min, between 20 and 120 min, and remains undigested after 120 
min, respectively. Furthermore, correlations between these fractions 
and amylopectin fine structure have been examined in rice (Benmoussa, 
Moldenhauer, & Hamaker, 2007), where among the amylopectin frac-
tions, those with degrees of polymerization (DP) of less than 13 showed 
a positive correlation with RDS while longer DPs showed negative 
correlation. 

Based on these premises, we hypothesize that fine structure com-
ponents of amylose (AM1 and AM2) and amylopectin (medium-chain 
MCAP, short-chain SCAP, and its subfractions SCAP1, SCAP 2, and SCAP 
3, that differ in degrees of polymerization) can be used to predict the GI 
in rice. We further hypothesize that in vitro amylolysis protocols 
employing low sample requirements, shorter digestion period, and/or 
lower enzyme activities can be modified for rice samples such that 
amylolysis parameters SH and AUC strongly correlate with in vivo GI. 
The purpose of the study was to evaluate and compare the performance 
of these methods for predicting the GI in rice. A reliable, high- 
throughput, and more affordable GI phenotyping method may fast- 
track the research efforts on understanding the genetics of GI in rice, 
with the ultimate goal of mainstreaming this human health-promoting 
trait in rice breeding programs. 

2. Materials and methods 

2.1. Samples 

The milled rice samples of seven indica rice cultivars previously 
validated through in vivo GI estimation through human subjects (Ana-
cleto et al., 2019; Pasion et al., 2021) were used to establish in vitro GI 
prediction methods. These cultivars include GQ02522 (50.4, low), 
GQ02497 (51.5, low), IRRI147 (55, low), IRRI162 (57, intermediate), 
IRRI163 (64, intermediate), IR64 (66, intermediate) and IR65 (90, 
high). 

Meanwhile, the variability of predicted GI values across various 
linear regression models and parameters was then demonstrated using 
10 market samples, of these three are brown rice and the rest are milled 
(Table 5). 

2.2. Profiling of starch indices and debranched starch regions 

Starch indices such as total starch (TS), digestible carbohydrates 
(DC) and resistant starch (RS) were measured using commercially 
available kits (Megazyme K-TSTA and K-RSTAR) with downscaled 
enzyme buffers as described in Alhambra, Dhital, Sreenivasulu, and 
Butardo (2019) with minor modification. Meanwhile, the starch regions 
(AM1, AM2, MCAP, and SCAP) were characterized using size exclusion 
chromatography following the procedures described in Guzman et al. 
(2017). 

2.2.1. Total starch (TS) quantification 
Rice flour (10 ± 0.1 mg) weighed in 2-mL microfuge tubes was 

dispersed in 0.5 mL of 80% (w/v) ethanol and incubated at 85 ◦C for 5 
min. Another 0.5 mL of 80% ethanol was added followed by centrifu-
gation at 3000 rpm for 10 min. After carefully decanting the superna-
tant, the pellet was re-suspended with 1 mL of 80% ethanol. After 
another centrifugation step, the supernatant was decanted once again, 
and the remaining pellet was added with 0.2 mL of 2M KOH. A magnetic 
spin bar was added to aid mixing, and solubilization of the pellet was 
allowed to proceed for at least 20 min in an ice bath. After the incuba-
tion, 0.8 mL of 1.2 M sodium acetate buffer (pH 3.8) was added followed 
by the addition of 10 μL each of thermostable α-amylase and AMG. The 
sample was then incubated at 50 ◦C for 30 min with intermittent vortex 
mixing every 15 min. After the enzymatic hydrolysis, an aliquot (0.1 mL) 
was added with distilled water to bring the final volume to 1 mL. The 
mixture was mixed and centrifuged at 13,000 rpm for 10 min. An aliquot 
(10 μL) of the supernatant was mixed with 0.3 mL of GOPOD reagent, 
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incubated at 50 ◦C for 20 min, and absorbance was read at 510 nm using 
a microplate reader (SPECTROstar Nano, BMG Labtech, Germany). 

2.2.2. Resistant starch (RS) quantification 
Rice flour samples (10 ± 0.1 mg) weighed in a 2-mL microfuge tubes 

were dispersed in 0.4 mL of enzyme solution containing 10 mg/mL 
pancreatin and 3 U/mL AMG in 0.1 mM sodium maleate buffer with 5 
mM CaCl2⋅H2O (pH 6.0). The tubes were then secured on a rack and 
incubated horizontally in a shaking water bath set at 100 strokes/min 
and 37 ◦C for 16 h. Twelve minutes prior to the end of the incubation 
period, the tubes were removed from the water bath and individually 
dried using a paper towel. At exactly 16 h, the reaction was stopped by 
adding 0.4 mL of 99% ethanol followed by vortex mixing. The tubes 
were centrifuged at 18,231×g for 30 min. The supernatant was then 
carefully decanted in a 15-mL conical tube and was set aside for the 
quantification of total digestible carbohydrate (DC). The remaining 
pellet was then re-suspended in 0.2 mL of 50% ethanol and mixed using 
a vortexer and added with a further 0.6 mL of 50% ethanol. Following 
another centrifugation, the supernatant was carefully decanted into the 
conical tube containing the first decantate, pooling both decantates 
together. On the other hand, a stir bar was placed in the tube containing 
the pellet over an ice bath and 0.2 mL of 2 M KOH was added, allowing 
complete solubilization for at least 20 min. At the end of the reaction 
time, 0.8 mL of 1.2 M sodium acetate buffer (pH 3.8) was added fol-
lowed by the immediate addition of 10 μL of AMG (3300 U/mL). After 
mixing, the tubes were incubated in a water bath at 50 ◦C for 30 min 
(with vortex mixing after the first 15 min). Without the stir bars, the 
tubes were then centrifuged at 18,231×g for 10 min, and glucose con-
centration in a 10-μL aliquot of the resulting supernatant was quantified 
as in the preceding section. 

2.2.3. Total digestible carbohydrates (DC) 
The pooled supernatants (previous section) were diluted to 10 mL 

with 0.1 mM sodium acetate buffer (pH 4.5). After mixing, a 10-μL 
aliquot was collected, added with 2 μL of AMG suspension (300 U/mL in 
100 mM sodium maleate buffer with 5 mM CaCl2⋅2H2O; pH 6.0) and the 
mixture was vortexed and incubated in a 50 ◦C water bath for 20 min. 
Glucose was then quantified using GOPOD reagent (0.3 mL) as in 2.2.1. 

2.2.4. Profiling of debranched starch 
Waters Alliance 2695 HPLC with 2414 Refractive Index Detector and 

fitted with Waters Ultrahydrogel 250 Å column was first calibrated for 
molecular weight using pullulan standards (P-82 Shodex, Showa Denko, 
K. K. Kawasaki, Japan). Mark-Houwink-Sakurada equation for universal 
calibration (Pullulan: K = 0.0126 mL g− 1 and a = 0.733; Linear starch: K 
= 0.0544 mL g− 1 and a = 0.486) as described in Castro, Dumas, Chiou, 
Fitzgerald, and Gilbert (2005) was used with 0.05M NH4OAc with 
0.02% sodium azide (pH 4.75) as mobile phase. 

Gelatinization of rice flour (50 ± 0.1 mg in a glass scintillation vial of 
known weight) was done by adding 0.4 mL of 95% ethanol and 1 mL of 
0.25 M NaOH, followed by heating at 150 ◦C for 12 min. Within the 
heating period, successive aliquots of 0.8 mL hot water (100 ◦C) were 
added at 0, 4, and 8 min from the onset of heating period to prevent 
drying of sample. After heating, the final weight of the solution was 
adjusted to 4 g by adding hot water (60–65 ◦C). Debranching of the 
gelatinized starch was then induced by adding 0.206 mL of sodium ac-
etate buffer (prepared by mixing 10 mL 0.2M NaOAc at pH 4.0 with 
0.360 mL glacial acetic acid) to a 0.794-mL aliquot of the sample. The 
resulting mixture was then incubated with 10 μL of isoamylase 
(P113541, Megazyme) in a 50 ◦C water bath for 2 h with mixing by 
inversion every 15 min. Isoamylase was then inactivated by placing the 
tubes in a vigorously boiling water bath. After centrifugation at 
12,5000×g for 10 min, the supernatant is carefully decanted into a 1.5- 
mL microfuge tube containing ~0.1 g ion exchange resin (Bio-Rad AG 
501-X8 (D)) which was then incubated at 50 ◦C for 30 min (with mixing 
by inversion every 10 min). An aliquot (0.15 mL) of the supernatant was 

then transferred to an SEC vial for analysis (stop time, 35 min; flow rate, 
0.5 mL/min; injection volume, 40 μL; sample temperature, 40 ◦C; and 
column temperature, 60 ◦C). The degree of polymerization (DP) was 
derived from the molecular weight computed using the Mark-Houwink- 
Sakurada Equation, and the four regions were determined using this 
distribution: AM1>1000DP, AM2 121-1000DP, MCAP 37-120DP, and 
SCAP 6-36DP. SCAP was further distributed into three regions, SCAP1 
25-36DP, SCAP2 13-24DP, and SCAP3 6-12DP, based on Hanashiro, 
Abe, and Hizukuri (1996). 

2.3. In vitro starch digestion protocols 

Three different in vitro GI methods were standardized for sample 
preparation, digestion, and/or glucose quantification in this study 
(Table 2). 

2.3.1. Method 1 
A slightly modified version of the procedure by Goñi et al. (1997) 

was employed to test its applicability in rice using reference samples of 
seven cultivars with established in vivo GI (Anacleto et al., 2019; Pasion 
et al., 2021). In addition, Method 1 was modified (referred to as Modi-
fied Method 1) by incorporating the following changes: whole grains 
(100 ± 5 mg) were used instead of flour (50 mg, passed through a 425 
μm mesh), a 1:2 rice to water ratio was used instead of 3 mL water, and 
all incubations were conducted at 37 ◦C to simplify the process, as 
opposed to the two incubation temperatures in the original Method 1. 

Briefly, rice grains (100 ± 0.3 mg) were added with 0.2 ml distilled 
water and cooked for 23 min over vigorously boiling water in a covered 
pot. The cooked sample was then allowed to cool down for 5 min and 
equilibrated in a 37 ◦C water bath for another 5 min. The grains were 
then minced in 0.5 ml of HCl–KCl buffer (0.05 M, pH 1.5) using a 
stainless steel spatula with 20 downward strokes. Then, 9.7 ml of 
HCl–KCl buffer (0.05 M, pH 1.5) containing 40 U of pepsin (Sigma; 4.12 
U/mL or 95.9 μg/mL) was added and allowed to incubate for 1 h with 
constant magnetic stirring (90 rpm). The pH was then adjusted to 6.9 by 
adding 2 mL of aqueous NaOH (~0.163 M), followed by the addition of 
14.8 mL of Tris-maleate buffer (0,05 M, pH 6.9) containing 2.6 U of 
α-amylase (A3176, Sigma; 0.176 U/mL or 11.7 μg/mL). Starch hydro-
lysis was allowed to proceed for 180 min in the water bath (37 ◦C, 90 
rpm). Sample aliquots (0.1 mL) were collected at 0, 30, 60, 90, 120, and 
180 min and immediately placed in boiling water for 5 min to deactivate 
the enzymes. The aliquot was then centrifuged at 13,500 rpm for 10 min, 
and 10 μL of the resulting supernatant was added with 30 μL AMG (2.75 
U/mL) in sodium acetate buffer (0.4 M, pH 4.75), vortexed, and incu-
bated at 50 ◦C for 20 min to convert starch oligosaccharides into free 
glucose. After incubation, 60 μL of Milli-Q water was added, vortexed, 
and a 10-μL sub-aliquot was transferred into a 0.6-mL microfuge tube. 
Glucose was then quantified using a GOPOD reagent as in Section 2.2.1. 
A reagent blank was incubated under the same conditions, and absor-
bance at different time points was also measured to correct for in-
terferences due to the digestion medium. The calculation of SH from 
glucose concentrations and predicted GI (pGI) value is described in 
Section 2.3.4. 

2.3.2. Method 2 
The second method employed the protocol reported by Alhambra 

et al. (2019) with modifications. Whole milled rice grains (500 ± 10 mg) 
were soaked for 10 min, and brown rice samples were soaked for 20 min 
in 6 mL distilled water using 50-mL tube with a foil cap, under room 
temperature. Afterwards, the sample was cooked in a beaker with 
boiling water (heater set at 250 ◦C) for 20 min. Excess water was 
removed, and rice was allowed to cool for 5 min. The tubes were then 
placed in a 37 ◦C water bath and 0.5 mL α-amylase (Megazyme; 75 U/mL 
in simulated salivary fluid) was dispensed. The grains were minced 
using a spatula for 20 s to mimic the buccal phase, followed by the 
addition of 5 mL pepsin (P6778, Sigma; 1 mg/mL in 0.2M HCl). Spin 
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bars were added, and the speed was set to 200 rpm. After 30 min, 5 mL of 
NaOH (0.2 M) was added to neutralize the pH, followed by the addition 
of 20 mL sodium acetate buffer (0.1 M, pH 6.0), and 5 mL pancreatin 
(P1750, Sigma; 2 mg/mL buffer)-AMG (10115-5G-F, Sigma; 25.4 U/mL 
or 0.41 mg/mL buffer) mixture while the speed of stirring was increased 
to 700 rpm. This reaction was allowed to carry out for 180 min, and 0.2 
ml of aliquots were collected at time points 0, 5, 10, 20, 30, 45, 60, 90, 
120, and 180 min, and placed in a 0.6 ml microfuge tube. To quench the 
reaction, the tubes were placed on an ice bath prior to centrifugation at 
13,000 rpm (4 ◦C) for 10 min. 

Samples were diluted with 0.1M sodium acetate buffer (pH 6.0) 
when needed (dilution starts at aliquots 5 min and beyond). Aliquots of 
50 μl were added with 5 μL of amyloglucosidase (300 U/mL) and 
incubated for 20 min at 50 ◦C. Starch hydrolyzed was quantified using 
the GOPOD assay at 510 nm (Beckman Coulter DU 800 spectropho-
tometer). The calculation of predicted GI (pGI) value is described in 
Section 2.3.4. 

2.3.3. Method 3 
A third starch digestion protocol was employed following the 

method of Germaine et al. (2008) with some modifications. Briefly, 
whole milled rice (300 ± 0.3 mg) with 1:2 rice-to-water ratio was 
cooked in 50-ml tube over boiling water for 23 min, after which the 
sample was set aside at room temperature for 5 min. After equilibrating 
in a 37 ◦C water bath for another 5 min, it is added with 1 mL of 0.1 M 
sodium potassium phosphate buffer (pH 6.9) and minced using a 
stainless-steel spatula (35 downward strokes within 10 s). After placing 
a magnetic spin bar, 2 mL of α-amylase (A3176, Sigma; 55.5 U/mL or 
3.7 mg/mL of 0.05 M sodium potassium phosphate buffer, pH 6.9, 37 ◦C) 
was added, and amylolysis was allowed for 75 s in a water bath with 
constant stirring (37◦, 60 rpm). The reaction was stopped by adding 3 
mL of aqueous HCl (pH ~0.92) to acidify the digestion medium. Then, 3 
mL of pepsin (Sigma; 19.5 U/mL or 0.45 mg/mL of 0.1 M sodium po-
tassium phosphate buffer, pH 1.5, 37 ◦C) was added and allowed to 
incubate for 30 min (37 ◦C water bath, 60 rpm). Enzymatic reaction was 
quenched by adjusting the pH to 6.9 using 15 mL of aqueous NaOH (pH 
~12.6). A 15 mL enzyme solution containing pancreatin (28.4 μg/mL; 
P1750, Sigma) and amyloglucosidase (10115-5G-F, Sigma; 13 U/mL or 
0.208 mg/mL) in 0.1 M sodium potassium phosphate buffer (pH 6.9) 
was then added and allowed to incubate for another 180 min (37 ◦C, 
120 rpm). Sample aliquots (0.70 mL) were withdrawn at 0 (just before 
pancreatin-AMG addition), 30, 60, 90, 120, 150, and 180 min and 
placed on ice until the succeeding centrifugation step (13,500 rpm, 10 
min, 4 ◦C). A 1-μL aliquot of the supernatant was transferred to a 0.6-mL 
microfuge tube and was added with 9 μL of AMG solution (33.3 U/mL in 
0.4 M sodium acetate buffer, pH 5.0), vortexed, and incubated in a water 
bath (50 ◦C) for 20 min. Finally, glucose in the mixture and reagent 
blank were measured by adding GOPOD reagent and analyzed as in 
Method 1. 

2.3.4. Calculation of starch hydrolyzed (SH), AUC, and derivation of pGI 
equations 

Sample and glucose standard absorbance values at 510 nm were 
corrected using a reagent blank, and converted into glucose values (mg/ 
ml of aliquot) using the following equation:  

where the fraction 10/1000 was used to convert mcg glucose/0.1 ml 
aliquot to mg/ml. The percentage of starch hydrolyzed (SH) was then 

calculated using the equation: 

SH =(glucose x DF x V x 162 / 180)/(sample weight x (%TS) / 100) x 100  

where glucose is in mg/ml, DF is the dilution factor used on the sample 
aliquot, V is the volume of the digestion medium at the time point during 
which the aliquot was drawn, 162/180 is the conversion factor from 
glucose to starch, and %TS is the total starch content of the sample. 
Finally, AUC was calculated from SH values based on the trapezoidal 
rule. 

2.4. Derivation of linear regression predictive GI (pGI) equations 

The Pearson correlation coefficient (r, P < .05; R package “corrplot” 
(Wei & Simko, 2021)) was used to assess the correlation between in vivo 
GI and each of the parameters tested. Following the tests for linearity 
(ANOVA for linear regression), normal distribution of the residuals of 
regression (Shapiro-Wilk; R package “dplyr”; Wickham, François, 
Henry, & Müller, 2022), and homoscedasticity (R package “lmtest”; 
Zeileis & Hothorn, 2002) of each parameter showing a good correlation 
with in vivo GI, linear regression analysis was then performed to 
generate the corresponding pGI equations and values. Statistical anal-
ysis was performed using RStudio 2022.2.3.492 (RStudio Team, 2020). 

2.5. Evaluation of derived pGI equations on market samples 

The applicability of the derived equations for predicted GI (pGI) 
using different amylolysis parameters were demonstrated for ten (10) 
market samples. SEC experiments were performed in triplicates while 
simulated digestion were performed in duplicates. 

3. Results and discussion 

3.1. Evaluation of starch indices and starch regions as proxy parameters 
to estimate GI 

The range of starch indices (TS, RS, and DC) and debranched starch 
regions separated through SEC (AM1, AM2, MCAP, and SCAP and its 
subfractions) in seven (7) rice accessions are presented in Table 1. RS, 
AM1, and AM2 declined whereas MCAP, SCAP, and SCAP increased with 
increasing GI. On the contrary, no such statistically significant trends 
were observed for TS and DC (p > .05, Table S1). Although direct pos-
itive correlations (MCAP, r = .780; SCAP, r = .855; SCAP1, r = 0.856; 
AP, r = .886) and inverse correlations (RS, r = − 0.809; AM1, r =
− 0.941; and AM2, r = − 0.802) were observed with in vivo GI values 
(Fig. 1), they were found to be less than those achieved using amylolysis 
parameters SH and AUC for in vitro GI methods 2 and 3 (Fig. 4) even 
when individual fractions are pooled together (AM and AP, r = − 0.886; 
AMAUC and AMAUC, r = − 0.880). This observation is also reflected in the 
corresponding R2 values when linear regression model is applied 
(Fig. S1). Further inspection of the SCAP fractions revealed that GI was 
significantly correlated with SCAP1 only (r = 0.856, p = .014) which is 
slightly higher than that for the totality of SCAP (r = 0.855, p = .014). 
These parameters passed the assumptions of linearity with GI, and 
normal distribution and homoscedasticity of the corresponding residuals 
based on ANOVA, Shapiro-Wilk test and Breusch-Pagan test, respec-

tively, which served as the bases for linear regression analysis (Table 3). 
Based on these results, only RS, AM1, AM2, SCAP1, AM, and AMAUC 

were used as proxy parameters in succeeding analyses (Section 3.3). AP 

Glucose=Absorbance of sample/Absorbance of glucose standard x 100 x 10/1000   
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and APAUC were not included since they both give pGI equations with 
the same value of slope (but of opposite sign) as that of the pGI for AM 
and AMAUC (Figs. S1h and S1j, respectively). 

The trends in AM1 and AM2 (and collectively as AM or AMAUC) in 
this study corroborate previously reported negative correlation between 
amylose and GI (Fitzgerald et al., 2011; Goñi et al., 1997; Guzman et al., 
2017; Hu, Zhao, Duan, Linlin, & Wu, 2004) since low amylose di-
gestibility is attributed to its linear nature that limits the surface area for 
hydrolytic enzyme action. In addition, amylose is known to provide the 
structural integrity to retard swelling and disruption of starch structure 
during cooking and reassemble into ordered structures upon cooling 

(Chi et al., 2021). While the DP of amylopectin has been shown to affect 
the digestibility of starch (Martens, Gerrits, Bruininx, & Schols, 2018; 
Srichuwong, Sunarti, Mishima, Isono, & Hisamatsu, 2005), we report a 
contrasting result with respect to MCAP which displayed a positive 
correlation with GI. This can be explained by the “building block and 
backbone” model of amylopectin structure (Bertoft, 2004; Perez & Ber-
toft, 2010) which suggests that DP > 36 (which includes MCAP) mostly 
interlink through α-(1,6)-linkages to form the backbone to which the 
building blocks of double helices of DP ≤ 36 (SCAP) are subtended. A 
huge proportion of the backbones are situated perpendicular to the 
crystalline clusters and are therefore mostly found in the amorphous 
lamella which is more accessible to hydrolytic enzymes. 

In addition, among the SCAP sub-fractions, our results show that 
only SCAP1 (DP 25–36) is significantly positively correlated with GI, 
contrary to previously reported negative correlation with starch di-
gestibility while positive correlations were observed for shorter SCAP 
fractions (DP 6–24) only (Lin et al., 2016; Srichuwong et al., 2005). This 
may imply that double helices formed by longer chains (DP 25–36) 
believed to have higher resistance (Nakamura, 2018) could exist as 
amorphous double helices (Kim, Choi, Choi, Park, & Moon, 2020) and 
may actually potentially cause uneven packing and thus reduce crys-
tallinity, as more often attributed to shorter helices (Chi et al., 2021). DP 
25–36 has been previously reported to introduce defects into the 
structure of rice starches (Koroteeva et al., 2007), and thus potentially 
increase digestibility which is consistent with our result. Moreover, the 
backbone model suggests that SCAP3 of DP 6–8 anchored to the back-
bone rather than the helical clusters or building blocks may be present, 
which may introduce defects in the crystalline structure. It is thus 
tempting to speculate that SCAP1 (DP 25–36) also contributes to such 
structural defects and to a greater extent. With these premises, superior 
haplotypes for bHLH transcription factor on chromosome 7 identified to 
elevate AM1 fraction over SCAP (Butardo et al., 2017) will be useful as a 
quick screening technique to enrich the germplasm of low GI potential 
from the gene bank accessions (Brotman et al., 2021). 

Furthermore, the “glucan trimming” hypothesis (Ball et al., 1996) 
behind the water-insoluble properties of amylopectin could further 
explain the observed correlations. Briefly, a tightly branched “pre-
amylopectin” produced by the action of starch synthase (SS) and starch 
branching enzyme (SBE) isoforms, is trimmed down by the debranching 
enzyme (DBE). The trimming process occurs simultaneously with two 
important structural changes: (a) the remaining branches of the 

Table 1 
Distribution of various starch parameters across seven (7) rice varieties.  

Parameters Samples 

GQ02522 (GI = 50.4) GQ02497 (GI = 51.5) IRRI147 (GI = 55) IRRI162 (GI = 57) IRRI163 (GI = 64) IR64 (GI = 66) IR65 (GI = 90) 

TS 85.21 ± 1.03 87.15 ± 0.68 85.94 ± 0.61 85.75 ± 1.17 83.34 ± 1.03 84.39 ± 1.23 85.79 ± 1.57 
DC 83.14 ± 1.10 86.24 ± 1.87 83.66 ± 2.32 83.04 ± 4.30 85.79 ± 2.00 82.70 ± 2.64 86.27 ± 1.71 
RS 2.08 ± 0.27 1.16 ± 0.14 1.66 ± 0.92 1.77 ± 0.46 1.01 ± 0.25 1.65 ± 0.38 0.29 ± 0.05 
AM1 11.47 ± 2.10 11.31 ± 1.42 8.63 ± 1.47 7.45 ± 2.36 6.18 ± 1.37 6.18 ± 2.34 2.16 ± 1.30 
AM2 14.24 ± 1.92 12.36 ± 2.35 11.02 ± 0.02 8.25 ± 0.72 6.64 ± 2.06 7.74 ± 1.16 5.71 ± 1.25 
MCAP 24.81 ± 0.76 25.74 ± 0.55 26.38 ± 0.40 28.38 ± 1.86 28.69 ± 1.19 25.77 ± 0.71 30.34 ± 0.67 
SCAP 49.48 ± 0.68 50.59 ± 4.32 53.97 ± 1.10 55.92 ± 1.81 58.49 ± 1.57 60.31 ± 1.34 61.79 ± 1.86 
SCAP1 13.41 ± 0.40 13.95 ± 0.64 15.08 ± 0.01 15.35 ± 0.12 15.99 ± 1.26 15.46 ± 0.28 16.80 ± 0.35 
SCAP2 28.96 ± 0.23 29.43 ± 2.67 32.86 ± 1.08 32.34 ± 1.17 33.62 ± 1.13 37.53 ± 1.09 36.09 ± 1.12 
SCAP3 7.12 ± 0.28 7.21 ± 1.01 6.03 ± 0.00 8.22 ± 0.80 8.87 ± 0.82 7.33 ± 0.58 8.91 ± 0.73 
AM 25.71 ± 0.58 23.67 ± 3.77 19.66 ± 1.50 15.70 ± 1.96 12.82 ± 2.76 13.92 ± 1.63 7.87 ± 1.81 
AP 74.29 ± 0.58 76.33 ± 3.77 80.34 ± 1.50 84.30 ± 1.96 87.18 ± 2.76 86.08 ± 1.63 92.13 ± 1.81 
AMAUC 24.25 ± 0.88 20.91 ± 3.11 18.08 ± 1.83 14.00 ± 2.28 10.05 ± 0.52 12.90 ± 1.59 5.90 ± 1.83 
APAUC 75.75 ± 0.88 79.09 ± 3.11 81.92 ± 1.83 86.00 ± 2.28 89.95 ± 0.52 87.10 ± 1.59 94.10 ± 1.83 
AUCa 47.1 ± 6.1 38.4 ± 0.6 45.9 ± 5.8 63.5 ± 0.5 55.4 ± 1.4 83.2 ± 7.1 125.0 ± 30.5 
AUCb 534 ± 86 551 ± 37 481 ± 57 615 ± 45 709 ± 140 866 ± 72 1703 ± 83 

The values are expressed as the mean of six (6) replicates for TS and DC, five (5) for RS, and three (3) for SEC-derived parameters ± standard deviation. aAUC(0–5) from 
Method 2; bAUC(150–180) from Method 3; TS = Total Starch; DC = Digestible Carbohydrates; RS = Resistant Starch; AM1 = percent amylose (DP > 1000 to 20,000); 
AM2 = percent long-chain amylopectin (DP > 120 to 1000); MCAP = medium-chain amylopectin (DP > 36 to 120); SCAP = short-chain amylopectin (DP 6–36); SCAP1 
(DP 6–12); SCAP2 (DP 13–24); SCAP3 (DP 25–36); AM (AM1+AM2); AP (MCAP + SCAP); AMAUC and APAUC are percent amylose and amylopectin based on visual 
inspection of SEC peaks. 

Fig. 1. Correlations between and among starch parameters and in vivo GI.  
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“preamylopectin” form the characteristic double helices in the building 
blocks, and (b) the amylopectin backbone being cleared of several 
chains is being further elongated (Tetlow & Bertoft, 2020). The 
inter-block chain length (IB-CL), or the segment between successive 
building blocks, could affect the crystallinity of the resulting amylo-
pectin supramolecular structure, whereby shorter IB-CL limits parallel 
packing of double helices leading to low onset gelatinization tempera-
ture characteristic of decreased crystallinity (Vamadevan, Bertoft, & 
Seetharaman, 2013). The possibility that backbones of interlinked AM2 
(DP > 120) accommodate longer IB-CL (more crystalline amylopectin 
structures) than MCAP (DP 37–120) backbones could potentially explain 
their opposing correlations with GI. Similarly, RS negatively correlated 
with MCAP only (p < .05), while the latter negatively correlated with 
AM1 and AM2, and positively with SCAP1 and SCAP3 (p < .05). Still 
based on the backbone model (Vamadevan et al., 2013), short IB-CL is 
thought to be associated with higher number of building blocks per 
cluster which may explain positive correlation between MCAP and 
SCAP, whereas longer IB-CL (which we hypothesize to be correlated 
with AM2) had fewer building blocks and may thus explain the strong 
negative correlation between AM1 and fractions MCAP and SCAP. The 
propensity of a rice cultivar to form more AM2 than MCAP backbone as 
the amylopectin chains are being trimmed and elongated could lead to a 
more stable crystalline structure with fewer amylopectin short chain 
double helices and thus lower GI. Consistent with this, moderate RS lines 
were determined to have elevated AM2 as compared to other starch 
regions (Parween et al., 2020). 

3.2. Evaluation of in vitro digestion methods for GI prediction 

The soundness of the most widely used Method 1 (Goñi et al., 1997) 
as an in vitro method to predict the GI was evaluated using the same set 
of milled rice samples with known in vivo GI. It was compared to a 
second in vitro method (Alhambra et al., 2019) previously used for 
in-house GI screening. Finally, a slightly modified version of the simu-
lated digestion method by Germaine et al. (2008) employing lower 
enzyme concentrations than Method 2 was used. The components of 
each method are summarized in Table 2. 

As a starting point, Method 1 was employed to predict GI based on 
starch hydrolysis rate at 90 min (SH90) and HI, as previously employed 
in other studies (Deepa et al., 2010; Fernandes et al., 2020; Kale et al., 
2015; Kunyanee & Luangsakul, 2018). By the end of the digestion 
period, hydrolyzed starch values ranged between 63.96% (IRRI163) to 

75.40% (IR65). As shown in the corresponding digestion curves in 
Fig. 2a, only IR64 and IR65 are clearly separated from the rest, whereas 
both intermediate and low GI lines are grouped together in a narrow 
range of SH values despite the huge differences in their in vivo GI values. 
Strong correlations with in vivo GI (Pearson correlation coefficient, r; 
Fig. 3a) were found between various SH (SH60-SH120 with r =
0.76-0.86) and all AUC (r = 0.82-0.86, except for AUC(120–180)) (p <
.05, Table S2), while a very strong correlation was found for SH30 (r =
0.90, p = .005). The limitation of Method 1 to separate the groups was 
made apparent when equations 1 and 2 are applied using single-point 
hydrolysis rate SH90 and hydrolysis index HI (encompassing 0–180 
min), respectively (Fig. 3c and Fig. A1). Actual in vivo GI values ranged 
between 50.4 and 90, while predicted GI values using equations 1 and 2 
(pGI1a and pGI1b, respectively) fall between 64.9-71.1 and 66.9–73.0, 
respectively. Consequently, the plot between pGI1a and pGI1b and in vivo 
GI only achieved R2 values of 0.732 and 0.690. 

To check whether the more intact grains will improve the separation 
of digestion profiles, Method 1 was slightly modified (referred as 
Modified Method 1). As hypothesized, a significant improvement in the 
separation of digestion curves according to GI categories (Fig. 2b) and 
correlation with GI (Fig. 3b) was established for all SH and AUC pa-
rameters in the modified method compared to that of the Method 1 
(Figs. 2a and 3a). Among the AUC ranges, highest correlation was 
established between GI and AUC (30–60) (r = 0.97, p < .001) for which 
the linear relationship is described by the equation pGI1c = 0.04 × AUC 
(30–60) + 43.86 (R2 = 0.932, Fig. 3d). 

Simultaneously, Method 2 was performed to test whether well- 
resolved digestion profiles consistent with the trend in the GI of the 
samples would be achieved. Final hydrolysis rates were between 49.73% 
(IRRI147) and 60.08% (IR65), as presented in Fig. 2c. It showed better 
separation during the first 60 min according to in vivo GI values, 
resulting to higher positive correlation with GI (with r = 0.93-0.95 be-
tween 0 and 10 min and r = 0.77-0.89 between 10 and 60 min, p < .01- 
.05, Fig. 4a), while succeeding time points had no significant correlation 
with GI. AUC(0–5) achieved the highest correlation with GI (r = 0.96, p 
= .0007) and this linear relationship is represented by the equation pGI2 
= 0.44 × AUC(0–5) + 33.43 (R2 = 0.917, Fig. 4c). 

Fig. 2d shows the digestion curves of the same samples when sub-
jected to Method 3 which produced better separation between GI groups 
compared to Method 1 and 2. In contrast to the previous methods, 
Method 3 produced a gradual increase in starch digestion rates between 
0 and 180 min, with final values ranging between 16.78% (IRRI147) and 
57.66% (IR65). Curves for GQ02522, GQ02497, and IRRI147 (GI =
50.4–55.1), and IRRI163 and IR64 (GI = 64–66) were clustered 
accordingly while that of IR65 (GI = 90) was clearly separated from the 
rest. Correlation of the SH values and corresponding AUCs calculated 
from successive time point ranges with in vivo GI (Fig. 4b, Table S5) was 
highest for SH180 (r = 0.980, p < .001) and AUC (150–180 min) (r =
0.976, p < .001). A good linear relationship between in vivo GI and AUC 
(150–180) is described by the equation pGI3 = 0.031 × AUC(150–180) 
+ 37.60 (R2 = 0.953) to estimate GI based on AUC(150–180) as shown 
in Fig. 4d. However, it is important to note that very high significant 
correlations were also established using any of the SH and AUC values, 
with the lowest being r = 0.957 for AUC(0–30). Moreover, it should be 
noted that SH180 values of Method 3 (16.78%–30.60%, excluding IR65) 
fall within the SH10 values of Method 2, which may be due to the higher 
enzyme concentration and conceivably higher digestion rates in the 
latter (Table 2). This also explains higher SH/AUC correlations with GI 
established at earlier time points in Method 2. As observed with the 
various starch structure parameters (Section 3.1), selected simulated 
digestion variables AUC(0–5) from Method 2 and AUC(150–180) from 
Method 3 comply with the assumptions of linear regression (Table 3). 

Various in vitro enzymatic digestion conditions such as enzyme 
concentration and sample form affect the rate of starch digestion 
(Woolnough, Monro, Brennan, & Bird, 2008) and may explain the 
observed discrepancy across the three methods. In contrast to the first 

Table 2 
Summary of the steps and components of the simulated digestion methods used 
for in vitro GI prediction.  

Step Method 1 Method 2 Method 3 

Cooking 50 ± 0.1 mg 
flour 
+3 mL water 

500 ± 10 mg milled 
grains 
+6 mL water (excess 
water discarded after 
cooking) 

300 ± 3 mg milled 
grains 
+0.6 mL water 

Amylase – 37.5 U/0.5 mL 
digestion medium 
(75 U/mLa) 

111 U/3 mL 
digestion medium 
(37 U/mLa) 

Incubation – 20 s, 37 ◦C 75 s, 37 ◦C, 60 rpm 
Pepsin 0.93 mg (40 U; 

3.03 U/mLa) 
5 mg (17,820 U; 
3240 U/mLa 

1.47 mg (63 U; 7 U/ 
mLa) 

Incubation 60 min, 40 ◦C, 
90 rpm 

30 min, 37 ◦C, 200 
rpm 

30 min, 37 ◦C, 120 
rpm 

Amylase or 
Pancreatin- 
AMG 

2.6 U amylase/ 
30 mL digestion 
medium (0.087 
U/mLa) 

10 mg Pancreatin- 
127 U AMG/35.5 mL 
digestion medium 
(0.28 mg/mLa, 3.57 
U/mLa) 

0.35 mg Pancreatin- 
195 U AMG/39 mL 
digestion medium 
(0.009 mg/mLa, 5 U/ 
mLa) 

Incubation 180 min, 37 ◦C, 
120 rpm 

180 min, 37 ◦C, 700 
rpm 

180 min, 37 ◦C, 120 
rpm  

a Final concentration in the digestion medium. 
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Fig. 2. Percentage of starch hydrolyzed in various 
samples during simulated digestion using (a) Method 
1, (b) modified Method 1, (c) Method 2, and (d) 
Method 3. The samples and their corresponding in 
vivo GI values are represented as follows (in 
decreasing order): (—■—) IR65, GI = 90; (—□—) 
IR64, GI = 66; (—◆—) IRRI163, GI = 64; (—⋄—) 
IRRI162, GI = 57; (—▴—) IRRI147, GI = 55; 
(—△—) GQ02497, GI = 51.5; (—○—) GQ02522, GI 
= 50.4. The bars represent standard errors of the 
mean (SEM) using three (3) to five (5) replicates.   

Fig. 3. Correlation matrix showing the association between in vivo GI and SH and AUC at various time points and ranges measured in (a) Method 1 and (b) modified 
Method 1, and the corresponding linear regression plots between in vivo GI and (c) predicted GI values (pGI1a) using the single time point equation by Goñi et al. [9] 
(pGI1a = 39.21+(0.803 × SH90); converted from white bread to glucose as reference by multiplying by 0.71, or setting GI = 71 for white bread), and (d) AUC(30–60) 
from the modified Method 1 to derive the new equation pGI1c = 0.04 × AUC(30–60) + 43.86. 
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two methods which produced high starch hydrolysis rates at the onset of 
the digestion period, Method 3 induced slower digestion as well as lower 
final SH across samples. This could be attributed to food matrix integ-
rity. For instance, the use of cooked rice flour in Method 1 may have 
caused the high onset SH across all samples despite the use of lower units 
of α-amylase (0.087 U/mL digestion medium) compared to that of 
Method 2 (11.3 U/mL) and Method 3 (0.441 U/mL), and even in the 

absence of AMG and initial α-amylase digestion. Meanwhile, although 
both Method 2 and 3 made use of whole milled grain samples, the use of 
higher amounts of enzymes at all three stages in the former most likely 
caused the higher SH values, despite the higher AMG concentration in 
Method 3. In addition, this effect may have been compounded by the fact 
that Method 2 employed excess water in the cooking step and possible 
increased mechanical breakdown due to higher stirring speed. The same 

Fig. 4. Correlation matrix describing the association between in vivo GI and SH and AUC at various time points and ranges measured in (a) Method 2 and (b) Method 
3, and their corresponding linear regression plots between in vivo GI and (c) AUC(0–5) from the Method 2 and (d) AUC(150–180) from Method 3 to derive the 
equations for predicted GI (pGI2 and pGI3, respectively). 

Table 3 
Summary of pGI equations derived in the study using selected parameters.  

Linear Regression  ANOVA Shapiro-Wilk Breusch-Pagan 

R2 F-value p valuea W-stat p valueb BP value p valuec 

pGI(RS) = − 18.42 × RS + 87.30 − .809 9.470 .028 .939 .629 0.885 .347 
pGI(AM1) = − 3.96 × AM1 + 92.16 − .941 38.657 .002 .909 .393 1.773 .183 
pGI(AM2) = − 3.47 × AM2 + 94.65 − .802 9.017 .030 .914 .428 2.800 .094 
pGI(MCAP) = 5.33 × MCAP − 82.85 .780 7.782 .038 .913 .414 2.074 .150 
pGI(SCAP) = 2.48 × SCAP − 76.12 .855 13.557 .014 .899 .326 3.496 .062 
pGI(SCAP1) = 10.11 × SCAP1 − 91.17 .856 13.688 .014 .894 .296 2.869 .090 
pGI(AM) = − 1.92 × AM + 94.71 − .886 18.326 .008 .955 .775 3.185 .074 
pGI(AMAUC) = − 1.89 × AMAUC + 90.67 − .880 17.114 .009 .939 .631 3.390 .066 
pGI2 = 0.44 × AUC(0–5) + 33.43 .917 38.282 .002 .904 .357 1.960 .162 
pGI3 = 0.031 × AUC(150–180) + 37.60 .953 102.361 <.001 .963 .845 1.038 .308 
pGI(M) = (0.021 × AUCd) − (1.66 × AM1) + 58.65 .995 403.2 <.001 .880 .227 2.483 .289  

a
<.05 corresponds to compliance with linearity assumption. 

b .05 corresponds to compliance with normal distribution of the residuals of linear regression. 
c .05 corresponds with compliance to homoscedasticity. 
d AUC(150–180) from Method 3. The summary of linear regression analysis is presented in Tables A5-A.14. 
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effect of cooking in excess water on starch digestibility has been 
observed in previous studies (Hsu, Lu, Chang, & Chiang, 2014; Huynh, 
Shrestha, & Arcot, 2016). It is highly likely that higher SH also will have 
been measured if the excess water used for cooking in Method 2 was not 
discarded, since amylose and amylopectin leach out of the starch 
granules upon cooking (Ong & Blanshard, 1995). In this regard, we 
hypothesize that certain levels of enzyme concentrations, to some 
extent, is only of secondary importance to matrix integrity when it 
comes to affecting starch digestibility. Overall, the use of whole milled 
grain, lower water-to-rice ratio (2:1 vs in excess), and lower enzyme 
activities in Method 3 may have produced the more gradual and lower 
extent of starch hydrolysis compared to both Method 1 and 2. In fact, 
modifying Method 1 by simply employing whole grains (100 mg) and 
1:2 water to rice ratio, instead of rice flour and excess water, respec-
tively, led to the establishment of higher correlations with in vivo GI 
(Fig. 2b), thereby supporting this hypothesis. 

The discrepancy between the correlations with GI established by 
starch fine structure components and simulated digestion of more intact 
starting material may highlight the importance of the overall macro- and 
micro-structures in the release of glucose from starch over the total 
content of amylose and amylopectin alone (Chi et al., 2021). For 
instance, the distribution of DP within amylose and amylopectin chains 
have been found to influence digestibility; higher short-medium 
amylose were found to be associated with lower digestibility (Gong, 
Cheng, Gilbert, & Li, 2019; Yu, Tao, & Gilbert, 2018) due to their ten-
dency upon retrogradation to form smaller and densely packed gel 
networks that are less accessible to amylolytic enzymes (Yu et al., 2018). 
With respect to amylopectin, short-chain double helices (DP 6–12) are 
generally positively associated with increased digestibility while DP 
25–36 and DP ≥ 37 are known to reduce it (Lin et al., 2016; Srichuwong 
et al., 2005). However, these fractions could behave otherwise; short 
helices (DP 6–12) may contribute to the slowly digestible starch (SDS) 
fraction by either packing into ordered structures (Lin et al., 2016) or 
promoting steric hindrance against proper enzyme-substrate complex 
formation (Li & Zhu, 2017), while long-chain helices may comprise the 
readily digestible starch (RDS) fraction when not in an ordered structure 
(Kim et al., 2020; Zhang, Ao, & Hamaker, 2008). Going up the hierar-
chical starch structure, short-range ordered structures associated with 
SDS and RS (Chi et al., 2019), and starch-complexes with non-starch 
moieties such as hydrocolloids, proteins, and phenolics decrease di-
gestibility due to localized molecular interactions upon cooking (Chen 
et al., 2019). Densely-packed single and double helices by amylose and 
amylopectin, respectively, form different crystalline structures A-, B-, C-, 
and V-type (starch-hydrophobic molecule complexes) categorized to 
have high, low, intermediate digestibility and resistant, respectively. 
Due to the less dense structures of B- and C-type starch crystals that 
allow for the incorporation of water molecules, they are less readily 
digested compared to A-type (Shrestha et al., 2012). It was reported that 
cereals of low to normal amylose content had proportionally high con-
tent of A-type crystals with high short:long amylopectin ratio (DP < 24: 
DP > 36), B-type crystals with longer amylopectin side chains were 
found in potato starch, while high-amylose starches in cereal and pea 
had intermediate proportions (Martens et al., 2018). It was also reported 
in the same study that both %A-type structure and amylopectin 
side-chain length distribution were the only parameters among those 
tested (amylose content, granule size, and number of pores) that 
explicitly predicted the variations in starch digestion kinetics (in vitro 
pig model) across selected botanical types (rice, barley, corn, wheat, 
potato and pea). Thicker crystalline lamellae relative to the amorphous 
lamella (where disordered amylose and amylopectin chains are located), 
highly-ordered reassembled aggregates, and granule surface proteins 
and lipids are all associated with reduced digestibility. In essence, ori-
entations at various levels of the starch hierarchical structure that limits 
or slows down enzyme action reduce starch digestibility (Chi et al., 
2021). 

High rates of digestion due to high enzyme concentration and 

reduced food matrix macro-structure in both Method 1 and 2 may have 
diminished the inherent variations in starch fine structure and other 
inherent hierarchical structures across samples, with SH almost reaching 
a plateau at earlier time points. In contrast, the more intact samples 
digested at lower pancreatin and AMG concentrations (as in Method 3) 
may have introduced lower digestion rates that best reflected SCAP DP 
variations. For instance, it can be observed that final SH in Method 3 
were substantially below %TS content and may likely include mostly 
SCAP digestion. This can be supported by the results from Benmoussa 
et al. (2007), where they determined that amylopectin fine structure 
distribution affects in vitro digestibility of rice cultivars, although their 
results showed a negative correlation between MCAP and RDS. 

To establish an in vitro GI method that can predict in vivo values with 
higher accuracy, SH and AUC measured from in vitro digestion of milled 
grains are thus superior parameters to use than starch fractions (Fig. 5). 
This could be due to the ability of the method to account for the effects of 
various starch parameters (AM1, AM2, SCAP2, RS) and other underlying 
factors such as the presence of starch-lipid and starch-lipid-protein 
complexes (Wang et al., 2020), dietary fiber (Qi, Al-Ghazzewi, & 
Tester, 2018), phenolic compounds (Giuberti, Rocchetti, & Lucini, 2020; 
Zhu, 2015) which are known to affect starch digestibility and thus GI. 
Although the use of the single time-point measurement (SH) poses an 
advantage over AUC measurements with respect to throughput, the use 
of the latter is less sensitive to errors than SH and is therefore more 
preferred. The earlier time points of Method 3 (e.g. 0–30 min) can also 
be used without significantly affecting the predicted GI (R2 = 0.91, 
Fig. A3). The comparison of three different in vitro digestion methods 
and fitting the results into models suggests that both Method 2 and 
Method 3 show potential as in vitro screening methods for GI in rice. 
However, their full utility as an alternative to in vivo measurements is 
remains to be further explored involving large number of varieties with 
in vivo GI evidence. 

3.3. Evaluation of the predictive capacity of linear regression models for 
GI 

A summary of the equations derived from the various methods and 
parameters which showed statistically significant correlation with in 
vitro GI were then used to calculate the pGI of the seven samples of 
known in vivo GI (Table 4), where pGI(AM1), pGI2 and pGI3 equations 
gave GI values with less than 7% mean percentage error (MPE = 6.6%, 
5.4%, and 4.0%, respectively). Interestingly, a multiple linear regression 
model built from AUC(150–180) of Method 3 and AM1 (Table A.15) and 
described by the equation pGI(M) = (0.021 × AUC(150–180)) – (1.66 ×
AM1) + 58.65 (R2 = 0.995, p < .001) gave an MPE of only 1.1%. This 
implies increased predictive capacity when multiple parameters that 
strongly correlate with GI are used. This result was not surprising given 
that SEC provides details on the fine structure while simulated digestion 
could account for the macro- and micro-structure of the food matrix. 

Bland-Altman plots (Fig. 5) show the bias (deviation from an ideal 
mean difference of zero) and agreement limits (within which 95% of 
differences between the two methods lie) (Giavarina, 2015) between in 
vivo GI and pGI when selected parameters obtained for the 7 samples 
were fitted in their corresponding linear regression model (except for 
pGI1a which was calculated using the equation by Goñi et al., 1997). 
Another set of in vitro values (pGI4, measured at the Commonwealth 
Scientific and Industrial Research Organization (CSIRO) and extracted 
from Anacleto et al. (2019) was also evaluated (Fig. A4h). In terms of the 
mean of differences, most of the models gave a zero bias (or mean dif-
ference of 0) except for pGI1a and pGI1b (− 5.2 and − 7.0 units) and pGI4 
(+3.8 units), indicating that the said in vitro methods will give estimates 
that are 5.2 and 7.0 units higher, and 3.8 units lower, respectively, than 
in vivo values. In terms of the range of differences between in vitro and in 
vivo values, the linear regression model with the most accurate agree-
ment range with in vivo GI was observed for pGI3 (− 6.0 to 6.0 GI units), 
which means that 95% of in vitro GI measurements will differ by ±6.0 
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units compared to the mean of the two measurements. In contrast, wider 
agreement intervals measured from the bias were observed for the 
following (in increasing order): pGI(AM1) (±6.0), pGI(AM2) (±6.2), pGI 
(AM) (±6.3), pGI(AMAUC) (±6.4), pGI(SCAP1) (±6.5), pGI(SCAP) 
(±6.8), pGI(MCAP) (±7.2), pGI2 (±7.7), pGI4 (±11.7), pGI(RS) (±15.8), 
pGI1a (±22.9), and pGI1b (±23.2). Notably higher predictive capacity 
was observed for the multiple regression equation pGI(M), achieving a 
narrow ±1.9 units of agreement interval. 

Receiver operating characteristic (ROC) curves (Fig. 6) were gener-
ated for pGI(AM1), pGI2, and pGI3 using individual replicates for the 
seven rice accessions to graphically illustrate their ability to predict in 
vivo values. For this purpose, pGI measurements that fell within ±1 to 
±10 units (at increments of ±1) from the in vivo GI were classified as 

“passed”, and otherwise, “failed”. Based on AUROC (Hosmer et al., 
2013), both pGI(AM1) and pGI2 gave acceptable predictions while pGI3 
has an excellent predictive ability. Interestingly, the multiple linear 
regression model pGI(M) derived from the parameters AM1 and AUC 
(150–180) of Method 3 gave and outstanding prediction of GI. These 
results further support the conclusion that these models may be further 
explored for the potential to predict GI at acceptable capacities or levels. 

A total of 10 market samples were then used to demonstrate the 
phenotypic variability of estimated GI across different methods 
(Table 3). Models pGI(AM1), pGI(MCAP), and pGI3 were able to predict 
GI values that are close to that reported for low-GI rice (LGR) at 49.9, 
45.8, and 55.3, respectively (Table 5). Estimates of GI for Iddly rice (IR) 
were also within, or at least close to, the low GI range except for pGI(RS) 

Fig. 5. Bland-Altman plots for (a) pGI(RS), (b) pGI 
(AM1), (c) pGI1a, (d) pGI2, (e) pGI3, and (f) pGI(M) 
showing the differences between their estimated 
values and in vivo GI vs. the mean of both measure-
ments. The middle horizontal line represents the 
“bias” (deviation from an ideal mean difference of 
zero) while top and bottom horizontal lines represent 
upper and lower limits within which 95% of the dif-
ferences will fall (calculated as bias ± 1.96 std. de-
viation, respectively). pGI(M) is a multiple linear 
regression model derived AUC(150–180) of Method 3 
and AM1.   

Table 4 
pGI values of the seven (7) standard rice samples using various regression models.  

Predicted GI Rice Samples 

GQ0255 GQ02497 IRRI147 IRRI162 IRRI163 IR64 IR65 MPEa 

pGI(RS) 49.1 ± 5.1 65.9 ± 15.0 56.7 ± 2.6 54.6 ± 8.4 68.6 ± 4.6 56.9 ± 7.0 81.9 ± 0.9 9.7 
pGI(AM1) 46.8 ± 8.3 47.4 ± 5.6 58.0 ± 5.8 62.7 ± 9.3 67.7 ± 5.4 67.7 ± 9.2 83.6 ± 5.1 6.6 
pGI(AM2) 45.3 ± 6.7 51.8 ± 8.1 56.4 ± 0.1 66.0 ± 2.5 71.6 ± 7.1 67.8 ± 4.0 74.9 ± 4.3 8.7 
pGI(MCAP) 49.5 ± 4.0 54.4 ± 2.9 57.8 ± 2.1 68.5 ± 9.9 70.2 ± 6.4 54.6 ± 3.8 79.0 ± 3.6 10.3 
pGI(SCAP) 46.4 ± 1.7 49.1 ± 10.7 57.5 ± 2.7 62.3 ± 4.5 68.7 ± 3.9 73.2 ± 3.3 76.8 ± 4.6 8.5 
pGI(SCAP1) 44.4 ± 4.0 49.9 ± 6.5 61.3 ± 0.1 64.1 ± 1.3 70.5 ± 12.8 65.1 ± 2.8 78.7 ± 3.5 9.0 
pGI(AM) 45.4 ± 1.1 49.3 ± 7.2 57.0 ± 2.9 64.6 ± 3.8 70.1 ± 5.3 68.0 ± 3.1 79.6 ± 3.5 7.9 
pGI(AMAUC) 44.8 ± 1.7 51.1 ± 5.9 56.5 ± 3.5 64.2 ± 4.3 71.7 ± 1.0 66.3 ± 3.0 79.5 ± 3.5 7.3 
pGI2 53.9 ± 2.7 50.2 ± 0.3 53.4 ± 2.5 61.1 ± 0.3 57.6 ± 0.6 69.7 ± 3.1 87.9 ± 13.3 5.4 
pGI3 54.3 ± 2.7 54.8 ± 1.1 52.6 ± 1.8 56.8 ± 1.4 59.8 ± 4.4 64.7 ± 2.2 90.9 ± 2.6 4.0 
pGI(M) 50.6 ± 1.8 51.2 ± 0.7 54.2 ± 1.2 58.9 ± 0.9 62.9 ± 2.9 66.2 ± 1.5 90.0 ± 1.7 1.1 
in vivo GI 50.4 51.5 55 57 64 66 90 –  

a Mean percentage error. 
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and pGI2 which gave higher values. All models were able to assign high 
GI values for both glutinous white and black rices (GWR and GBR) which 
is expected for waxy rices (Kaur et al., 2016). All models also classified 
the Jasmine rices (WR and BJR) accordingly as high GI cultivars, while 
Thai Red as intermediate to high. Meanwhile, the Basmati rices (LBR 
and BR) got low to high pGI values. The differences in pGI using eight 
models was smallest for Extra-Long Basmati Rice (LBR), differing at least 
10.1 units, while the pGI for White Glutinous Rice (WGR) and Black 
Glutinous Rice (BGR) varied for more than 40 units across models, 
highlighting the variability of the predictive capacities of different 
methods, and thus, the need to come up with the most accurate one. 

4. Conclusion 

This work aimed to establish an in vitro method for GI screening in 
rice by exploring the use of amylolysis, starch indices, and starch frac-
tions as parameters for GI prediction. This study demonstrated that 
resistant starch (RS), amylose (AM1, DP > 1000, and AM2, 121 < DP ≤
1000), and short-chain amylopectin (SCAP, particularly SCAP of DP 
25–36) are strongly to very strongly correlated with in vivo GI. Mean-
while, higher correlations were observed for SH and AUC measured 
through modified in vitro amylolysis protocol employing intact grains, 
low sample requirements, and lower enzyme activities, even within 
shorter digestion periods of 5 and 30 min. However, lower mean per-
centage errors were achieved when AUC(150–180) and AM1 were 
combined into a multiple regression model. We conclude that simulated 
digestion Method 3 can be explored for in predicting the GI in closer to in 
vivo situation. We infer that amylolysis of cooked whole milled grains at 
conditions that do not diminish the effect of grain structural integrity 
(whole milled grain, lower rice-to-water ratio during cooking, and lower 
concentration of amylolytic enzymes) and thus improved in vitro 
methods exhibit more accurate predictive capacity than the use of more 
specific starch indices and starch fractions. This could be due to the 
ability of digestion models, with certain incubation conditions, to 
simultaneously account for differences in various factors (e.g. SCAP2 

and AM2, starch-lipid and starch-lipid-protein complexes, and enzyme- 
inhibiting phytochemicals) affecting starch digestibility. However, AM1 
data can further improve predictive capacity. In addition, we found that 
previously reported pGI equations did not accurately predict in vivo GI 
for the rice accessions used in this study, and hence, the need to generate 
more accurate pGI equations specific to an in vitro digestion protocol, 
which was demonstrated herein. Future studies involving higher num-
ber of samples with profiles on protein, lipids, and phenolics content, 
and more variety of botanical sources could be used to overcome some of 
the limitations of the current study. 
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Fig. 6. Receiver operating characteristic (ROC) curves comparing the in vitro GI 
values obtained using linear regression models pGI(AM), pGI2, pGI3, and pGI 
(M) against in vivo GI. A single measurement using either method was catego-
rized as “passed” (otherwise, “failed”) when it is within ±1 up to ±10 GI units 
(at increments of ±1 unit) of the in vivo value of the seven (7) rice samples used. 
pGI(M) is a multiple linear regression model derived AUC(150–180) of Method 
3 and AM1. The area under the respective ROCs are as follows (in increasing 
order): (—) chance diagonal, 0.5; (—△—) pGI(AM1), 0.714; (—◆—) pGI2, 
0.781; (—⬤—) pGI3, 0.891; and (—▴—) pGI(M), 0.969. Interpretation: 0.5 <
ROC <0.7 = poor prediction; 0.7 ≤ ROC <0.8 = acceptable prediction; 0.8 ≤
ROC <0.9 = excellent prediction; ROC ≥0.9 = outstanding prediction (Hosmer, 
Lemeshow, & Sturdivant, 2013); TPR = True Positive Rate; FPR = False Posi-
tive Rate. 

Table 5 
Predicted GI (pGI) values of market samples across various pGI models.  

Samples GI Predicted GI 

pGI(RS) pGI 
(AM1) 

pGI 
(AM2) 

pGI 
(MCAP) 

pGI 
(SCAP) 

IR 38a 61.7 ±
5.1 

37.7 ±
0.6 

59.8 ±
0.4 

41.7 ±
1.9 

54.6 ±
1.6 

CR 83a 77.4 ±
2.5 

57.2 ±
3.9 

75.7 ±
2.0 

55.1 ±
2.3 

72.0 ±
4.9 

LGR 54a 73.4 ±
2.0 

49.9 ±
2.0 

70.1 ±
0.0 

45.8 ±
2.3 

67.7 ±
2.3 

LBR 52a 68.6 ±
7.9 

56.3 ±
4.8 

71.2 ±
2.4 

58.7 ±
6.0 

66.6 ±
7.5 

BR 50b/ 
58c 

76.3 ±
0.7 

63.7 ±
2.7 

70.9 ±
1.1 

55.9 ±
4.7 

72.3 ±
1.3 

WR 91a 79.1 ±
3.7 

79.3 ±
0.2 

80.6 ±
2.9 

79.0 ±
18.2 

78.2 ±
10.4 

WGR 93a 80.9 ±
2.8 

91.2 ±
0.2 

92.3 ±
2.0 

115.2 ±
9.0 

77.3 ±
5.7 

BGR 42a/ 
74d 

80.5 ±
2.4 

86.8 ±
2.1 

90.8 ±
0.2 

103.7 ±
12.3 

78.7 ±
7.1 

TRR 76d 78.9 ±
0.8 

68.5 ±
19.8 

71.3 ±
15.4 

81.0 ±
7.4 

63.9 ±
20.0 

BJR 74 81.0 ±
1.5 

86.1 ±
0.4 

87.6 ±
2.9 

80.7 ±
3.8 

86.6 ±
3.6 

Samples  pGI 
(SCAP1) 

pGI 
(AM) 

pGI 
(AMAUC) 

pGI2 pGI3 

IR 38a 49.9 ±
1.2 

49.0 ±
0.5 

47.9 ±
0.7 

63.0 ±
15.0 

57.7 ±
0.7 

CR 83a 68.2 ±
2.5 

67.2 ±
3.0 

65.5 ±
3.2 

90.0 ±
6.6 

74.8 ±
2.1 

LGR 54a 58.7 ±
0.5 

60.6 ±
1.0 

59.2 ±
0.8 

56.6 ±
0.6 

55.3 ±
0.4 

LBR 52a 65.5 ±
2.8 

64.4 ±
3.6 

63.5 ±
3.4 

51.6 ±
11.0 

64.9 ±
0.1 

BR 50b/ 
58c 

68.5 ±
2.4 

67.8 ±
0.7 

66.8 ±
0.6 

58.4 ±
0.4 

72.6 ±
1.2 

WR 91a 83.8 ±
1.4 

80.7 ±
1.5 

79.1 ±
1.4 

67.5 ±
4.2 

74.4 ±
1.0 

WGR 93a 106.9 ±
3.6 

93.0 ±
1.2 

89.8 ±
0.5 

93.2 ±
3.2 

97.8 ±
0.0 

BGR 42a/ 
74d 

105.0 ±
2.6 

90.0 ±
1.1 

86.8 ±
1.3 

48.4 ±
9.4 

68.7 ±
0.3 

TRR 76d 79.9 ±
20.3 

70.3 ±
18.2 

64.8 ±
13.8 

66.7 ±
5.3 

79.3 ±
0.4 

BJR 74 100.3 ±
3.6 

87.9 ±
1.4 

84.4 ±
1.1 

71.4 ±
1.6 

85.5 ±
0.1 

The values are expressed as the mean of three (3) replicates for RS, two (2) for 
SEC-derived parameters, pGI2, and pGI3 ± standard deviation. aBased on liter-
ature search by Kaur, Lim, Chusak, and Henry (2020); cRanawana, Henry, 
Lightowler, and Wang (2009); dFoster-Powell, Holt, and Brand-Miller (2002); 
eIndrasari, Purwani, Wibowo, and Jumali (2010); IR=Iddly Rice; CR= Premium 
Calrose Rice; LGR = Kangaroo Australian Low GI Rice; LBR = Extra Long Bas-
mati Rice; BR=Basmati Rice; WR=Thai Hom Mali Premium Quality Fragrant 
Rice (Jasmine white rice); WGR=White Glutinous Rice; BGR=Black Glutinous 
Rice; TRR = Premium Thai Red Rice; BJR=Brown Jasmine Rice. 
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