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Abstract
Key message  Genome-wide association study (GWAS) demonstrated that multiple genomic regions influence grain 
quality traits under nitrogen-starved soils. Using genomic prediction, genetic gains can be improved through selec-
tion for grain quality traits.
Abstract  Soils in sub-Saharan Africa are nitrogen deficient due to low fertilizer use and inadequate soil fertility manage-
ment practices. This has resulted in a significant yield gap for the major staple crop maize, which is undermining nutritional 
security and livelihood sustainability across the region. Dissecting the genetic basis of grain protein, starch and oil content 
under nitrogen-starved soils can increase our understanding of the governing genetic systems and improve the efficacy of 
future breeding schemes. An association mapping panel of 410 inbred lines and four bi-parental populations were evaluated in 
field trials in Kenya and South Africa under optimum and low nitrogen conditions and genotyped with 259,798 SNP markers. 
Genetic correlations demonstrated that these populations may be utilized to select higher performing lines under low nitrogen 
stress. Furthermore, genotypic, environmental and GxE variations in nitrogen-starved soils were found to be significant for oil 
content. Broad sense heritabilities ranged from moderate (0.18) to high (0.86). Under low nitrogen stress, GWAS identified 
42 SNPs linked to grain quality traits. These significant SNPs were associated with 51 putative candidate genes. Linkage 
mapping identified multiple QTLs for the grain quality traits. Under low nitrogen conditions, average prediction accuracies 
across the studied genotypes were higher for oil content (0.78) and lower for grain yield (0.08). Our findings indicate that 
grain quality traits are polygenic and that using genomic selection in maize breeding can improve genetic gain. Furthermore, 
the identified genomic regions and SNP markers can be utilized for selection to improve maize grain quality traits.

Introduction

Maize (Zea mays L.) yields in sub-Saharan Africa (SSA) are 
amongst the lowest in the world (FAO 2021). Average yields 
in this region range from 1 to 3 t ha−1, well below the global 

average of around 5 t ha−1 (Prasanna et al. 2020, 2021). Over 
a quarter of households in SSA are deemed persistently food 
insecure, with that figure climbing to 40% during the dry 
season (Fraval et al. 2019). Furthermore, demand for maize 
in this region is expected to triple by the year 2050 as a 
result of rapid population growth (Ekpa et al. 2018). While 
drought stress and increased climate variability are linked 
to low yields, low fertilizer use is also a key driver of the 
maize yield gap in this region (Tittonell and Giller 2013). 
While average N fertilizer use in SSA by smallholder farm-
ers has increased over the past decade, however it remains 
very low at 17.9 kg N ha−1 (Jayne and Sanchez 2021). This 
difference is particularly pronounced on female managed 
plots which tend to receive less nitrogen inputs than male 
management plots within a farm (Cairns et al. 2021; Farn-
worth et al. 2017).

For vulnerable populations, increased dietary diver-
sity and consumption of nutrient-rich food is essential for 
increased nutrition (Poole et al. 2021). However, in more 
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than 20 countries in SSA, maize accounts for more than 30% 
of calories consumed (Goredema-Matongera et al. 2021). 
In Lesotho, Malawi, Zambia, and Zimbabwe, the average 
per capita consumption of maize is more than 100 kg per 
person per year (i.e., 300 g per day), roughly half of daily 
calorie intake (Cairns et al. 2021; Prasanna et al. 2021). 
High-quality protein sources include eggs, meat, and dairy 
products, but vulnerable populations in SSA have limited 
access to these foods and rely heavily on maize as a primary 
source of protein (Nuss and Tanumihardjo 2011). Average 
protein supply from maize is 10 g per capita per day in SSA, 
with up to 35 g per capita per day in southern Africa (FAO 
2021). In Burkina Faso Eswatini, Ethiopia, Lesotho, Malawi, 
Mozambique, Nigeria, Tanzania, Togo, Zambia and Zimba-
bwe, maize provides a greater source of protein than protein 
derived from animal sources (FAO 2021).

Generally, maize grain has low oil (4.4%) and protein 
(9.1%) contents but a relatively high starch content (73.4%) 
basing on dry matter measurements (Dei 2017). In temper-
ate maize, breeding has led to significant increase in grain 
yield. However, grain protein content is estimated to have 
decreased 0.3% per decade and grain starch content has 
increased at 0.3% per decade (Duvick 2005). Grain oil con-
tent has also reduced over time in temperate maize (Scott 
et al. 2006). Grain quality is linked closely linked to soil 
quality (Wood et al. 2018). Maize protein content increases 
as the level of N applied increases (Zhang et al. 2020). To 
date, studies looking at the effect of reduced N level on grain 
quality have used significantly higher levels of N than is 
relevant to smallholder farmers in SSA. Under low nitrogen 
stress in SSA environments, previous maize grain quality 
assessment studies, such as Abu et al. (2021), Ngaboyi-
songa and Njoroge (2014), and (Oikeh et al. 1998), used N 
rates ranging from 30 to 120 kg ha−1. Such application rates 
are higher than the average N application rates (which is 
between 12 and 16 kg ha−1 (Heffer and Prud’homme 2015; 
Sheahan et al. 2014) in smallholder agriculture in SSA. 
Incorporating grain quality traits into breeding can involve 
significant costs associated with grain nutrient analyses, 
morphological characterizations, and associated trait com-
plexities stymie progress in improving maize grain quality. 
The high-cost requirement of measuring grain quality traits 
stems from the wet chemistry procedures required to create 
near-infrared spectroscopy (NIRS) calibration curves, which 
are relatively expensive. There is a significant opportunity 
to assess and employ the potential of genomic selection in 
the improvement of grain quality traits in maize. This rein-
forces the need for more rapid progress to improve maize 
grain quality components (particularly, protein, starch, and 
oil content) through accelerated and more efficient breeding 
enabled by molecular markers.

The integration of genomic tools such as genomic-wide 
association studies (GWAS), linkage mapping and genomic 

selection (GS) with traditional breeding approaches have 
increased the efficiency of grain quality and Low N toler-
ance selection. These techniques have been used to identify 
causal variants for Low N tolerance. Linkage mapping is a 
common method for locating quantitative trait loci (QTL) 
based on a segregating population derived from a cross of 
two parental lines with significantly divergent phenotypes 
(Xiao et al. 2017). Linkage mapping can be combined with 
GWAS to provide a more comprehensive strategy for iden-
tifying markers linked with a trait of interest, by the discov-
ery of trait linked markers by GWAS and their validation 
through linkage mapping. The most robust markers can then 
be employed for marker-assisted selection (MAS). However, 
the accuracy with which genetic maps are constructed is 
dependent on the mapping population since doubled haploid 
(DH) lines, near-isogenic lines (NILs), recombinant inbred 
lines (RILs), and backcross lines are extremely effective 
yet to date labour-intensive and time-consuming to gener-
ate (Rao et al. 2021). GS has been highlighted as a power-
ful option for selecting polygenic traits that are difficult to 
select through MAS. GS can accomplish this by employing 
genome-wide dense markers for predictions, and therefore 
can support association analyses to determine the genetic 
basis of grain yield and quality related traits (Bentley et al. 
2014). Galli et al. (2020) reported that GWAS could iden-
tify both additive and dominant genetic effects that influence 
Low N tolerance in maize.

To understand how low N stress affects grain yield and 
grain quality traits such as grain protein, starch, and oil con-
tent, this study was performed using a tropical maize popu-
lation under low N and optimum conditions across multi-
location field trials in Kenya and South Africa. The study 
had the objectives of (i) Assessing the genetic architecture of 
low soil-N tolerant maize test crosses using their responses 
to grain quality and yield traits under two management con-
ditions (optimum and low soil N); (ii) Identifying the sig-
nificant quantitative trait nucleotides (QTNs) and putative 
candidate genes and QTLs for quality traits in tropical maize 
germplasm tested in multiple locations; and (iii) Assessing 
the potential of utilizing GS in the improvement of grain 
quality traits.

Materials and methods

Germplasm, experiment design and management

An association mapping panel of 410 tropical maize lines 
developed under CIMMYT’s Improved Maize for African 
Soils (IMAS) project (Ertiro et al. 2020a) in collaboration 
with the Kenya Agricultural and Livestock Research Organi-
sation (KALRO) and Agricultural Research Council (ARC, 
South Africa) was used. The study also evaluated two DH 
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populations from CIMMYT’s Heterotic group B (221 lines 
of CML550/CML504, 115 lines of CML550/CML511), and 
two DH population from CIMMYT’s Heterotic group A 
(175 lines of CML505/LaPostaSeqC7-F64-2-6-2-2 and 131 
lines of CML536/LaPostaSeqC7-F64-2-6-2-2) (Ertiro et al. 
2020b). Test cross hybrids were generated by crossing all 
inbred lines with a broadly adapted CIMMYT maize inbred 
line tester from the opposite heterotic group.

All testcross progenies for both association panel and 
DH populations were evaluated in three optimal and six 
low N-stressed sites (Table 1). Experiments conducted in 
the same site over several years were classified as separate 
environments (Das et al. 2019; Ertiro et al. 2020a). Kiboko 
lies within longitudes 37.7235°E and latitudes 2.2172°S, at 
an elevation of 975 m above sea level. The station receives 
between 545 and 629 mm of rainfall split in two seasons 
and lies in a hot, semi-arid region with annual temperature 
ranging from 16.0 to 33.6 °C. The soils are well drained, 
very deep, dark reddish brown to dark red, friable sandy 
clay to clay (Acri-Rhodic Ferrassols) developed from undif-
ferentiated basement system rocks, predominantly banded 
gneisses (Ertiro et al. 2022). Other location Embu lies at 
an elevation of 1350 m above sea level and receives an 
average of 893 mm of rainfall and lies in the foothills of 
Mount Kenya with annual temperature ranging from 15.0 
to 27.9 °C. Cedara research station in South Africa lies 
1037 m above sea level and receives an average of 990 mm 
of rainfall annually. All testcross progenies were evaluated 
in an alpha-lattice design with two replications. The sites 
for low N trials were depleted for soil N content by growing 
sorghum for several years without applying any external N 
fertilizer. Experiments were planted in one-row plots, with a 
planting density of 5.33 plants/m2 (Kenya and South Africa). 
In each location, two seeds per hill were sown, then thinned 

to one after emergence. At planting, triple phosphate (46% 
P2O5) was applied to the low N trials at the rate of 50 kg 
P2O5/ha. On optimum trials, diammonium phosphate (DAP) 
fertilizer was used at the rate of 54 kg N per hectare. Opti-
mum trials were top-dressed with urea fertilizer at the rate 
of 138 kg N per hectare three weeks after planting. All trials 
under both optimum and low-N were irrigated as required 
to avoid any moisture stress. Trials under both conditions 
were kept weed-free and other standard agronomic practices 
were conducted.

Measurements of grain yield and quality traits

Data were recorded for grain yield and quality traits (i.e., 
protein, oil, and starch contents). Shelled grain yield was 
measured in kilograms (kg) and converted to tons per hec-
tare and reported at 12.5% moisture. Protein, starch, and 
oil content were measured using a FOSS Infratec TM 1241 
from 500-g samples of grain taken from each plot and are 
reported as a percentage of whole grain. The FOSS Infratec 
is a non-destructive whole-grain analyzer that uses near-
infrared reflectance (NIR) to estimate quality parameters. 
Five 100-g subsamples were assayed and the mean reading 
for each parameter was reported per plot.

Phenotypic data analysis

Analyses of variance for each biparental population and 
IMAS panel at each and across locations under optimum and 
Low-N conditions was performed in the R program embed-
ded in META-R (Alvarado et al. 2020) and ASREML-R 
(Gilmour et al. 2009). The linear mixed model with the 
restricted maximum likelihood (REML) was used to calcu-
late all variance components. The study treated replication 

Table 1   Description of the field trials used in the study

*A   main season; B  off-season

Country Site name Management options Germplasm used Season

Kenya Embu Low N IMAS 2011B, 2012A
Low N CML550/CML504 2014A
Low N CML550/CML511 2014A

Kiboko Optimum IMAS 2011A, 2012A
Low N IMAS 2011A, 2011B, 2012A
Optimum CML505/LaPostaSeqC7-F64-2-6-2-2 2015B
Low N CML505/LaPostaSeqC7-F64-2-6-2-2 2015A, 2015B
Optimum CML550/CML511 2014A
Low N CML550/CML504 2015A, 2015B
Low N CML550/CML511 2015A
Low N CML536/LaPostaSeqC7-F64-2-6-2-2 2014A, 2015A, 2015B

South Africa Cedara Optimum IMAS 2011B
Low N IMAS 2011B
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as fixed effect and all other treatment effects as random. 
On an entry-mean basis, the broad-sense heritability (H2) 
was estimated using the genotypic to phenotypic variance 
ratio from the derived variance components. Furthermore, 
to determine the genotypic effects of the investigated lines 
for each and across environments, best linear unbiased esti-
mation (BLUE) and best linear unbiased prediction (BLUP) 
were obtained. For GWAS and linkage mapping, BLUPs 
were used. On the other hand, BLUEs were used for GS 
analyses. The classification of the genotypic correlation 
coefficients followed the guidelines provided by Profillidis 
and Botzoris (2019). To determine the impact of low N 
stress on the aforementioned traits, we used a t-test to com-
pare the mean values of the two management conditions. 
We also determined the percentage change (i.e., decrease or 
increase) in grain quality trait performance.

Genotyping‑by‑sequencing (GBS)

DNA was extracted according to the CIMMYT high-
throughput mini-prep Cetyl Trimethyl Ammonium Bromide 
(CTAB) method (Semagn (2014). Following the protocol 
presented in Elshire et  al. (2011), maize DNA samples 
were genotyped using a restriction enzyme (ApeKI) and 
96-plex multiplexing at the Institute of Biotechnology at 
Cornell University, USA. The Institute of Genomic Diver-
sity (IGD) at Cornell provided raw GBS data for a maxi-
mum of 955,120 SNP loci spread throughout the 10 maize 
chromosomes (Ertiro et al. 2020a). Raw data was filtered 
for linkage mapping according to the criteria used in Ertiro 
et al. (2020a) of > 10 percent minor allele frequency (MAF) 
and no missing data. Furthermore, the genotype data were 
filtered for GWAS using the Trait Analysis by Association, 
Evolution, and Linkage (TASSEL v.5.2.7.2, Bradbury et al., 
2007) software, with a baseline count of SNPs on 90% and a 
MAF of > 5% of the sample size as presented in Ertiro et al. 
(2020a). Principal Component Analysis (PCA) was carried 
out in TASSEL (v.5.2.7.3), as were genetic distances and 
kinship.

Genome‑wide association study analysis

In natural populations or association panels, the population 
structure and relative kinship cause high level of spurious 
positives during association studies. To assess the effect 
of population structure, PCA, and the relative kinship (K) 
on association results in IMAS panel, we used the follow-
ing statistical models: (1) uncorrected genotypic data only 
(GLM with G only); (2) GLM with PCA + G; (3) a mixed 
linear model (MLM) with PCA + K + G; (4) and FarmCPU 
model. G = genotype (fixed), PCA = three principal compo-
nents (fixed), K = kinship matrix (random). The R package 
‘FarmCPU-Fixed and random model Circulating Probability 

Unification’ (Liu et al. 2016) was used for GWAS analysis 
for all traits. FarmCPU utilized the first three PCs derived 
by TASSEL as input for GWAS. The kinship was computed 
using FarmCPU’s default kinship algorithm as presented 
in Ertiro et al. (2020a). The analysis was performed with 
maxLoop of five, p threshold of 0.1, QTN threshold of 0.1 
and MAF threshold of 0.05. The maxLoop refers to the total 
number of iterations used. The p threshold, QTN thresh-
old and MAF threshold refers to p values selected into the 
model for the first iteration, the p value selected into the 
model from the second iteration and the minimum MAF of 
SNPs used in the analysis. False discovery rate threshold of 
0.1 was used to set a significant level in Manhattan plots. 
The Manhattan and quantile–quantile (QQ) plots, GWAS 
findings, and a table of marker effects of user-provided vari-
ables were all produced by the FarmCPU using the “GAPIT” 
function. To annotate putative candidate genes for traits 
under study, the physical positions of the significant SNPs 
were compared with the Maize B73 reference genome ver-
sion 2 (RefGen_v2), available at the MaizeGDB database 
(www.​maize​gdb.​org) and functional gene annotations were 
retrieved from http://​ensem​bl.​grame​ne.​org/​Zea_​mays. The 
presence of the protein-coding genes was searched within 
the range of 20 kb (10 kb upstream and downstream) in the 
vicinity of the detected significant SNPs.

QTL mapping and genomic prediction

The four DH populations were genotyped with GBS and 
data was further filtered to a manageable size using TASSEL 
software with > 0.10 MAF, < 5% heterozygosity, and 90% 
the minimum count of the total size (Bradbury et al. 2007; 
Sitonik et al. 2019). In all the populations, homozygous 
marker loci for both parents and uniformly distributed poly-
morphic markers between parents were retained. Linkage 
maps were constructed by using QTL IciMapping version 
4.1 (Meng et al. 2015) in all four DH populations. BIN is an 
inbuilt tool implemented in QTL IciMapping was used to 
remove the highly correlated SNPs. This resulted into retain 
2699, 1962, 1985 and 2086 high-quality SNPs in CML550/
CML504, CML550/CML511, CML505/LaPostaSeqC7-
F64-2-6-2-2 and CML536/LaPostaSeqC7-F64-2-6-2-2, 
respectively. These SNPs were used to construct linkage 
maps using the MAP function. IciMapping used the group-
ing, ordering, and rippling steps to construct a linkage map. 
The ICIM is an effective two-step statistical approach that 
allows separation of co-factor selection from interval map-
ping process, in order to control the background effects and 
improve mapping of QTL with additive and dominance 
effects. The Kosambi genetic distance mapping function 
which assumes that recombination events influence the 
occurrence of adjacent recombination was used.

http://www.maizegdb.org
http://ensembl.gramene.org/Zea_mays
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For QTL mapping, we used IciMapping 4.1 based on 
biparental populations (BIPs) module with inclusive com-
posite interval mapping (Meng et al. 2015). BLUP values 
across environments for each trait in each the DH popula-
tions were used in QTL detection analysis. The mapping 
populations were grouped by the SNPs and the signifi-
cant difference between the means (P-value < 0.0001) was 
detected based on the markers that were linked to a QTL 
controlling the selected target trait (Collard et al. 2005). 
The highest peak of one LOD that supports the confidence 
interval was used to declare the significance of the QTL map 
position on both sides of the QTL (Hackett 2002). A LOD 
threshold of 3.0 with a scanning step of 1 cM were used to 
declare significant QTL. Stepwise regression was adopted to 
determine the percentages of phenotypic variance explained 
(R2) by individual QTL and additive effects at LOD peaks. 
The phenotypic variation explained (PVE) by each QTL and 
together for all QTLs for each trait was estimated. The origin 
of the favourable allele for each trait was identified based on 
the sign of the additive effects of each QTL.

BLUEs across environments for each trait in each popu-
lation were used in the GS analysis. The Ridge-regression 
BLUP (RR-BLUP, Zhao et al. 2012) with fivefold cross-
validation for each trait was used for the analysis. A sam-
ple of 4000 SNPs with all data values, equally distributed 
throughout the genome, and MAF > 0.05 was chosen from 
the GBS data for the IMAS panel and all four DH popu-
lations. Individual DH population and the IMAS set were 
sampled to form a training and prediction set. The predic-
tion accuracy was calculated as the correlation between the 
observed phenotypes and genomic estimated breeding values 
(GEBVs) divided by the square root of heritability (Dekkers 
2007). In each population, 100 iterations were done for the 
sampling of the training and validation sets.

Results

Effect of low N stress on grain yield and quality 
traits

There was significant variation in protein, starch and oil con-
tent, and grain yield within all four biparental DH popula-
tions and the IMAS panel under optimum and low N stress 
conditions (Fig. 1 and Table 2). In the IMAS panel and 
CML505/LaPostaSeqC7-F64-2-6-2-2 DH pop, yield under 
low N stress was reduced by 59% and 48%, respectively. In 
DH pop CML550/CML511, the mean yield under low N 
stress was 5.45 t ha−1; however, this was a reduction of 47% 
relative to optimal conditions. Low N stress significantly 
(p < 0.01) reduced protein and oil content (except in DH pop 
CML505/LaPostaSeqC7-F64-2-6-2-2) but had no significant 
effect on starch content. Although the level of N stress and 

therefore the reduction in grain yield was the lowest in DH 
pop CML550/CML511, both protein and oil content had 
the largest reduction in this population under low N stress.

The genotypic, environmental, and genotype-environment 
interaction effects (G, E and G x E, respectively) were sig-
nificant at p ≤ 0.05 for yield and quality traits (Table 2). For 
protein, starch, and oil content under optimal conditions, the 
magnitude of genotypic variance was greater compared to 
low N stress conditions. Under low N conditions, the effect 
of genotype, environment, and G x E interactions on oil 
content was significant across all genotypes tested. Interest-
ingly, under the same conditions, the genotypic effects on 
protein content were only significant in DH pops CML505/
LaPostaSeqC7-F64-2-6-2-2 and CML536/LaPostaSeqC7-
F64-2-6-2-2. The G x E effects on protein content and starch 
content in DH pop CML550/CML511 were significant. The 
zero estimates of G x E interactions for starch and protein 
content (observed on DH pop CML550/CML511 under low 
N stress) indicate that genotypic performance for these traits 
was stable across the tested environments. H2 values of each 
trait under both optimal and low N stress are presented in 
Table 2. In general, H2 of all traits was lower under low 
N stress than optimal, with the exception of starch content 
which increased under low N stress across all populations.

Grain yield was negatively correlated with protein content 
across populations, regardless of N stress level (Table 3). 
Similarly, starch content showed a negative correlation with 
protein and oil content across genotypes and management 
options. A weak positive correlation was reported between 
protein and oil content across populations and N levels. The 
only exceptions were in DH pop CML550/CML504 under 
optimum conditions where oil content was significantly 
(at p < 0.01) and negatively correlated to protein content 
(r = − 0.92**).

Protein content had a negative correlation with grain 
yield (r = − 0.41**) and starch content (r = − 0.54**) in the 
IMAS panel under optimum conditions. Similarly, a weak 
positive correlation was observed in the IMAS panel, DH 
pops CML550/CML504 and CML505/LaPostaSeqC7-
F64-2-6-2-2 between protein content and oil content under 
low N stress. Starch and oil contents were shown to be 
significantly (p < 0.05) and negatively correlated under 
optimum (r = − 0.65) and low N stress (r = − 0.18) in the 
IMAS panel. The genotypic correlation coefficients for DH 
pops CML505/LaPostaSeqC7-F64-2-6-2-2 and CML536/
LaPostaSeqC7-F64-2-6-2-2 showed that oil content under 
optimum conditions had no correlation with protein content 
(r = 0.00). As demonstrated in Table 3, further significant 
(p < 0.05 and p < 0.01) trait correlations were established 
among the phenotypic parameters measured across the man-
agement conditions for each set of genotypes. The observed 
correlations between grain quality and yield can be useful 
for selection decisions or trade-offs in genotypic selection.
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GWAS analyses

From GBS, 337,113 SNPs were produced for the 410 geno-
types, in which 77.1% (259,798) remained after filtering 
using the > 5% MAF and 10% missing per marker criteria 
(Supplementary Figure S1). The kinship relations among 
the IMAS panel were determined using the filtered 259,798 
SNP markers and depicted as a genetic cluster, indicat-
ing that the panel of genotypes are split into four potential 
genetically differentiated subgroups. The heatmap of the 
panel’s kinships was used to predict the magnitude of the 
existing relationships in the genotypes: this established that 
the genotypes were not closely related and that there is no 
strong population structure (Supplementary Figure S2). Fur-
ther partition of the population structure of the IMAS panel 
using STRU​CTU​RE 2.3.4 is presented in an earlier study by 

Kibe et al. (2020a) and Gowda et al. (2015). PCA was car-
ried out using 259,798 high-quality SNPs (Supplementary 
Figure S3). The first principal component (PC1) accounted 
for roughly 4.5% of the overall variation, whereas the sec-
ond principal component (PC2) explained 2.5% (Supple-
mentary Figure S3). Calculation of genome-wide LD using 
259,798 SNPs showed a significant decline in LD as genetic 
distance rose, with different rates of attenuation for each 
of the ten chromosomes (Supplementary Figure S4). Asso-
ciation analyses for grain yield and quality traits evaluated 
under optimum management were performed to evaluate 
the effects of different models on the control of false asso-
ciations (Supplementary Figure S5). For all four traits, the 
observed P values from the GLM(G) and GLM (G + PCA) 
models showed the higher deviation from the expected 
P values is possibly due to either no associations or more 

Fig. 1   Phenotypic distribution for grain yield and quality traits evalu-
ated under optimum and Low N stress conditions. The sky blue and 
red colour plots represent the trials conducted under optimum and 

low N stress conditions, respectively. DH pop1 = CML550/CML504; 
DH pop2 = CML550/CML511; DH pop3 = CML505/LaPostaSeqC7-
F64-2-6-2-2; and DH pop4 = CML536/LaPostaSeqC7-F64-2-6-2-2
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false positives were detected. The P values from the MLM 
(PCA + K) and FarmCPU models were similar and close 
to the expected P values and are more effective in control-
ling the false associations (Supplementary Figure S5). With 
MLM model, between Kinship and some of the markers, 
the confounding effect is more severe and may results into 
overfitting of the model. On the other hand, FarmCPU model 
which uses both the fixed effect model and the random effect 
model iteratively, able to completely remove the confound-
ing from kinship by using a fixed-effect model without a 
kinship derived either from all markers, or associated mark-
ers. This process overcomes the model overfitting problems 
of stepwise regression (Liu et al. 2016). Therefore, further 
in this study we used the results only FarmCPU model for 
both optimum and low N management conditions. Figures 2 
and 3 depict the GWAS findings for protein, starch, and oil 
content, and yield across the two N managements as Man-
hattan and Q-Q plots of p-values evaluating the anticipated 
and observed − log10 p-values. Sixty-one SNPs were sig-
nificantly (P = 2 × 10–5, p = 0.1 False Discovery Rate (FDR)) 
associated with the protein, starch, and oil content, and yield 

under optimal conditions and were spread across 10 chro-
mosomes (Table 4). Under low N conditions, 42 SNPs are 
linked to the aforementioned traits.

Under optimal conditions, three SNPs linked with protein 
content were significant on chromosomes 1 (S1_17679954 
and S1_214242607) and 10 (S10_114836465). Under low 
N stress, however, two different SNPs S3_198394847 
and S4_120988951 were associated with protein content. 
Starch content (low N) was associated with five SNPs, the 
most significant of which was S5 10542862. Eight SNPs 
on chromosomes 2 (S2_174345463 and S2_174345465), 
3 (S3_180044790), 5 (S5_10542862), 6 (S6_5158703 and 
S6_60978968), 7 (S8_3430590), and 8 (S7_14465153) 
were linked with the starch content under optimum condi-
tions. Under optimal conditions, twelve SNPs were signifi-
cantly associated with oil content, with one-third of these 
loci located on chromosome 6. Twelve SNPs, with loci on 
all chromosomes except 4 and 7, were significantly linked 
with oil content under low N. For starch and oil content 
at low N conditions, only the significant SNP on chromo-
some 6 (S6_60978968) was co-detected. The proportion of 

Table 2   Genetic parameters 
for IMAS panel and four 
DH Populations evaluated 
under optimum and low N 
stress conditions in multiple 
environments

*, **Significant at p < 0.05 and p < 0.01 level, respectively; amean comparison with t test, *, **significant 
at p < 0.05 and p < 0.01 level, respectively

Optimum Low N

Mean σ2
G σ2

GE σ2
e h2 Meana σ2

G σ2
GE σ2

e H2

IMAS Panel
Grain yield (t/ha) 8.47 0.59** 0.38** 1.37 0.62 3.49** 0.08** 0.13** 0.67 0.50
Protein content (%) 10.53 0.15** 0.02** 0.33 0.71 8.07** 0.06** 0.08** 0.33 0.59
Starch content (%) 69.17 0.10** 0.02** 0.28 0.55 70.95* 0.11** 0.07** 0.53 0.62
Oil content (%) 5.24 0.05** 0.01** 0.03 0.86 5.01* 0.04** 0.03** 0.06 0.72
DH pop1 (CML550/CML504)
Grain yield (t/ha) – – – – – 4.12 0.17** 0.00 0.98 0.41
Protein content (%) – – – – – 8.10 0.06** 0.03** 0.19 0.47
Starch content (%) – – – – – 70.97 0.08** 0.00 0.51 0.38
Oil content (%) – – – – – 5.36 0.03** 0.00 0.03 0.79
DH pop2 (CML550/CML511)
Grain yield (t/ha) 10.40 0.77** – 2.10 0.42 5.45** 0.27** 0.11** 0.77 0.52
Protein content (%) 10.96 0.12** – 0.10 0.72 7.98** 0.12** 0.00 0.23 0.67
Starch content (%) 68.12 0.08** – 0.15 0.52 69.65* 0.12** 0.00 0.30 0.62
Oil content (%) 6.24 0.03** – 0.02 0.79 5.81* 0.01* 0.04** 0.05 0.20
DH pop3 (CML505/LaPostaSeqC7-F64-2-6-2-2)
Grain yield (t/ha) 5.08 0.07* – 0.17 0.45 2.70** 0.03* 0.09** 0.30 0.21
Protein content (%) 8.21 0.17** – 0.21 0.61 7.52** 0.05* 0.07** 0.26 0.33
Starch content (%) 70.96 0.07* – 0.61 0.18 71.68* 0.09** 0.07** 0.51 0.34
Oil content (%) 5.05 0.02* – 0.04 0.48 5.25* 0.03* 0.00 0.05 0.66
DH pop4 (CML536/LaPostaSeqC7-F64-2-6-2-2)
Grain yield (t/ha) – – – – – 3.78 0.21** 0.12** 0.81 0.54
Protein content (%) – – – – – 7.61 0.05* 0.06** 0.17 0.48
Starch content (%) – – – – – 71.58 0.02* 0.09** 0.40 0.18
Oil content (%) – – – – – 5.06 0.02* 0.01* 0.04 0.66
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detected SNPs for the other traits are presented in Table 4. 
The Q-Q plot for grain yield and oil content under optimum 
conditions and oil content under low N stress revealed that 
some observed P-values were more significant as the marker 
points migrated from the dotted red line towards the y-axis.

To elucidate the molecular and physiological mechanisms 
controlling grain quality traits under optimum and low N 
conditions, candidate genes were identified (Harper et al. 
2016). On all chromosomes, a total of 51 candidate genes 
were discovered (Table 4). The lowest number of candidates 
(2) and the highest number (12) were related to protein con-
tent under low N and oil content under both optimum and low 
N, respectively. From these candidates, 80.39% (41 genes) 
were functionally annotated, whereas 19.61% (10 genes) 
were classified as unknown proteins. The study revealed 
four candidate genes with protein serine/threonine kinase 
activity that play a role in soil N response. Under optimum 
conditions, GRMZM2G159307 and GRMZM2G104325 
were encoded as ATP binding proteins for grain yield and 
starch content, respectively. GRMZM2G10816 (yield), 
GRMZM2G070523 and GRMZM2G080516 (oil content) 

were associated with DNA biosynthesis under low N stress 
conditions. Under both optimal and low N circumstances, 
GRMZM2G033694 was annotated in the Histone-lysine 
N-methyltransferase family. Genes coding for shoot apex 
development were discovered to be associated with grain 
yield, protein, starch, and oil content under low N stress.

QTLs associated with grain yield and quality traits

The four populations used in this study for linkage map-
ping were also used in our earlier study (Ertiro et  al. 
2020a) which includes detailed information about genetic 
maps. Table 5 shows the detected QTLs and their posi-
tions and genetic effects. In DH pop CML550/CML504, two 
QTLs each were detected for grain yield and starch content, 
three QTL for protein content and five QTL for oil content 
under low N stress. The PVE by these QTL was varied from 
4.67 to 22.19% and together the total PVE was varied from 
12.5% for grain yield to 47.9% for oil content. In DH pop 
CML550/CML511, one QTL each were detected for grain 
yield, starch content and oil content under low N stress. In 

Table 3   Genetic correlations 
between BLUPs of grain 
yield and grain quality traits 
evaluated under optimum and 
low N stress management

Values in bold cells represent genetic correlations between traits under low N stress, values in italic cells 
represent genetic correlations between traits under optimum conditions
*, **Significant at p < 0.05 and p < 0.01 level, respectively

Grain yield Protein content Starch content Oil content

IMAS panel
 Grain yield –  − 0.03 0.28* 0.01
 Protein content  − 0.41** –  − 0.30** 0.10*
 Starch content 0.01  − 0.54**  −   − 0.18**
 Oil content  − 0.17* 0.07  − 0.65** –

DH pop1 (CML550/CML504)
 Grain yield –
 Protein content − 0.10*  –
 Starch content − 0.39**   − 0.37** –
 Oil content 0.21** 0.03  − 0.84** –

DH pop2 (CML550/CML511)
 Grain yield –  − 0.21* 0.17* 0.18*
 Protein content  − 0.24** –  − 0.78** 0.09
 Starch content  − 0.12  − 0.61** –  − 0.72**
 Oil content 0.25**  − 0.92**  − 0.95** –

DH pop3 (CML505/LaPostaSeqC7-F64-2-6-2-2)
 Grain yield –  − 0.43** 0.52**  − 0.36**
 Protein content − 0.24** –  − 0.53** 0.46**
 Starch content 0.30**  − 0.23* – − 0.97** 
 Oil content 0.02 0.00  − 0.84** –

DH pop4 (CML536/LaPostaSeqC7-F64-2-6-2-2)
 Grain yield –
 Protein content  − 0.29** –
 Starch content 0.26** − 0.13*  –
 Oil content − 0.20* 0.00 − 0.95** –
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DH pop CML505x LaPostaSeqC7-F64-2-6-2-2, five QTL 
were detected for grain yield with one QTL on chromosome 
3 having a major effect with 12.17% of PVE. For protein 
content nine QTL were detected with all individually having 
minor effects except a QTL on chromosome 3 with 11.78% 
of variance explained. For starch content, three QTL each 
were detected under optimum and low N conditions with 
two major effects QTL on chromosome 8. For oil content 
three QTL were detected under optimum and six QTL were 

identified under low N conditions with one common QTL on 
chromosome 2 across management conditions. Four major 
effect QTL were identified for oil content on chromosomes 
2, 4 and 5 which explained > 10% of the phenotypic varia-
tion (Table 5). In DH pop CML536xLapostaSeqiaF64, one 
QTL each were detected for protein and oil content and three 
QTL were detected for starch content, with one major effect 
QTL at chromosome 4 which contributes 20.3% of pheno-
typic variation for oil content.

Fig. 2   Manhattan and quantile–quantile plots generated using a 
mixed linear model for grain yield (A), Protein content (B), starch 
content (C) and Oil content (D) under optimum management. The 
significance level (P = 2 × 10–5 at 0.1 False Discovery Rate (FDR)) is 

represented by the dashed horizontal line. The X-axis shows the posi-
tion of SNPs along the 10 maize chromosomes, with various colours 
indicating distinct chromosomes. The Y-axis shows the −  log10(P 
observed) in each analysis
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Comparison of the QTLs across association mapping 
panel and DH populations revealed several QTLs overlapped 
for same traits for across optimum and low N conditions, as 
well as for multiple traits (Supplementary Figure S5, S6). 
In Chromosome 1, two regions, between 209 to 214 Mb and 
268 to 280 Mb had QTL for more than one trait. In chro-
mosome 2, bin 2.03 harboured QTL for both GY and oil 

content, whereas bin 2.06 has QTL for both Starch content 
and oil content under both optimum and low N conditions. 
At chromosome 3, bin 3.06 had QTL for grain yield, protein 
content, oil content and starch content (Supplementary Fig-
ure S5). Further QTL clustering for more than one trait was 
observed on chromosome 4, bin 3.06 and 3.07, on chromo-
some 5, at bin 5.02 and 5.05, on chromosome 6, at bin 6.02 

Fig. 3   Manhattan and quantile–quantile plots generated using a 
mixed linear model for grain yield (A), protein content (B), starch 
content (C) and oil content (D) under low N stress management. The 
significance level (P = 2 × 10–5 at 0.1 False Discovery Rate (FDR)) is 

represented by the dashed horizontal line. The X-axis shows the posi-
tion of SNPs along the 10 maize chromosomes, with various colours 
indicating distinct chromosomes. The Y-axis shows the −  log10(P 
observed) in each analysis
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Table 4   Chromosomal positions and SNPs significantly associated with grain yield, protein, starch, and oil content detected by SNP-based

SNP Chr Position MLM-P value MAF Allele effect Putative candidate genes Predicted function of candidate gene

Grain yield under optimum N
S1_279913054 1 279913054 1.46E-06 0.06 0.12 GRMZM2G300990 Protein serine/threonine kinase activity
S3_2218349 3 2218349 2.01E-07 0.09 0.10 GRMZM2G159307 ATP binding and magnesium chelatase 

activity
S3_220130640 3 220130640 4.03E-06 0.20 0.06 GRMZM2G100911 Protein serine/threonine kinase activity
S4_240579103 4 240579103 2.41E-07 0.23 0.07 GRMZM2G491366 Unknown
S5_171518940 5 171518940 6.87E-07 0.24 0.06 GRMZM2G043250 Zinc ion binding
S5_200110933 5 200110933 4.55E-07 0.33  − 0.06 GRMZM2G144898 Sexual reproduction
S6_114082980 6 114082980 1.51E-08 0.24  − 0.08 GRMZM2G165969 Serine-type endopeptidase activity
S7_115546635 7 115546635 1.98E-06 0.39  − 0.05 AC189790.2_FG003 Unknown
S8_164576912 8 164576912 8.04E-06 0.19  − 0.06 GRMZM2G121440 Shoot apex development
S9_20607559 9 20607559 7.62E-08 0.23  − 0.08 GRMZM2G391473 Protein serine/threonine kinase activity
S10_132510876 10 132510876 1.39E-05 0.39  − 0.05 AC194695.3_FG003 Unknown
S10_138021889 10 138021889 1.42E-07 0.07 0.11 GRMZM2G061287 Regulation of DNA-templated transcrip-

tion
Grain yield under low N
S2_30999187 2 30999187 1.85E-05 0.21  − 0.15 GRMZM2G052078 Shoot apex and pollen development
S5_11883140 5 11883140 2.72E-05 0.35 0.13 GRMZM2G090435 Homoiothermy
S7_124403566 7 124403566 1.04E-05 0.34 0.14 GRMZM2G007249 1-Aminocyclopropane-1-carboxylate 

oxidase activity
S7_170251419 7 170251419 2.39E-05 0.23 0.14 GRMZM2G024484 NADH dehydrogenase (ubiquinone) 

activity
S7_174752436 7 174752436 1.05E-05 0.08  − 0.24 GRMZM2G108166 DNA binding and helicase activity
Protein content under optimum N
S1_17679954 1 17679954 9.57E-06 0.14  − 0.13 GRMZM2G410623 Shoot apex and pollen development
S1_214242607 1 214242607 1.90E-05 0.14  − 0.15 GRMZM2G127429 Aconitate hydratase activity
S10_114836465 10 114836465 2.69E-05 0.28 0.10 GRMZM2G049681 Shoot apex and pollen development
Protein content under low N
S3_198394847 3 198394847 3.47E-05 0.17 0.13 GRMZM2G037102 Unknown
S4_120988951 4 120988951 2.36E-05 0.27 0.11 GRMZM2G032314 Shoot apex and pollen development
Starch content under optimum N
S2_174345463 2 174345463 6.92E-06 0.21  − 0.16 GRMZM2G033694 Histone-lysine N-methyltransferase activ-

ity
S2_174345465 2 174345465 6.92E-06 0.21  − 0.16 GRMZM2G033694 Histone-lysine N-methyltransferase activ-

ity
S3_180044790 3 180044790 1.13E-05 0.15  − 0.17 GRMZM2G493214 Unknown
S5_10542862 5 10542862 1.25E-05 0.18 0.15 GRMZM2G114789 Nucleic acid-binding
S6_5158703 6 5158703 6.97E-06 0.30  − 0.15 GRMZM2G125138 Shoot apex and pollen development
S6_60978968 6 60978968 1.32E-05 0.09  − 0.22 GRMZM2G171810 Unknown
S7_14465153 7 14465153 2.14E-05 0.21 0.17 GRMZM2G104325 ATP biosynthesis process
S8_3430590 8 3430590 1.06E-05 0.13  − 0.18 GRMZM2G013461 Cysteine-type endopeptidase inhibitor 

activity
Starch content under low N
S2_174345463 2 174345463 1.99E-05 0.21  − 0.17 GRMZM2G033694 Histone-lysine N-methyltransferase activ-

ity
S2_174345465 2 174345465 1.99E-05 0.21  − 0.17 GRMZM2G033694 Histone-lysine N-methyltransferase activ-

ity
S5_10542862 5 10542862 1.15E-05 0.18 0.17 GRMZM2G114789 Nucleic acid-binding
S6_5158703 6 5158703 1.56E-05 0.30  − 0.16 GRMZM2G125138 Shoot apex and pollen development
S6_60978968 6 60978968 2.02E-05 0.09  − 0.24 GRMZM2G171810 Unknown
Oil content under optimum N
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and 6.06 and on chromosome 10 at bin 10.06. Significant 
SNP, S1_269023923 associated with oil content detected 
through GWAS was co-located with QTL (qOC_01_269) 
detected in DH pop1. Another SNP S5_11883140 
detected for GY in GWAS panel was co-located with QTL 
qGY_05_15 detected on DH pop2 (Tables 4 and 5).

The RR-BLUP model (Endelman 2011) was used to esti-
mate the performance of maize genotypes for grain qual-
ity traits for each population (Fig. 4 and Supplementary 
Table S2). Under low nitrogen conditions, average predic-
tion accuracies across the studied genotypes were higher 
for oil content (0.78) and lower for grain yield (0.08). In 
IMAS panel we observed the prediction accuracy of 0.41, 
0.38. 0.39 and 0.44 under optimum and 0.35, 0.35, 0.41 and 
0.56 under low N conditions, respectively. Interestingly, in 
DH pop CML550/CML504 outperformed other DH popula-
tions in terms of genomic prediction accuracy. Under low 

N, CML550/CML504 had the best prediction accuracy 
for protein (0.66), oil (0.73), and starch (0.7) content. The 
prediction accuracy for protein content was highest in DH 
pop CML505/LaPostaSeqC7-F64-2-6-2-2 under optimum 
(r = 0.69) and for DH pop CML550/CML504 under low N 
stress (r = 0.66). For starch content under low N, prediction 
correlation was highest for CML550/CML504 (r = 0.70) 
followed by the CML536x LaPostaSeqC7-F64-2-6-2-2 
(r = 0.56), IMAS panel (r = 0.41), CML550xCML511 
(r = 0.26) and CML505x LaPostaSeqC7-F64-2-6-2-2 
(r = 0.23). CML536x LaPostaSeqC7-F64-2-6-2-2 had the 
highest prediction correlation for oil content under low 
N (r = 0.78), followed by CML550/CML504 (r = 0.73) 
and CML505x LaPostaSeqC7-F64-2-6-2-2 (r = 0.71). 
CML550xCML511 had the lowest prediction for grain yield 
(r = 0.08), protein (r = 0.17) starch (r = 0.16), and oil content 
(r = 0.11).

Table 4   (continued)

SNP Chr Position MLM-P value MAF Allele effect Putative candidate genes Predicted function of candidate gene

S1_191845162 1 191845162 9.38E-08 0.15  − 0.07 GRMZM2G026696 Unknown
S1_209355590 1 209355590 2.08E-06 0.41 0.04 GRMZM2G059138 Pollen and leaf development
S2_20538422 2 20538422 5.52E-07 0.11 0.07 GRMZM2G702954 Unknown
S2_148879075 2 148,879,075 2.63E-09 0.14  − 0.08 AC211891.4_FG001 Zinc ion binding
S3_169317292 3 169317292 3.50E-08 0.19  − 0.07 GRMZM2G034423 Unknown
S5_50087909 5 50087909 1.09E-08 0.22 0.06 GRMZM2G132464 Hydrolase activity, hydrolyzing O-glyco-

syl compounds
S5_61427444 5 61427444 1.65E-08 0.17  − 0.07 GRMZM2G417435 Shoot apex and pollen development
S6_36950637 6 36950637 5.58E-07 0.09  − 0.08 GRMZM2G571740 Unknown
S6_60978968 6 60978968 6.93E-12 0.09 0.11 GRMZM2G171810 Unknown
S6_117596170 6 117596170 5.58E-10 0.30 0.06 GRMZM2G505444 Unknown
S6_150886775 6 150886775 8.06E-14 0.11 0.12 GRMZM2G077789 DNA binding and pollen development
S9_1260192 9 1260192 3.91E-06 0.50  − 0.04 GRMZM2G500782 Unknown
Oil content under low N
S1_269023923 1 269023923 2.31E-05 0.10  − 0.06 GRMZM2G155767 Phosphorelay sensor kinase activity
S2_20859604 2 20859604 9.48E-06 0.20 0.05 GRMZM2G014400 Nucleic acid-binding and shoot apex 

development
S2_196110550 2 196110550 1.82E-07 0.37  − 0.05 GRMZM2G113618 Monooxygenase and indoleacetaldoxime 

dehydratase activity
S2_214956407 2 214956407 2.83E-08 0.24  − 0.07 GRMZM2G153877 Shoot apex and pollen development
S3_221547612 3 221547612 1.03E-07 0.45  − 0.05 GRMZM2G028037 Protein serine/threonine kinase activity
S5_20201057 5 20201057 9.72E-12 0.43 0.06 GRMZM2G070523 DNA binding and shoot apex development
S5_214518378 5 214518378 1.60E-06 0.48  − 0.04 GRMZM2G008834 Protein binding
S6_60978968 6 60978968 2.15E-12 0.09 0.12 GRMZM2G171810 Unknown
S6_150841558 6 150841558 8.01E-07 0.11 0.07 GRMZM2G378586 Shoot apex and pollen development
S8_19834231 8 19834231 5.96E-09 0.15 0.07 AC218957.3_FG003 Unknown
S9_2472485 9 2472485 6.15E-07 0.30  − 0.05 GRMZM5G833563 DNA polymerase and nucleotidylexotrans-

ferase activity
S10_139315324 10 139315324 1.32E-06 0.19 0.05 GRMZM2G080516 DNA-binding transcription factor activity

GWAS in the IMAS association mapping panel under optimum and low N management conditions
*MAF Minor allele frequency; MAE minor allele effect; aThe exact physical position of the SNP can be inferred from marker’s name, for exam-
ple, S1_82702920: chromosome 1; 82,702,920 bp (Ref Gen_v2 of B73)
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Table 5   Number of QTL detected for grain yield, grain protein content, starch content and oil content under optimum (opt) and low-nitrogen 
(LN) stress across environments in four DH populations

Trait name QTL name Chr Position (cM) Left marker Right marker LOD PVE (%) TPVE (%) Add Fav allele

DH pop1 (CML550 × CML504)
Grain yield_LN qGY7_10 7 629 S7_7419076 S7_10288357 3.31 6.60 12.51 0.22 CML550

qGY8_15 8 578 S8_14728619 S8_15994213 3.54 6.85 0.22 CML550
Protein content LN qPC1_115 1 525 S1_112639745 S1_162463938 6.60 11.04 30.51 0.13 CML550

qPC4_185 4 115 S4_184892495 S4_185566354 3.38 5.39 0.09 CML550
qPC8_10 8 128 S8_7675588 S8_12273955 4.71 8.30 0.11 CML550

Starch content LN qSC1_24 1 47 S1_24583363 S1_24676752 3.44 6.94 19.24 − 0.13 CML504
qSC4_174 4 95 S4_173800701 S4_174954893 4.56 9.06 − 0.15 CML504

Oil content LN qOC1_268 1 313 S1_268152564 S1_268431295 3.28 3.49 47.92 − 0.04 CML504
qOC3_03 3 294 S3_3559699 S3_3912927 7.98 8.84 − 0.07 CML504
qOC6_60 6 35 S6_56452467 S6_63537451 4.30 4.67 − 0.05 CML504
qOC6_133 6 103 S6_132237821 S6_133515728 17.69 22.19 − 0.11 CML504
qOC8_165 8 503 S8_164378522 S8_166561727 5.97 6.95 − 0.06 CML504

DH pop2 (CML550 × CML511)
Grain yield_LN qGY5_15 5 610 S5_4278140 S5_202395053 2.75 8.79 8.62 − 0.74 CML511
Starch content LN qSC1_180 1 288 S1_175655223 S1_187977553 2.75 11.52 11.45 0.22 CML550
Oil content LN qOC3_60 3 206 S3_58480638 S3_156799630 2.65 10.47 9.78 − 0.09 CML511
DH pop3 (CML505 × LapostaSequiaF64)
Grain yield Opt qGY3_187 3 207 S3_186485761 S3_189293786 3.40 9.47 8.86 − 0.037 LPSF64
Grain yield LN qGY3_196 3 175 S3_195927184 S3_202609108 9.91 12.17 26.28 − 0.093 LPSF64

qGY3_207 3 954 S3_206952639 S3_208331031 3.92 4.41 0.063 CML505
qGY4_160 4 28 S4_159978522 S4_160277631 3.99 4.59 − 0.063 LPSF64
qGY4_155 4 524 S4_154382211 S4_155910715 6.79 8.06 0.076 CML505

Protein content_Opt qPC4_140 4 162 S4_125492338 S4_141413020 3.04 8.46 14.15 − 0.002 LPSF64
qPC4_180 4 577 S4_179648189 S4_180236732 10.68 4.23 − 0.003 LPSF64
qPC5_70 5 291 S5_69971990 S5_73044866 4.16 8.46 − 0.002 LPSF64
qPC6_157 6 57 S6_156035854 S6_157412461 3.95 4.23 − 0.002 LPSF64
qPC6_40 6 652 S6_36947497 S6_45922975 3.04 4.23 − 0.002 LPSF64
qPC7_126 7 166 S7_125835683 S7_127144774 4.59 8.46 0.003 CML505
qPC10_142 10 102 S10_141963062 S10_142398096 3.92 8.46 0.002 CML505

Protein content_LN qPC3_187 3 208 S3_180516308 S3_189293786 5.27 11.78 24.15 0.076 CML505
qPC4_146 4 193 S4_145319458 S4_147746777 3.63 7.73 − 0.062 LPSF64

Starch content_Opt qSC2_14 2 47 S2_13290784 S2_18626409 3.93 8.63 23.99 0.056 CML505
qSC4_205 4 677 S4_204860243 S4_206663242 3.42 3.70 0.049 CML505
qSC5_14 5 380 S5_13609325 S5_14471659 3.77 8.63 0.051 CML505

Starch content_LN qSC8_123 8 294 S8_122410298 S8_123512730 11.35 7.00 19.95 − 0.313 LPSF64
qSC8_124 8 298 S8_123512730 S8_124357554 18.85 12.86 0.427 CML505
qSC9_24 9 224 S9_23280315 S9_30187968 3.32 1.73 0.176 CML505

Oil content_Opt qOC2_186 2 480 S2_185692862 S2_186464021 4.89 10.53 35.22 0.030 CML505
qOC4_70 4 506 S4_68323590 S4_75504829 6.01 12.56 − 0.032 LPSF64
qOC5_182 5 158 S5_182450446 S5_181213050 4.35 8.94 − 0.028 LPSF64

Oil content_LN qOC2_186 2 482 S2_185692862 S2_186464021 6.12 7.87 54.86 0.042 CML505
qOC3_223 3 87 S3_224567900 S3_222406989 3.35 4.14 − 0.031 LPSF64
qOC4_60 4 188 S4_57947900 S4_75164940 3.42 4.32 − 0.031 LPSF64
qOC5_183 5 148 S5_183857938 S5_182051683 11.99 17.31 − 0.063 LPSF64
qOC7_08 7 470 S7_8930324 S7_7716737 7.89 10.71 0.052 CML505
qOC9_80 9 263 S9_79412157 S9_83242552 7.44 9.87 − 0.048 LPSF64

DH pop4_CML536 × LapostaSequiaF64
Protein content _LN qPC5_67 5 197 S5_68309122 S5_66022006 3.12 16.04 15.90 0.051 CML536
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Discussion

Significant levels of malnutrition (Christian and Dake 
2021) and food insecurity (Giller 2020) continue to be 
experienced by maize-dependent smallholder farming 
populations in SSA that cultivate in nitrogen-depleted 
soils. Unravelling the genetic architecture of grain yield 
and quality traits through GWAS and GS is critical for 
the development of superior genotypes conferring high 
expression of grain quality traits both under optimum and 
low N stress. This study aimed to understand the underly-
ing genetics of low N stress on grain quality traits by com-
bining GWAS with the IMAS panel, QTL detection, and 
GS in four bi-parental populations. Grain quality traits, 
notably protein, starch, and oil content, are critical for 

reducing the incidence of undernutrition in SSA. Under-
standing the performance of grain quality traits and asso-
ciated genetic markers under low N stress can aid in the 
development of maize lines with high protein, starch, and 
oil content.

Phenotypic evaluation under optimum and low N 
stress

Phenotypic analyses showed that protein, starch, and oil con-
tent were significantly decreased under low N stress com-
pared to optimal conditions across all tested genotypes. This 
is consistent with the findings of Liu et al. (2008), who found 
that in lower N conditions, protein and oil content are con-
siderably reduced. However, the same research reported the 
opposite for starch content increased under lower levels of N 

Table 5   (continued)

Trait name QTL name Chr Position (cM) Left marker Right marker LOD PVE (%) TPVE (%) Add Fav allele

Starch content_LN qPC2_08 2 255 S2_8288623 S2_10208 3.09 6.16 37.02 0.105 CML536

qSC4_32 4 245 S4_36777242 S4_31674554 9.80 20.36 0.200 CML536

qSC9_135 9 127 S9_135814387 S9_134561093 5.20 9.65 0.138 CML536
Oil content_LN qOC5_21 5 229 S5_21876475 S5_20198056 3.40 8.25 8.19 − 0.049 LPSF64

*Chr Chromosome, LOD Logarithm of Odds; add additive effect; PVE phenotypic variance explained; fav allele parental line contributing the 
favourable allele for trait, QTL name composed by the trait code followed by the chromosome number in which the QTL was mapped and a 
physical position of the QTL

Fig. 4   Genome-wide prediction accuracies for grain yield and 
quality traits in IMAS panel (A), DH pop2 = CML550/CML511 
(B), DH pop3 = CML505/LaPostaSeqC7-F64-2-6-2-2 (C), 
DH pop1 = CML550/CML504 (D) and DH pop4 = CML536/

LaPostaSeqC7-F64-2-6-2-2 (E). Blue and red colour box plots indi-
cate traits were evaluated under optimum and low N stress conditions, 
respectively (color figure online)
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stress. According to Jahangirlou et al. (2021) and Simić et al. 
(2020), high N conditions are associated with higher protein 
content and yield. On the other hand, low N substantially 
decreases protein concentration and all zein fractions apart 
from β-zeins, according to research conducted in Zimbabwe 
by Shawa et al. (2021). The impact of soil nutrient manage-
ment on oil content was significant in the study of Ray et al. 
(2019). That study reported that using N as a component in 
NPK blends increased the quantity of saturated fatty acids 
while decreasing the percentage of unsaturated fatty acids 
in grain maize oil. Kaplan et al. (2017) suggested that N 
fertilizer application in combination with adequate irrigation 
has a favourable effect on the oil content. However, in SSA 
due to the impoverished economic situation of smallholder 
farmers, N fertilization is not currently an accessible solu-
tion to combat endemic undernutrition. Therefore, maize 
lines showing high protein, starch and oil content under low 
N stress should be considered for incorporation into maize 
breeding programs targeting the SSA region.

In low N stress environments, genetic variability is crucial 
for the effective selection of enhanced grain quality traits in 
maize. Ertiro et al. (2020a) asserted that, due to the intrinsic 
unpredictability of various traits of interest, phenotypic data 
for trials conducted under low N conditions typically show 
poor heritability. However, under both optimum and low N 
environments, our study estimated wide genetic variances 
and moderate to high broad sense heritabilities. Estimates 
of heritability ranging from moderate to high imply that the 
traits have the potential to be enhanced by recurrent selec-
tion (Gowda et al. 2021). The influence of G, E, and G x 
E interactions on oil content was significant under low N 
conditions across all genotypes examined. The genotypic 
effects on protein content were significant in some of the 
genotypes tested (CML505/LaPostaSeqC7-F64-2-6-2-2 and 
CML536/LaPostaSeqC7-F64-2-6-2-2) under low N condi-
tions. The G × E effects of CML550/CML511 on protein 
and starch content were significant. The detected signifi-
cant genotypic variation for the assessed traits in this study 
indicated the possibility of selecting for improved protein, 
starch, and oil content under low N stress. Among the three 
grain quality traits investigated, starch content had the lowest 
H2 estimate, whereas oil content had the highest H2 estimate 
under low N conditions. Oil content’s high broad-sense her-
itability suggests that its narrow-sense heritability may be 
even greater, implying that significant genetic gain for this 
trait is attainable.

Grain yield had a negative genotypic correlation with pro-
tein content in all populations, regardless of N level. This 
supports Arisede et al. (2020)’s findings that increased grain 
yield was associated with decreased grain protein content in 
both susceptible and tolerant maize hybrids when residual 
soil N was low, despite the fact that tolerant hybrids showed 
a substantially smaller loss in grain protein content. It is well 

known that choosing between yield and quality is hard in 
breeding. The observed relationship between grain yield and 
quality traits in this research under both optimal and low N 
conditions imply that selecting for grain yield alone will not 
increase protein, starch, or oil content. On the other hand, 
protein content had a significant negative correlation with 
starch content in all populations, which is consistent with 
previous results (Liu et al. 2008; Zheng et al. 2021). Thus, 
to increase grain quality, particularly under low N stress, 
there is a need to select for both grain yield and grain qual-
ity. Obviously, this would be very expensive, and a negative 
relationship makes breeders balance in the selection of these 
traits hence the need to investigate the potential of molecular 
breeding in the improvement of these traits.

Association mapping and candidate genes

Association studies targeting protein, oil, and starch content 
in maize have been conducted utilizing a range of geno-
types and marker sets (Alves et al. 2019; Cook et al. 2012; 
Zheng et al. 2021). The use of GWAS in maize genetics has 
been highly effective in discovering causal genes for grain 
quality traits (Zheng et al. 2021). In particular, GWAS is an 
effective technique for mapping loci linked with complex 
plant traits in genetically heterogeneous populations (Deng 
et al. 2021). The power of detection of GWAS is dependent 
on the LD between the markers and QTL. In outcrossing 
plant species such as maize, LD declines at a short dis-
tance and rapidly (Dinesh et al. 2016). In this study, the LD 
declined rapidly across physical distance (Kibe et al. 2020a), 
showing that the IMAS panel has significant genetic diver-
sity and was, therefore, suitable for GWAS.

Candidate genes and SNPs discovered by GWAS for 
maize grain nutrient content can provide critical informa-
tion for maize breeding efforts focusing on developing high-
quality varieties (Zheng et al. 2021). In this study, GWAS 
identified 42 SNPs linked to the grain quality traits studied 
under low N conditions. However, there were no overlap-
ping SNPs for grain quality traits under low N. Under low 
N stress, two SNPs on chromosomes 3 (S3_198394847) and 
4 (S4_120988951) were discovered to be linked to protein 
content. Moreover, 12 SNPs with loci on all chromosomes 
except 4 and 7 were also shown to be substantially associ-
ated with oil content under low N stress. The genetic regions 
identified in this work through GWAS will be increasingly 
relevant in future breeding approaches for accurate selection 
of high grain quality and to increase tolerance of maize lines 
to low N stress.

Comparison of SNPs identified in this study under low N 
and optimum conditions revealed no overlapping of SNPs 
for grain yield and protein content possibly we were not 
able to detect the common variants responsible for these 
traits in different management conditions. Nonetheless, for 
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starch content, all the SNPs detected under low N were also 
detected under optimum conditions. Whereas for the oil 
content SNP S6_60978968 on chromosome 6 was consist-
ently detected in both the conditions and also found com-
mon SNPs in bin 2.01, 5.03, 6.05 and 9.01 on chromosome 
2, 5, 6 and 9, respectively (Table 4). Further comparison of 
the detected SNPs with the previous studies revealed some 
overlapping with earlier reported QTL (Wang et al. 2016; 
Zheng et al. 2021). For instance, SNP S1_214242607 associ-
ated with grain protein content under optimum was closely 
located with marker detected through GWAS (Zheng et al. 
2021) and co-located with QTL detected in two populations 
(Wang et al. 2016). SNP S1_191845162 detected for oil 
content was co-located within the QTL (bnlg2086-umc1122 
interval) reported by Zhang et al. (2008) and Wang et al. 
(2010, umc1395-umc2237 interval). Marker 1_190758142 
detected through GWAS for oil content by Zheng et al. 
(2021) was also located within the same QTL region point-
ing to the importance of the region for improving oil con-
tent in maize. Another SNP S2_148879075 detected for oil 
content was located within the QTL region (bnlg108-phi092 
interval) reported by Zhang et al. (2008). SNP S1_17679954 
for protein content was co-located within the QTL detected 
for oil content on chromosome 1 (umc1685-umc1044 inter-
val) in F3 population (Wang et al. 2010). Nevertheless, some 
SNPs did not coincide with earlier reports in terms of their 
physical location. This possibly due to several reasons like 
these SNPs might be specific to the population in this study, 
the variation for quality traits in these populations is differ-
ent, and different methods used to estimate quality traits in 
different studies also contribute to variation. However, new 
specific SNPs detected in this study need further validation, 
nevertheless, these results can serve as a reference for future 
studies.

We identified 51 candidate genes potentially underlying 
the molecular and physiological processes governing grain 
quality traits under optimum and low N environments. 
The identification of candidate genes based on associated 
SNPs can aid with the identification of genes important in 
grain quality performance under optimal and low N envi-
ronments. Under low N stress, genes coding for shoot apex 
growth were revealed to be linked with grain yield, pro-
tein, starch, and oil content. Peng et al. (2010) asserted that 
shoot growth, rather than root size, is a good indicator of 
N sufficiency in maize. The research also identified four 
candidate genes with protein serine/threonine kinase activ-
ity that play a role in soil N response. Protein kinases are 
well-known regulators of the response of plants to abiotic 
stresses (Diédhiou et al. 2008; Kulik et al. 2011; Mao et al. 
2010). GRMZM2G159307 and GRMZM2G104325 encode 
ATP binding proteins for grain yield and starch content, 
respectively. ATP binding proteins are essential for cellular 
motility, membrane transport and the control of different 

metabolic activities (Chauhan et al. 2009). ATP-binding has 
also been reported in several studies to influence the mainte-
nance of homeostasis in plants under both abiotic and biotic 
stresses (Dahuja et al. 2021; Franz et al. 2011; Jarzyniak 
and Jasiński 2014). GRMZM2G033694 was assigned to the 
Histone-lysine N-methyltransferase family at both optimum 
and low N conditions. It is important to note, however, that 
these candidate genes should be further validated before 
being used in breeding schemes. Further functional research 
on the candidate genes discovered in this study is necessary 
to validate their possible utility in high grain quality breed-
ing under low N conditions.

Linkage mapping on grain yield and quality traits

Linkage mapping in four populations found multiple QTLs 
for the studied grain quality traits. Zheng et  al. (2021) 
alluded that, numerous grain nutritional quality QTLs in 
maize have been identified by genetic dissection of nutri-
ent quality over the last two decades using traditional QTL 
mapping. Despite the discovery of QTLs and genes that 
confer superior maize grain quality in some studies, fur-
ther sources of genetic variation are likely to exist among 
currently unexplored populations. QTL analyses in four 
DH populations revealed 8, 13, 12 and 15 potential QTLs 
associated with grain yield, protein, starch, and oil content, 
respectively. One QTL on chromosome 3 (qGY3_187) for 
grain yield is overlapped with major effect QTL (qPC3_187) 
for protein content and located between 180 and 189 Mb, 
which might be an interesting region to improve both pro-
tein and grain yield by considering their negative relation-
ship. Zhang et al. (2015) also identified a consistent QTL 
(umc1644-phi102228 interval) in the same genomic region 
for protein content. Another QTL qPC1_115 in CML550/
CML504 which explained 11% of the phenotypic variance 
was consistent with earlier reported QTL (phi001-umc1988 
interval) by Zhang et al. (2015) and qPC10_142 detected 
on chromosome 10 was consistent with QTL (SYN37373—
PZE110095199 interval) reported by Wang et al. (2016) in 
recombinant inbred line population. There was one major 
effects QTL (> 10% phenotypic variance explained) for 
grain yield (qGY3_196), three QTL each for protein con-
tent (qPC1_115, qPC3_187, qPC5_67) and starch con-
tent (qSC1_180, qPC4_32, qPC8_124) and six QTLs for 
oil content (qOC2_186, qOC3_60, qOC4_70, qOC5_183, 
qOC6_133and qOC7_08) were detected in four biparental 
populations. A major QTL (qSC1_180) identified in DH 
pop CML550xCML511, explaining about 11.5% of total 
phenotypic variance and located between 175 and 188 Mb, 
was consistent with a QTL (SYN367-PZE101031077 inter-
val) observed in a RIL population by Wang et al. (2016). 
Similarly, another QTL for starch content (qSC8_124) 
located between 123 and 124  Mb also coincided with 
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earlier reported QTL on chromosome 8 (PZE108069534-
SYN19928 interval; Wang et al. (2016)). Similarly, major 
QTL for oil content qOC2_186 was also overlapped with 
earlier detected QTL, indicating several consistent regions 
for quality traits across genetic back grounds which sup-
ports their stable nature and is amenable for MAS-based 
improvement. Overall, several QTLs were consistent with 
the previous studies indicating their reliability to be used in 
applied breeding.

Comparison of QTLs detected in both GWAS, and link-
age mapping revealed clusters on several chromosomes 
either for same trait under both optimum and low N manage-
ment as well as for both grain yield and quality traits (Sup-
plementary Figure S5 and S6). Clustering of QTL for grain 
yield for both under optimum and low N conditions were 
detected on chromosome 3 between 186 to 200 Mb in DH 
pop3 and another QTL between 207 to 220 Mb in DH pop3 
and GWAS panel. Several SNPs detected in GWAS were 
co-located within the QTLs detected in DH populations, for 
instance like for GY on chromosome 6 at 12 Mb and oil con-
tent at chromosome 6 at 60 Mb, these results help in further 
reducing the confidence interval of these QTLs. Focusing 
on increasing the favourable alleles associated with QTL 
in this region helps to improve the QTL for both low N and 
optimum management conditions. Similarly on chromosome 
4, region between 140 to 180 Mb harbours QTL for grain 
yield, protein content and starch content and on chromosome 
5 in region between 10 to 21 Mb harbours QTL for grain 
yield, starch content and oil content. These regions are of 
most important for simultaneous improvement of both grain 
yield and quality traits for both the management conditions. 
Nevertheless, further reducing the confidence interval of 
these regions helps to get more strongly associated markers 
for these QTLs which enhance the success rate to improve 
the multiple traits for both optimum and low N management.

Genomic predictions on grain yield and quality 
traits

GS in tropical maize for various traits of interest revealed 
moderate to high prediction accuracies in several studies 
(Azmach et al. 2018; Beyene et al. 2019; Crossa et al. 2014; 
Gowda et al. 2021). The relative merits of GS over pheno-
typic selection influence its widespread application in breed-
ing programs ( Beyene et al. 2019, 2021; Kibe et al. 2020a). 
Moderate to high accuracies observed in this study for the 
bi-parental populations and IMAS panel offer promise in 
breeding for quality traits in tropical maize. Under N-starved 
soils, average prediction accuracies (Fig. 4) were higher for 
oil content (0.78) and lower for grain yield (0.08) which 
ascribed to their differences in their genetic architecture as 
oil content is relatively less complex in nature. DH popu-
lation CML550/CML504 exhibited the highest prediction 

accuracy for protein (0.69), oil (0.73), and starch (0.70) con-
tent under low N stress. GS prediction accuracy has a direct 
influence on the degree of trait variation and heritability in 
each population (Kibe et al. 2020a). This is confirmed by 
this study, especially for oil content which had the highest 
genetic prediction accuracy is agrees with high magnitude 
of genotypic variation and H2 estimates. Prediction accuracy 
for quality traits in the IMAS panel was in agreement with 
various studies on moderately complex traits like resistance 
for grey leaf spot (Kibe et al. 2020a), common rust (Kibe 
et al. 2020b), Striga (Gowda et al. 2021), maize lethal necro-
sis and maize chlorotic mottle virus (Sitonik et al. 2019). In 
the IMAS panel, the observed moderate prediction accu-
racy can be attributed to its genetic structure and high LD 
between adjacent markers, which could also be credited to 
its moderate heritability. Overall, this study indicates that 
utilizing a common training population to predict grain 
quality trait performance under low N stress in many linked 
but separate populations can be beneficial. In addition, the 
results also suggest that for complex traits like GY, selective 
marker-based approaches are less effective to improve their 
performance, however MAS can help to improve for quality 
traits irrespective of the management conditions.

Compared to grain yield, quality traits are less complex, 
however, improving them under low N stress conditions 
through traditional breeding is laborious. Further improve-
ment of these traits through MAS or MABC, there is need 
of more validation experiments for each trait to confirm 
the identified genomic regions for their consistency under 
diverse genetic background and environment, and fine map 
these regions to have stable markers which is resource 
intensive. On the other hand, GS is not needed any prior 
information on trait specific markers but is efficient in pre-
dicting lines performance on desired traits. In addition, the 
major QTL information available through QTL mapping, 
and GWAS can be incorporated into GS model as fixed 
effects which further enhance the prediction accuracy for 
these traits and helps to improve the efficiency in developing 
high yielding and high protein and oil content genotypes for 
optimum as well as low N stress conditions. Therefore, inte-
gration of GS in breeding program is beneficial to improve 
multiple traits.

Conclusions

To investigate the genetic basis of protein, starch, and oil 
content performance under low N stress, we employed 
a single panel consisting of 410 tropical maize lines for 
GWAS and genomic prediction. QTL mapping was also 
used to investigate the underlying genetic architecture 
in four bi-parental populations to better understand the 
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grain quality traits. The genotypic correlations of the grain 
quality traits investigated indicated that these populations 
can be used to select better-performing lines under low N 
stress. GWAS identified 42 SNPs associated with grain 
quality traits. In addition, several QTLs for the examined 
grain quality traits were identified by linkage mapping 
across populations. The genomic regions identified can 
be used for selection efforts to enhance grain quality trait 
performance in low-nitrogen soils. Furthermore, the find-
ings showed that including GS in maize breeding can suc-
cessfully support phenotypic selection to improve grain 
quality trait performance under low N stress. Future work 
should, therefore, focus on validating the identified QTLs 
to enhance the efficacy of maize breeding in SSA.
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