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The two most important activities in maize breeding are the development of inbred lines with high values
of general combining ability (GCA) and specific combining ability (SCA), and the identification of hybrids
with high yield potentials. Genomic selection (GS) is a promising genomic tool to perform selection on
the untested breeding material based on the genomic estimated breeding values estimated from the
genomic prediction (GP). In this study, GP analyses were carried out to estimate the performance of
hybrids, GCA, and SCA for grain yield (GY) in three maize line-by-tester trials, where all the material
was phenotyped in 10 to 11 multiple-location trials and genotyped with a mid-density molecular marker
platform. Results showed that the prediction abilities for the performance of hybrids ranged from 0.59 to
0.81 across all trials in the model including the additive effect of lines and testers. In the model including
both additive and non-additive effects, the prediction abilities for the performance of hybrids were
improved and ranged from 0.64 to 0.86 across all trials. The prediction abilities of the GCA for GY were
low, ranging between � 0.14 and 0.13 across all trials in the model including only inbred lines; the pre-
diction abilities of the GCA for GY were improved and ranged from 0.49 to 0.55 across all trials in the
model including both inbred lines and testers, while the prediction abilities of the SCA for GY were neg-
ative across all trials. The prediction abilities for GY between testers varied from � 0.66 to 0.82; the per-
formance of hybrids between testers is difficult to predict. GS offers the opportunity to predict the
performance of new hybrids and the GCA of new inbred lines based on the molecular marker information,
the total breeding cost could be reduced dramatically by phenotyping fewer multiple-location trials.

� 2021 Crop Science Society of China and Institute of Crop Science, CAAS. Production and hosting by
Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction general combining ability (GCA) and specific combining ability
Maize (Zea mays L.) is one of the most important cereal crops for
food, animal feed, and energy in the world [1]. The development
and deployment of maize varieties with high yield potentials
through breeding is one of the most effective and economical
approaches to the increase of maize production and to ensure food
security globally. In maize breeding, the two most important activ-
ities are the development of inbred lines with high values of the
,

(SCA) for grain yield and other agronomic traits, as well as identi-
fication of hybrids with high yield potentials [2].

The concepts of GCA and SCA were initially proposed in maize
breeding by Sprague and Tatum [3]. The GCA of an inbred or parent
is defined as the average performance of the genotype in all hybrid
combinations comparedwith themeanvalueof all hybrids involved.
In contrast, the SCA of a pair of genotypes is defined as the deviation
of the realized hybrid performance from the expectation based on
the GCAs of the two genotypes and the population mean. The GCA
is largely due to additive genetic effects, whereas the SCA is largely
attributed to dominance and non-additive epistatic effects [2,3].
In most breeding programs, the most important target trait for
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selection is usually grain yield [4]. At the inbred line development
stage, the GCA is themain criterion to advance the newly developed
inbred lines to the next cycle as parental lines, while the SCA is an
important parameter to identify the best hybrid combinations for
grain yield. With the dramatic decrease in cost of the production of
doubled haploid (DH) lines, thousands of lines can be generated in
a maize breeding program annually [5]. The DH technology leads
to a paradigm shift in the maize breeding programs from the gener-
ation of the homozygous inbred lines to the estimation of the breed-
ing values of the DH lines [6,7]. In conventional breeding, the
breeding values of the inbred lines, i.e. the performance of inbred
lines in hybrid combinations, are always evaluated and measured
in multiple-location trials, and the GCA and SCA estimations also
have to be implemented in multiple-location trials with several
specificmatingdesigns, suchas thediallel cross, sparsepartial diallel
cross, and line-by-tester [2,8]. GCA was generally estimated by the
ordinary least squares method using the phenotypic data [6,9].
However, multiple-location trials are time-consuming and
resource-intensive. Moreover, only a small number of inbred lines
can be evaluated using mating designs in multiple-location trials
due to practical limitations. In the preliminary stages of testing,
the line-by-tester mating design is always used on dozens of inbred
lines to evaluate their GCA values. Afterwards, the diallel cross mat-
ing design between heterotic groups is used on a limited number of
selected inbred lines with good GCA and other agronomic traits in
which both GCA and SCA could be accurately estimated [2,4].

Genomic selection (GS) is proposed to perform selection on the
untested breeding material based on their genomic data, it can
help the breeding programs to reduce phenotyping costs and save
time [10,11]. In GS, a training set, for which phenotypic and geno-
typic data was generated, is used to estimate the effect of genetic
markers. The marker effects estimated from the training set are
then used to predict the genomic estimated breeding value (GEBV)
of individuals in the prediction set, which have been genotyped but
not phenotyped [12,13]. In maize, GS has been implemented in
many studies, some of them were conducted to predict and select
the target traits in inbred lines [14,15], whereas other studies were
conducted to predict the performance of hybrids [16,17]. Various
statistical models have been developed and applied on GS for grain
yield and key agronomic traits, the two most widely used being the
genomic best linear unbiased prediction (GBLUP) and ridge regres-
sion best linear unbiased prediction (RR-BLUP) [18,19]. Modeling
complex genetic effects, such as dominant or epistatic effects, or
genotype-by-environment interaction, has the potential for
improving the prediction ability for GS, which has been proven
to be effective in maize breeding to accelerate genetic gain per unit
time and cost [20,21]. However, only a few studies were conducted
to predict the GCA and SCA values [22,23], and further studies are
needed to improve the ability for predicting the values of GCA and
SCA, as well as the performance of hybrids.

The objectives of the present study were to: (1) predict the per-
formance of hybrids for three line-by-tester trials, and estimate the
prediction ability on grain yield using several models incorporating
different kinds of genotypic data and genetic effects; (2) assess the
prediction ability on the GCA and SCA values in three line-by-tester
trials; and (3) evaluate the tester effect on the prediction of the
performance of hybrids, and estimate the genomic prediction abil-
itiesof grain yield between testers.
Fig. 1. The breeding material and the mating designs used in Trials A and B. In total,
32 lines and 9 testers were used to form the hybrids for evaluation in Trials A and B.
The letter L and T represents the line and tester used to carry out the line-by tester-
trial. The dark-colored rectangles indicate the tested hybrids and the white
rectangles indicate the untested hybrids.
2. Materials and methods

2.1. Plant materials, field experiments, phenotypic data analysis

The phenotypic data of grain yield (GY) collected from two
multiple-location trials were used in the present study to conduct
110
genomic prediction analyses. The material and the mating designs
in each trial were illustrated in Fig. 1. The first trial, designated as
‘‘Trial A”, consists of 24 hybrids formed by crossing each line to
three testers. The eight inbred lines belong to heterotic group ‘‘A”
or Tuxpeno, and the three testers belong to heterotic group ‘‘B”
or non-Tuxpeno. At CIMMYT (International Maize and Wheat
Improvement Center), the dent maize kernel type was classified
as the heterotic group ‘‘A”, and the flint maize kernel type was clas-
sified as the heterotic group ‘‘B”. Eight inbred lines were crossed
with each tester, respectively. The first tester was an inbred line,
and the other two testers were F1 hybrids formed between two
inbred lines belonging to the same heterotic group. ‘‘Tester 1”
(T1) was one of the parental lines of ‘‘Tester 3” (T3), and ‘‘Tester
2” (T2) shared a common parental inbred line with T3. The second
trial, designated as ‘‘Trial B”, consists of 72 hybrids. Among these
72 hybrids, 42 hybrids in Trial B were formed between fourteen
inbred lines from the heterotic group ‘‘B” and three testers. These
three testers were F1 hybrids and designated as Tester 4 (T4), Tes-
ter 5 (T5), and Tester 6 (T6), respectively. Each tester was formed
between two inbred lines from the heterotic group ‘‘A”. T5 and
T6 shared a common parental line. The other 30 hybrids were
formed between ten inbred lines from the heterotic group ‘‘A”
and three testers. The three testers were F1 hybrids, and designated
as Tester 7 (T7), Tester 8 (T8), and Tester 9 (T9), respectively. Each
tester was formed between two inbred lines from the heterotic
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group ‘‘B”. T8 and T9 shared a common parental line. Trial A and
Trial B were also combined for further analysis, which was defined
as ‘‘Trial A & B”. In tropical maize breeding, three-way cross
hybrids are still the main final products, due to the lower seed cost
advantage. In three-way cross hybrids, the more commonly used
tester is single-cross hybrid.

In each trial, lines and testers from the opposite heterotic
groups were crossed in all the possible combinations using the
line-by-tester mating design [2,8]. The main purpose of the line-
by-tester mating design in maize is to evaluate the GCA of the
newly developed inbred lines, and the tester lines representing
the genetic diversity of the opposite heterotic group always could
classify inbred lines into appropriate heterotic groups and rank
inbred lines correctly for performance in hybrid combinations. Tri-
als A and B were evaluated in Mexico in ten and eleven locations,
respectively. The total number of observations was 240 in Trial
A, and 720 in Trial B. An alpha lattice design was used for both tri-
als with two replications per location. Number of blocks per repli-
cation in ‘‘Trial A” and ‘‘Trial B” was 7 and 20, respectively. The plot
size in all the experiments was a single row 5 m long, with 0.75 m
between rows, and 0.20 m between plants in each row. Number of
blocks per replication in ‘‘Trial A” and ‘‘Trial B” was 7 and 20,
respectively. Phenotypic data were collected at all the locations
for the main agronomic traits including grain yield (GY, t ha�1).

2.1.1. Phenotype model based on the performance of hybrids
For each trial, the best linear unbiased estimate (BLUE) values

and broad-sense heritability (H2) of GY were calculated within
and across locations using the META-R software version 6.04 [24]
(http://hdl.handle.net/11529/10201). The linear mixed models
used in META-R are implemented in the LME4 R-package, func-
tions of lmer() and REML were used to estimate the variance com-
ponents [24]. In the equations that follow, within location analysis
would not have a genotype-by-environment interaction term.

Yijkl ¼ lþ gi þ ej þ geij þ rkej þ blejrk þ eijkl ð1Þ
where Yijkl is the trait of interest, l is the overall mean, gi, ej, and geij
are the effects of the i-th genotype, j-th environment, and i-th geno-
type by j-th environment interaction, respectively. rkejis the effect
of the k-th replication within the j-th environment, and blejrk is
the effect of the l-th incomplete block within the j-th environment
and the k-th replication. eijkl is the residual effect of the i-th geno-
type, j-th environment, k-th replication, and l-th block. ng repre-
sents the number of genotypes in the trial, ne represents the
number of environments, nr represents the number of replications,
and nb represents the number of blocks, where i = 1 to ng, j = 1 to ne,
k = 1 to nr, and l = 1 to nb. Genotype is considered as the fixed effect,
whereas all other terms are declared as the random effects. Loca-
tions with heritability below 0.05 were excluded from the across
location analysis.

Broad-sense heritability (H2) based on the entry means within
trials was estimated as follows:

H2 ¼ r2
g

r2
g þ

r2
ge

ne
þ r2

nenr

ð2Þ

where r2
g , r2, and r2

ge are the genotypic variance, error variance, and
genotype-by-environment interaction variance, respectively, and nr

and ne are the numbers of replications and environments, respec-
tively [2].

2.1.2. Line by tester phenotype model
The estimates of the GCA of the line (GCAL), the GCA of the tes-

ter (GCAT), and the SCA between the line and tester were estimated
with the AGD-R software version 4.1 (https://hdl.handle.net/
111
11529/10203). These values were estimated using the phenotypic
data as follows:

yijdkm ¼lþLiþTjþLiTjþedþLiedþTjedþLiTjedþRkedþbmrkþeijdkm
ð3Þ

where, yijdkm is the observed value, l is the general mean, Li is the
effect of i-th line, Tj is the effect of j-th tester, LiTj is the effect of
i-th line by j-th tester interaction, ed is the effect of d-th environ-
ment, Lied is the effect of i-th line by d-th environment interaction,
Tjed is the effect of j-th tester by d-th environment interaction, LiTjed
is the effect of the interaction of i-th line, j-th tester, and d-th envi-
ronment. rked is the effect of k-th replication nested in d-th environ-
ment, bmrk is the effect of m-th block nested in k-th replication, and
eijdkm is the residual. nl represents the number of lines, nt represents
the number of testers, ne represents the number of environments, nr
represents the number of replications, and nb represents the num-
ber of blocks, where i = 1 to nl, j = 1 to nt, d = 1 to ne, k = 1 to nr,
and m = 1 to nb. Both line and tester are considered as the fixed
effects, whereas all other terms are declared as the random effects.

2.2. Genotyping and genotypic data analysis

The parental lines, including lines and testers, were genotyped
using the DArT-seq platform (https://www.diversityarrays.com/),
and sequencing work was performed at the Genetic Analysis Ser-
vice for Agriculture (SAGA) laboratory of CIMMYT. SNP calling
was conducted as described in the previous study [25]. The physi-
cal position of the SNP markers was obtained by aligning the flank-
ing sequences to the reference genome of B73_RefGen_v4.

Initially, 39,659 SNPs with known physical positions were iden-
tified for each of the genotyped materials. In TASSEL version 5.0
[26] the SNP marker dataset was filtered with the minor allele fre-
quency (MAF) higher than 0.15, the missing rate below 20%, and
the heterozygosity rate below 10%. After filtering, 3212 SNPs were
selected to perform further genetic analyses, and all the missing
loci were imputed using the maximum likelihood estimation
method in R. The marker data of the hybrids crossed between lines
and testers were obtained in silico. The heat map of SNP density
was created using the ideogram() function in the RIdeogram pack-
age [27] of the R statistical software [28]. Within each trial, the
genetic relationships between the genotyped materials were illus-
trated using the first two principal components. A principal com-
ponents analysis (PCA) was conducted and visualized using the
functions of prcomp() and plot() in the R statistical software.

2.3. Genomic prediction of the performance of hybrids

Two models were applied to predict the performance of the
hybrids based on the genotypic data of the parental lines, which
has been described previously [29]. The first model, i.e. M1, only
includes the additive effect. The second model, i.e. M2, includes
both the additive and non-additive effects.

The linear model of M1 used to predict the performance of the
hybrid is given as follows:

y ¼ l1þ ZLgL þ ZTgT þ e ð4Þ
where y is the response vector containing the BLUEs of the hybrids
described in 2.1.1; l1 is the mean across all environments, and gL
and gT are the vectors of random effects due to the GCA for lines
and testers, respectively. Incidence matrices ZL and ZT relate y to
gL, gT with gL � Nð0;r2

LGLÞ and gT � N 0;r2
TGT

� �
, where r2

L and r2
T

are variance components associated with GCAL and GCAT, and GL

and GT are genomic relationship matrices for the lines and the tes-
ters, respectively. Finally, the residual is e � Nð0;r2

e IÞ, where r2
e is

the variance associated with the residuals, and the I
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Table 1
Descriptive statistics and analysis of variance (ANOVA) for the target trait of grain
yield (GY, t ha�1) in Trials A, B, and A & B.

Descriptive statistics Trial A Trial B Trial A&B

Maximum 10.42 12.93 12.93
Minimum 0.46 1.10 0.46
Grand mean 5.84 5.91 5.88
Median 5.57 5.69 5.67
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is the identity matrix. Relationship matrices GL and GT were

computed using markers, that is, Gm ¼ WmW
0
m=p, where Wm, is

the matrix of centered and standardized markers, m ¼ L; Tf g and p
is the number of markers [30]. The diagonal values of Gm are
distributed around 1 and therefore, the associated variance compo-
nents are on the same scale as r2

e .
Model 2 (M2) extended model M1 to include both additive GCA

for lines and testers and non-additive effect of the hybrids. This
model is given as follows [31]:

y ¼ l1þ ZLgL þ ZTgT þ ZHhþ e ð5Þ

where ZH is an incidence matrix that relates y to h with
h � Nð0;r2

HHÞ, where, r2
H is a variance component associated with

SCA, and H is a relationship matrix for hybrids; the elements of
matrix H can be obtained directly frommatrices GL and GT described
in M1, i.e., H is the matrix product of GL and GT. The terms ZL, ZT, gL,
gT and e are the same as those in M1.

Model M1, excluding the term ZTgT , was defined as the ‘‘Mck”
model in the present study. In the Mck model, the hybrid perfor-
mance of the inbred lines could be predicted using only the geno-
typic data of the lines [20] where the mean of the BLUE values of
the line crossed with all the testers was used as the phenotypic
data.

In both Trials A and B, the genomic prediction abilities between
testers were also estimated. In each trial, the testcrosses made
between all the inbred lines with one tester were used as the train-
ing set, and the testcross made between all the inbred lines with
the other different tester were used as the testing set; the predic-
tion abilities between testers were estimated in the testing tests.

Models M1, M2, Mck, as well as the predictions between testers
were implemented in BGLR’s R library [32]. Inferences were based
on 30,000 Gibbs sampler iterations, and the first 15,000 were dis-
carded. In models M1, M2, and Mck, a two-fold cross-validation
scheme was implemented and repeated 100 times. In each trial,
50% material was selected as the training set to predict the remain-
ing 50% material as the testing set. The sizes of the training set in
M1 and M2 were bigger than that in Mck. Pearson’s correlation
between the observed and predicted values was estimated in the
testing set, and the average Pearson’s correlation across 100 repli-
cations was defined as prediction ability.
Genotypic variance 0.34 0.38 0.36
Genotype-by-location variance 0.17 0.15 0.23
Residual variance 0.51 0.50 0.52
Kurtosis �0.28 �0.11 �0.04
Skewness �0.18 0.43 0.26
Heritability 0.89 0.91 0.89

Fig. 2. Violin plots of the values of GCA (general combining ability, t ha�1) and SCA
(specific combining ability, t ha�1) for Trials A, B, and A & B.
2.4. Genomic prediction of the GCA and SCA values

The GCA values were predicted using the SNP data with the RR-
BLUP mixed model. The RR-BLUP model, i.e. M3 in the present
study, is described [18] as follows:

y ¼ WGuþ e ð6Þ

where u � N 0; Ir2
u

� �
is a vector of marker effects, G is the genotype

matrix code as {�1, 0, 1} for biallelic SNPs, and W is the design
matrix relating lines to the observations (y). Similarly, the SCA val-
ues were also predicted with the RR-BLUP mixed model using the
in-silico SNP data of the hybrids.

The GCA and SCA values were treated as the target traits to be
predicted. The GCA prediction was implemented in two scenarios,
i.e. GCAL and GCALT. In GCAL, 50% lines in each trial were selected as
the training set to predict the GCA of the remaining 50% lines. In
GCALT, 50% lines and testers were selected as the training set to
predict the remaining 50% lines and testers. For SCA prediction,
50% combinations formed between lines and testers were selected
as the training set to predict the remaining 50% combinations. The
above two-fold cross-validation scheme was repeated 100 times.
Within each trial, the average GEBV of GCA or SCA for all the mate-
rial was calculated across 100 predictions, and the prediction abil-
112
ity was estimated as the correlation between the average GEBVs
and the observed phenotypic values across all the material.
3. Results

3.1. Phenotypic analysis results

The information on the summaries of the grand mean, genotype
variance, genotype by location variance, residual variance, and her-
itabilities of GY in all trials are shown in Table 1. In the analysis
across locations, the grand means of GY in Trials A, B, and A & B
were 5.84, 5.91, and 5.88 t ha�1, respectively. The heritabilities
of GY in Trials A, B and A & B were 0.89, 0.91, and 0.89, respectively.
In all trials, the genotypic variance values were greater than the
genotype-by-location variance values, yet lower than the residual
variance values. These results implied that the phenotypic data
estimated from the analyses across locations are reliable for fur-
ther genomic prediction research in the present study, although
GY is a complex trait, and it is highly influenced by several factors
including genotype-by-location interaction.

In both Trial A and Trial B, the GY values had a normal distribu-
tion in most of the individual locations (Fig. S1a, b). The phenotypic
correlations of the BLUE values of GY between locations were pos-
itively correlated, and most of the phenotypic correlation values
were significant at P < 0.01. The correlation coefficients in Trial A
ranged from 0.024 to 0.77, with a mean of 0.45. In Trial B, they ran-
ged from 0.15 to 0.74, with a mean of 0.45. A few correlation coef-
ficients were low, due to occasional extreme and suboptimal
weather conditions that happened in some locations.

The distributions of GCA and SCA values in Trials A, B, A & B are
shown in Fig. 2. The GCA values ranged from � 0.61 to 0.46 in Trial
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A, from � 0.56 to 0.40 in Trial B, and from � 0.60 to 0.47 in Trial A &
B. The SCA values ranged from � 0.70 to 0.48 in Trial A, from � 0.71
to 0.73 in Trial B, and from � 0.70 to 0.73 in Trial A & B. Sufficient
variations were observed for both the GCA and the SCA in all trials.

3.2. Marker data and genetic relationships

The heatmap of the SNP density in each chromosome is shown
in Fig. S2. In total, 3212 SNPs distributed in ten chromosomes were
used for the further genetic analysis and the number of SNPs per
chromosome ranged from 221 on chromosome 10 to 566 on chro-
mosome 1. In all the ten chromosomes in maize, a lower SNP den-
sity was observed in the centromeric region. The mean MAF after
filtering across all SNPs were 0.24 and 0.25 in Trials A and B,
respectively. The mean missing rates after filtering across all SNPs
were 0.03 and 0.05 in Trials A and B, respectively.

The genetic relationships between the genotyped materials are
illustrated with the PCA plots (Fig. 3). In Trial A, the values of the
first two principal components were 51% and 18%, respectively.
The testers of T1, T2, and T3, were clustered with each other in
one group. The inbred lines were scattered as the second group.
In Trial B, the values of the first two principal components were
52% and 14%, respectively. Two groups appeared in the PCA plot
of Trial B, the lines and testers from the same heterotic group were
clustered in one group, it implied that the testers well represented
the genetic diversity of its heterotic group adequately. The testers
sharing a common parental line have a closer relationship. The
results of PCA plots is consistent with the pedigree information.

3.3. Prediction ability of the GY of hybrids

Prediction abilities of the GY of hybrids were estimated using
M1, M2, and Mck models in all trials, and the results are shown
in Fig. 4. In all trials, the prediction abilities of the GY of hybrids
were high in both M1 and M2 models, i.e. greater than 0.59. In
the same trial, the prediction ability of the GY of hybrids estimated
using the M2 model were higher than those estimated using the
M1 model. The prediction ability of the GY of hybrids estimated
using the M1 model was 0.81, 0.68, and 0.59 in Trials A, B, and A
& B, respectively. The prediction ability of the GY of hybrids esti-
mated using the M2 model was 0.86, 0.74, and 0.64 in Trials A, B,
and A & B, respectively. In all trials, the prediction abilities of the
GY estimated using both M1 and M2 models were slightly lower
than the heritabilities of the GY estimated using the multiple-
location trials. These results imply that the additive effect plays a
Fig. 3. Genetic relationships illustrated with PCA (principal components analysis) plots.
abbreviated as T1 to T9.

113
major role in the prediction of the performance of hybrids in
line-by-tester trials, and the prediction model incorporating the
non-additive effects could further improve the prediction ability
of the performance of the hybrids.

In addition to estimate the prediction ability of the performance
of hybrids, the prediction ability of the hybrid performance of the
inbred line across all the testers was also estimated, where the Mck
model including only the term of ZLgL was fitted, and the genotypic
data of the inbred line and the phenotypic data of the GY mean of
the inbred line crossed with all the testers was used for prediction.
The prediction ability of the hybrid performance of the inbred line
across all the testers was 0.24, 0.06, and � 0.01 in Trials A, B, and A
& B, respectively. The prediction abilities estimated using the Mck
model were much lower than the prediction abilities estimated
using the M1 and M2 models, indicating that the genotypic data
of the testers is very important to improve the prediction ability
of the performance of the hybrids. The size of the training set is
smaller in the Mck model that is also a potential reason for the
lower prediction abilities.

3.4. Prediction abilities of GCA and SCA in line-by-tester trials

The prediction abilities of GCA and SCA were estimated using
the M3 model in all trials and the results are shown in Fig. 5. In
GCAL, the training set size of Trials A, B, and A & B was 4, 12, and
16, respectively. The average prediction ability of the GCA of the
lines was 0.13, �0.04, and � 0.14 in Trials A, B, and A & B, respec-
tively. In GCALT, the training set size of Trials A, B, and A & B was 6,
15, and 22, respectively. The prediction ability of the GCA
increased, the average prediction ability of the GCA of all material,
including both lines and testers, was 0.55, 0.49, and 0.49 in Trials A,
B, and A & B, respectively. In the SCA model, the training set size of
Trials A, B, and A & B was 12, 36, and 48, respectively. The average
prediction ability of the SCA calculated from the 100 replications
was � 0.41, �0.26, and � 0.27 in Trials A, B, and A & B, respectively.
These results show that the prediction ability of GCA for the line-
by-tester trial was moderate by incorporating the information of
both lines and testers into the prediction. The SCA for the line-
by-tester trial was difficult to predict.

3.5. Genomic prediction abilities of GY between testers

The estimated prediction abilities of the GY between testers are
shown in Tables 2 and S1. The prediction abilities between testers
in Trial A ranged from 0.07 to 0.41 (Table 2), the prediction abilities
(a) PCA plot of Trial A; (b) PCA plot of Trial B. Nine testers used in Trials A and B are



Fig. 4. Prediction abilities of grain yield of the hybrids estimated with the models of M1, M2, and Mck in Trial A, Trial B, and Trial A & B. Mck represents the prediction model
using the genotypic data from only lines and only including the additive effect. M1 represents the prediction model using the genotypic data from both lines and testers, and
only including the additive effect. M2 represents the prediction model using the genotypic data from both lines and testers, and including both the additive and non-additive
effects.

Fig. 5. Prediction abilities (r) of the GCA (General combining ability) and the SCA (Specific combining ability) estimated in Trials A, B, and A & B. a, b, and c are the estimated
prediction ability of GCA of the lines (GCAL) in Trials A, B, and A & B, respectively. d, e, and f are the estimated prediction ability of GCA of the lines and the testers (GCALT) in
Trials A, B, and A & B, respectively. g, h, and i are the estimated prediction ability of SCA in Trials A, B, and A & B, respectively. x-axis stands for the number of genotypes in an
ascending order of the observed GCA or SCA values, and y-axis stands for the GCA or SCA values.

Table 2
Prediction abilities of grain yield (GY) between testers in Trial A.

Tester 1 Tester 2 Tester 3

Tester 1 – 0.34 0.38
Tester 2 0.07 – 0.41
Tester 3 0.39 0.14 –
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of the GY between T1 and T3 were moderate, i.e. 0.38 and 0.39. The
highest prediction ability of 0.41 was observed, when the test-
crosses made with T2 were used as the training set to predict the
testcrosses made with T3. The lowest prediction ability of 0.07
was observed when the testcrosses made with T2 were used as
the training set to predict the testcrosses made with T1. These
results are in line with the results of genetic relationships, where
T1 and T2 are more distantly related; in turn they are closely
related between T1 and T3, and between T2 and T3. In general,
higher prediction abilities were observed, as the testers were found
to be more closely related. However, similar trends were not
reflected in Table S1 for Trial B.
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4. Discussion

GS is a promising genomic tool to predict the phenotypic perfor-
mance of genotypedmaterials, without phenotyping. Genomic pre-
diction ability is used to evaluate the effectiveness of GS andmust be
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moderate to high forGS tobe time and cost-effective [33]. In the pre-
sent study, the prediction abilities of the performance of hybrids
weremoderate to high across all three trials, the prediction abilities
of the GY of hybrids ranged from 0.59 to 0.81 in the M1 model, and
from0.64 to 0.86 in theM2model. The prediction abilities estimated
using both the M1 and M2 models in the present study are higher
than those in several earlier GS studies in maize [7,20], in which
the prediction abilities were estimated using the genotypic data of
inbred lines and the phenotypic data of hybrids formed between
inbred lines and testers. These results indicated that incorporating
the genotypic data of the testers into prediction helps improve the
prediction ability of the performance of the hybrids. The lower pre-
diction abilities estimated from the Mck model also confirmed the
importance of the genotypic data of testers for improving prediction
ability It implied thatGSoffers the opportunity to replace the expen-
sive line-by-tester trials phenotyped inmultiple-location,where the
GEBVs of hybrids can be predicted based on the genotypic data of
inbred lines and testers. In addition, the total breeding cost is dra-
matically reduced by genotyping a few inbred lines and testers with
a low-cost per sample genotyping platform, such as DArT-seq,
rAmpSeq, and genotyping-by-sequencing [34,35].

Currently, a large number of DH lines can be generated in a
maize breeding program every year at an affordable cost. At the
line development stage, the major challenge becomes the evalua-
tion of breeding values and combing abilities of newly developed
inbred lines, rather than to generate a sufficient number of
homozygous inbred lines. For a small number of inbred lines, their
breeding values and combining abilities can be easily estimated
using the phenotypic data from multiple location trials with spe-
cial mating designs. However, it is difficult to evaluate the combin-
ing abilities for a larger number of inbred lines using phenotypic
data, since the number of potential crosses formed between inbred
lines grows rapidly, and phenotyping these crosses is resource-
intensive. Several GS studies have been conducted to predict the
GCA and SCA using molecular marker information, where moder-
ate to high prediction abilities were obtained for the prediction
of the GCA. These studies concluded that GS is an effective and effi-
cient approach towards the prediction of the GCA [6,23]. The pre-
diction abilities on the estimation of GCA in the present study
ranged from 0.49 to 0.55, which is consistent with the conclusions
of previous studies, since it shows that the GCA of inbred lines can
be predicted based on the molecular marker information [6,23].
Moreover, the present study also implied that incorporating the
GCA factor into the model further improved the prediction of the
performance of hybrids, since the prediction abilities of the perfor-
mance of hybrids ranged from 0.59 to 0.81 in the M1 model. How-
ever, the SCA was not well predicted in the present study. The
prediction abilities on estimating SCA were negative across all tri-
als, and incorporating the SCA factor into the model only slightly
improved the prediction of the performance of hybrids. Negative
values of prediction ability in GS mean poor predictions, the pre-
diction results do not have any values for further breeding selec-
tion. In Fig. 5, all the predicted SCA values were close to zero,
and the variance of the predicted SCA values was very small, which
indicated that the SCA values were very difficult to be predicted,
there was no linear correlation between the predicted and the
observed SCA values. This is mainly due to the fact that the pheno-
typic data used in the present study was taken from line-by-tester
trials, which are mainly designed to accurately estimate the GCA,
not the SCA. It also implies that the prediction model needs to be
extended in the future studies to include the non-additive effect.

The tester effect plays an important role in the prediction of
combining abilities and the performance of hybrids. Several studies
have previously implied that modeling the tester effect into the
prediction model could improve the prediction abilities of GCA
and the performance of hybrids [17,31]. In the present study, the
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prediction abilities of the performance of hybrids estimated in
the M1 and M2 models were much higher than those estimated
in the Mck model, indicating that modeling the tester effect into
the prediction model could improve the prediction abilities of
the performance of hybrids, even though the training set size in
the Mck model was a little bit smaller than those in models M1
and M2. The results of the present study also confirmed that mod-
eling the tester effect into the prediction model can improve the
prediction abilities of the GCA. The prediction abilities estimated
in the GCALT model were much higher than those estimated in
the GCAL model across all trials, even though the size of the train-
ing set in GCALT is slightly bigger than that in GCAL. Furthermore,
the genomic prediction abilities of GY between testers were esti-
mated, large variations were observed, moderate prediction abili-
ties presented as the testers are more closely genetically related,
and very low prediction abilities presented as the testers are more
distantly related. This result showed that the performance of
hybrids between testers is difficult to predict, the performance of
hybrids should be predicted more accurately by considering the
molecular marker information of both lines and testers.

Population size is one of themost important factors affecting the
estimation of prediction ability inGS studies. The phenotypic data of
the present study is from the lowland tropical maize breeding pro-
gram of CIMMYT in Mexico, all the trials and crosses were made by
the maize breeder, according to the genetic backgrounds of the
breeding material, and the appropriate number of tested hybrids
included in each breeding trial. Unlike in the genetic studies, the
population size of the two trials used in the present study is not
so big, because of the feature of breeding trials. To control the phe-
notyping error in the field, the population size of the breeding trials
is always not too big, and only dozens of inbred lines can be included
in the line-by-tester trial to evaluate their GCA and SCA values, and
each inbred lines is crossed with several testers, the population size
per tester is even smaller. The current study focuses more on the
breeding application and tries to answer the scientific question of
how to predict the performance of hybrids and the combining abil-
ities using the molecular markers and the phenotypic data from the
breeding trials, breeding data is more suitable to answer the ques-
tions raised by the present study. The results of the present study
show that the prediction abilities in Trial A & B aremoderate to high,
which implies that the population size of the training set can be
increased by merging multiple line-by-tester trials, and it can be
used to predict the performance of new hybrids and the combing
abilities of new inbred lines that have not been evaluated.
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