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Abstract

This thesis investigates numerical methods for the simulation of surface water flows,
focusing on the interaction between the large scale and the local scale and its appli-
cation to natural hazards. Several families of numerical methods for the approxi-
mation of large scale phenomena and the coupling with the local scale have been
analyzed.

The general motion of a fluid mass is governed by the Navier-Stokes equations,
which can accurately solve the local scale phenomena. However, the same level of
accuracy is not required by the large scale solution of the water-related events. In
this context, the shallow water equations are defined. In contrast to the extensive use
of the Finite Element Method for solving the Navier-Stokes equations, the shallow-
water equations are usually solved with the Finite Volume Method. Thus, an effort
have been done to solve both equations in an unified framework.

The first part of this thesis is devoted to study stabilized formulations of Finite
Element Method for the different forms of the shallow water equations. Stabilized
formulations arise from the need to mitigate the various instabilities inherent in nu-
merical approximations. The first source of instability is the incompatibility of the
equal interpolation of the variables. The second source of instability is the presence
of shocks due to the change of regime or hydraulic jumps. Finally, Gibbs oscilla-
tions may appear on the moving shoreline and monotonic properties of the physical
system are lost by the numerical approximation.

The second part of the thesis is committed to the coupling strategies of the nu-
merical methods for the Navier-Stokes and the shallow water equations. The case of
a coupling from the local scale to the large scale is analyzed. This type of coupling
corresponds to the generation of cascading natural hazard. The proposed strategy
combines a Lagrangian Navier Stokes multi-fluid solver with an Eulerian method
based on the Boussinesq equations, an extension of the shallow water equations.

Finally, the proposed technique is applied to the numerical simulation of landslide-
generated impulse waves. The Particle Finite Element Method has been used to
model the landslide runout, its impact against the water body and the consequent
wave generation. The results of this fully-resolved analysis are stored at selected
interfaces and then used as input for the modelling of waves propagation on the
far-field. This one-way coupling scheme drastically reduces the computational cost
of the analyses while maintaining high accuracy in reproducing the key phenomena
of cascading natural hazards.
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Resumen

En esta tesis se investigan métodos numéricos para la simulación de flujos de aguas
superficiales, haciendo énfasis en la interacción entre las distintas escalas y su apli-
cación a desastres naturales. Se han analizado diversas familias de métodos numéri-
cos para aproximar los fenómenos a gran escala y su acoplamiento con la escala
local.

El movimiento general de una masa de fluido se rige por las ecuaciones de
Navier-Stokes, que pueden resolver con precisión los fenómenos a escala local. Sin
embargo, la solución numérica a gran escala de dichos fenómenos, no requiere el
mismo nivel de precisión. En este ámbito, se definen las acuaciones de agua poco
profundas. En contraste con el amplio uso del Método de los Elementos Finitos para
aproximar las ecuaciones de Navier-Stokes, las ecuaciones de aguas poco profundas
se suelen resolver con el Método de los Volúmenes Finitos. Por ello, se ha realizado
un esfuerzo para resolver ambas ecuaciones en un marco unificado.

La primera parte de esta tesis está dedicada a estudiar formulaciones estabi-
lizadas para el Método de los Elementos Finitos aplicado a las diferentes formas
de las ecuaciones de aguas someras. Las formulaciones estabilizadas surgen de la
necesidad de mitigar las diferentes inestabilidades inherentes a las aproximaciones
numéricas. La primera fuente de inestabilidad es la incompatibilidad debida a la
interpolación de las variables. La segunda fuente de inestabilidad es la presencia
de discontinuidades debidos al cambio de régimen o a los saltos hidráulicos. Por
último, pueden aparecer oscilaciones de Gibbs en la línea de costa en movimiento,
dado que las propiedades monótonas del sistema físico se pierden por la aproxi-
mación numérica.

La segunda parte de la tesis está dedicada a las estrategias de acoplamiento de los
métodos numéricos para las ecuaciones de Navier-Stokes y de aguas poco profun-
das. Se ha analizado el caso de acoplamiento desde la escala local a la escala global.
Este tipo de acoplamiento corresponde a la generación de desastres naturales en cas-
cada. La estrategia propuesta combina un solver Lagrangiano de Navier Stokes para
multi-fluidos con un método Euleriano basado en las ecuaciones de Boussinesq, una
extensión de las ecuaciones de aguas someras.

Finalmente, la técnica propuesta se ha aplicado a la simulación numérica de
olas generadas por deslizamientos. El deslizamiento de ladera, su impacto contra
la masa de agua y la consiguiente generación de olas se ha modelado con el Método
de Elementos Finitios de Partículas. Los resultados de este análisis detallado se al-
macenan en las interfaces seleccionadas que, luego, se utilizan como punto de en-
trada para modelar la propagación de olas en el campo lejano. Este esquema de
acoplamiento unidireccional reduce drásticamente el coste computacional, a la vez
que se mantiene una alta precisión en la simulación de los fenómenos clave de de-
sastres naturales.
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Chapter 1

Introduction

1.1 Overview

The continued increase of computing resources available for scientific and industrial
research has motivated the simulation of complex flows. Several attempts have been
done in order to fully simulate water-related hazards, from the generation up to their
interaction with structures.

Usually, water-related hazards involve floods, which are complex natural phe-
nomena with a great assortment of causes and a huge casuistic depending on the
land characteristics or the climatic conditions. Preventing floods is still a great chal-
lenge due to uncertainty of climatic conditions and complexity of modeling land,
usually defined by a great number of variables and parameters.

Furthermore, it is possible to identify several scales, local and global, with the
local scale requiring a high fidelity simulation. The presence of such different lev-
els of resolution makes the global simulation of these phenomena still unaffordable.
Firstly, the event generation can be global or local. If it is local, a Fluid-Structure
Interaction (FSI) simulation may be needed. Then the propagation of the event usu-
ally allows to assume several simplifications, corresponding to the large scale field.
Finally, the interaction with structures is strictly a local scale problem.

Landslide-Generated Waves (LGW) are an example of water-related natural haz-
ards. These events are originated when a landslide impacts a water reservoir and
produces large-amplitude waves. LGW events can have devastating effects on the
coastal areas of water basins, such as lakes, fjords and artificial reservoirs. Accurate
modeling and prediction of LGWs are of key importance to reduce their catastrophic
effects. Both experimental and numerical studies have greatly contributed to the en-
hancement of the forecasting capabilities against these natural hazards. In that case,
both the generation of the impulse wave and the interaction with structures require
a local-scale resolution.

The direct simulation of all the scenario with a local scale resolution is computa-
tionally highly demanding and it can become unaffordable as the size of the scenario
increases. This fact leads to the consideration of alternative strategies combining the
numerical simulation of the large and local scale in a staggered frame. Figure 1.1
shows a conceptual identification of the different scales and the possible approaches.
The computational cost is proportional to the area enclosed by the space-time do-
main and proportional to the efficiency of each solver. In Figure 1.1 the local-scale
resolution is identified with a Near Field Solver (NFS) and the large-scale resolution
is identified with a Far Field Solver (FFS).

The staggered approach, apart from being less computationally intense, allows
to decouple the uncertainty related to the generation of the event from the FSI simu-
lation. In addition, the staggered approach allows to concentrate the computational



2 Chapter 1. Introduction

x

t

x

t

Event propagation

Near field solver

Far field solver

FSI Event generation

FSI Impact on structure

Location of the structure

FIGURE 1.1: Propagation path of the event and possible computa-
tional approaches. Left: Brute force approach. Right: Staggered ap-

proach.

resources only where they are needed, thus leading to a more efficient level of accu-
racy.

The main aspects that have been explored in this thesis are the numerical approx-
imation of the FFS and the coupling strategy of the proposed FFS with an existing
NFS. Special attention have been paid to the convergence and stability properties of
the FFS aimed to solve the large scale.

1.2 Objectives and outline

The work developed within the framework of this thesis can be enclosed in the
global objective of investigating Finite Element formulations applied to large-scale
water-related hazards. In particular, the analyzed methods have to be capable of
reproducing local-scale effects around structures of interest and accurately model
the large-scale propagation. This requirement lead to the analysis of the Finite El-
ement Method for solving the Navier-Stokes equations on local scales and solving
the shallow water equations on large scales.

The Navier-Stokes equations are typically solved using the finite element method,
while the shallow water equations are often solved using the finite volume method.
Since we are interested in solving the global simulation within the same framework,
a previous investigation on stabilized finite elements for the shallow water equations
is presented.

This thesis is structured in 6 chapters, including the present introduction and
a bibliographic revision. The bibliographic revision is specially extensive for the
shallow water equations. Chapter 2 presents a review of the governing equations
which will be solved in the latter chapters.

Chapter 3 is dedicated to the Finite Element Method applied to the shallow wa-
ter equations. Stabilized formulations and quasi-monotonic formulations are pre-
sented. Part of the developments of the numerical methods for the shallow water
equations are moved to appendices A and B, where the particle methods and mesh
refinement are explored.

An extension of the shallow water equations to wave propagation on interme-
diate and deep water is presented in chapter 4. These equations are known as the
Boussinesq equations. The strategies developed in the previous chapter are applied



1.3. State of the art 3

to the Boussinesq equations, however, additional requirements must be fulfilled in
order to ensure stability and accuracy. This chapter is of crucial importance in order
to analyze impulse waves in the context of water-related hazards.

Chapter 5 is devoted to the coupling strategies between the shallow water ap-
proximations –specially the Boussinesq equations– and the fully resolved methods.
An example of coupling for landslide long wave generation is provided.

Finally, the thesis is closed with some conclusions and possible further research
lines in chapter 6.

1.3 State of the art

In this section a bibliographic revision of the methods employed to solve free sur-
face flows problems is presented. The general motion of a fluid is described by
the Navier-Stokes equations. When free-surface water flows are considered, there
are two implications, the incompressibility and homogeneous continuum medium
enclosed by the interface. After presenting the most common numerical methods
used to approximate the incompressible Navier-Stokes equations for free surface
flows, the bibliographic review will be focused on the shallow water equations. The
shallow water equations are derived from the Navier-Stokes equations when some
simplifications are assumed. Finally, the bibliographic revision is closed with the
coupling strategies for both models.

1.3.1 Numerical methods for the Navier-Stokes equations

Nowadays, the accurate approximation of the fluid flow equations aims at represent-
ing the flow up to the smallest scales. In that sense, the effort is focused either on
obtaining higher precision numerical schemes or on refining the discretization. The
first approach is cheaper in contrast to the refinement approach, but the refinement
approach has been proven to be very versatile. In the case of complex geometries,
higher order approximations are equivalent to the Finite Volume methods (FV) or Fi-
nite Element Methods (FEM).

Nevertheless, when the Galerkin discretization is used within the frame of the
FEM, an unstable behavior might be obtained. These instabilities are related to
the non symmetric convection operator and to interpolation [21, 34]. The stabilized
methods like the Streamline Upwind Petrov Galerkin (SUPG) [22, 84] can be framed in
the Variational Multi-Scale (VMS) concept [82]. Latter, other stabilizations were pre-
sented, such as Finite-Increment Calculus (FIC) [141] or Galerkin Least Squares (GLS)
[83]. In fact, the latter stabilizations belong to the same family of the previous ones,
which consist in adding extra terms based on the residual of the balance equations.
Since these stabilization techniques are consistent, they allow using higher order
approximations.

However, the terms introduced by stabilizations in order to keep consistency
notably increase the complexity of the equations, can couple unknowns, and even
increase the non-symmetry of the system. In order to overcome this issues, projec-
tion methods only introduce the terms required for stability purpose. The key of
these methods is the choice of the projector. A global L2 projector is used in the or-
thogonal sub scales method [38]. Other methods avoiding the global projection are
named local projection stabilization [17, 123] or nodal projection stabilization [8].
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Apart from the stabilization technique for the Navier-Stokes equations, the nu-
merical approximation must be able to deal with the interface discontinuity. Con-
cerning the coordinate frame where the governing equations are solved, the solution
methods can be classified in Eulerian and Lagrangian formulations. Classical nu-
merical methods to solve CFD problems typically use the Eulerian formulation with
a level set function [31] with enriched shape functions [27]. Lagrangian formula-
tions take advantage on the possibility of the FEM to discretize complex geometries.
In that case, the FEM is combined with a mesh moving and remeshing strategy. It
can be applied in an Arbitrary Lagrangian-Eulerian formulation (ALE) [55] or in a pure
Lagrangian formulation. This is the case of the Particle Finite Element Method (PFEM)
[88, 139]

Regardless of the framework where the governing equations are solved, the for-
mulation needs to be stabilized in order to fulfill the inf-sup condition [21]. In this
work, the PFEM formulation stabilized with FIC will be used. It has been success-
fully applied to solve free surface flows [52] and FSI analysis [140] or in combination
with other numerical models [143].

1.3.2 Numerical methods for the shallow water models

When large scale free surface flows are considered, some simplifications can be as-
sumed, such as small vertical scale and hydrostatic pressure distribution. These
assumptions allow to express the Navier-Stokes equations in a depth averaged bal-
ance, which are the shallow water equations. Depending on the assumptions, slightly
different equations are obtained. While the Saint-Venant equations are well suited
for convective flows, the Boussinesq equations describe the oscillatory phenomena
of waves. Anyway, both systems of equations are hyperbolic and present an analogy
with the Euler conservation laws or compressible Navier-Stokes equations. Hence,
the numerical methods commonly used for the compressible Navier-Stokes equa-
tions can be applied to the shallow water equations.

The difference of the shallow water equations with respect to the Navier-Stokes
equations is the fact that the domain is restricted to the wet area. The wet area is
described by the positive water depth, where the depth integration is defined. The
shoreline moves according to the dynamics and is characterized by a null water
depth, a region where the equations are singular and the system is no longer hyper-
bolic. This property will need specific numerical considerations.

Löhner [111] made a review of possible approximation methods to solve fluid
dynamics. Being a discretization uh = Niûi (i = 1, 2, . . . , m) approximating the
solution u, the weighted residual is defined as∫

Ω
W ir(uh)dΩ = 0

This description allows to wrap the most common numerical methods in the same
frame. Depending on the choice of the basis functions N and the trial function W,
the weighted residual yields several numerical methods. Table 1.1 summarizes the
most common choices of trial functions.

The most commonly used method by the shallow water community is FV be-
cause of its stability properties when dealing with the moving shoreline [2, 105].
More recently, the Discontinuous Galerkin technique has been applied to the shallow
water equations [6, 95, 107]. Like FV, the DG method has the advantage of comput-
ing the fluxes at the element boundary, allowing the method to naturally consider
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Ni W i

Finite differences (FD) polynomial δ(xi)
Finite volumes (FV) polynomial 1 if x ∈ Ωel
Galerkin finite elements (FEM) polynomial Ni

Discontinuous Galerkin (DG) polynomial Ni if x ∈ Ωel

TABLE 1.1: Possible choices of trial and test functions Ni and Wi

the moving shoreline. However, the introduction of high order DG schemes is not
straightforward.

In this research the FEM for the shallow water equations will be explored. Apart
from its ability to solve the oscillatory problem of the Boussinesq equations, it will
allow a unified formulation for the coupling strategy. When the FEM is consid-
ered, several sources of instabilities arise. Firstly, the inf-sup condition if the same
space of interpolation is used for all the variables. Secondly, analogously to com-
pressible flows, shocks might appear in the regime variations, from sub-critical to
super-critical. Lastly, Gibbs oscillations appear at the shoreline, since the partially
wet elements are not able to preserve the water positivity.

Several authors reported the presence of instabilities on the numerical approxi-
mation of the shallow water equations on the wet domain. Ad-hoc techniques were
proposed in order to achieve stability, such as a DG for one variable [68], different
order of interpolation [106], division in sub-triangles [78], non conforming interpo-
lations [74] or addition of extra diffusion [51]. A similar situation happened with the
Boussinesq equations, see [158, 161] as an example. Heniche related the instabilities
to the inf-sup condition in [78], but until Codina in [37] the FEM stabilization was not
applied to the shallow water equations.

The stabilized FEM are known to ensure global stabilization, however, mono-
tonic properties are not inherited by the numerical scheme. This issue is related to
the dry-wet interface, since the wet domain is defined by a positive water depth.
Usually, the front tracking is related to the techniques used for the shock capturing,
since the shoreline is also a discontinuity. Monotonic properties of the numerical
approximation are related to the Godunov barrier theorem [66] which states that a
scheme of order higher than 1 is not oscillatory free. The Flux Corrected Transport FCT
algorithm [114] uses the Godunov theorem to construct a non linear scheme which
combines a low order non-oscillatory scheme with a high order one. The process of
combining the two schemes is called limiting. An application of it to the shallow
water equations can be found in [137].

Other methods inspired by the flux limiting are the edge based schemes [113].
The edge based structure is an efficient way to assemble the system matrix which
resort to a FV approximation of convective terms. If it is assumed that the fluxes
of the variables are constant along the edges, a discontinuity will occur at the edge
midpoint. Then, one can replace the Galerkin flux by a Riemann flux and obtain a
Total Variational Diminishing scheme (TVD).

Finally, non-linear stabilizations are a more consistent way to add local stabiliza-
tions around shocks and the moving shoreline [36]. Badia and Hierro presented a
monotonicity preserving stabilized finite element for hyperbolic equations [9].

1.3.3 Large-local scale approach and coupling strategies

The simulation of a large scenario where local effects are of key importance can be
tackled in different ways. In many practical situations, the behavior of a fluid can
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be modelled by the SW equations, even though the assumptions of small vertical
acceleration are not perfectly fulfilled. However, the accurate modelling of the event
triggering the impulse wave or the interaction with structure can be out of the scope
of reduced models.

On the one hand, physical models are particularly helpful to identify the key
parameters of the flow characteristics. The authors in [64, 126, 135] experimentally
characterized the parameters for the definition of the impulse wave generated by a
landslide. [96, 97] performed an extensive characterization of the wave run-up and
interaction with a nearshore structure. Nevertheless, laboratory tests are mainly
devoted to determine near-field conditions under specific simplifications, whereas
the global scenario is a combination of a variety of situations.

On the other hand, numerical methods have the potential to predict both near-
and far-field waves characteristics. Due to its computational requirements when
large domains and long time durations are considered, numerical methods can be
classified into three main groups.

Firstly, the entire domain can be simulated using a reduced model, typically
based on SW. For the case of LGW, the impact can be imposed as an equivalent
boundary condition [7, 159]. In the case of the interactions with bodies, some large
scale applications have been modelled using the SW equations for FSI problems [20,
65]. However, the strong simplifications allow to have only an approximate idea of
the global scenario.

Secondly, the global scenario can be simulated in a unique coupled model. Some
holistic attempts have been made both for the wave generation and the impact
against structures (see [47, 61, 170] for example). However, the computational cost
for a fully resolved method is still unaffordable for large-scale events.

Lastly, the partitioned approach splits the global scenario into several simula-
tions that interact with each other at their interface. A first inspiration of the strong
coupling of different order models can be found in [59]. There are also some recent
strong couplings between the SW and Navier-Stokes equations [146]. However, the
weak coupling simplification preserves the computational advantages of the parti-
tioned approach and it still ensures an accurate modeling of the key phenomena of
an wave generation scenario or a FSI scenario.

One of the first applications of the weakly-coupled partitioned method for LGWs
was presented in [77]. In this work, a simplified 3D model was used for the landslide-
water impact and a shallow water model was applied for the far-field wave propa-
gation. Other examples can be found in [110] where a flooding scenario was studied
by coupling a 3D compressible Eulerian solver with a Boussinesq model.

In this work, we propose and validate a novel partitioned model for LGW sce-
narios. In this new strategy, a Lagrangian finite element method, namely the Particle
Finite Element Method (PFEM) [46, 88, 139], is used as the NFS and a Boussinesq
model is used as FFS. Particular attention is devoted here to analyze the effect of the
near-field boundary conditions on the far-field propagating wave.

1.4 Research dissemination

Some of the developments if this thesis have been published in the format of articles
in peer reviewed journals. Since the research has advanced gradually, the articles are
related to a chapter, but there are some differences, which can be big. The chapters
are more extensive than the articles and some parts of the articles are omitted to
avoid repetitions. There is also not the same sequence between the publication date
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and the chapter order. On the other hand, since the notation is introduced gradually,
it has been unified in the thesis and may be slightly different from the articles and
this document.

Chapter 3 M. Masó, I. de Pouplana, and E. Oñate. “A FIC-FEM procedure for
the shallow water equations over partially wet domains”. In: Computer Methods in
Applied Mechanics and Engineering 389 (Feb. 2022), p. 114362. DOI: 10.1016/j.cma.
2021.114362

Chapter 5 M. Masó, A. Franci, I. de Pouplana, A. Cornejo, and E. Oñate. “A
Lagrangian-Eulerian procedure for the coupled solution of the Navier-Stokes and
shallow water equations for landslide-generated waves”. In: Advanced Modeling and
Simulation in Engineering Sciences (Mar. 2022). DOI: 10.21203/rs.3.rs-1457837/v1
(preprint)

Appendix A A. Puigferrat, M. Maso, I. De Pouplana, and G. Casas. “Semi-Lagrangian
formulation for the advection-diffusion-absorption equation”. In: Computer methods
in applied mechanics and engineering 380 (July 2021), 113807:1–113807:26. DOI: 10.

1016/j.cma.2021.113807

In addition, the content of the chapters has been also disseminated in the form of
oral presentations in scientific conferences and congresses:

Chapter 5 M. Masó, I. de Pouplana, A. Franci, A. Cornejo, and E. Oñate. “A one-
way coupled Lagrangian-Eulerian procedure for the solution of landslide-generated
waves”. In: WCCM. 2022 (Abstract accepted)

Chapter 5 M. Masó, I. de Pouplana, A. Franci, A. Cornejo, and E. Oñate. “Un
procedimiento Lagrangiano-Euleriano para la solución acoplada de las ecuaciones
de Navier-Stokes y aguas poco profundas para olas generadas por deslizamientos
de laderas”. In: WCCM. 2022 (Abstract accepted)

Chapter 5 A. Franci, M. Cremonesi, U. Perego, G. Crosta, M. Masó, I. D. Pouplana,
and E. Oñate. “Numerical Modelling of Landslide-Generated Waves”. In: ECCO-
MAS. 2022

Appendix A M. Masó, I. de Pouplana, and E. Oñate. “Coupling shallow water
models with three-dimensional models for the study of fluid-structure interaction
problems using the particle finite element method”. In: VI International Congress on
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Chapter 2

Governing equations for free
surface flows

Water related natural hazards usually involve free surface flows. This property al-
lows to assume some simplifications, specially at the large scale. For this reason, the
general case describing the fluid motion is presented first, the Navier-Stokes equa-
tions. Then, some simplifications for the free surface flows are made, yielding the
shallow water equations. Different assumptions for the depth integrated models will
provide different sets of equations and its range of applicability as well as physical
properties will be explained.

2.1 Navier-Stokes equations

The motion of a fluid is described by the Navier-Stokes equations. The case of a free
surface flow is described as well by those equations and the free surface is located
where the densities or the fluid properties are discontinuous. In general, an air-water
interface is assumed but some natural phenomena may include a more complex
configuration, such as debris flow-air-water interfaces. All this continuous media
can be considered isotermal and incompressible and thus, the standard formulation
of the Navier-Stokes equations can be used.

The problem consists in the incompressible Navier-Stokes equations in a time
interval (0, t f ) and in a spatial domain Ω ∈ Rnd , being nd the number of space
dimensions, 3 unless otherwise stated. Let t be a certain time instant in the temporal
domain (0, t f ) and x a given point in the spatial domain Ω. The balance equations
for the momentum and mass are written in the following form:

∂u
∂t

+ u · ∇u +
1
ρ
∇p +

1
ρ
∇ · τ = f (2.1a)

∇ · u = 0 (2.1b)

With the appropriate initial and boundary conditions. Let Γ be the boundary of the
domain Ω and n the unit outward normal on Γ. Dirichlet and Neumann boundary
conditions are considered, ΓD and ΓN respectively, such that ΓD ∪ ΓN = Γ. ρ is the
fluid density, p is the pressure, u is the velocity, τ is the viscous stresses tensor and f
is the body forces vector.

2.2 Shallow water equations

The flow of water in shallow layers occurs in a wide range of situations, such as
coastal dynamics and hydraulics. In such cases, free surface flows in relatively thin
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layers compared to the characteristic horizontal length and thus, the horizontal ve-
locities are of primary importance. Under those circumstances, the problem can be
reasonably approximated by the horizontal plane.

The shallow water equations are the result of integrating vertically the Navier-
Stokes equations, assuming incompressibility, small vertical velocity and negligible
vertical acceleration [1, 171]. The assumptions over the vertical velocity and its ac-
celeration are equivalent to hydrostatic pressure, in fact, the vertical component of
the momentum equation (2.1a) is reduced to

1
ρ

∂p
∂x3

+ g = 0 (2.2)

After substitution of the hydrostatic pressure assumption 2.2 into the mass con-
servation 2.1b, the governing equations are integrated from the bottom z to the free
surface η. The problem is closed by adding two kinematic boundary conditions at
the bottom and at the free surface:

u3(z) =
Dz
Dt

, u3(η) =
Dη

Dt
(2.3)

The governing equations are expressed in terms of a new set of primary vari-
ables: the water depth and the horizontal flow rate. The water depth is defined by
the integration limits, h = z + η and the averaged horizontal flow rate q is defined
by the following integrated value,

q =
∫ η

z
u dx3 (2.4)

In order to avoid introducing extra notation, in a shallow water context, u refers to
the averaged horizontal velocities. In that case, the expression 2.4 can be reduced to
a compact form as q = hu.

Here we find that the resulting equations are written in the same form as the Eu-
ler conservation equations. In spite of the equations presenting some similarities to
the compressible flow, the shallow water equations are describing a purely incom-
pressible fluid: the variable water depth is playing the role of the variable pressure
in compressible fluids. The equations read

∂φ

∂t
+

∂Fi

∂xi
+

∂Gi

∂xi
+ Q = 0 for i = 1, 2 (2.5)

with

φ =


hu1
hu2
h

 (2.6a)

Fi =


hu1ui + δ1i

1
2 g(h2 − z2)

hu2ui + δ2i
1
2 g(h2 − z2)

hui

 (2.6b)

Gi =


−(h/ρ)τ̄1i

−(h/ρ)τ̄2i

0

 (2.6c)
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x1,x2

x3

z

η

h

ui

g

FIGURE 2.1: Diagram and notation for the balance equations (2.5) and
(2.6)

Q =


−g(h− z)

∂z
∂x1

+
h
ρ

∂pa

∂x1
− 1

ρ
τs

31 +
1
ρ

τb
31

−g(h− z)
∂z
∂x2

+
h
ρ

∂pa

∂x2
− 1

ρ
τs

32 +
1
ρ

τb
32

r


(2.6d)

where φ is the vector of conserved variables, Fi is the vector of convective fluxes, Gi
is the vector of viscous fluxes and Q is the vector source terms. In Figure 2.1 there
is a representation of the variables and the notation. The coordinates are denoted
with the index notation xi. Since this formulation is defined in a two dimensional
space (nd = 2), in the following we will consider i = 1, 2. δij is the Kronecker delta.
The topography is expressed with the variable z and the free surface elevation is
expressed in terms of the topography and the total depth, η = z + h. τ̄ij are the
averaged horizontal stresses, and τb

3i and τs
3i denote the bottom and surface friction

stresses respectively. Finally, r is the rain source term and pa is the atmospheric
pressure.

Usually, the bottom friction τb
3i from (2.6) is modelled with a semi-empirical for-

mula, such as the Chezy or the Manning formula. The Manning formula generalized
for two dimensions is as follows:

τb
3i
ρ

= −gn2 |q|q
h7/3

(2.7)

where n is the Manning roughness coefficient. It defines the resistance to flow by the
roughness of the bottom or other macroscopic factors and it is determined empiri-
cally. In practice, the Manning coefficient varies from 0.009 for a very smooth bed
(concrete) to 0.05 for a rough bed (rocks) [33].

The averaged horizontal stresses are calculated from the combination of the molec-
ular stresses and the Reynolds stresses as follows

τ̄ij

ρ
= (ν + νt)

(
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)
(2.8)

where ν is the kinematic viscosity and νt is the turbulent kinematic viscosity. When
any model of turbulence is considered, the turbulent stresses can be considered as
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included in the bottom friction with the Manning formula [30]. In this work, the
turbulent stresses will be neglected.

Returning again to the equations structure, the Euler conservation laws define
two eigenvalues fo the one-dimensional case: λ = u ± c. Where u is the modulus
of the velocity and c =

√
gh is the phase speed or wave speed. In the case of posi-

tive eigenvalues, the flux is supercritical, this means that the information travels in
one direction, the velocity is higher than the phase speed. When the eigenvalues
are of different sign, the flow is subcritical. If one of the eigenvalues is zero, the
flow becomes critical and is unstable, so it will derive to a stable solution, sub or
supercritical.

For the two dimensional case, does not exist a unique decomposition and this is
known as amplitude dispersion. This means there is not an unique direction of prop-
agation. The projection to the velocity direction -the main direction- will provide the
eigenvalues λ1 = u− c, λ2 = u and λ3 = u + c.

2.2.1 Boundary conditions

The problem is closed with appropriate boundary conditions: an initial condition

φ(t = t0) = φ0 (2.9)

where φ0 are the initial water height and specific discharge. And boundary condi-
tions at Γ, being Γ the boundary of the domain Ω. The boundary Γ is split into three
subdomains, ΓI , ΓO and ΓS: inflow, outflow and solid.

Inflow boundary the flow rate is known

q = qin in Γin

If the inflow is supercritical, the water depth is also specified

q = qin
h = hin

}
in Γin

Outflow boundary The water depth is known

h = hout in Γout

if the outflow is supercritical, no conditions have to be imposed.

Solid boundary slip or no slip condition can be imposed

q · n = 0 or q = 0 in Γsolid

2.2.2 Linearization

Usually, in the numerical study of the conservation equations, them are expressed in
a quasi-linear form. The balance equation (2.5) can be linearized as follows

∂φ

∂t
+ Ai

∂φ

∂xi
− ∂

∂xi

(
Kij

∂φ

∂xj

)
+ Sφ + bi

∂z
∂xi

= 0 (2.10)
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where the matrices Ai and Kij are the linearization matrices of the convective fluxes
and the diffusive fluxes respectively. The convective matrices Ai are obtained after
applying the chain rule to the vector of fluxes Fi,

∂Fi

∂xi
=

∂Fi

∂φ

∂φ

∂xi
(2.11a)

Ai =
∂Fi

∂φ
(2.11b)

A1 =

2u1 0 −u2
1 + gh

u2 u1 −u1u2
1 0 0

 , A2 =

u2 u1 −u1u2
0 2u2 −u2

2 + gh
0 1 0

 (2.11c)

As seen before, the equation (2.5) is characterized by three eigenvalues. Those eigen-
values are defined by the matrices Ai. For the one dimensional case, there is a unique
definition of the eigenvalues, λ1,2 = u± c. In two dimensions, given the unit vector
e, the eigenvalues of the matrix eiAi are λ1,3 = e · u± c and λ2 = e · u. The eigen-
values are real and always different (λ1 < λ2 < λ3), this property is called strictly
hyperbolicity [149]. The eigenvalues are velocities, namely the ones of surface waves
on the fluid. Note that in the dry zones, where h = 0, the eigenvalues coincide and
the system is no longer hyperbolic. This introduces difficulties at theoretical and
numerical level.

The vectors bi are the result of the linearization of the topography using the same
procedure taken for Ai. They are obtained by the linearization of the fluxes Fi respect
to the topography coordinate z. Rearranging terms with the independent vector Q
yields

bi =

δi1c2

δi2c2

0

 (2.12)

Analogously, the viscous fluxes Gi are rewritten in a more convenient manner
as Gi = Kij∂φ/∂xj. The fourth order tensor Kij is obtained making use of equation
(2.8). It is an auxiliary variable to write the linearized tensor in Voigt’s notation. This
tensor will be defined latter, in the numerical model section.

The bottom friction term acting on the source term vector is linearized using a
reaction matrix S

S =


gn2|u|
h4/3 0 0

0 gn2|u|
h4/3 0

0 0 0

 (2.13)

In the following sections, the rain, the atmospheric pressure and the wind friction
will be neglected.

2.3 Shallow water equations with primitive variables

The presented, conservative, form of the shallow water equations –Saint-Venant
equations– is generally applicable. However, many variations are present in the
literature. The most common simplification is to express those equations in terms
of the reduced or primitive variables –velocity instead of flow rate–. Another alter-
native is to use relative variables, taking the free surface instead of the total water
depth.



14 Chapter 2. Governing equations for free surface flows

The primitive variables simplification reduces the non-linearity of the equations,
but its range of applicability is reduced. Particularly, the momentum would not
be conserved in a change of regime, like an hydraulic jump. This fact is related
to the evaluation of the convective fluxes, which depend on the flow rate gradient.
While the evaluation of the flow rate gradient using conservatives variables does not
present any problem, this operation is ill-conditioned when primitive variables are
used. In other words, in a change of regime there is a discontinuity in both velocity
and water depth, and the computation of the flow rate gradient involves the division
of two gradients tending to ±∞.

In spite of this accuracy limitation near shocks, the non linearity reduction makes
the primitive variables interesting from the numerical point of view, since less itera-
tion will be needed to achieve convergence. Furthermore, good results are obtained
for flows at low Froude numbers, such as estuaries, tidal currents or waves propa-
gation.

2.3.1 Equations and linearization

The non linearity of the SW equations can be reduced if they are expressed in terms
of the velocity. The primitive SW equations can be obtained by replacing the mass
balance equation into the momentum balance and expanding the derivatives:

∂ψ

∂t
+

∂Fi

∂xi
+ Q = 0 (2.14a)

ψ =

{
u
h

}
(2.14b)

Fi =


u1ui + δ1ig(h− zb)
u2ui + δ2ig(h− xb)

uih

 (2.14c)

Q =


gS1
gS2
0

 (2.14d)

The same linearization procedure can be applied if the variables ψ are smooth
enough. The following quasi-linear formulation will be obtained after applying the
chain rule,

∂ψ

∂t
+ Ai

∂ψ

∂xi
+ Sψ + bi

∂z
∂xi

= 0 (2.15)

where the tangent matrices Ai have been defined according to the differentiation
of the convective fluxes with respect to the unknowns, ∂Fi/∂ψ. Analogously, the
same procedure is applied to the topography terms and to the bottom friction. The
expression of the tangent matrices is

A1 =

 u1 0 g
0 u2 0
h 0 u1

 , A2 =

 u1 0 0
0 u2 g
0 h u2

 (2.16)

The same boundary conditions (2.2.1) are applied to the shallow water equations
written in primitive variables. The only difference is the substitution of the flow rate
by the velocity and that the flow rate is then expressed in terms of the velocity and
the hater depth.



2.4. Boussinesq modified equations 15

2.4 Boussinesq modified equations

The presented SW equations are suited to solve convective flows as well as free sur-
face waves. Both phenomena are present in the hyperbolic equations. However, as
long as the water depth increases, the oscillatory phenomenon or amplitude disper-
sion increases its relative importance. A new mechanism not included in the SW
equations appears in a wave dominated problem, the frequency dispersion [157]. It
is thereby necessary to quantify the effect of the new mechanism.

According to the classification of Peregrine [144], the dimensionless numbers of
non-linearity and dispersion relate the wave amplitude η, the water depth H and
the characteristic wavelength λ as:

ε =
η

H
, µ =

H
λ

(2.17)

Both parameters allow to link the concepts of amplitude and frequency disper-
sion. These concepts define how the wave propagates. Is well known that a wave
propagates at speed c =

√
gH, but due to the convective term, this speed also de-

pends on the wave amplitude, then introducing a non-linearity. Thus, considering
the non-linearity, the wave speed increases as c =

√
g(H + η). This phenomenon is

known as amplitude dispersion and a first consequence is that every wave will end
breaking, since the wave crest propagates faster than the wave bosom. The impor-
tance of the amplitude dispersion is related to the non-linearity ratio ε.

FIGURE 2.2: Boussinesq equations. Snapshots of a wave propagation.
Top: Amplitude dispersion. Bottom: Frequency dispersion

In practice, this phenomenon does not happen. From linear wave theory we
know that the celerity depends not only on the water depth, but also on the wavenum-
ber k = 2π/λ. This mechanism is known as frequency dispersion, which is missing
on the Saint-Venant equations. Figure 2.2 shows the two possible types of wave
propagation, with apmplitude dispersion or frequency dispersion. The introduction
of some extra terms leads to the Boussinesq equations, which model the frequency
dispersion. Once the frequency dispersion is included, classical soliton waves can
be obtained. In a soliton wave, breaking never occurs during the propagation, since
the non linear terms are in equilibrium with the dispersive terms.

2.4.1 Derivation of the modified Boussinesq equations

There are different ways to derive the Boussinesq equations with slightly different
results. Nwogu presented a general framework in [136]. A three dimensional wave
field with free surface elevation η(x1, x2, t) and water depth at rest H(x1, x2) is con-
sidered. The fluid is governed by the Navier-Stokes equations and the shallow water
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x1,x2

x3

ū
x1,x2

x3

uβ

•
βH

FIGURE 2.3: The modified Boussinesq equations consider the velocity
at an arbitrary depth βH instead of the mean velocity

assumptions are modified. The fluid is assumed to be incompressible and the flow
is assumed to be irrotational. As in the shallow water equations, the vertical ve-
locity is considered to be small, but the vertical acceleration is not negligible. The
nonlinearity and dispersion ratios (2.17) are assumed to be small. The last difference
between the shallow water equations and the Boussinesq consist in considering the
horizontal velocity at a specified water depth instead of the mean value (see Fig.
2.3).

Finally, the fluid at the free surface has to satisfy a dynamic and kinematic bound-
ary conditions and a kinematic boundary condition at the bottom.

p = 0 , at x3 = η

u3 =
∂η

∂t
+ u1

∂η

∂x1
+ u2

∂η

∂x2
, at x3 = η

u3 = −u1
∂H
∂x1
− u2

∂H
∂x2

, at x3 = −H

(2.18)

Then, the continuity and momentum equations are integrated from the bottom to
the free surface and applying the boundary conditions (2.18). Since the average hor-
izontal velocity has been substituted by the velocity at a certain depth, the vertical
profile of the velocities must be known. The key of the Boussinesq equations consist
in finding an assumption which preserves the the effect of the frequency dispersion.
The horizontal velocities u = (u1, u2) are expanded in Taylor series from the seabed
(x3 = −H),

u(x1, x2, x3, t) = u(x1, x2,−H, t) + (z + H)u3(x1, x2,−H, t)
+ 1/2(z + H)2u3,3(x1, x2,−H, t) + . . . (2.19)

where the 3 subscript denotes differentiation with respect to x3. Finally, the equa-
tions are evaluated at an arbitrary depth x3 = βH and the set of Boussinesq-type
equations are:

∂uβ

∂t
+∇η + (uβ · ∇)uβ + Ju = 0 (2.20a)
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∂η

∂t
+∇ ·

(
(H + η)uβ

)
+∇ · Jη = 0 (2.20b)

where the auxiliary fields Jη and Ju introduce the dispersive mechanism and are
defined according to the following expressions

Jη = C1H3∇∇ · uβ + C3H2∇∇ · (Huβ) (2.21a)

Ju = C2H2∇∇ · ∂uβ

∂t
+ C4H∇∇ · ∂(Huβ)

∂t
(2.21b)

and the Ci constants depend on the choice of β

C1 =
1
2

(
β2 − 1

3

)
, C2 =

β2

2
, C3 = β +

1
2

, C4 = β (2.22)

2.4.2 Dispersion properties and range of applicability

These equations present as a free parameter β the relative elevation at which the ve-
locity is evaluated. Its value ranges from −1 at the seabed, to 0 at the free surface.
Since the equations are an approximation of the fully dispersive and nonlinear prob-
lem, the parameter β is chosen to minimize the errors introduced by the approxima-
tion. In fact, the original Boussinesq equations do not present any dispersive term
in the mass balance equation (2.20b) and correspond to a specific choice of β.

The parameter β is fixed to −0.531 in [136]. This value has been obtained by
reducing the equations (2.20) to one dimension and flat bottom. Then, a trial function
of small amplitude periodic wave with wavenumber k and frequency ω of the type

η = a0 exp(i(kx−ωt)) , uβ = u0 exp(i(kx−ωt)) (2.23)

is substituted into (2.20b) and (2.20a). After some algebraic manipulation the follow-
ing expression for the phase speed is obtained:

c2 =
ω2

k2 = gh

(
1−

( 1
2 β2 + β + 1

3

)
(kh)2

1−
( 1

2 β2 + β
)
(kh)2

)
(2.24)

The relation between the frequency and the wavelength is also known as dispersion
relation. On the other hand, the dispersion relation given by the Linear wave theory
or Airy theory is given by

c2 = gh
tanh kh

kh
(2.25)

Finally, the value of β has been chosen to minimize the error at the range of ap-
plicability. Some other classical values of beta were obtained in [117, 128] and are
shown in Figure 2.4. Figure 2.4 shows the sensitivity of the phase speed c depend-
ing on the parameter β with respect to the phase speed obtained with Linear theory
cAiry. The shallow water equations, which drop the dispersive terms of equations
(2.20) are only valid for the shallow water regime (kh < 0.3). Fixing the free param-
eter β = −0.531 extends the range of applicability of the Boussinesq equations to
intermediate depths (kh < 3).

According to [157] the nonlinearity and dispersion parameters ε and µ can be
used for an alternative classification:

ε� µ This configuration correspond to the case where frequency dispersion domi-
nates the problem and linear or Airy theory must be used.
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10 1 100

kh

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

c/
c A

iry

shallow water intermediate water

= 0
= 0.423
= 0.531
= 0.553
= 1

c2 = gh

FIGURE 2.4: Comparison of normalized phase speeds of the Boussi-
nesq modified equations for different values of β

ε ∼ µ In this case frequency and amplitude dispersion are of the same magnitude
and the Boussinesq approximation can be used.

ε� µ In this situation the amplitude dispersion dominates the problem and the
wave will eventually break. This can be simulated using the Saint-Venant or
shallow water equations. Since the vertical velocity is assumed negligible, the
pressure distribution is assumed to be constant.

2.4.3 Boundary conditions

The boundary conditions presented in section 2.2.1 are applicable to the Boussinesq
equations. However, since the oscillatory behavior is usually prevalent over the
convective phenomenon, the boundary conditions are slightly different, both from
the physical and the numerical point of view. The three types of boundary condi-
tions considered for the Boussinesq problems, inflow ΓI , reflecting ΓR and absorbing
ΓA boundaries have a direct equivalence respectively with the inflow ΓI , solid ΓS
and outflow ΓO boundaries stated in section 2.2.1. Those subdomains are such that
ΓI ∪ ΓR ∪ ΓA = ∂Ω, being ∂Ω the boundary of the domain.

Reflecting boundary No fluid should pass through an impermeable wall. This
implies imposing the normal component of the velocity to be zero.

ū · n = 0 on ΓR

Following Woo and Liu [161], the above relation must be rewritten in terms of uβ

and the velocities are related as

ū = uβ + H−1Jη
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Hence, the complete formulation of a reflective boundary is

ūβ · n = 0 , Jη · n = 0 on ΓR (2.26)

Inflow boundary Both free surface and velocity are known at ΓI . Typically it is
used to impose a wave generator. Since the wave amplitude is known, the horizontal
velocity can be obtained using linear wave theory.

ū · n = u′ or η = η′ on ΓI

Since the Boussinesq equations are used to solve oscillatory problems, typically
in a subcritical regime, only one variable should be imposed. In the case of a su-
percritical regime, both variables must be imposed in order to define a well-posed
problem. Whereas the velocity is imposed, the same procedure with the dispersive
term than in ΓR should be considered. The corresponding Jη must be computed.
Imposing Jη · n = 0 is another possibility and it corresponds to consider ū = uβ.

Absorbing boundary Absorbing boundaries are known as the approximation of
open boundaries. An outgoing wave should not return to the computational domain
through ΓA. A practical implementation of absorbing boundaries are sponge layers
[92, 160] and will be explained in section 4.2
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Chapter 3

Finite Element Methods for the
shallow water equations

Due to the complexity of the geometry and the source terms, it is not possible to
find an analytical solution for the SW equations. This explains the need to design
strategies to find numerical solutions. In this chapter some numerical strategies
with the FEM in an eulerian framework are explored. The Eulerian frameworks
are robust and very efficient for continuous problems. However, discontinuities and
front tracking may require especial attention. Since flooding or moving shoreline
are part of the physical phenomena of interest, the identification of the dry domain
is a challenging problem for the Eulerian FEM. Moreover, monotonic properties are
especially interesting when partially wet domains are considered because the water
depth is a positive magnitude but, in general, numerical methods do not verify this
property.

The SW equations have traditionally been modelled using finite volumes (FV)
because of its advantages of stability and monotonicity. Given its geometric flexi-
bility and its natural way to introduce high order schemes, the FEM has been ap-
plied too [132, 133, 171]. Halfway between FV and FEM, there is the discontinuous
Galerkin (DG) technique [6, 95, 107]. DG method has the advantages of the geomet-
rical flexibility of the FEM and the stability of FV, but the introduction of high order
DG schemes is not straightforward. Since the FEM can exhibit spurious oscillations,
different strategies such as stabilization, monotonic schemes or different order of
polynomial interpolation can be explored [81, 137, 171].

In this chapter, the general procedure for FEM is presented. Then, some stabi-
lization techniques are explored: the Finite Increment Calculus (FIC) stabilization, the
Flux Correction (FC) technique and the Gradient jump viscosity (GJV) methods. Several
examples are provided to show the capabilities and limitations of each method.

3.1 Galerkin weak formulation

We consider a balance equation in the space domain Ω and the time interval [0, T].
Let φ and W be vector functions of the domain Ω× [0, T] and r the residual of the
balance equations expressed in terms of the unknown φ. The space of functions that
are square-integrable in Ω is denoted as L2(Ω). And the space of functions whose
derivatives up to order m ≥ 0 belong to L2(Ω) is denoted by Hm(Ω). The space
H1

0(Ω) consists on a subspace of H1(Ω) vanishing on ∂Ω.
Using this notation, the space of functions for the continuous problem are V ..=

H1(Ω) and for the test functions V0
..= H1

0(Ω). The variational form of the balance
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equations can be expressed as find φ ∈ V such that ∀W ∈ V0∫
Ω

W · r(φ) dΩ = 0 (3.1)

The standard Galerkin approximation 3.1 is straightforward. Let Ph be a parti-
tion of the domain Ω. The diameter of an element domain e ∈ Ph is denoted by le.
From the polynomial spaces defined by the finite elements, we can construct the sub-
spaces Vh ∈ V and Vh,0 ∈ V0. The Galerkin approximation of the balance equations
can be expressed as find φh ∈ Vh such that ∀Wh ∈ Vh,0∫

Ω
Wh · r(φh) dΩ = 0 (3.2)

Unfortunately, this problem is not straightforward to solve using finite elements,
as its discrete version is not numerically stable. In fact, to ensure that the problem of
finding φh has a stable solution, the space must verify the inf-sub condition [36].

3.2 Stabilized formulations for the shallow water equations

Several families of stabilization methods can be found in the literature, usually ap-
plied to the convection-diffusion equations and the Navier-Stokes equations. The
most relevant are SUPG [22], ASGS[35], GLS [83] and FIC[138, 141]. Due to the
hyperbolic character of the SW equations, a particular stabilization method for com-
pressible flow or the Euler equations need to be developed. The FIC approach is
based on the incremental solution of a modified system of non-local governing equa-
tions accounting for higher order terms obtained by applying the balance laws in
domains of finite size. The FIC-based stabilization has been applied in conjunction
with the FEM to convection-diffusion and incompressible flows, and solid mechan-
ics [58, 141, 142]. In those cases, where the convective term has an important role, a
first order FIC term is enough to provide stability to the system. However, the SW
equations are governed by the convective term and the wave equation in a mixed
formulation [37]. In consequence, the common derivation of the FIC-based stabi-
lization is not enough to provide stability in all the range of applicability of the SW
equations. A generalization of this method is proposed in order to provide a global
stability for the SW equations.

Once global stability is achieved, local instabilities may appear near discontinu-
ities, which are inherent to the supercritical flows. A local shock capturing technique
was initially proposed by Hughes [85] and a review of shock capturing techniques
can be found in Codina [36]. Other possibilities of the FIC-based formulations are
explored to provide a shock capturing stabilization [43].

Additionally, the dry domain requires an accurate modeling because the hyper-
bolic equations require positive water depth in all the domain. Several authors
have proposed different methods to solve the shallow water equations with mov-
ing shoreline. Leclerc et al. [106] proposed an Eulerian method. Later, Heniche et al.
[78] modified the method allowing the free surface to plunge under the topography.
Other authors developed a rough-porous layer [11, 28] or a modified depth inte-
gration [51]. These approaches introduce new physical parameters in the balance
equations. An Eulerian approach based on the work of [106] and [78] is presented in
this thesis.
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3.2.1 FIC stabilization

Let us start considering the quasi-linear balance equations written in residual form
as a vector

r ..=
∂φ

∂t
+ Ai

∂φ

∂xi
− ∂

∂xi

(
Kij

∂φ

∂xj

)
+ Sφ + bi

∂z
∂xi

i, k ∈ {1, nd} (3.3)

where nd = 2 is the number of dimensions. The size of the vector r is equal to the
number of balance equations, nb = 3.

In the one dimensional case (nd = 1) and scalar balance (nb = 1), the FIC-based
stabilization is based on a modified non local version of the governing equations
[141], where the fluxes are expanded using a Taylor approximation. The modified
residual reads

r− 1
2

le ∂r
∂x

= 0 (3.4)

The stabilization parameter le is usually taken the element length. However, in
2D and 3D, or when the number of balance equations nb is different than nd, the
choice of the le parameter is non trivial. Several approaches can be found in the
literature. In [141] le is chosen as a vector, but in later publications such as [142]
a generalized formulation for different values of nd and nb was presented. For the
stabilization of the Navier-Stokes equations different projections of the element size
over the velocity and over the velocity gradient have been proposed [43]. Here we
will use index notation for the residual vector r in order to distinguish the indices
that goes to nd or to nb. To sum up, the different forms of the FIC stabilization
procedure can be written as

rk −
1
2

le
i

∂rk

∂xi
= 0 i ∈ {1, nd} , k ∈ {1, nb} (3.5a)

rk −
1
2

le
u

ui

‖u‖
∂rk

∂xi
= 0 i, k ∈ {1, nd} (3.5b)

rk −
1
2

le
gi

∂u/∂xi

‖∇ui‖
∂rk

∂xi
= 0 i, k ∈ {1, nd} (3.5c)

We propose a stabilization term which is oriented along the characteristics of the
hyperbolic equations, as

rk −
1
2

le Ai

λ

∂rk

∂xi
= 0 i ∈ {1, nd} , k ∈ {1, nb} (3.6)

For consistency the linearization matrix Ai is normalized with the maximum eigen-
value λ = |u|+ c. This stabilization is analogue to the virtual multi-scale stabiliza-
tion proposed in [39]. The linearization matrix Ai provides a weighting procedure
between the stabilization of the convective and the mixed wave equation terms. In
practice the element size is multiplied by an algorithmic constant in order to control
the amount of diffusion added by the stabilization and it will be studied in the exam-
ples of Section 3.5. Recovering the vector notation for the residual, the FIC-balance
reads

r− βle Ai

λ

∂r
∂xi

i ∈ {1, nd} (3.7)

The FIC formulation is the result of introducing the residual of the shallow wa-
ter equations (3.3) into the expression in Eq (3.7). The variational expression of the
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equation is obtained by multiplying the equation by a test function ωk and integrat-
ing over the domain Ω. This gives∫

Ω

(
ωkr−ωkβle Ai

λ

∂r
∂xi

)
dΩ = 0 (3.8)

The second term of Equation (3.8) is integrated by parts. Note that the element
length le, the linearization matrix Ai and its eigenvalue λ are defined constant inside
the element. Hence, the boundary integral which appears after integration by parts
should be understood as the boundary of all the elements∫

Ω
ωkrdΩ +

∫
Ω

βle Ai

λ

∂ωk

∂xi
rdΩ−∑

e

∫
Γe

βle Ai

λ
ωknkrdΓ = 0 (3.9)

In this work we neglect the boundary integrals assuming that the residual r is null at
the boundary of the elements. At this point we introduce the balance Equation (3.3)
and integrate by parts the diffusive term. Derivatives of order higher tan two will
be neglected since we are using linear triangles. The result is

∫
Ω

(
ωk

∂φ

∂t
+ ωkAi

∂φ

∂xi
+

∂ωk

∂xi
Kij

∂φ

∂xj
+ ωkSφ + ωkbi

∂z
∂xi

)
dΩ

+
∫

Ω

βle

λ

(
∂ωk

∂xj
Aj

∂φ

∂t
+

∂ωk

∂xj
AjAi

∂φ

∂xi
+

∂2ωk

∂x2
j

AjKij
∂φ

∂xi

+
∂ωk

∂xj
Aj

(
Sφ + bi

∂z
∂xi

))
dΩ = 0 (3.10)

Equation (3.10) is the stabilized variational form for the shallow water equations,
similar to the expression obtained by SUPG. Note that the parameter βle/λ is analo-
gous to the characteristic time τ of the classical SUPG or GLS techniques [43].

3.2.1.1 Shock capturing stabilization

In this section we explore other possibilities of the characteristic length definition in
order to obtain a shock capturing stabilization. Here, the mass balance and the mo-
mentum balance are considered separately and the characteristic length is projected
onto the gradient of the unknown

Momentum balance: rq
i −

le

2‖∇qi‖
∂qi

∂xj

∂rq
i

∂xj
= 0 (3.11a)

Mass balance: rh − le

2‖∇h‖
∂h
∂xj

∂rh

∂xj
= 0 (3.11b)

Multiplying the momentum balance Equation (3.11a) by a proper test function
ωk, integrating over the domain in the same way as in Equation (3.8), one obtains
the following variational form:

∫
Ω

ωkrq
i dΩ−

∫
Ω

ωk
le

2‖∇qi‖
∂qi

∂xj

∂rq
i

∂xj
dΩ = 0 (3.12)
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After integration of Equation (3.12) by parts and rearranging terms we obtain

∫
Ω

ωkrq
i dΩ +

∫
Ω

∂ωk

∂xj

lerq
i

2‖∇qi‖
∂qi

∂xj
dΩ

+
∫

Ω
ωk

∂

∂xj

(
le

2‖∇qi‖
∂qi

∂xj

)
rq

i dΩ−
∫

Ω

∂

∂xj

(
ωk

le

2‖∇qi‖
∂qi

∂xj
rq

i

)
dΩ = 0 (3.13)

Since we will use linear triangles, the last two terms of Equation (3.13) are dropped
because they involve derivatives of the characteristic length and can be transformed
into a boundary integral.

The same procedure is applied to the mass balance equation (3.11b). As a result
we obtain the following system of equations for both unknowns

Momentum balance:
∫

Ω
ωkrq

i dΩ +
∫

Ω

∂ωk

∂xj

lerq
i

2‖∇qi‖
∂qi

∂xj
dΩ = 0 (3.14a)

Mass balance:
∫

Ω
ωkrhdΩ +

∫
Ω

∂ωk

∂xj

lerh

2‖∇hi‖
∂qi

∂xj
dΩ = 0 (3.14b)

The above expressions (3.14) are equivalent to a classical shock capturing method,
in which the artificial diffusivity kart and artificial viscosity νart can be identified as

νart =
1
2

αle
|rq

i |
‖∇ui‖

(3.15a)

kart =
1
2

αle
|rh|
‖∇h‖ (3.15b)

where α is an algorithmic constant.
Such approach can be refined by introducing the stabilization along the stream-

lines. This way, kart and νart need to be added only in the crosswind direction. The
diffusive term is added to the mass balance with the following orthogonal tensor

Dart = kart

(
I− 1
|u|2 u⊗ u

)
(3.16)

The viscosity is introduced into the momentum balance with a fourth order tensor
in the crosswind direction. Using Voigt’s notation,

Cart = νartI4J (3.17)

with

J =

1− q1q1
qq − q1q2

qq 0
− q1q2

qq 1− q2q2
qq 0

0 0 1− q1q2
qq

 (3.18)

where I4 is the fourth order identity tensor for the stresses, which is derived from
Equation (2.8) and will be defined in Section 3.2.2.

3.2.2 Finite element formulation

It is conventional to use a higher order of interpolation for the momentum or velocity
than for the water depth or free surface in order to develop stable finite element
formulations [13, 78, 81]. In this work we restrict ourselves to linear triangles for
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both q and h unknowns, since the FIC-FEM procedure is intrinsically stable. For
that reason, all terms including spatial derivatives of order higher than two will be
neglected. Bilinear quadrilaterals and higher order elements with the same number
of degrees of freedom for all the variables will be also stable.

3.2.2.1 Spatial discretization

Now the variational problem is expressed by its discrete counterpart to obtain the al-
gebraic formulation. The problem variables are interpolated with the basis functions
of the finite elements space as

φi =
nΩ

∑
a

Na(x)φai i ∈ {1, nb} (3.19)

where nΩ represents the total number of nodes in Ωh and φi are the problem vari-
ables defined in (2.6). Note that the shape functions are the same for all the variables,
h and qi. Here we introduce the notation φh for the vectors of nodal unknowns
-momentum and water height- on the finite element domain. Following the stan-
dard Galerkin discretization, the shape functions Na are used to interpolate the test
functions ωk and the unknowns. The continuous equation (3.10) is combined with
equation (3.14) and can be expressed as the following algebraic system of equations

[M + MF]φ̇h + [G + GF + L + LSC + R + RF]φh = T + TF (3.20)

where the dot (˙) means temporal derivative. The matrices in Eq. (3.20) without
subscript are related to the original problem (3.3); the matrices with subscript F cor-
respond to the terms added by the FIC procedure to ensure stability, and those with
the subscript SC are the terms added by the shock capturing technique. Using a, b
to denote the nodes, i, j to denote the space dimension index and k, l to denote the
balance equation number, the matrices in Eq. (3.20) are defined as

Mab =
∫

Ωe

NaINbdΩ Gab =
∫

Ωe

NaAi
∂Nb

∂xi
dΩ

Lab =
∫

Ωe

Ba

[
C 0
0 D

]
BT

b dΩ Rab =
∫

Ωe

NaSNbdΩ (3.21)

Tab =
∫

Ωe

Nabi
∂z
∂xi

dΩ +
∫

Γe

NatbdΓ

where the diffusive matrix Lab is defined using the derivatives matrix Ba and the
isotropic tensors C and D of viscosity and diffusivity. Note that the diffusivity is
zero, but the matrix structure will be reused for the stabilization. The viscosity tensor
in Voigt’s notation is constructed using the linearization matrices Kij. The matrix and
the tensors are given by

Ba =


∂Na
∂x1

0 ∂Na
∂x2

0 0
0 ∂Na

∂x2

∂Na
∂x1

0 0
0 0 0 ∂Na

∂x1

∂Na
∂x2

 (3.22a)

C = νI4 , D = kI2 , I4 =
1
3

 2 −1 0
−1 2 0
0 0 3

 , I2 =

[
1 0
0 1

]
(3.22b)
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The stabilization and shock capturing terms from Equation (3.20) result in anal-
ogous matrices with higher derivatives order, the boundary integral is neglected, i.
e.,

Mab
F =

∫
Ωe

βle

2
∂Na

∂xi
AiNbdΩ Gab

F =
∫

Ωe

βle

2
∂Na

∂xi
AiAj

∂Nb

∂xj
dΩ

Lab
SC =

∫
Ωe

Ba

[
Cart 0

0 Dart

]
BT

b dΩ Rab
F =

∫
Ωe

βle

2
∂Na

∂xi
AiSNbdΩ (3.23)

Tab
F =

∫
Ωe

βle

2
∂Na

∂xi
Aibj

∂z
∂xj

dΩ

3.2.3 Temporal integration

The resulting expression from the spatial discretization (3.20) can be written in the
following compact form

M̃φ̇h + K̃φh = f̃ (3.24)

where the symbol (˜) denotes the assembly of the system matrices and vectors for
all the elements. We have integrated this equation introducing a time discretization
using the well known BDF2 implicit scheme [19, 48]. The system of equations in a
discrete time domain yields

M̃φ̇n+1
h + K̃n+1φn+1

h = f̃n+1

φ̇n+1
h = β0φn+1

h + β1φn
h + β2φn−1

h

(3.25)

We will consider a variable time step to compute the BDF coefficients using the no-
tation tn+1 = tn + ∆tn:

β0 = τ(ρ2 + 2ρ)

β1 = −τ(ρ2 + 2ρ + 1)
β2 = τ

(3.26)

with

τ =
1

∆tn(ρ2 + ρ)

ρ =
∆tn−1

∆tn

(3.27)

The solution of this implicit system requires an iterative procedure. We have
used the Newton-Raphson method, by which the problem unknowns are computed
in an incremental way as φn+1,i+1

h = φn+1,i
h + δφi

h, where the superscript i denotes
the non linear iteration. This notation allows us to rewrite the system of equations
(3.25) defining a left hand side matrix multiplied by the increment δφi

h and a right
hand side vector which depends on the previous non linear iteration as

[β0M̃ + K̃n+1,i]δφi
h = f̃n+1,i − K̃n+1,iφn+1,i

h − M̃φ̇n+1,i
h (3.28)
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The first non linear iteration φn+1,0
h is initialized using a prediction given from the

BDF formula at the last time step:

φn+1,0
h = φn

h + ∆tnφ̇n
h (3.29)

3.2.4 Dry domain model

When small or quasi zero water depths are involved in simulations, some instabili-
ties may arise. In addition, the solution of the time integration scheme requires the
inverse of a matrix which is singular in the dry regions. In this section we review the
challenges associated to such a problem, and the way we have circumvented them.

Recovery of the velocity field The evaluation of the characteristic matrices Ai in-
volves the velocities, which are recovered given the primary variables φ from the
previous iteration. Since the computation of the velocity is the result of dividing the
discharge by the water height, this operation is ill-conditioned in the dry regions. In
this research, the velocity field is computed in a two step procedure. First of all, the
inverse of the water depth is computed at each element following the next expres-
sion, initially proposed in [99]:

ĥ−1 ..=

√
2 max(h, 0)√

h4 + max(h4, ε4)
(3.30)

where ε is a threshold which depends on the element size; usually ε = 0.1le is chosen.
Figure 3.1 shows a dimensionless representation of equation (3.30). The second step
in the velocity computation is a diffusive projection on the nodes:

MLu = ĥ−1
k M(q) (3.31)

where M is the consistent mass matrix and ML is the lumped mass matrix. This
projection will introduce some artificial diffusion in the velocity field near the dry-
wet interface reducing the possible maxima extrema.

The expression(3.30) tends to zero in dry or partially dry regions, while the ana-
lytical expression of the height inverse is recovered when h > ε.

Avoiding the singularity of the system matrix Since all the elements are included
in the computational domain, the last issue to overcome with small water depths are
the numerical difficulties stated in Section 2.2.2. When there is a null water depth,
the theoretical flow rate and velocity are zero. In that point the matrices Ai are not
invertible and the eigenvalues are all equal to zero. In that case, the hyperbolicity
property of the system is lost. In practice, due to spurious oscillations, the flow
rate and the velocity may be different from zero. The idea is to freeze the flow and
to allow to invert the system matrix adding a diagonal of non zero terms to the
momentum equation, i. e.,

G ..= G + ξ diag(1, 1, 0) (3.32)

The selection of the areas where there is a dry domain is controlled with the wet
fraction function and ξ is defined as

ξ = k(1− w) (3.33)
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FIGURE 3.1: Dimensionless functions to compute the inverse height
and the wet fraction.

In our numerical experiments we have chosen k = 103. The addition of a diag-
onal matrix remembers the artificial Manning friction proposed in [78]. This term
plays the role of freezing the flow in dry areas.

Mass conservation properties The stabilized method proposed is not monotonic
and the dry domain model is acting to ensure stability, but it does not provide mono-
tonicity. We note that all the modifications have been done at the momentum balance
level. This means that mass is conserved globally by the weak formulation, but the
mass sign preservation is not guaranteed.

Both unknowns, water depth and flow rate, are continuous at the dry-wet inter-
face, but its derivatives are discontinuous. Even though the shock capturing scheme
can not avoid this kind of oscillations, it will mitigate them, and the order of accu-
racy will be lost due to the introduction of the non-linear artificial diffusion [9].

3.2.5 Validation

In this section the linear stabilization is tested. Conceptual examples are presented
only to show the consistency of the linear stabilization and the lack of stability if it
is not considered. More complex examples which involve shock capturing at some
part of the domain are included at the end of the chapter.

3.2.5.1 Patch test

Following Zienkiewicz [172], the patch test has been used as a first verification of
convergence. These tests have been developed imposing stationary solutions and
obtaining the topography from the primary unknowns. The spatial domain Ω is a
single element e. Since the solution is stationary, the temporal domain is null and the
test consist on the verification of zero accelerations. Then, if the the solution belongs
to the basis functions space, the test will pass analytically. Otherwise, the test will
pass asymptotically when the element is refined by subdivision of the domain (h-
refinement). In that case, even if the element is not passing the test, the patch test is
also useful since is checking the correctness of the implementation.
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Several exact solutions have been applied to an element with size of 1m. For the
stabilized formulations a stabilization factor β = 0.01 is used. The flux corrected
solution depends directly on the stabilized formulation. If the solution belongs to
the FE space, the obtained accelerations are less than 10−16, which is the round-off
of machine precision.

Water at rest In this case, the free surface gradient and the velocity are zero. Some
solutions can be built with that conditions, such as flat and non-flat topography, and
bottom friction. In all the cases the accelerations are zero.

Slope in equilibrium This family of solutions verify constant water depth and
constant velocity. The gravity terms (coming from the slope) are in equilibrium with
the bottom friction terms. Several combinations are obtained with different direc-
tions of the slope and different Froude numbers, subcritical and supercritical.

Backwater analysis Finally, that family of analytical solutions, presents a constant
flow rate where the gravity terms are in equilibrium with the bottom friction. But
in that case, the primary unknowns do not belong to the FE space, since, either the
velocity or the water depth are not linear. This test is passing asymptotically.

3.2.5.2 Wave in a channel with a backward step

The aim of this example is to show that the Galerkin formulation applied to the
shallow water equations is unstable and how the present stabilization method can
overcome this issue. A calibration of the stabilization parameter is performed to
optimize the effect of the stabilization terms in the obtained solution. We study the
propagation of a wave in a channel with a backward step (Figure 3.2) where all
the boundaries are slip. The channel depth is 1m. An initial perturbation in the
free surface at the left wall generates a wave which travels from 0 to 6s. The initial
perturbation reads

η(t = 0) = 0.05 cos(πx) if x < 1, η = 0 otherwise (3.34)

The wave is reflected at the right wall and then faces the step in the opposite
direction. Figure 3.3 shows the propagation of the wave along the channel. The
problem is discretized with a mesh fine enough to test the artificial diffusion added
by the stabilization (Figure 3.2). The average element size is 0.06m and near the
corner the mesh is refined to 0.02m. The time step is set automatically to keep a
maximum Courant number equal to 1.0 at every step. The problem is run three
times with different algorithmic constants β = 0.001, 0.01 and 0.1. In this example,
the shock capturing term is disabled.
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FIGURE 3.2: Channel with a backward step. Domain and mesh used
in the simulation. All the boundary conditions are slip. The average
element size is 0.06m. Near the obstacle the mesh size is 0.02m. There

are 3.125 nodes and 5.826 elements.
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(B) Time from 3 to 6s

FIGURE 3.3: Channel with a backward step. Timestamps of the free
surface along the cut AA’ from Figure 3.2. (A) The initial perturbation
is propagating to the right. (B) Propagation of the reflected wave from

right to left.

The best results are achieved with the intermediate value and it has been fixed
for the rest of the examples in this paper. Figures 3.4 and 3.5 show that the lower
value of β is not enough to provide stability, while the higher value is over diffusive.
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(C)

FIGURE 3.4: Channel with a backward step. Contour plots of the free
surface elevation at time t = 1s for different stabilization factors. (A)

β = 0.001, (B) β = 0.01, (C) β = 0.1

(A)

(B)

(C)

FIGURE 3.5: Channel with a backward step. Contour plots of the free
surface elevation at time t = 5s for different stabilization factors. (A)

β = 0.001, (B) β = 0.01, (C) β = 0.1

3.3 The flux corrected algorithm for the shallow water equa-
tions

As seen in Section 3.2, the numerical approximation of hyperbolic systems -convection
dominant- exhibit instabilities. Those instabilities are inherent to schemes of order
greater than 1 (Godunov barrier theorem [66]). With the aim of suppressing the
spurious oscillations and to extend to stable schemes to higher orders, the flux cor-
rected (FC) algorithms were proposed. This new family of methods seeks for non
oscillatory solutions and also for monotonicity of the numerical solution. At first,
the FC algorithms were proposed for structured meshes and explicit time integra-
tion schemes [15, 16]. Generally, they were based for FD algorithms, but rapidly
were extended also to Galerkin discretizations and implicit schemes [114, 129]. Even
though, the FC transport has not been extended to many applications in the FEM
community.

In this section the concept of FC is extended to the SW equations. The linearized
equations presented in Chapter 2 can be understood as a generalization of the scalar
transport equations, where the convection operator is extended with a matrix and
the scalar unknown is replaced by a vector. This extension is proposed as an alter-
native to Lagrangian methods (Appendix A), where the shoreline discontinuity is
naturally captured. At the same time, it seeks for a better accuracy than the stabi-
lized Eulerian methods (Section 3.2): the introduction of the shock capturing leads to
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a lower convergence order, making them first order. The main purpose to explore
the FC algorithm is to make the numerical solution inherit the monotonicity of the
physical solution. The water column is a positive property, whereas null water depth
means the dry sub-domain. Tracking the zero isoline properly is of crucial impor-
tance to accurately model the wetting and drying processes -floods-. Unfortunately,
the zero isoline presents a discontinuity in the unknowns and the hyperbolic prop-
erty is lost, leading to numerical oscillations and consequently, losing the monotonic
property.

The FC algorithm is based on the modification of the resulting matrices from the
discrete weak variational. The formulation presented in Section 3.2.2 will be mod-
ified in order to enforce it to verify monotonic properties at the discrete level. The
subjacent correction acts in such way that all the modifications are conservatives,
namely, there is not gain or loss of fluid mass. The original scheme is recovered
where the solution is smooth and does no require modifications.

In order to achieve that properties, the low order scheme is constructed through
a lumping procedure of the mass matrix and the addition of enough diffusion in
order to eliminate the negative entries of the off-diagonal terms. In that way, the
construction of the low and high order schemes is performed elementally. On the
other hand, the computation of the fluxes and its limiters is computed nodally. Fi-
nally, the global assembly is element-wise, as far as the nodes belong to the elements.
The fact of recovering the high order scheme with consistent mass matrix is specially
interesting to accurately simulate transient problems.

3.3.1 Equivalence with pure convection problems

In a first instance, the FC algorithms where developed for the transport equations as
a two stage predictor-corrector algorithm. The correction of the fluxes had a direct
relation with the physical fluxes and were evaluated at the edges of the mesh, acting
directly to the entries of the global matrix.

Since the pure convection problem is a particular hyperbolic system of conser-
vation law, this algorithm was extended to more complex systems, like the Euler
equations. Here we will show the equivalence of the inviscid SW equations with
pure convection problems. The starting point are the linearized SW equations in
conservative form (2.10), which are analogue to the hyperbolic euler equations:

∂φ

∂t
+ Ai

∂φ

∂xi
= 0 (3.35)

The matrix Ai is diagonalizable and can be decomposed as Ai = TiΛiT−1
i . Kuzmin

[102] proposes this transformation for the one dimensional case. In high order di-
mensions, we can define a vector of transformed unknowns Φi = T−1

i φ which yields

∂Φj

∂t
+ Λi

∂Φj

∂xi
= 0 (3.36)

Since Λ is a diagonal matrix, the above expression consists on a set of decoupled
convection equations.

∂Φjk

∂t
+ Λikk

∂Φjk

∂xi
= 0, k = 1 : nb, i, j = 1 : nd (3.37)

In practice, instead of applying the FC concept to the diagonal system, the al-
gorithm will be extended to the original system os equations. The main difficulty
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which appears when the system is decomposed is that there isn’t a unique direc-
tion of propagation for each uncoupled unknowns. This is known as the dispersive
behavior of the shallow water equations.

3.3.2 Flux-corrected algorithm

The FC algorithm inherits the concept of limiting introduced by Boris and Book [16]
and was developed by Löhner [114] and Kuzmin [100]. They also extended the
concept of FC to the euler equations [102, 114]. In more recent developments, the
FC technique was applied to the shallow water equations by Ortiz [137]. However,
Ortiz presents an algorithm with a fully decoupled high and low order schemes. In
this section, the FC scheme is applied to the shallow water equations preserving the
same discretization for both high and low order schemes.

3.3.2.1 High and low order schemes

Usually, the high order scheme is a FEM solution, such as a Taylor-Galerkin [112] or
Characteristic Based Split (CBS) [137]. In this work, the high order solution uses the
spatial discretization presented in Section 3.2.2 with linear stabilization and with-
out shock capturing. The time integration scheme is the backward differentiation
formula from Section 3.2.3.

MCφ̇n+1 + Kφn+1 = q (3.38)

φ̇n+1 = β1φn+1 + β2φn + β3φn−1 (3.39)

where φ is the vector of the nodal unknowns and ˙( ) denotes the time derivative,
MC is the consistent mass matrix, K is the system matrix and q is the source term.
This scheme will be taken as reference for the high order scheme but, as any stabi-
lized and not monotonicity preserving formulation, is not oscillation-free, specially
near the wet-dry interface.

The low order solution is obtained from the high order scheme with a mass lump-
ing procedure and adding scalar diffusion to the high order scheme:

MLφ̇n+1 + (K + D) φn+1 = q (3.40)

D = cτ (ML −MC) (3.41)

The difference between the two systems of equations is the amount of artificial
diffusion which ensures monotonicity and can be formally written as

P(φn+1, φn) = (ML −MC)φ̇
n+1 −Dφn+1 (3.42)

Following Kuzmin [101], one can observe that the anti-diffusion P can be decom-
posed into a sum of internodal fluxes fij where the contribution to node i from the
node j is the opposite from i to j, that is fij = − f ji. This edge-based approach shows
that the quantity added to a node, is subtracted from another node, and the anti-
diffusion is conservative. For convenience we will keep the finite element structure.
The high order scheme is recovered if the unlimited correction P is added to the low
order scheme.
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3.3.2.2 Flux correction limiter

The essentials of the FC method is to switch between the low and high order solu-
tions in an adaptive fashion to satisfy the positivity constraint. The Zalesak limiter
is employed to define the amount of anti-diffusion added to the low order solution
which at the same time guarantee the positivity constraint for a given variable. The
main steps explained above are depicted in Figure 3.6.

The anti-diffusive fluxes are decomposed in those that increase the value and
those that decrease it, the increment Pi is decomposed in a sum of positive and neg-
ative contributions

Pi = P+
i + P−i , P±i = ∑

j 6=i

max
min {0, jij} (3.43)

While the maximum/minimum admissible increments depends on the solution
values at the neighboring nodes that share an element with node i

Q±i = max
min ∆φ±ij , where ∆φ±ij = max

min {0, φ̃j − φ̃i} (3.44)

where the ˜( ) symbol denotes a predictor for the solution at time tn+1. In order to
prevent the formation of spurious oscillations, the positive/negative anti-diffusive
flux should be limited by the following ratio

R±i =

{
min{1, Q±i /P±i } ifP±i 6= 0
1 ifP±i = 0

(3.45)

It is important to note that, in order to preserve mass conservation property, the
same limiter should be applied to all the element contributions. So, the most restric-
tive ratio is chosen:

ce = min{R±i } , ∀nodei ∈ elemente (3.46)

3.3.2.3 Iterative solution

Since the linearization matrix A depends on the solution at time tn+1, the system
matrix K needs to be updated at the end of each iteration and the low order algebraic
system of equations (3.40) is rewritten in residual based form

(
β0ML + K(m) + cτD

)
∆φ(m+1) = q−

(
K(m) + cτD

)
φ(m) −MLφ̇(m) (3.47)

where φ(0) = φn. After adding the limited flux correction and substitutions, the
system (3.47) yields

(
β0(cMc + (1− c)ML) + K(m) + cτ(1− c)D

)
∆φ(m+1) =

q−
(

K(m) + cτ(1− c)D
)

φ(m) − (cMc + (1− c)ML) φ̇(m) (3.48)

NOTE: the displacement or residual criteria does not converge if the ci limiter
vary along the iterations (m). There are some alternatives to overcome this issue:
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Step 1

High order solution
Low order solution
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High order solution
Low order solution
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High order solution
Low order solution
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FIGURE 3.6: Main steps of the FC algorithm for the computation of
the solution at time step tn+1.
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• to use a constant ci, obtained from the first iteration. This solution may not be
optimal and possibly does not preserve monotonicity;

• to use a semi-implicit time integration scheme which defines the predictor φ̃
see equation (3.44);

• to define an incremental limiting, this seems to be the most accurate scheme,
even though it is more diffusive than the presented one.

3.3.2.4 Limiting a set of equations and variable transformation

The presented limiting is based on the monotonicity requirements for scalar convec-
tion, however, the coupling of the shallow water equations require a synchronized
limiting for the correction factors. It is commonly accepted that for coupled systems
of equations the flux limiter taken the most restrictive among the set of variables
c+i = min{c+ik} and c−i = min{c−ik}. There are the following strategies to compute
the set of limiters c±ik :

• flux limiting in terms of the independent variables h, q;

• flux limiting based on several indicators as the total energy, water pressure or
maximum eigenvalue;

• transformation of the variables into characteristic variables in order to obtain a
set of decoupled system of equations where the principles of the flux correction
for pure convection can be applied.

In omission of source terms, equation (3.3) can be multiplied by the Ti base of
eigenvectors and transformed into a set of decoupled pure convection problems

∂Φjk

∂t
+ Λikk

∂Φjk

∂xi
= 0, k = 1 : dim + 1, i, j = 1 : dim (3.49)

This transformation should be computed locally at each node and depends on
the current solution at time tn+1. However, for the two dimensional case, the set of
variables φ is transformed in a two dimensional vector of variables Φi, hence the
scalar transport correction techniques should be extended to vectorial transport.

The difficulties presented by the variables transformation lead to the considera-
tion if it is worth computing them rather that directly using the independent vari-
ables or an indicator. The limiting based on the independent variables was the choice
presented in [114] and it is the approach followed in this study.

In section 3.5 the accuracy of the flux corrected algorithm will be analyzed and
compared against the residual-based formulation. In the following section an alter-
native to the flux corrected algorithm is explored.

3.4 Quasi monotonicity preserving formulations

The scope of this section is to recover the stabilized formulation from Section 3.2 and
apply some of the monotonic properties from Section 3.3. Authors as Burman and
Badia demonstrated that, under certain situations, stabilized monotonic solutions
can be obtained (see [9, 25, 26] for example). Following these authors, the stabiliza-
tions can be classified into residual and projections-based. In the first category, we
can find some stabilization methods, such as SUPG, GLS, VMS or FIC, based on the
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proposals of Hughes et al [22, 82, 83]. This is the option followed in Section (3.2). In
the second group, Codina proposed the Orthogonal Sub Scales (OSS) method [38].
The inconvenient of this method is the introduction of a global projection to solve
the sub-scales. As an alternative, methods with local projection stabilization (LPS)
appeared, see ([8, 9, 17, 24, 123])). The main difference among this methods and the
residual-based is tha they introduce only the terms which guarantee stability.

Nevertheless, the stabilizations are not a sufficient condition to ensure oscillation-
free solutions near discontinuities as they are not monotonicity preserving. The
monotonicity can be verified through the well-known shock-capturing methods.
Those family of methods present a good global convergence and introduce non-
linear viscosity around discontinuities [94]. Once again, there are two families for the
design of non-linear viscosity: the residual-based methods and the gradient jump
methods.

Taking into consideration both the accuracy and convergence, the best option
seems to be the combination of linear stabilization and residual-based shock captur-
ing. It presents a good global convergence and, only where it is needed, the order of
convergence is sacrificed with the introduction of artificial viscosity. Nevertheless,
this choice of stabilization leads to a scheme which does not guarantee the mono-
tonic properties of the system.

Burman proved that, under certain conditions, monotonicity can be achieved
using a nonlinear viscosity based on the variation of the gradient [26]. However, it is
important to consider that an arbitrary combination of methods can lead to the loss
of the monotonic properties offered by one of the two methods [9].

3.4.1 Shock capturing

Traditionally, the most used method to eliminate the spurious oscillations near dis-
continuities is the local artificial viscosity. Considering a discretization of finite ele-
ments 〈ω, r〉where 〈·, ·〉 is the discrete counterpart of the variational principle, a non
linear stabilization can be expressed as

〈ω, r〉+ s(ω, φ) = 0 (3.50)

where
s(ω, φ) = 〈ε(φ)∇ω,∇φ〉 (3.51)

and the non linear viscosity ε(φ) is sufficiently large near the discontinuities in order
to mitigate oscillations. In the framework of the FEM, the design of ε(φ) can be
residual-based (RV), gradient jump based (GJV) or entropy based (EV) [71]. Usually,
RV have been combined with linear stabilization and EV have been applied alone.
The argument that justify the choice of using EV without stabilization is that linear
stabilization acts as an hyper-viscosity term eliminating DMP property.

GJV methods introduce the concept of jump [[v]]a and average {{v}}a of a prop-
erty v in a point a belonging to the boundary of an element. Being n the normal
vector to the boundary, there are the following definitions

[[v]]a = lim
ε→0

(v(a + εn) · n− v(a + εn) · n) (3.52a)

{{v}}a =
1
2

lim
ε→0

(v(a + εn) · n + v(a + εn) · n) (3.52b)

Burman proposed in [26] a shock capturing with monotonic properties for the
Burgers equation in 1D. Badia extended that method to multiple dimensions for
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the scalar transport in [9]. Here, the proposed formulation for scalar transport is
applied to the SW equations, using the water depth as the transported property. The
formulation proposed in [9] is defined by the following artificial viscosity for each
element e:

ε(h)e = cgjvle‖A‖Linf
e

max
b∈e

[∫
b |∇h · n|dσ∫

b ‖∇h‖dσ

( ∫
b |[[∇h]]|dσ∫

b{{|∇h · n|}}dσ

)q]
(3.53)

The parameter cgjv is an algorithmic constant. The original expression depends
on some mesh shape parameters and the angles of the element. In practice cgjv = 1

2
is chosen, this expression coincides with the minimum value to guarantee mono-
tonicity in 1D. Nevertheless, the monotonicity is lost in 2D. It is not surprising to
lose monotonicity, since that property is even lost for the pure diffusion equation.
Even though, it exhibits an optimal behavior.

3.5 Examples

In this section we present four different examples. Three of them are oriented to
verify a single aspect of the procedure explained in this research, the global stabi-
lization, the shock capturing technique and the dry-wet interface. The last one is
devoted to test all the capabilities of the formulation in a practical case for which
experimental data is available.

3.5.1 Oscillation in a parabolic basin

This is a classical benchmark oriented to test the accuracy of the location of the mov-
ing boundary. The topography follows a parabolic profile and the water body oscil-
lates on it. The initial configuration corresponds to zero velocity but the free surface
is in a non horizontal plane. Given the parabolic profile of the topography, exists an
analytical solution for the oscillatory problem and the free surface elevation remains
planar. Details about the derivation of the analytical solution can be found in the
compilation made by Delestre et al. in [53].

The spatial domain Ω is defined in the interval [0, L] × [0, 1]m where L = 10m
and all the boundaries are reflective (u · n = 0). The topography is given by the
following expression

z(x, y) = h0

(
1
a2

(
x− L

2

)2

− 1

)
(3.54)

The primitive variables are defined by

h(x, y) =

{
−h0

(( 1
a

(
x− L

2

)
+ 1

2a cos(2Bt)
)2 − 1

)
if x1(t) < x < x2(t)

0 otherwise
(3.55a)

u(x, y) =

{
(B, 0) sin(2Bt) if x1(t) < x < x2(t)
(0, 0) otherwise

(3.55b)
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FIGURE 3.7: Parabolic basin. One of the meshes used in the analysis.
The element size is 0.1m.

where B =
√

2gh0/2a, and x1, x2 are time dependent functions which define the
location of the dry-wet interface:

x1(t) = −
1
2

cos(2Bt)− a +
L
2

x2(t) = −
1
2

cos(2Bt) + a +
L
2

(3.56)

In that example the selected parameters are h0 = 1m and a = 1m.
The domain Ω is discretized using several meshes in order to perform a conver-

gence analysis. The meshes employed are listed in Table 3.1. Figure 3.7 shows one
of the intermediate mesh. Once the simulation begins, the water starts to oscillate
on the parabolic basin and the velocity field is constant on the spatial domain, while
follows a periodic function respect to the time.

A cut along the mesh is depicted in Figure 3.8 showing the free surface, the veloc-
ity and the location of the shoreline. Since the shoreline is moving, several problems
may arise, such as the stability of the wetting or drying element or capturing the
discontinuity of the velocity. Fortunately, the velocity is not a a degree of freedom
and this will help to avoid spurious oscillations in the vicinity of the shoreline.

nnodes ∆x ∆t CFL L2(erel)
205 0.25 0.008 0.5 0.24

1,111 0.1 0.003 0.5 0.064
4,221 0.05 0.002 0.5 0.023

11,356 0.03 0.001 0.5 0.013
101,101 0.01 0.0003 0.5 0.0049

TABLE 3.1: Parabolic basin. Convergence error for the water height.
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FIGURE 3.8: Parabolic basin. Cuts along the mesh of size 0.03m at
different times. There are 333 nodes on the cut.

A global representation of the solution at time t = 1s is presented in Figure 3.9.
In that case the finest mesh (∆x = 0.01m) has been used, for visualization purpose
the discretization is not shown. As expected, there is no variation on the results in
the transversal section.

(A)

(B)

(C)

FIGURE 3.9: Parabolic basin. Contour lines with the fine mesh of
size 0.01m at time t = 1s. (A) Water height, (B) x-discharge and (C)

x-velocity. There is no legend for simplicity.

Combination of linear with non linear stabilization The main problem of lin-
ear stabilizations is the loss of the monotonic properties which may be provided by
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nonlinear stabilizations. For that reason, in [71] is proposed to use a nonlinear sta-
bilization alone. This is the case of EV. However, the use of nonlinear stabilization
alone, may lead to unwanted results. The most common undesired results are such
as terracing near the boundaries [102, 114] and mesh-dependent diffusivity [9].

It is known that the combination of GJV with SUPG or FIC is not monotonicity
preserving. However, the monotonic properties can be improved if it is compared
against a standard RV method. The convergence of the presented methods is com-
pared in Figure 3.10.
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FIGURE 3.10: Parabolic basin. Convergence graph.

A mass conservation test is performed with the mesh of size 0.05m in a simula-
tion of 5s. The results are presented in Figure 3.11. The integration of the mass is
performed over all the domain and over the wet domain. The wet domain is identi-
fied with the wet fraction, requiring that it is equal to 1. Since the presented schemes
are not mass sign preserving, the wet mass can not be equal to the total mass and a
small fraction is lost from the wet domain. The loss depends on the element size and
presents an oscillatory behavior inherent of the method.

Regarding the different non linear stabilizations, it is clear that none of the pre-
sented methods is able to ensure monotonicity. Nevertheless, the gradient jump vis-
cosity method reduces the magnitude of the oscillations. Another interesting feature
is that the maximum oscillation is bounded and does not increase during the natu-
ral oscillations of the sloshing. The flux-corrected algorithm presents the maximum
spurious oscillations.
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FIGURE 3.11: Parabolic basin. Mass conservation error. The element
size used in this simulation is 0.05m.

3.5.2 Short channel with smooth transition and shock

The second example consists on a benchmark based on the Mac Donald’s type so-
lutions [115]. The analytical solution can be found in the compilation which was
referenced in the previous example [53]. This test presents a channel with a steady
state solution. There is a subcritical inlet and a transcritical flow is produced. The
outlet is also subcritical and then a shock is generated at 2/3 of the channel. The
aim of this example is to evaluate the shock capturing technique presented and the
correct location of the hydraulic jump, which depends on the bottom friction law.

Here we will consider the 1D shallow water equations without diffusion and
only with Manning bottom friction as source term. A steady state solution satisfies
∂q
∂x = 0 and Equation (2.5) reduces to

∂z
∂x

=

(
v2

gh
− 1
)

∂h
∂x
− n2 |v|v

h4/3
(3.57)

This relation allows to integrate the topography given an analytical expression for
the water height. Another approach in hydraulics is to consider a given discharge
and topography and integrate the water height using Equation (3.57). Following
both approaches exact solutions can be obtained. Since this expression involves the
bottom friction, we can verify if the friction term is correctly coded in order to satisfy
the steady state.

For this benchmark we have considered the domain defined by the spatial do-
main [0, 100]× [0, 5] which is a channel of 100m length and 5m width (Figure 3.12),
and the following boundary conditions:

qx = 2 m/s in Γupstream

h = hex(100) in Γdownstream

qy = 0 in Γwalls

(3.58)

The problem is initialized with the following values:

h(x, 0) = max(hex(100)− z(x), hex(0))
q(x, 0) = 0

(3.59)
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nnodes ∆x ∆t CFL L2(erel)
204 2.0 0.005 0.016 0.177
606 1.0 0.005 0.031 0.138

2211 0.5 0.005 0.062 0.088
13026 0.2 0.005 0.15 0.041

TABLE 3.2: Short channel. Error for the x-discharge.

The Manning coefficient is 0.0328 m−1/3s and the water height hex(x) is a piece-
wise function defined in [53]. The discontinuity of the water height function is lo-
cated at x = 200/3m and defines the hydraulic jump. The expression of the station-
ary exact water depth is:

hex =


(

4
g

) 1
3 ( 4

3 − x
L

)
− 9x

10L

( x
L − 2

3

)
, for x < 2L

3(
4
g

) 1
3
(

a1
( x

L − 2
3

)4
+ a1

( x
L − 2

3

)3 − a2
( x

L − 2
3

)2

+a3
( x

L − 2
3

)
+ a4

)
, for x ≥ 2L

3

(3.60)

where a1 = 0.674202m, a2 = 21.7112m, a3 = 14.492m, a4 = 1.4305m and L = 100m.
The topography is obtained by a numerical integration using the fourth order Runge
Kutta method.

As in the previous example, several meshes are employed and a convergence
analysis is performed (Figure 3.13). The shock capturing parameter is α = 1.0 and
we will study the accuracy of the hydraulic jump. Given the initial conditions, the
hydraulic jump is generated between the first 50 and 80s. The overall error is com-
puted at time t = 200s, in order to ensure the stationary state is achieved. The table
from Figure 3.13 shows the error of the x-discharge over all the domain using the L2
norm.

Results from different meshes are compared in Figures 3.14a and 3.14b. The os-
cillations are reduced with the finer mesh (Figure 3.14b), but there is a peak on the
discharge at the location of the shock. This peak is initiated because the momentum
balance includes the gradient of the total water depth, and the analytical gradient is
a Dirac delta function.

Inlet Outlet

FIGURE 3.12: Short channel. Geometry of the channel. The vertical
line shows the position of the hydraulic jump.

3.5.3 Experimental dam break flow against an isolated building

The last example consists on the reproduction of the experiment carried out by
Soares [155]. A dam break flow with a building downstream is simulated. The
problem definition is depicted in Figure 3.15. The channel is 3.4m wide and the end
of the dam is located at x = 0. As initial conditions, the water depth is set to 0.4m in
the reservoir, while the channel is dry. The Manning coefficient is 0.01sm−1/3 over all
the domain. At the beginning of the simulation, the gate of the dam is removed and
the water is allowed to flow around the building.

There are some gauges (Table 3.3 and Figure 3.15) where the water height and
velocity are recorded. Experimental data is used to validate the numerical method.
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FIGURE 3.13: Short channel. Convergence graph for the x-discharge.
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FIGURE 3.15: Experimental dam break flow. Definition of the isolated
building benchmark. The dimensions are in m.

The domain is discretized with a mesh with an average element size of 0.05m.
There are 115.000 elements and the time step is computed to keep a courant number
of 1.0. Figure 3.16 displays two details of the mesh, near the dam and around the
building.
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FIGURE 3.14: Short channel. Graph along the cut defined by the cen-
ter of the channel.

Gauge number X Y
1 2.65 1.15
2 2.65 -0.60
3 4.00 1.15
4 4.00 -0.80
5 5.20 0.30
6 -1.87 1.10

TABLE 3.3: Experimental dam break flow. Positions of the gauges,
units in m.
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FIGURE 3.16: Experimental dam break flow. Detail of the mesh near
the dam and around the building. The coarse elements have an aver-
age size of 0.06m and the refined area has an average element size of

0.02m. There are 160.000 elements.

To get a general idea of the flow, Figure 3.17 shows several results of the water
depth after the gate release. Figure 3.18 shows the evolution of the water depth at
the gauges. An initial delay is observed in the propagation of the front in the gauges
1 to 5.

Gauge 1 is located upstream of the building and close to the left wall of the chan-
nel. In gauge 1 there are the main discrepancies between the numerical and experi-
mental results. The vicinity of the wall is responsible for the rapid variations in the
water level. After the arrival of the front wave, this is reflected in the wall and a
second raise of the water level is observed. About t = 6s, an oblique hydraulic jump
is formed and registered in gauge 1. The two first shocks are well captured by the
numerical results, but the oblique hydraulic jump is registered latter, at t = 10s, and
there is a general overestimation of the ones for the water depth values.

The main hydraulic jump in gauge 2 formed by the reflection against the building
is registered at t = 15s, but in the numerical simulation is it formed very rapidly,
presenting a discontinuity in time.

Gauge 3 is located at the left hand side of the building, where multiple waves are
reflected and practically always it is in subcritical regime. There is a good correlation
between numerical and experimental results. Gauge 4 is at the opposite side of the
building but the superposition of the reflected waves is more clearly identified. The
main discrepancies in the results are concentrated in the first seconds, where the
flow is more dynamic.

Gauge 6 is located at the reservoir and registers the superposition of smooth
waves during the emptying of the tank.

As stated in [155] there are some difficulties in the recording of the velocity and
its validity is discussed. Here we compare only the most representative gauges.
Gauge 2 is not fully submerged and the validity of the measurements is good after
t = 14.5s. It illustrates the change from supercritical flow to subcritical (Figure 3.19).
The considerations are similar to the water depth study.

The experimental measurements in gauge 4 (Figure 3.20) show a change in the
velocity direction around t = 15s due to the rise of water level. The numerical re-
sults do not capture this change but the mean and the stationary values are correctly
simulated.

In gauge 5 the formation of eddies behind the building can be appreciated from
t = 20 (Figure 3.21). In that case, the experimental results have difficulties to capture
the eddies. Results will probably improve by extending the refined region of the
mesh. The only method able to reproduce the eddies is the RV.
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FIGURE 3.17: Experimental dam break flow. Results of the bench-
mark at times 0, 1 and 3 seconds
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FIGURE 3.18: Experimental dam break flow. Comparison between
the obtained water depth with the reference data.
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FIGURE 3.19: Experimental dam break flow. Comparison of velocity
at gauge 2.
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FIGURE 3.20: Experimental dam break flow. Comparison of velocity
at gauge 4.

0 10 20 30
time [s]

0.5

0.0

0.5

1.0

1.5

ve
lo

cit
y 

[m
/s

]

Gauge 5 u1

0 10 20 30
time [s]

1.0

0.5

0.0

0.5

Gauge 5 u2

RV
FC
GJ
Exper.

FIGURE 3.21: Experimental dam break flow. Comparison of velocity
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3.6. Concluding remarks 51

In fluid-structure interaction studies, pressure is needed to compute to forces
over the structure. The shallow water assumptions drop the dynamic pressures re-
taining only the hydrostatic ones. In the present case, the pressures are recovered
by integrating the hydrostatic pressures given the water depth around the building.
However, there is no experimental data about the forces applied to the building and
thus, the importance of the dynamic pressures can not be evaluated.

Regarding the performance of the FIC-FEM formulation, it captures the main as-
pects of the flow, but not the details, since there are some regions on that experiment
which violate the shallow water approximations.

3.6 Concluding remarks

In this chapter the Finite Element approximation for the shallow water equations
has been presented. The interpolation of the solution to the shallow water equations
using Finite Elements induces some difficulties which have been addressed.

The first problem is the instabilities related to the inf-sup condition when the
same interpolation is used for all the unknowns. The FIC-FEM formulation has been
extended to the SW equations to overcome these instabilities. The main contribution
is the projection of the characteristic length onto the linearization matrices Ai. This
procedure present an algorithmic constant and has been fixed to β = 0.01.

The second and third issues are closely related. One is the rise of local instabil-
ities around hydraulic jumps and the last is the Gibbs oscillations at the shoreline.
Both phenomena are solved introducing enough diffusion near the problematic re-
gions, this procedure is known as non-linear stabilization. Some traditional methods
aiming to provide local stability have been extended to the SW equations.

The Residual Viscosity (RV) method is firstly presented. It is the most consistent
method among the three non-linear stabilizations presented in this chapter. Since
the added viscosity depends on the residual, it introduces a non linearity and the
order of convergence is lost in the regions where the non-linear stabilization is act-
ing. Nevertheless, the global order of convergence is kept and good solutions are
obtained. An algorithmic constant controls the amount of artificial viscosity intro-
duced and it has been fixed to α = 1.0.

The second non-linear stabilization presented in this chapter is the Flux Corrected
(FC) algorithm, which combines two solutions. It could be used without linear sta-
bilization, however, it is helpful to use a stabilized high order solution. Otherwise,
phenomena such as terracing or excessive diffusivity, may appear. There are some
difficulties with the definition of the convergence criterion. Even if the incremental
displacements of the iterative solution are used as a measure of the convergence, the
desired convergence is slowly achieved. The required number of iterations is higher
than those required for a RV shock capturing. A practical option is to limit the iter-
ations up to a fixed number. However, this approach will lack an accurate control
of the obtained precision for transient problems. For example, the flow in front an
obstacle is highly dynamic and it might require more iterations than the prefixed
number.

Furthermore, the extension of the FC principles to the SW equations is not mono-
tonicity preserving. Apart from the linear stabilization, the main responsible of the
lack of monotonicity is the flux limiter. The flux limiters were initially designed for
pure convection problems and when those are extended to the SW equations some
limitations arise. Mainly, there is no a unique decomposition in pure convection
problems. Then, the naive option has been chosen in this chapter: to choose the
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water depth a indicator. This option lose the monotonicity but the solution is rea-
sonably good without increasing the computational cost.

The computational cost of FC is high. Though the algorithm has to solve a system
with the same number of degrees of freedom than a linear stabilized problem (3.2),
the introduction of the corrections is non linear. Regarding the global solution and
its robustness, good results are obtained. However, a better order of convergence is
expected.

Finally, the Gradient Jump Viscosity (GJV) belongs to the same family than RV,
since it it based on the introduction of viscosity. Though the extension of this method
to more than one dimension is not monotonic, that is the less oscillatory method
presented in this chapter. Its main drawbacks are the amount of additional viscos-
ity and its lack of consistency with the source terms. Over-diffusive results have
been observed in the last example, the dam break against an isolated building 3.5.3.
Especially, the added diffusion inhibits the formation of shedding vortices behind
the building. The lack of consistency is observed on the way the viscosity is added.
Since the viscosity is not based on the residual but on the gradient jump, the pres-
ence of a high gradient on the topography will be translated on a region of additional
diffusivity, even if the solution does not present a discontinuity.

To summarize, all the three methods have presented good results. There are
slightly differences depending on the problem, if it is transient or stationary, if it
presents a moving shoreline, if there are high topography gradients, etc. The pre-
ferred option is the RV method since it is consistent with the equations and it is
derived from the linear stabilization. This method will be used in the following
chapters.



53

Chapter 4

Finite Element Method for the
Boussinesq modified equations

In this chapter, a FEM approximation for the Boussinesq modified equations is pre-
sented. Having a numerical approximation for the Boussinesq modified equations
is mandatory when waves are studied on a two dimensional scenario and a complex
bathymetry is considered.

Several numerical models appeared in the bibliography to solve the Boussinesq
equations, under the possible variations for considering the dispersive terms. Abbot
pioneered the FD schemes in [1, 2] applied to the original Boussinesq model. Later,
Wei and Kirby solved the modified equations presented by Nwogu [136] using a FD
scheme in [160]. The main advantage of the FD is the ease of treatment higher differ-
ences, even though the main difficulty consists on representing complex domains.
Smallman was a pioneer applying the FD to harbours [154].

A decade later, some FEM were developed to solve Boussinesq equations. In
that case, some special treatment needs to be applied to the high order derivatives.
Langtangen [103] used quadratic triangles while most of the authors use an inter-
mediate variable. Li and Liu [108] used bilinear quadrilaterals and used a projection
to approximate the gradient. Walkley [158] and Woo [161, 162] used a projection
to interpolate the second order derivatives filed. Surprisingly, the authors reported
high frequency oscillations and proposed ad-hoc solutions, but until Codina [37, 39]
none of them associated the oscillations to the incompatibility of interpolation.

The method has been solved using DG [57] and FV [18, 156]. As reported by
Stansby [156], since the FV is non-oscillatory, it needs special techniques to accu-
rately approximate the oscillatory behavior of the Boussinesq equations.

This chapter includes the developments presented in chapter 3 and presents the
new techniques associated to the oscillatory and dispersive problem. Som exam-
ples are included in order to test the accuracy and to show the capabilities of the
presented algorithms. Finally, the chapter is closed with the concluding remarks.

4.1 Stabilized formulation for the Boussinesq modified equa-
tions

As stated in section 2, the Boussinesq equations and the Saint Venant equations are
of the same family. Apart from the choice of different primary variables, the main
difference consists on the inclusion of the dispersive terms. However, part of the
structure of the equations remains unmodified.

The weak principle, the linear stabilization and the spatial discretization pre-
sented in section 3 will be directly applied for the Boussinesq modified equations.
The main differences arise from the dispersion terms. First of all, the dispersion
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terms include spatial derivatives of order higher than two. Thus, special techniques
for considering the third order derivatives will be included in the FEM procedure.

Secondly, the time discretization will be modified using a semi-implicit fourth-
order scheme. The new time scheme allows to deal with the oscillatory behavior of
the Boussinesq equations. Additionally, the matrix structure will suffer some modi-
fications related to the high order derivatives and the time integration scheme.

Regarding the shock capturing, usually it is not needed since the dispersion ef-
fect prevents from breaking and the formation of steep gradients. However, in the
vicinity of the shoreline or very shallow domains, the amplitude dispersion effect
could dominate over the frequency dispersion, making very recommended the in-
clusion of a shock capturing technique. Furthermore, if the shoreline is included, the
shock capturing is required, since it provides stabilization for the moving front.

On another note, a section regarding the numerical treatment of absorbing bound-
ary conditions is included. The inclusion of the frequency dispersion and the need of
shortening the computational domain, lead to the open boundary conditions. On an
open boundary conditions, waves can exit the computational domain and reflections
must be avoided. The numerical approximation for the open boundary conditions
are called absorbing boundary conditions.

4.1.1 Weak formulation and linear stabilization

The Boussinesq equations are solved using the FEM. The background of chapter
3 allows to interpolate the space domain with a Galerkin discretization of linear
triangles or bilinear quadrilaterals. A finite difference scheme with constant time
step is used to integrate the equations in time.

The variational form of the Boussinesq modified equations (2.20) presented in
section 2.4 reads ∫

Ω

(
U

∂uβ

∂t
+ U∇η + U(uβ · ∇)uβ + UJu

)
dΩ = 0 (4.1a)

∫
Ω

(
E

∂η

∂t
+ E∇ ·

(
(H + η)uβ

)
+ E∇ · Jη

)
dΩ = 0 (4.1b)

where the auxiliary fields Jη and Ju are defined in (2.21) and involve second order
derivatives of uβ and ∂uβ/∂t. E and U are the corresponding test functions for η and
uβ.

In spite of the staggered formulation for the mass and momentum conservation,
it is still a mixed wave formulation and the linear stabilization obtained by the FIC
procedure will be applied. The additional term associated to the FIC residual could
be projected onto a more general linearization matrix, including also the effects of
the dispersive terms. However, the dispersive terms include different derivatives
order. Since the current FIC stabilization only considers first order derivatives, the
new residual term will be projected onto the fluxes matrices Ai:

A1 =

 uβ1 0 g
0 uβ2 0

H + η 0 uβ1

 , A2 =

 uβ1 0 0
0 uβ2 g
0 H + η uβ2

 (4.2)

where each term is obtained by linearization of the Boussinesq modified equations.
The derivation of the full variational stabilized formulation is straightforward and
for the sake of simplicity it is not shown. Once the equations are stabilized, a numer-
ical procedure to deal with the dispersive fields Ju and Jη needs to be defined.
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4.1.2 High order derivatives and dispersive fields

Most of the authors (see [39, 108] as an example) use a projection for the intermedi-
ate variables. However, Ju only includes one time derivative and two spatial deriva-
tives. Hence, it belongs to the finite element space and in can be integrated by parts.

Following [158], the third order spatial derivatives corresponding to the mass
balance dispersion are modelled using Jη as an intermediate variable. There are sev-
eral ways of computing the intermediate field Jη . The first possibility is to compute
it in a monolithic way, adding Jη to the degrees of freedom. A more interesting op-
tion is to compute it in a staggered way using a projection. In that case, the number
of degrees of freedom is not increased and thus the time consuming performance of
the scheme is unaltered.

Finally, the projection for the auxiliary field Jη can be replaced by a gradient re-
covery technique. In that section this option is analyzed, since the gradient recovery
provides more regularity, at the same time, it is very efficient.

The gradient recovery technique was initially proposed by Zienkiewicz and Zhu
in [173]. Later, Zhang and Naga proposed some improvements for the super con-
vergent gradient recovery in [169] at boundaries. Finally, some improvements have
been proposed in [3, 163] for adaptive meshes, but the last improvements are not
going to be considered in this research. The basis of the gradient recovery consists
on fitting a k + 1 polynomial degree where the finite elements space is of degree k.

4.1.2.1 Derivatives recovery algorithm

The main idea of the derivatives recovery is to introduce an operator Gh : Sh → Snd
h ,

where Sh is a polynomial finite element space of degree k over a triangulation Th and
nd is the space dimension. After determining the values of Gh at all nodes, given a
solution uh , Ghuh ∈ §nd

h is obtained on the whole domain. The triangulation can
be replaced by a quadrilateral discretization. In both cases, only vertices nodes are
considered, nor edge or internal nodes.

For a vertex xi and being le
i the size of the largest edge attached to xi, a ball is

defined around it:
Ble

i
(xi) = {x ∈ Th : |x− xi| ≤ le

i } (4.3)

and all the vertices inside the ball are selected. If the number of nodes nn inside the
ball Ble

i
(xi) is less than m = (k + nd)(k + nd + 1)/2, then the ball is extended to two

times the edge length, B2le
i
. This process of increasing the radius is repeated until

there are enough nodes in the ball. The nodes inside a ball are denoted as xij and the
polynomial pk+1 is fitted using local coordinates with xi at the origin and the scaling
parameter l = le

i ,
pk+1 = PTa = P̂Tâ (4.4)

where

PT = (1, x, y, x2, ..., xk+1, xky, ..., yk+1), P̂T = (1, ξ, η, ξ2, ..., ξk+1, ξkη, ..., ηk+1)

aT = (a1, a2, ..., am), âT = (a1, la2, ..., lk+1am),

And the coefficient vector a is determined by the linear system

AT Aâ = ATbh (4.6)
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where bT
h = (uh(xi1), uh(xi2), ..., uh(xinn)) and

A =


1 ξ1 η1 ... ηk+1

1
1 ξ2 η2 ... ηk+1

2
...

...
...

. . .
...

1 ξnn ηnn ... ηk+1
nn


A condition for (4.6) having solution is that Rank(A) = m, which is practically al-
ways satisfied when nn > m and the mesh has a reasonable quality. Finally, it is
possible to define the gradient at the point xi as

Ghuh(xi) = ∇pk+1(0, 0, xi) (4.7)

Similarly, the gradient of a divergence can be obtained when the polynomial is
applied to a vector field. This procedure can be applied up to derivatives of order
k + 1, which for linear elements are second-order derivatives. Finally, the gradient
of the divergence reads

Lhuh(xi) = ∇∇ · pk+1(0, 0, xi) (4.8)

Since the values of the nodal unknowns uh are not known a priory, the vector
of coefficients a will be expressed as a linear combination of uh(xij). Depending on
which derivatives of P are seek, the linear combination will be some selected rows
of (AT A)−1AT.

4.1.2.2 Discrete counterpart

Finally, the combination of the discrete variational principle of equations (4.1) with
the gradient recovery technique yields

∫
Ω

(
Uh

∂uβh

∂t
+ Uh∇ηh + Uh(uβh · ∇)uβh+

∇Uh

(
C2H2∇ · ∂uβh

∂t
+ C4H∇ ·

(
H

∂uβh

∂t

)))
dΩ = 0 (4.9a)

∫
Ω

(
Eh

∂ηh

∂t
+ Eh∇ ·

(
(H + ηh)uβh

)
+

Eh∇ ·
(
C1H3Lhuβh + C3H2Lh(Huβh)

))
dΩ = 0 (4.9b)

Definition (4.9) completes the spatial discretization of the problem. It is impor-
tant to recall that the stabilization terms are omitted but should be introduced in the
algebraic formulation.

Moreover, in order to extend the present formulation to the shoreline, three mod-
ifications are made. Firstly, the terms not including time derivatives are multiplied
by the et fraction w. Secondly, a residual-based viscosity stabilization is added, act-
ing as a shock capturing where waves break and steep gradients are formed. Lastly,
an artificial damping in the dry domain is added to the momentum balance in order
to freeze the flow in dry areas.
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4.1.3 Time discretization

The discrete formulation (4.9) is expressed in matrix form as

(M + K)ẋ = F(x) (4.10)

where x is the vector of nodal unknowns, M is a mass matrix, K correspond to the
second derivatives associated to Ju, and F is a non-linear vector which is a function
of uβ, η and Jη .

Therefore, the system of ordinary equations needs to be integrated in time tak-
ing account of its non-linearity. The commonly used fourth order Adams-Moulton
scheme is employed for the time integration of (4.10), see [39, 160, 161] as an ex-
ample. Let us consider a partition of the time interval [0, T] into time steps of, for
simplicity, equal size δt. We denote with superscript n the approximation of a func-
tion at time tn = nδt. To obtain a solution at the time step tn+1, the iterative fixed
point method is employed to deal with the non-linearity of the system. Given a
guess xn+1,i−1 for xn+1,i at iteration i, the increment δxi is computed from

24(M + K)δxi = 24(M + K)(xn − xn+1,i−1)

+ δt(9Fn+1 + 19Fn − 5Fn−1 + Fn−2) + O(δt4) (4.11)

The time integration is closed using the explicit third order Adams-Bashforth scheme
to predict the initial guess xn+1,0 for the non-linear iterations

12(M + K)xn+1,0 = 12(M + K)xn + δt(23Fn − 16Fn−1 + 5Fn−2) + O(δt3) (4.12)

The system of (4.11) and (4.12) is solved using a direct solver. Given that usually,
the problems solved by the Boussinesq equations are small compared with fully
resolved model, the use of a direct solver will not be a problem in terms of time
consumption. Convergence is achieved when δxi is sufficiently small. Then, the
solution xn+1 is set as xn+1,i and the procedure is repeated for the next time step.

4.2 Absorbing boundary conditions

Frequently, the need to shorten the numerical domain arises. This can be achieved
by the imposition of open boundaries, also known as radiant boundaries. The open
boundaries allow the exit of the waves as well as the consistency of the system of
equations in order to ensure the existence and uniqueness of the solution. Addition-
ally, the numerical tool for the boundary has to be compatible with the numerical
approach for the inner domain.

Generally, the radiant boundary condition denotes the analytical formulation for
open boundaries and the term absorbing boundary is related to the numerical ap-
proximation of the radiation condition [134]. An equilibrium between the precision
offered by the radiant boundary and the numerical cost required by the absorbing
boundary is seek. From one side, the boundary conditions must define a well posed
problem and the spurious oscillations in the open boundary shall be as small as pos-
sible. From the other side, the computational cost of the boundary conditions should
be small compared to the computational cost of the inner domain.
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Considering the unidirectional wave propagation and being η the free surface
elevation, a wave function will verify a radiant boundary condition where

∂η

∂t
+ c cos(θ)

∂η

∂x
= 0 (4.13)

where θ is tha incidence angle of the wave with respect to the boundary.
Some authors proposed local approximations highly diffusives [56]. Latter, Bayliss

explored the radiation boundary conditions for the Helmholtz equations in [12].
Similarly, Collino [40] extended the formulation using higher order of derivatives
than 4.13. However, the generalization for the Euler equations -analogously the SW
equations- in 2 or 3D is not trivial, since the incidence angle θ is not known a priori
and because of the dispersive behavior of the equations [160].

The dispersive behavior is associated to the fact that there is not an unique celer-
ity characterizing the system: in the case of the SW or the Boussinesq equations there
are three waves superposed propagating at different speeds. For example, in section
3.3 a decomposition in characteristics was presented through diagonalization of the
tangent matrices Ai.

∂Φj

∂t
+ Λi

∂Φj

∂xi
= 0 (4.14)

in that minimal wave equation Λ is a diagonal matrix such that Ai = TiΛiT−1
i .

This problem can be understood a the superposition of three waves, each one of
them propagating at speed u− c, u y u + c, namely the eigenvalues λi. The sign of
λi determines if the wave is incoming or outgoing and the regime of the problem:
subcritical or supercritical.

Besides having to impose the radiant boundary condition for the three waves,
this approximation is limited, since in 2 or 3D does not exist a genuine characteristic-
based formulation. A more detailed development can be found in [109].

Most of the proposals to approximate the open boundaries consist on relaxing
the condition 4.13 adding a dissipation term K and extending the domain a distance
d, losing the local definition. See [29, 92, 134] as an example. Then, the radiation
condition is rewritten as

∂η

∂t
+ c cos(θ)

∂η

∂x
= −Kη (4.15)

This approximation can be used in combination with local absorbing boundary con-
ditions [160].

Another of the explored possibilities is the Perfectly Matched Layer (PML) [14],
widely used in the literature. It presents the inconvenient of special treatment of
corners. Later, this methodology wa used in combination with the high order ab-
sorbing boundaries, leading to the Double Absorbing Boundary (DAB), proposed by
Hagstrom and Rabinovich in [73, 148]. This technology places two parallel bound-
aries separated by a short distance. Its advantage is that they do not need to incor-
porate the derivatives in the normal direction neither to apply any special treatment
to the corners.

Finally, and given to the simplicity of the formulation, there is the possibility of
including only a sponge layer. It can be found in the formulations of Israeli and
Carmigniani in [29, 92]. A Newtonian dissipative term analogous to the bottom
friction S f is added as

Sa = −γ(x)u (4.16)

The dissipative term γ varies from 0 at a given distance to the discrete boundary to



4.3. Examples 59

the maximum value γmax at the discrete boundary. This variation follows an expo-
nential law [145] of order n. The parameters of the sponge layer d0 and the maximum
value γmax need to be specified for each case, in terms of the wavelength. A possible
expression for γ is

γ(x) = γmaxH(d0 − d(x))
e
(

d0−d(x)
d0

)n

− 1
e− 1

(4.17)

where H is the Heaviside function, d is the distance from a point to the computa-
tional boundary and the exponent n is a constant which is taken as 3.

4.3 Examples

The examples included in this section are devoted to test the accuracy of the pre-
sented formulation. In the first example, the propagation of a solitary wave along
a uniform chanel is analyzed and compared against an analytical solution. In the
second example, the accuracy of the absorbing boundary conditions is studied, and
a sensitivity analysis of the damping parameters is performed. More complex exam-
ples can be found in chapter 5

4.3.1 Solitary wave propagation

Analytical solutions for the Boussinesq equations can be found under specific sit-
uations, such as solitary or regular waves and uniform topography. If the two di-
mensional case is considered, symmetry is required. In that case, we select a soli-
tary wave propagating along a channel with constant depth. The analytical solution
found bw Wei in [160] is employed to generate the solitary wave and to check if it
propagates correctly. The numerical wave is compared against the analytical wave
at several points in the channel.

4.3.1.1 Analytical solution

Wei obtained the analytical solution for a solitary wave by rewriting the equations
(2.20) in dimensionless form, substituting the velocity by its potential (ϕ such that
u = ∂ϕ/∂x) and assuming an hyperbolic solution for the velocity, ϕ′ = A sech2(Bξ).
Terms of order O(ε2, εµ2) are truncated. Finally, after recovering the dimensional
form, the analytical solution reads

u = A0 sech2φ (4.18)

η = A1 sech2φ + A2 sech4φ (4.19)

where

A0 =
C2 − 1

C

√
gh

A1 =
C2 − 1

3(C2 + C4 + 1/3− C2(C2 + C4))
H

A2 = − (C2 − 1)2

2C2
C2 + C4 + 1/3 + 2C2(C2 + C4)

C2 + C4 + 1/3− C2(C2 + C4)
H

φ = k(x− ct)

(4.20)
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FIGURE 4.1: Solitary wave propagation. Time series at fixed posi-
tions.

The constants C2 and C4 are part of the Boussinesq equations and are defined in
(2.22). φ is the phase function, c is the phase speed and k is the wavenumber. The
dimensionless phase speed C is computed as the root of the polynomial

2(C2 + C4)C6 −
(

3C2 + 3C4 + 1/3 + 2
ηmax

H
(C2 + C4)

)
C4

+ 2
ηmax

H
(C2 + C4 + 1/3)C2 + C2 + C4 + 1/3 = 0

Finally,

c = C
√

gh and k =
1
H

√
C2 − 1

4(C2 + C4 + 1/3− C2(C2 + C4))

The solitary wave is characterized by two physical parameters, the maximum am-
plitude ηmax and the water depth of the channel H.

4.3.1.2 Numerical results

A rectangular domain Ω = [0, 100m]× [0, 1m] is considered. The time interval con-
sidered is t ∈ [0, 20s]. The full signal –η and u– given by the analytical solution
is imposed at the left boundary Γleft during all the temporal domain. Reflecting
boundary conditions are considered at the rest of boundaries, ΓR = Γ ∩ Γleft. The
water depth is H = 1m and several amplitudes as considered, ηmax = 0.1, 0.3 and
0.3m.

Both triangular and quadrilateral discretizations of le = 0.3m are considered.
The time step is constant during all the simulation and is computed in order to keep
a CFL ≤ 0.5. The resultant time step is ∆t ≈ 0.02s.

The propagation of the smallest solitary wave is recorded at Figure 4.1. Three
time series are shown, near the generation of the solitary wave (20m), after a short
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period of propagation (50m) and after a long distance (150m). For that wave specifi-
cations, ε = 0.1 and µ = 0.04 there is no appreciable variation in the wave amplitude
nor in the phase speed from theory.

The amplitude variations of the three solitary waves is analyzed in detail in Fig-
ure 4.2. For each wave, two time series are compared against the analytical solution.
The shapes of the solitary waves are compared centered at the phased and using
dimensionless coordinates. The important characteristic of the numerical method is
that the wave travels a long distance without being affected by numerical dissipa-
tion. The main difference with respect to the analytical solution is that the predicted
phase speed is somewhat small. This difference is bigger as the wave amplitude
increases. It would be interesting to compare the analytical solution against experi-
mental results.
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FIGURE 4.2: Solitary wave propagation. Shape modification after
propagation. Several amplitudes are compared.

The obtained results are comparable to those exposed in [160]. There is no ap-
preciable damping on the wave amplitude and the phase speed is underestimated
for high wave amplitudes.

4.3.2 Absorbing boundary

In this example the accuracy of absorbing boundary conditions is analyzed. Let
Ω = [0, 100m] × [0, 1m] be the spatial domain [0, 100s] the temporal domain. This
correspond to a 1m width and 100m long channel, the considered water depth is 1m.
At the lef end of domain waves are generated during the interval [0, 30s] and at the
right end of the channel there is an absorbing boundary condition. Fig. 4.3 shows the
propagation of the train of waves and the absorption at the right end of the channel.

The train of waves is monochromatic with 0.075m amplitude and 2s period. The
corresponding wavelength is ∼5m. In order to avoid the generation of higher fre-
quencies, the signal has been imposed gradually during the first two periods and
decreased gradually during the last two periods.
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FIGURE 4.3: Absorbing boundary condition. Propagation and ab-
sorption of a train of waves. The shadow region shows the width of

the sponge layer.

Regarding the absorbing boundary, studies carried out by Carmigniani in [29]
show that some combinations of the maximum absorption, the layer width and the
exponential degree can lead to undesired reflections. For example, an excessive ab-
sorption can generate reflections at the beginning of the sponge layer.

An exponent n = 3 for expression 4.17 is chosen, it considerably minimizes the
reflection [29]. A sensitivity analysis for the parameters d0 and γmax is performed.
It is useful to express the maximum distance and absorption in terms of the wave-
length and the frequency.

d0 = Dλ , γmax = Bω
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FIGURE 4.4: Absorbing boundary condition. Computed reflection
coefficients.

Several numerical experiments have been carried out with a set of relative damp-
ings and relative lengths. A total of 150 combinations have been simulated in order
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to cover the region B ∈ [1, 10] × D ∈ [0.5, 5]. The computed reflection coefficients
are summarized in Fig. 4.4.

The reflected amplitude is monotonically decreasing as the sponge width in-
creases. Nevertheless, the reflection exhibits a local minimum with respect to the
absorption coefficient. This makes highly recommended to adjust the parameters of
the sponge layer according to the maximum wavelength. In practice, the width of
the sponge layer is used to be d0 ≈ 2λ and the absorption coefficient γ ≈ 4 ω.

4.4 Concluding remarks

In this chapter, a finite element approximation of the Boussinesq modified equations
has been presented. From the numerical point of view, the model has been approxi-
mated by the FIC-based stabilization and a semi-implicit predictor-corrector scheme
has been used to advance in time. High order derivatives are approximated us-
ing an intermediate projection, computed with the superconvergent gradient recov-
ery technique. The numerical approximation of the radiation boundary condition is
known as absorbing boundary and it has been modelled using a sponge layer.

The accuracy of the method, has been tested for linear triangles and bilinear
quadrilaterals. The FEM formulation has been tested with the simulation of a soli-
tary wave and comparing it against an analytical solution. The effectivity of the
absorbing boundary has been analyzed with a train of regular waves in a channel.

The proposed method has proven to be accurate and the introduction of numer-
ical dissipation is small. The results are comparable to the ones proposed in the lit-
erature [39, 136, 158, 160]. The absorbing boundary conditions have been improved.
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Chapter 5

Coupling the Navier-Stokes
Equations to the Shallow Water
Equations

5.1 Introduction

The aim of this chapter is to explore the possibilities of coupling the presented shal-
low water models with the Navier-Stokes equations. In this research, the devel-
opments of chapters 3 and 4 are combined with a NS solver, and have been pre-
sented in [118]. Having all the formulations within the same framework -FEM and
implementation- ease the strategy. The first part of the staggered approach presented
in chapter 1, an action triggering an event is modelled with the Navier-Stokes equa-
tions and the information is transferred to the SW domain. This first coupling is
applied to impulse waves generated by landslides.

Landslide Generated Waves (LGW) are caused by a landslide impacting a water
reservoir. LGW events can have devastating effects on the coastal areas of water
basins, such as lakes, fjords and artificial reservoirs. The fjord district of western
Norway is one of the zones of the world most affected by this major natural hazard
[79]. Historical records over the last 400 years show that Norway has experienced
at least two major LGW events every century [76]. Only in the first half of the last
century, the catastrophic events of Loen (in 1905 and 1936) [69] and Tafjord (in 1934)
[80] caused the death of 174 people. The LGW events of Lituya Bay, Alaska, in 1958
[125] and Vajont, Italy, in 1963 [153] are among the most well-known cases of this
cascading natural hazard. A wider overview of LGW historical events can be found
in [150]. Furthermore, this situation is made even more critical by the effects of
global warming, which is clearly leading to an increment in number and intensity of
natural disasters [75].

In this new strategy, the Particle Finite Element Method (PFEM) [46, 88, 139], is
used as the NFS and a the Boussinesq model presented in chapter 4 is used as the
FFS. Several previous works have shown the accuracy of the PFEM to model land-
slides [165–167], also in cascading events [44, 45, 151, 168]. In this work, we use the
PFEM approach that has been successfully applied to LGW scenarios in [127] and
in [61, 62], where 3D simulations of the Vajont disaster were presented. This work
aims at being a proof of concept of this new coupled strategy for real LGW scenar-
ios. For this reason, a deep validation of the method is presented by analyzing the
performance and accuracy of the new partitioned technique in targeted tests, us-
ing reference solutions obtained with other numerical methods, experimental tests
and analytical solutions. In partitioned methods, the momentum transfer between
the Navier-Stokes and the Boussinesq models must be accurate in order to obtain a
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faithful representation of the LGW scenario. Thus, particular attention is devoted
here to analyze the effect of the near-field boundary conditions on the far-field prop-
agating wave. Convergence and sensitivity analyses are carried out in order to verify
the accuracy and robustness of the proposed method.

In this chapter, after explaining the staggered strategy, it is analyzed in detail.
Three examples are provided in order to validate the proposed partitioned strategy
and to show its potential to large-scale LGW events.

5.2 Coupling strategy

The LGW problem is here simulated using a weakly coupled (one-way) method
which makes interact the PFEM solver presented in Section 1.3, and the SW solver
described in Chapters 3 and 4.

We note that problem (2.20) defines a phase speed c which in the SW limit is
computed as

√
gh. Being u the modulus of the horizontal velocity uβ, the informa-

tion travels at velocities u + c and u− c. If the flow is subcritical, which is the case
analyzed in this work, then u < c and the information travels both upstream and
downstream.

Considering the bidirectional characteristics of the equations, a first possibility
would be to consider two domains adjacent to each other and define a strong (two-
way) coupling (see for example [146]). However, such a strongly coupled approach
is computationally expensive, as it requires running parallelly the PFEM and the SW
solvers.

Moreover, the accuracy increment given by a two-way method over a one-way
strategy on the far-field wave propagation can be considered negligible. For these
reasons, here, we adopt a decoupled space-time one-way strategy in which the PFEM
solution is stored at the SW interface and, in a second stage, it is imposed as a bound-
ary condition for the SW simulation. In order to avoid perturbations of the results at
the interface, the computational domain of the PFEM is extended beyond the posi-
tion of the SW interface using non-reflecting boundaries.

Taking advantage of such a one-way coupling strategy, the PFEM and SW sim-
ulations can be executed independently leading to a very versatile tool for LGWs
with significant saves of computing time. Since the PFEM is a Lagrangian strategy,
a search algorithm is constructed at every time step in order to find all the elements
cut by the SW interface. Then, the PFEM calculations beyond the interface are not
relevant. This fact is the key to the computational savings, since the computational
domain can be shortened by means of an open boundary. However, the numeri-
cal approximation of open boundaries –the absorbing boundaries– introduces some
reflections. In this work, the absorbing boundary is modelled by extending the do-
main after the open boundary with a gentle slope. The computational domain ends
when the slope reaches the mean water level, at this point, the impulse waves leave
the computational domain.

In a later stage, the characteristic variables computed at the interface are imposed
to the SW domain through an inflow boundary condition. We recall the subcritical
characteristics of the analyzed flows, hence, one variable is required to be imposed in
order to define a well-posed problem: the wave amplitude or the horizontal velocity.
We choose to impose the velocity, since it is more representative of the momentum
exchange from the PFEM and the SW computation. It has proven to be accurate,
even when the Boussinesq assumptions are not perfectly fulfilled. A general picture
of the coupling strategy is illustrated in Fig. 5.1.
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FIGURE 5.1: Schematic view of the near- f ield solver and the f ar- f ield
solver for the coupled solution of LGW.

Even though the Boussinesq equations are expressed in terms of the velocity
evaluated at a certain depth, uβ, this magnitude is a measure of the depth-averaged
velocity ū. In other words, it can be understood as a numerical quadrature of one in-
tegration point. When the waves are regular, the choice of one magnitude or another
is not relevant, but when wave breaking is present, the depth-averaged velocity is
more representative of the momentum exchange.

We remark that the average vertical velocity of the fluid corresponds to the time
derivative of the free surface elevation. This variable does not correspond to a
boundary condition for the studied cases.

Finally, there is an additional condition associated to ΓI (see Chapter 4): the dis-
persive field Jη relates ū and uβ. The assumption of equal velocities is equivalent to
imposing ∇∇ · u = 0.
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5.3 Examples

In this section, three different cases are presented. These examples are selected to
validate the partitioned strategy and to show its potential for practical applications.
The first numerical example is aimed at reproducing a unidirectional wave gener-
ated in a laboratory channel. For this test, we carry out a detailed validation of the
coupled method paying special attention to the transmission of boundary conditions
between the near- and the far-field solvers. The simplicity of this test allows us to
compare our results with both experimental measures and analytical solutions, and
also with the numerical solution obtained with a full PFEM model. In the second ex-
ample, we apply the partitioned method to a more representative example of LGW
problems. In this test, we reproduce numerically the water wave generated exper-
imentally by the impact of a second mass of water sliding at high velocity over a
steep slope. The last test aims at showing the applicability of the method to real-
world LGW problems. For this purpose, we considered a realistic configuration of
a LGW event occurring in an alpine lake. Our numerical solution is compared to
another LGW solver presented in the literature.

5.3.1 Solitary wave in a channel

In this test, we reproduce the laboratory experiment carried out at a large wave
flume of the Coastal Research Center in Hannover. A solitary wave is generated
by a piston-type maker and travels 180m until reaching the final inclined slope. A
schematic view of the wave flume is depicted in Fig 5.2. More details about the
experiment can be found in [96–98].

G4

180m 56.5m 24.5m

3.6m

1:14.5

Flow direction

1:8

X

Z

G's 1:3

FIGURE 5.2: Solitary wave example. Schematic side view of the ex-
perimental flume studied. Units in m. Approximate position of the

different wave gauges are also depicted.

Fig. 5.2 shows the horizontal stroke of the paddle along time. The wave height
has been monitored at different positions of the flume, including the on-shore zone.
In this work, we will compare our numerical solution to the experimental measures
obtained at the four wave gauges whose coordinates are given in Table 5.1. The
selected gauges are placed at key positions of the channel and allow us to monitor
wave generation (G1), propagation (G2), shoaling (G3) and flooding (G4).

5.3.1.1 Physical considerations

The aforementioned specifications generate a solitary wave of 0.6m amplitude and
65m wavelength. The wave generation, propagation and breaking were analyzed us-
ing the PFEM approach reported by Oñate et al. [143]. Given the properties of such
a solitary wave, it can be simulated using the Boussinesq approximation and thus
reducing drastically the computational demand. This experiment is very interesting
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Gauge Position [m]
G1 60.0
G2 170.0
G3 223.5
G4 239.7

TABLE 5.1: Solitary
wave example. Po-
sition of the different
gauges in the flume.
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TABLE 5.2: Solitary
wave example. Pad-
dle position accord-
ing to time. Data pro-
vided in Krautwald

et al. [96–98].

for two reasons. Firstly, we can perform a verification test of both formulations and
compare the numerical results against experimental data. Secondly, the simplicity of
the geometry allows us to obtain analytical solutions for the Boussinesq equations.
The analytical solution is a wave equation of the type

u = A0sech2φ

η = A1sech2φ + A2sech4φ

where φ = kx − ωt. Details of the parameters A0, A1 and A2 and the relation be-
tween the wavelength, period and amplitude can be found in [160].

The generation of solitary waves has motivated several discussions and a review
can be found in [72]. The kinematic description of the piston wave maker is the
origin of the discussion, since it cannot represent the exact solution of a solitary
wave due to construction limitations. Some expressions for the motion of the piston
can be obtained by integrating the analytical solution of the wave and truncating it
on a finite space and time domain, corresponding to the features of the piston. Then,
the experimental solitary wave is generated with a tail of secondary oscillations.

The Lagrangian formulation of PFEM perfectly tracks the movement of the pad-
dle and thus the numerical simulation reproduces the experimental results with high
fidelity. On the other hand, since the Boussinesq equations are implemented in an
Eulerian frame, this boundary condition is difficult to impose. An easier alternative
is to apply the analytical solution as a boundary condition.

Fig. 5.3 shows the comparison between the solitary wave propagation obtained
with the PFEM, the experimental results, and the Boussinesq and analytical solu-
tions. The Boussinesq simulation shows no secondary oscillations because the soli-
tary wave has been imposed perfectly. The PFEM analysis matches the experimental
data and the SW analysis matches the analytical solution. The analytical solution
overestimates the phase speed and this mismatch will be reflected in the following
analyses.

We remark that the difference in the phase speed of the wave is not originated
by the coupling strategy, but by the Boussinesq approximation. The accuracy of the
approximation depends on the non linearity ratio ε = η/H and dispersion ratio
µ = H/λ. A more detailed study can be found in [164], particularly when ε < 0.4.
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FIGURE 5.3: Solitary wave example. Time evolution of the free sur-
face at two gauges.

5.3.1.2 Numerical results of the coupled strategy

A global representation of the wave propagation is found in Fig. 5.4. In this sim-
ulation, the first 10m are simulated using the 2D PFEM and the rest of the channel
is simulated using the SW solver. Additionally, the full channel has been simulated
with the PFEM to provide a reference solution for the coupled method and to an-
alyze better its performance. Concerning the space and time discretizations used
in the two solvers, the PFEM domain has a mesh of mean size ∆x = 0.3m and the
time step increment ∆t = 0.001s is used, while the SW domain is discretized with
∆x = 0.8m and ∆t = 0.025s.

0.0

0.5 G1 (60m)
Amplitude [m]

PFEM
SW (x = 10m)

0.0

0.5 G2 (165m)

0.0

0.5 G3 (223m)

0 10 20 30 40 50
time [s]

0.0

0.5 G4 (240m)

FIGURE 5.4: Solitary wave example. Time series obtained with the
interface at x = 10m.

The results of gauges G2 and G3 show a small gap between the predicted wave
by the two solvers. The Boussinesq approximation is triggering this gap, originated
by an overestimation of the phase speed. This difference is consistent with wave
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theory and the current wave specifications. Note that the same gap can be observed
in Fig. 5.3. The run-up (G4) is out of the SW theory assumptions, but still relevant
results are obtained.

The magnitude of the computational time saving of the coupled method versus
the full PFEM solution is about 95%. These savings will be analyzed in more detail
in the next paragraphs. The savings depend on the spatial and temporal domain
chosen for the NFS, that have to be carefully designed in order not to introduce
additional errors.

5.3.1.3 Sensitivity to the interface position

The FFS sensitivity has been tested with some SW interface positions at x1 = 10, 20, 30
and 40m. One would expect to obtain a more accurate response as the interface is
placed further away from the paddle. Nevertheless, since in this example the wave
is very regular, the observed influence of the interface position on the results is not
significant. The solutions obtained with all the interfaces can be considered already
converged (Table 5.3). These results were expected due to the regularity of the wave.
For this reason, a similar study is also performed in Section 5.3.2, where the SW in-
terfaces are placed into a more chaotic fluid flow.

Interface position
10m 20m 30m 40m

2.48% 3.01% 3.12% 2.84%

TABLE 5.3: Solitary wave example. Wave amplitude errors computed
at gauge 3 (x = 170m) for different positions of the SW interface.

Reference solution: full PFEM simulation.

5.3.1.4 Sensitivity to the temporal domain

Part of the saving in computational time comes from reducing the duration of the
PFEM simulation up to the minimum time needed. Once the initial impulse has
generated the wave and it has been transferred to the SW domain, the PFEM compu-
tations do not provide relevant information. From that time on, the initial boundary
condition, which corresponds to water at rest, is imposed at the SW domain.

This transition in the BC has to be carefully treated in order to avoid unphysical
oscillations. A good duration for the transition is half of the period of the current
wave.

In this test, we evaluate the effect of feeding the FFS with NFS solutions limited
in time. In particular, we considered four PFEM analyses of duration 10, 20, 30, and
40s.

Fig. 5.5 shows the time evolution of the wave amplitude at the first gauge. In the
graph, we also added dots representing the time instant when one analysis starts
to diverge from the rest. It is clearly observed that the four solutions have an iden-
tical behavior in the first part of the graph. In particular, even with just 10s of the
PFEM simulation, the main wave is well reproduced. Beyond this time, the curves
diverge progressively. As expected, a time interval of around 10 seconds separates
the consecutive diverging points.
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FIGURE 5.5: Solitary wave example. Set of analysis where the inter-
face is active only in a part of the time domain. The marker shows

when the solution tends to the resting condition.

5.3.1.5 Sensitivity to PFEM domain length

Besides the reduction of the time duration of the analyses, the optimization of the
size of the PFEM computing domain can drastically reduce the computational cost
of the simulations without affecting the accuracy of the results. For this reason, we
analyze here the effect of considering partial PFEM domains of 10, 20 and 30m length
plus an extension acting as absorbing boundary condition, as shown in Fig. 5.6. The
study is carried out for both 2D and 3D PFEM domains. The errors introduced by

FIGURE 5.6: Solitary wave example. (a) The mesh with interface at
10m, 2 700 elements. (b) The mesh with interface at 20m, 3 800 ele-
ments. (c) Detail of the full mesh of the channel, 20 000 elements. The
slope has a dissipative effect and is acting as an absorbing boundary.

the effect of shortening the PFEM domain are listed in Table 5.4.

PFEM
domain
length

PFEM 2D PFEM 3D
SW interface position SW interface position

10m 20m 30m 10m 20m 30m
30m -0.652% -0.984% -6.37% 0.228% -3.0% -7.16%
20m -0.635% -5.97% - -0.438% -5.62% -
10m -5.21% - - -5.24% - -

TABLE 5.4: Solitary wave example. Errors of the wave amplitude
computed at gauge 3 (x = 170m) with different configurations. Refer-
ence solution: coupled solution obtained with the full PFEM domain,

as shown in Fig. 5.6c.

It is important to note that the vicinity of the absorbing boundary condition of
the PFEM may affect the accuracy of the interface. The small errors obtained when
the interface is far enough from the absorbing boundary show that the presented
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methodology allows to effectively reduce the PFEM domain without virtually af-
fecting the quality of the solution. This is particularly noticeable in the 2D case.

The 3D case presents a similar behavior, but higher errors are observed in the
30m domain length. However, these errors are more attributable to the capabilities
of the NFS for reproducing the fluid-solid interaction at the lateral walls (see [143]
for more details) than to the coupling strategy. A finer discretization in the PFEM
mesh would reduce this bias.

5.3.2 Wave generated by a water landslide

In the second example, we simulate the experiment carried out at the Queen’s Uni-
versity landslide flume presented in [23]. In this laboratory test, a mass of water
is released from an elevated reservoir and, after flowing downhill over a 30◦ slope,
it impacts at high velocity the water at rest placed on a 33.8m-long channel. In the
reference work [23], 41 experiments were presented covering a wide range of source
volumes and reservoir depths. In [127], a comparison of experimental and numeri-
cal results obtained for three different water depths in the channel is presented. In
this research, we select the largest volume case (0.45m3) and water depth (0.60m).
Fig. 5.7 shows the geometry of the experimental setup considered in this work.

Z

30º

0.6m

Wave propagation

G1 (3.1m) G2 (16.8m) G3 (32.5m)

0.4m3

5.8m 27º
X

33.8m

FIGURE 5.7: Landslide wave problem. Setup of the LGW flume for
the experimental and numerical analyses.

We remark that considering a water landslide does not affect the relevance of the
test in the field of LGWs. In fact, the phenomena produced by the water runout and
impact are totally representative of a realistic LGW scenario with a fast mobilized
material. Furthermore, the use of water as sliding material removes the uncertainty
related to the rheological properties of the slide and allows repeatability of the test.

The PFEM is used to simulate the water runout, the impact against the water
at rest and the consequent wave formation (Fig. 5.8). Remarkably, the front of the
water landslide reaches the end of the slope with a thin layer of less than 10cm and it
impacts the water in the channel at a speed of about 10m/s. Thus, in order to capture
accurately the phenomena at the impact zone, a fine mesh and time discretizations
are necessary. For this reason, a mesh size of ∆x = 1.5cm and a time step increment
of ∆t = 5 · 10−4s are used in the PFEM simulations. On the other hand, a much
coarser mesh and time discretizations can be used to model the wave propagation
along the channel with the SW solver. In particular, in the FFS a time step of ∆t =
0.025s and a mesh size of ∆x = 0.3m have been used. We remark that the possibility
of using much different and yet adequate space and time parameters in the FFS and
NFS solvers is one of the main advantages of this partitioned method and one of the
reasons for its high computational efficiency.
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(A) Runout (t = 0.7s)

(B) Impact (t = 1.5s)

(C) Wave formation (t = 2.8s)

(D) Impact zone modeled with the
PFEM. Detail of Figure (b) adding

the solving mesh.

FIGURE 5.8: Landslide wave problem. Near-field results with the
PFEM solution of Navier-Stokes problem. The thin vertical lines

show the SW interfaces positions.
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5.3.2.1 Numerical results

This LGW scenario has been solved using a time and space reduced PFEM domain
in combination with three SW interfaces. The PFEM spatial domain includes the
runout, the first 7m of the flume and an absorbing boundary condition, while the
temporal domain includes only the first 5s. The SW interfaces are positioned at 2, 4
and 6m. Fig. 5.9 presents the results obtained at the gauges and a representation of
the wave propagation.
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FIGURE 5.9: Landslide wave problem. Time series of the wave am-
plitude at the different recording points.

In the top image, it can be observed the vicinity of the first gauge and the first
SW interface to the wave generation zone. Indeed, gauge G1 can only record the
PFEM solution and the SW solution obtained by the first interface. It is clear that the
imposed boundary condition does not satisfy the Boussinesq assumptions and the
interpolated wave does not fit the profile of a breaking wave. However, although the
wave interpolated by the FFS at the first stages is not equivalent in terms of wave
height, the stored momentum is the correct one. This can be observed at gauges G2
and G3, where the experimental wave has adopted the solution of a solitary wave
and matches the profile of the FFS.

The results obtained at gauges G2 and G3, placed at the middle and the end of
the channel, respectively, show that all the three SW interface positions reproduce
well the main wave obtained experimentally. This is particularly remarkable con-
sidering that the SW interface placed at x = 2m is completely inside the impact
zone (Fig. 5.8). These results show that, as long the momentum is well transferred
from the NFS to FFS, the wave propagation process in the far-field can be accurately
reproduced even considering the SW interface in a zone where the wave is not com-
pletely generated. We also remark that this can be done safely in this test, since water
has been considered for the sliding material. In case of considering a different land-
slide material, either the interface is placed further the zone of material deposition
of the landslide, or the interface boundary conditions have to take into account the
presence of different materials in the computation of the overall momentum.
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Gauge G2 also records a considerable time interval after the first wave, this al-
lows us to analyze also the secondary waves. In this case, we note some discrep-
ancies between the results obtained by three SW interface positions. In particular,
the first solution that diverges from the experimental one (and from the two other
numerical solutions) is that obtained by the farthest interface position (6m). This re-
sult is totally consistent with the time domain truncation explained in Example 5.3.1
and Fig. 5.5. As the interface position is further from the impact zone, the signal
arrives later. Given the phase speed is about 2.5m/s, the time difference between
each interface is around 0.8s.

As a concluding remark for this example, the computational cost of the full sim-
ulation of the LGW has been estimated proportionally to the time needed by the
signal to arrive at the end of the channel and proportionally to the number of ele-
ments required to discretize the full domain. The resources consumed by the FFS
can be neglected since they are two orders of magnitude smaller. According to these
considerations, the overall time saving given by the proposed partitioned strategy is
95%.

5.3.3 Landslide in a representative alpine lake

In [63], different metrics of real alpine lakes were used to define the configuration
of theoretical mountain basins of different sizes and shapes. These geometries were
used in [63] to study LGW scenarios with a finite volume solver and to obtain cor-
relations between the lake configuration and the landslide-generated waves. Here,
we analyze one of the lakes considered in [63] to test the proposed coupled strategy
in a 3D complex setup.

Fig. 5.10 shows the side and top views of the geometry of the lake. The case
study is a circular lake with a diameter of 1500 m. The landslide has a prismatic
shape of 20 m thick, 208 m long and 120 m wide. Following [63], a bulk material
density of 1620 kg/m3 is used for the landslide material and an initial velocity of 20
m/s has been prescribed to the sliding body.

Preliminary NFS analyses of the LGW scenario showed that the landslide ma-
terial reaches a deposition distance of around 350m. This information is useful to
place the SW interface at a position that is not trespassed by the sliding material.
For this reason, the interface of the FFS has been placed at 400m from the center of
coordinates, which is the center of the run-out impact.

5.3.3.1 Numerical results

Fig. 5.11 shows a global view of the simulated LGW and a superposition of the NFS
and FFS results.

In order to assess the quality of the obtained solution, in Fig. 5.12 we compare
the envelope of the maximum wave height measured along sections S1 and S2 with
the reference solution given in [63].

Globally, the results obtained with the proposed method agree well with the ref-
erence numerical solution, both in the near and far fields. Although with some dif-
ferences in terms of magnitude, both methods are also able to reproduce the am-
plification of the wave near the shoreline. This phenomenon is produced by the
combined effect of shoaling and the wave reflection given by the steep bottom sur-
face.

We also highlight that the results of the FFS are in good agreement with wave
propagation theory. In an unconstrained plane, the wave amplitude is inversely
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FIGURE 5.10: Landslide in a representative lake. Side and top view
of the geometry. Dimensions in m.

proportional to the distance from the origin. Section S1 is closer to the unconstrained
decay, while section S2 shows a smaller decay since it is closer to the boundary.

Finally, it is worth commenting on the peaks in amplitude exhibited by the FFS
solution close to the SW interface. As mentioned before, the imposed signal coming
from the PFEM simulation is still not fulfilling the Boussinesq theory. On the other
hand, the generation of stable waves by Dirichlet boundary conditions requires some
traveling distance to be modulated by the fluid system [164]. For this reason, the
wave amplitude results obtained close to the SW interface with the FFS should be
disregarded. We emphasize again that, on the other hand, the overall momentum
computed in that zone is still correct.

In any case, the presented partitioned approach would be really interesting for an
exercise like the lakes classification in [63]. Indeed, a single landslide calculated with
the NFS could be used to simulate different representative lakes with the FFS. Also,
in a more detailed study it would allow concentrating the computational resources
in the analysis of the run-out and wave generation, thus enhancing the overall accu-
racy of the partitioned scheme.

5.4 Concluding remarks

In all the examples presented, the results obtained with the new partitioned method
had shown a very good agreement with the reference solutions, both in 2D and
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(A) Initial configuration (t = 0s)

(B) Run-out and impact (t = 5s)

(C) Wave generation (t = 10s)

(D) Wave propagation (t = 50s)

FIGURE 5.11: Landslide in a representative lake. Global representa-
tion of the LGW. The NFS domain is plotted until the SW interface
and only the geometry is shown. For the FFS, results for the free sur-

face elevation are depicted.
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FIGURE 5.12: Landslide in a representative lake. Envelope of the free-
water-surface elevation along sections S1 and S2.

3D problems. Remarkably, we have been able to compare our numerical results
with analytical solutions, fully-resolved numerical simulations of LGW events, other
coupled methods presented in the literature, and experimental observations.

Placing the SW interface as close as possible to the impact zone gives the ma-
jor advantage of reducing the NFS domain and, consequently, the overall compu-
tational cost of the analysis. For this reason, we have compared the FFS results ob-
tained considering different positions of the SW interface for the same NFS solution.
This study showed that, as long the momentum of the NFS is well transferred to
the FFS, the SW interface can be also placed very close to the impact zone, even if
the wave is not already formed. More specifically, the SW interface can be placed
at one wavelength from the impact zone. In fact, although locally the FFS results
may give spurious amplitudes since the input wave is not fulfilling the Boussinesq
theory, the stored momentum is correct and the far-field wave propagation is re-
produced accurately. We remark that this can be easily done in case of having the
same density between the sliding material and the water in the reservoir, such in
the water landslide scenario analyzed in Section 5.3.2. In a more general case, the
interface should be placed further than the deposition zone of the landslide, or the
SW interface should take into account the variation of material densities on depth.

We have also verified the effect of reducing the size of the PFEM domain by
using absorbing boundary conditions. For this purpose, a gentle final slope with an
inclination of 1:10 was placed at the end of the PFEM domain. We showed that, as
long as the SW interface is not placed too close to the absorbing boundary, the PFEM
domain can be safely truncated without affecting the global results. To be precise,
the gentle slope should begin at least one half wavelength after the SW interface.

Finally, we also studied the effect of reducing the time duration of the NFS anal-
yses. We have shown that, if the main interest of the simulation of the LGW scenario
is to reproduce the main wave propagation, the PFEM analysis can be safely stopped
after it has modeled the impact of the landslide on the water and the first wave for-
mation. Indeed, this time truncation of the NFS will only affect the secondary waves
propagation. We also showed that, knowing the NFS duration and the wave propa-
gation speed, it is possible to have a quite accurate estimation of the reliability of the
secondary waves results.
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All these specific studies will allow us the define the most computational effi-
cient NFS-FFS scheme for practical LGW simulations. Although the overall com-
putational cost depends inevitably on the geometry and the proportions among the
near and far fields, in the examples here presented, we could estimate a 90% of time
saving versus a fully-resolved simulation of the same LGW scenario.

Among the possible enhancements of the proposed method, we consider it of pri-
mary interest to investigate more efficient strategies for the NFS absorbing bound-
aries and to develop a reverse one-way coupled algorithm where the FFS trans-
fers the information to the NFS. This FFS-NFS model would allow us simulating
with high accuracy the effect of tsunami waves produced by landslides (or by some
other source, i.e., an earthquake) on the shoreline and the civil constructions placed
therein.
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Chapter 6

Conclusions

6.1 Achievements

The main objective of this thesis is the investigation of Finite Element formulations
applied to large-scale water-related hazards. In the first part of the thesis, a revision
of reduced models for the large scale has been done.

In chapter 3 The FIC-FEM procedure has been extended to the shallow water
equations. Unlike the FIC-based stabilizations for incompressible flows, the present
procedure is applied to the coupled mass and momentum balance at the same time
using the linearization matrix Ai. This procedure can be seen as the classical FIC-
stabilization for convection diffusion problems, taking the velocity as linearization
term. The same procedure can be applied to develop stabilized formulations for
compressible flows.

The proposed extension of the FIC-procedure to the shallow water equations
uses the linearization matrix Ai for the flux terms to project the characteristic length.
However, an alternative framework can be explored with the ASGS [37, 82] formu-
lation, which includes the linearization matrices of the viscous terms and reaction
terms. Since the shallow water equations are dominated by the convective matrix
Ai, and thus are strictly hyperbolic, the present stabilization is enough to provide
stability, as shown in Section 3.5.

The stabilization provides two algorithmic constants, one for the global stabiliza-
tion and other one for the shock capturing term. From our numerical experiments,
we have chosen β = 0.01 for the stabilization and α = 1.0 for the shock capturing.

Regarding the accuracy of the shock capturing and the dry domain model, one
must notice that this method is not monotonic. Therefore, like in many other stabi-
lized methods, the order of convergence is dropped around discontinuities such as
hydraulic jumps and the shoreline. However, the spurious oscillations, especially
the oscillations related to the moving shoreline, are bounded and the method is
globally mass preserving. The method -Residual Based- has been compared against
the Flux Corrected algorithm and the Gradient Jump Viscosity. The Residual Based
method has provided better performance for the global situations, steady or tran-
sient state, complex topography and reduced artificial viscosity.

The present FIC-FEM procedure has produced accurate results for the examples
considered. In the first example, the artificial diffusion is evaluated and it has been
proved to be small and practically inappreciable. The shock capturing term allows
to solve supercritical problems with discontinuities and the present procedure is
also able to deal with partially wet domains. Finally, a numerical simulation of a
dam break flow against an isolated building is performed. The limitations of the
model essentially come from the shallow water equations hypothesis. In fact, that
last example presents local regions where the dynamic pressure is not negligible. It
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is not an obstacle to simulate the main aspects of the flow and the numerical results
are in good agreement with the experimental data.

In chapter 4 the presented stabilization technique has been applied to the Boussi-
nesq equations. Special attention has been paid to higher order derivatives with lin-
ear finite elements. Additionally, a numerical approximation to open boundaries has
been implemented. The Boussinesq model is able to accurately capture the disper-
sion effects, which are of crucial importance to analyze the propagation of impulse
waves in the context of Landslide Generated Waves (LGW).

Finally, chapter 5 presented a novel partitioned strategy for solving landslide-
generated wave (LGW) problems. The coupled method makes a near-field solver
(NFS) interact with a far-field one (FFS). The NFS reproduces the landslide runout
and the impact zone by solving the Navier Stokes equations with the Lagrangian
Particle Finite Element Method (PFEM). On the other hand, the FFS uses as input
the NFS results stored at a certain interface to model the wave propagation with the
Eulerian Finite Element Method (FEM) based on Boussinesq equations, derived in
the previous chapter. In order to substantially improve the computational perfor-
mance of the method and, thus, to allow for the simulation of large-scale problems,
we adopt a one-way coupling scheme, meaning that the NFS solution is insensitive
to the FFS one. This partitioned method also allows us to freely decouple the time
and space discretizations of the two solvers, giving a further advantage in terms of
accuracy, efficiency and flexibility.

The coupling strategy has been designed in order to minimize the computational
cost, keeping the same accuracy than a fully resolved model. Specifically, the influ-
ence of the position of the interface, the temporal domain of the coupling and the
open boundary had been analyzed. The coupled strategy has proven to be accurate
and promising results have been obtained. It has been compared against literature
results and has been applied to a LGW in a representative lake.

All the presented formulations had been implemented in KratosMultiphysics
[49, 50], an open source framework of numerical methods written in C++. The main
contributions of this work can be summarized in the following list:

• Derivation of a stable FIC-FEM formulation for the SW equations.

• Comparison of three non-linear stabilizations for the mitigation of oscillations
around shocks and the moving shoreline.

• Extension of the FIC-FEM formulation from the SW equations to the Boussi-
nesq equations.

• Design of a partitioned strategy to couple the solution obtained from the NS
equations to the SW or Boussinesq equations.

• Application of the partitioned strategy to LGW events.

6.2 Further research

The development of the thesis opens several subjects that can be tackled in the fu-
ture. Regarding the reduced models for the large scale, some issues can be ad-
dressed. The appendix A show that the convergence at the shoreline can be im-
proved. In fact, the stabilized eulerian framework has a first order of convergence,
while the lagrangian framework converges at second order. Nevertheless, the eu-
lerian framework is more robust and faster and, in global terms, it is the preferred
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option. However, a selective strategy can be developed with the advantages of both
frames, for example, an arbitrary lagrangian-eulerian scheme or a cutting technol-
ogy for partially wet elements. Cutting the elements at the shoreline would help to
mitigate the Gibbs oscillations since the real free surface does not belong to the finite
element space given its discontinuous basis.

A second issue to overcome is the shock capturing for the supercritical regime
before the shocks. The non-linear stabilization with the residual viscosity approach
exhibits some upstream oscillations, which are related to the numerical model and
thus, nonphysical. The other non-linear stabilizations are more dissipative and avoid
these oscillations, however, the global accuracy is lost due to the excessive diffusion.

Regarding the coupled procedure, the main pending task is the second part of the
coupling, from the shallow water equations to the Navier-Stokes equations. Some
advances have been made in this regard, but are not fully mature to be included in
this thesis as a chapter.

Also, the optimization of the coupling interface in chapter 5 has shown that the
open boundary is extended over a large domain, thus increasing considerably the
computational cost. The development of an open boundary in a Lagrangian frame
using the PFEM has been little studied by the scientific community. It would help
to achieve higher computational savings up to more than 95%. Preliminary anal-
yses suggest that the imposition of an inert paddle moving with the waves can be
accurate. However, the generalization to the 3D case with arbitrary directions of
propagation is not straightforward.

Finally, a more scientific contribution of the coupled strategy is the extension of
the shallow water model with a two way coupled solver. The aim of the two way
coupled model is to extend the range of applicability of the reduced model to post
breaking waves.
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Appendix A

Particle Finite Element Methods for
the shallow water equations

In chapter 3 the SW equations have been analyzed considering the coupled con-
vective and oscillatory mechanisms in an Eulerian framework. However, in some
regions of the domain, the solution of the equations can be convection dominated.
Specifically, whenever there is a movement of the shoreline –like run-up or flooding–
, the problem is convection dominated. This mechanism suggests the use of La-
grangian strategies, which have been successfully applied to convection diffusion
and Navier-Stokes problems.

In this appendix, the developments of the Particle Finite Element Method (PFEM)
are applied to the SW equations. The basis of the PFEM family of methods consists
on a splitting operator, solving two stage fashion the convective operator and the
rest of the equations. In the case of the SW equations, there is a stage for convection
and other stage for wave mechanism. The main advantage of the PFEM lies in using
the variational principle of FEM. Hence, the formulations presented in chapter 3 are
applicable with small modifications. The novelty of the PFEM consists on solving
the convection with a particle method.

In the family of PFEM there are two main groups, the moving mesh and the fixed
mesh. The mesh moving algorithm was firstly presented to the scientific community
[87, 88] and has been widely applied to a high number of situations [104, 140, 151].
In this method, the particles traditionally coincide with the nodes. After the convec-
tion stage –and eventually, remeshing–, the mesh inherits the displacements of the
convection. Those displacements are part of the material derivative involved in the
variational principle of the equations.

Lately, a second generation of the PFEM was presented [90]. It uses a fixed mesh
and is known as PFEM-2. The main idea consists on decoupling the particles from
the nodes, leading to a duality of spaces: the FEM discretization and the particles
discretization. Its main drawback is the introduction of projections between the two
spaces but the cost of the projection is expected to be compensated by the use of a
fixed mesh strategy without remeshing [91, 147].

A.1 Introduction

The Lagrangian formulation starts by the definition of the material derivative. Let
ϕ be a scalar or vector property, the material derivative is obtained by applying the
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chain rule:

D
Dt

ϕ(x, t) =
∂ϕ

∂t
+ u · ∇ϕ (A.1a)

∂x
∂t

= u (A.1b)

The Lagrangian procedure consist on solving separately the equations (A.1a) and
(A.1b). To apply this staggered procedure, a generic conservation balance is consid-
ered,

∂ϕ

∂t
+∇F = 0 (A.2)

where F is the fluxes vector in an infinitesimal volume of control. The balance equa-
tion is split into the convective and non convective fluxes, L1 and L2 respectively.

∂ϕ

∂t
+ L1ϕ + L2ϕ = 0 (A.3)

After introducing equation (A.1) into (A.3), the following expression is obtained,

Dϕ

Dt
+ L2ϕ = 0 (A.4)

Finally, the numerical strategy for solving a balance equation (A.2) in a Lagrangian
framework consists on applying a splitting, generally, the first order Godunov split-
ting [105] or the second order Strang splitting [116]. The order of accuracy of the
splitting operator is related to the sequence and the mode how equations (A.1b) and
(A.4) are temporally integrated.

A.2 Mesh moving methods

The PFEM method has been widely applied to solve the incompressible Navier-
Stokes equations, especially with free surface problems [104], multi-fluids [124] and
fluid-structure interaction [140]. The moving mesh allows to fit the sub-domains
with the discretization and the boundaries are tracked in a natural way. When the
PFEM is applied to the SW equations, the mesh moving will be solving the water
domain in the horizontal plane. That is, the moving shoreline in the SW equations is
playing the role of the free surface in the NS equations.

Once the discretization describes and follows the fluid motion –η and u–, there
appears the need to introduce another discretization to define the fixed topography
and its variations –z–, since it does not move with the fluid. The duality of discretiza-
tions introduce the need of a mapping between the two meshes. The topography
data need to be mapped to the computational mesh for solving the equations. And
the primal variables need to be mapped to the topographical mesh for visualization
purpose. See figure A.1, where the fluid domain Ωw si inside the computational
domain Ω. The topographic domain ΩT coincides with the computational domain
Ω. This approach presents some analogies with embedded formulations, except on
the fact that the discontinuity is on the fluid –computational domain– instead of the
topography –geometric domain–.

Going back to the definition of the SW flow, the set of particles moving in the
Lagrangian frame, convect the intrinsic properties (density, water depth, velocity,
flow rate, etc.). The equations follow an updated lagrangian formulation, that is, the
variables are assumed to be known at time t but unknown for the time t + ∆t. Given
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Ω

Ωw

FIGURE A.1: Spatial discretization for the mesh moving PFEM algo-
rithm.

that the variational principle is used to solve the equations in the continuum media,
those is identified with the fluid domain, excluding the dry part. Once the convec-
tion is solved and the shoreline is updated, the system of equations is solved again.

Some modifications to this procedure may be considered. For example, an exces-
sive deformation of the elements, without inverting them, may require a remeshing
step. In that case, the identification of the shoreline coincides with the previous time
step, but the interior domain will be refined. With a proper mesh quality control, the
remeshing step can be applied only to those steps which really need it.

Additionally, an iterative scheme can be introduced, since the solution of the nwe
system of equations at time step t + ∆t modifies the integration of the convective
term. Usually this outer iteration loop is skipped by an explicit approximation of
the convective term. The full path of the solution procedure is resumed in figure
A.2.

tn

Convect

Remesh

Map ΩT to ΩW

Solve wave equation

Map ΩW to ΩT

tn+1

FIGURE A.2: PFEM algorithm for the SW equations.
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A.2.1 Governing equations

Given that the nodes of the SW discretization are particles, the intrinsic properties
are in a Lagrangian frame, thus, both mass and momentum balances follow a La-
grangian formulation. This fact reduces the non-linearity of the system of equations
to be solved, making them easier to solve. On the other hand, in the Lagrangian
framework the convection can be evaluated in terms of the primitive variables. We
will take advantage of this characteristic to solve the primitive SW, which are more
linear than the conservative ones. The accuracy of the solutions obtained with the
proposed method will be compared against the methods presented in the previous
chapter.

Let the conservative vector of unknowns φ be expressed in terms of the primitive
set of variables ψ. we recover the SW equations in terms of the primitive variables:

∂u
∂t

= u · ∇u + g∇(h− zb) + gS f = 0 (A.5a)

∂h
∂t

= u · ∇h + h∇u = 0 (A.5b)

The introduction of the material derivative definition yields

Du
Dt

= g∇(h− zb) + gS f = 0 (A.6a)

Dh
Dt

= h∇u = 0 (A.6b)

Analogously to the previous sections, if the solution ψ is sufficiently smooth, it
will also verify the quasi-linear form

Dψ

Dt
+ Ai

∂ψ

∂xi
+ Sψ + T = 0 (A.7)

Where the matrix S and the vector T are the same than those defined in section 2.
The tangent matrices Ai have a new expression for this case, according to the change
of variables and to the material derivative. The null diagonal corresponds to the
non-convective look of the equations.

A1 =

 0 0 g
0 0 0
h 0 0

 , A2 =

 0 0 0
0 0 g
0 h 0

 (A.8)

The eigenvalues of Ai for the one-dimensional case are λ = ±c, being c =
√

gh
the surface waves speed. These eigenvalues differ from u + c and u − c since we
are in a Lagrangian frame, moving at velocity u. For the two-dimensional case, the
eigenvalues for each direction are obtained projecting Ai onto a unit vector and are
always −c, 0 and c. The system is still hyperbolic and the positivity of h is required.

A.2.2 Variational principle

Despite the non-convective look of (A.6), they need stabilization because of the in-
compatibility of the interpolation [37]. The fic-based stabilization method from [141]
and from the previous sections will be reused. As stated before, this formulation
presents a significative simplification with respect to the conservative equations in
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an Eulerian frame. The residual of the equations is defined as

r ..=
Dψ

Dt
+ Ai

∂ψ

∂xi
+ Sψ + T = 0 i = 1, 2 (A.9)

The number of dimensions is nd = 2 and the number of balance equations is nb =
3. The FIC-balance using a first order expansion of Taylor series has the following
expression:

rj −
1
2

le Ai

λmax

∂rj

∂xi
= 0 i ∈ {1, nd} , j ∈ {1, nb} (A.10)

To introduce stability in the desired direction, the characteristic element length le

has been projected onto the normalized characteristics of the equation, Ai/λmax. In
practice, the term 1

2 is replaced by an algorithmic constant β in order to control the
amount of extra diffusion. This parameter will be analyzed latter.

The resulting SW FIC-based stabilization is obtained from (A.7) and (A.10). The
variational principle is obtained by multiplying the FIC balance by a test function
ωk and integrating over the domain Ωw.∫

Ωw

(
ωkr + ωkβle Ai

λ

∂r
∂xi

)
dΩ = 0 (A.11)

The second term of Equation (A.11) is integrated by parts. Note that the geome-
tries are linear and the element length le and the linearization matrix Ai are defined
constant inside the element. Hence, the boundary integral which appears after inte-
gration by parts should be understood as the boundary of all the elements∫

Ωw

ωkrdΩ−
∫

Ωw

βle Ai

λ

∂ωk

∂xi
rdΩ + ∑

e

∫
Γe

βle Ai

λ
ωknkrdΓ = 0 (A.12)

In this work we neglect the boundary integrals assuming that the residual r is null at
the boundary of the elements. At this point we introduce the balance Equation (A.6)
and integrate by parts again. The result is

∫
Ωw

(
ωk

∂ψ

∂t
+ ωkAi

∂ψ

∂xi
+

∂ωk

∂xj
Kjk

∂ψ

∂xi
+ Sψ + F

)
dΩ

−
∫

Ωw

βle

λ

(
∂ωk

∂xj
Aj

∂ψ

∂t
+

∂ωk

∂xj
AjAi

∂ψ

∂xi
+

∂2ωk

∂x2
j

AjKjk
∂ψ

∂xi

+
∂ωk

∂xj
Aj(Sψ + F)

)
dΩ = 0 (A.13)

Equation (A.13) is the stabilized variational form for the shallow water equations,
similar to the expression obtained by SUPG. Note that the parameter βle/λ is analo-
gous to the characteristic time τ of the classical SUPG or GLS techniques [43].

A.2.3 Convective operator

Apart from solving Eq. (A.6), Eq. (A.1a) needs to be integrated in time. Given that
(A.1a) does not involve a spatial derivatives, there is no need to use a variational
principle and can be evaluated nodally. In other words, the trajectory of the particles
is decoupled from the wave.
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In order to evaluate the trajectory of the particles, Eq. (A.1a) is rewritten in inte-
gral form

x(tn+1) = x(tn) +
∫ tn+1

tn
u(t)dt (A.14a)

u(tn+1) = u(tn) +
∫ tn+1

tn
a(t)dt (A.14b)

As far as the time variable is evaluated at discrete intervals t = t1, . . . tn, the
continuous value of t is not known. Therefore, a generic finite difference can be used
to evaluate the position continuously in time:

xn+1 = xn + (1− θ)(∆tun +
1
2

∆t2an) + θ(∆tun+1 +
1
2

∆t2an+1) (A.15)

The fact of using the velocity interpolated is related to the coupled nature of equa-
tions (A.1a) y (A.6). The choose of an implicit or explicit finite differencing depends
on the splitting and the iterative scheme.

A.2.4 Limitations of the method

The main advantage of this method consists on the possibility of solving convective
problems with the primitive equations, specially when there is a moving shoreline.
However, the major limitation is faced on the inner discontinuities, since the semi-
implicit convection operator may invert elements. This problem is not solved with
remeshing because the nodal values will resort on a wrong interpolation of the vari-
ables. Figure A.3 shows a graphical representation of the strong conditions CFL < 1
in order to prevent the inversion of elements.

b bb b b

bb bb b

tn

tn+1

1 2 3 4 5

1 2 34 5

h

v

Fr > 1 Fr < 1

FIGURE A.3: Incompatibility of the mesh moving algorithm for solv-
ing problems with shocks.

While the primitive variables are not optimal to solve shocks, the mesh mov-
ing algorithm presents another difficulty. Both methods present restrictions, but the
nature of that difficulties are different. The restriction of the primitive variables is
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Particle stage
Convect particles

Project info
to mesh

Mesh stage
Solve equations

Update par-
ticles

FIGURE A.4: PFEM-2 flowchart

related to the conservation of the momentum at discrete level. The restriction of the
mesh moving algorithm is associated to the finite differencing convective operator.

A.3 Fixed mesh methods

In this section a Lagrangian procedure with fixed mesh is presented. This procedure
is an extension of PFEM-2 [90] to the SW equations. In contrast to the mesh moving
algorithm, the particles does not coincide with the nodes, but they move over the
FE mesh. This procedure has the advantage of avoiding the remeshing step, but the
cost of a projection from the particles to the mesh.

Let P be a set of particles randomly seed over the SW domain. The density of
the particles is such that the average number of particles per element is greater than
one. This particles move over the domain transporting the intrinsic variables of the
fluid, namely density, water depth, flow rate, etc. This convection stage is finalized
with a projection of the variables of the particles to the FE mesh. The solution of
the step is completed with the FE counterpart, solved in the fixed mesh following
a Lagrangian framework. Finally, updating the particles is a trivial operation since
the FE interpolation allows to evaluate the unknowns at an arbitrary point, namely,
the particles. Figure A.4 summarizes the main stages of the PFEM-2 algorithm.

In the same way as the mesh moving algorithm, this scheme may undergo certain
variations. Strictly speaking, the mass and momentum balance are a coupled system
of equations and the Lagrangian split does not modify that property. This will be
analyzed in the following sections.

A.3.1 Governing equations

In contrast to the moving mesh algorithm, the nodes receive information from the
particles without experimenting mesh displacement. This fact allows to arbitrarily
choose a Lagrangian or Eulerian framework, even for only one of the balance equa-
tions. This property of the PFEM-2 algorithm allows more flexibility. The choose
of the equations as well as the framework can optimize the computational cost and
the approximation of the physical properties. For example, Heniche pointed out in
[78] that the residual of the momentum balance does not distinguish the sign of the
water depth if conservative variables are employed, rq(h) = rq(−h). This property
suggests the use of conservative variables in combination with a mixed framework.

Dq
Dt

+ q∇ · u + gh∇(h− z) + S f = 0 (A.16a)

∂h
∂t

+∇ · q = 0 (A.16b)

The first term involving spatial derivatives in the momentum balance comes
from applying the chain rule to the fluxes vector and subtracting the convective
term. The remaining terms corresponds to the compressibility of the SW equations
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–it is important to remember the analogy between the SW equations and the com-
pressible NS equations–.

Several possibilities are presented to deal with this term. The first one consists
on recovering the Eulerian quasi-linear form and then, apply the material derivative.
The second one imply a projection to compute the divergence of the velocity. Lastly,
an updated Lagrangian formulation can be used to compute the divergence term.

The first option is preferred since it is more consistent with the previous sec-
tions and does not introduce extra steps. The linearization matrices follow the next
expression:

A1 =

u1 0 −u2
1 + gh

u2 0 −u1u2
1 0 0

 , A2 =

0 u1 −u1u2
0 u2 −u2

2 + gh
0 1 0

 (A.17)

A.3.2 PFEM-2 algorithm

The outlined algorithm is explained in more detail in the section. The more impor-
tant parts are the computations carried out by each discrete space. The communica-
tion between them and the integration in time are strictly related.

A.3.2.1 Convection

Let us assume that the particles move as material points and that each one stores the
point concentration of the property φp = φ(xp). Since the variables are not known
for any arbitrary time t, but only for the discrete time steps 1, 2 . . . n, n + 1 . . . , the
advection of a particle can be approximated using a θ-family discretization as:

xn+1
p = xp

n + (1− θ)
∫ tn+1

tn

vn(xt
p)dt + θ

∫ tn+1

tn

vn+1(xt
p)dt (A.18)

If the velocity field is known, the system becomes explicit and the problem is
reduced to moving the particles along the streamlines. The problem is solved using
an explicit forward integration (θ = 0) with a proper sub-step [90]. An illustration
is given in figure A.5a. This method, also known as XIVAS [86][89], was initially
applied to a variable velocity field. After the particles are moved, the ones that leave
the domain are removed.

In this work the computational domain is initially seeded with fifteen particles
per element. This number does not remain constant during the simulation because
particles can freely enter and exit finite elements as they move through the domain.
Thereby, in order to properly perform the advection stage, every time step the do-
main is reseed with particles so as to ensure that a minimum number is present
within each finite element. This number of particles was chosen to be four. Particles
can also be eliminated from each finite element in order to limit the computational
cost. In this case, the maximum number of particles allowed per finite element is
sixteen. These particle thresholds were chosen as they have proven to give accurate
results in previous works [91].

A.3.2.2 Projection

When solving the advective stage in Equation (A.16), the particles concentration at
xn+1

p is the same as at the onset of the time step (xn
p). This is equivalent to saying

that the advective step assumes Dφ
Dt = 0. This modification in the field described
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FIGURE A.5: Illustration of the two main steps of the PFEM2 frame-
work.

by the particles needs to be transferred onto the finite element space. As usual in
particle-based techniques, such as PFEM, a projection procedure is used to transfer
the information from the particles to the finite elements in the underlying mesh. In
our work we use

φ∗ = L(φp) (A.19)

where L is the projection operator from the particles to the finite element space
and φ∗ is the result of the advection at the time step n + 1. In this case, a first order
explicit projection has been used and all the particles in the elements surrounding a
node contribute to that node, i.e.

φ∗i =
ΣeΣpe wpφp

ΣeΣpe wp
with wp = Nei(xp) (A.20)

where the index i runs over all the mesh nodes, where e runs over the elements
sharing node i and where pe runs over the particles contained in element e.
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(B) Kernel of elements and particles contribut-
ing to a node.

FIGURE A.6: Illustration of the projection stage of the PFEM2 frame-
work.
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A.3.2.3 Wave equation stage

Once the convective problem is solved explicitly in the particles and the results are
transferred to the mesh nodes, the lagrangian residual (Equation (A.16)) is solved in
a fixed mesh with an Eulerian FIC-FEM technique. The spatial discretization and the
time integration scheme follows the procedure explained in Section 3.2. However,
the time integration scheme follows a first-order BDF or Backward Euler. The time
derivatives are computed according to the next expressions

q̇ =
qn+1 − q∗

∆t
(A.21)

ḣ =
hn+1 − hn

∆t
(A.22)

Equation (A.21) includes the contribution of the advection computed with the parti-
cles through the variables ∗. It is important to note that the water depth is still using
a partial derivative.

Another minor modification with respect to the Eulerian framework, is the use
of the convected values as initial guess for the iterative strategy:

qn+1,0 = q∗ (A.23)

hn+1,0 = h∗ (A.24)

Finally, it is worth to remark the need of stabilization, since the discretization
does not fulfill the compatibility of interpolation. Though, several authors report
instabilities but does not associate them to the inf-sup condition. The stability is
introduced following the procedure explained in section 3.2.

A.3.2.4 Particles update

The last step of the PFEM2 algorithm is to add the contribution of the solution of
Equation (A.16) to the particles. To avoid the accumulation of projection errors and
additional diffusion, the information from the particles is updated using an incre-
mental scheme. This step only involves the evaluation of the unknown at each par-
ticle position in the finite element mesh as:

φn+1
p = φn

p + φ(xn+1
p )− φ(x∗p) (A.25)

A.4 Examples

In this section an example is presented as a proof of concept of the Lagrangian meth-
ods. Its advantages and drawbacks compared to the Eulerian framework are dis-
cussed. Here, the example presented in section 3.5.1 is taken up again, since the
oscillation benchmark is a good option to test the accuracy of the shoreline tracking.

As a reminder, this benchmark has been extracted from [53] and has an analyt-
ical solution. The problem consists on a 1D parabolic basin containing a mass of
water. The initial condition is zero velocity and the free surface describing an in-
clined plane. After the initial time t = 0, the mass of water begins to slice over
the parabolic basin and describes an oscillatory movement. The topography is de-
scribed in equation (3.54) and the analytical solution follows equation (3.55). The
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FIGURE A.7: Detail of the discretizations used to solve the oscillation
in a parabolic basin with the mesh moving algorithm (PFEM).
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FIGURE A.8: Comparison of the convergence for the presented meth-
ods.

same parameters than the ones in section 3.5.1 are used in this example:

h0 = 1 , a = 1

The spatial domain is Ω = [0, 10]× [0, 1]m2, where the parabola is aligned with
the larges dimension. Figure A.7 shows the discretization of the problem using the
PFEM algorithm. For visualization purpose, the meshes are deformed vertically
with the topography and the free surface respectively.

A convergence analysis has been carried out with the proposed method and the
results are summarized in Figure A.8. As expected, the order of convergence of the
PFEM method is not affected by the moving shoreline, keeping the second order of
the FE formulation.
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Order of convergence

Froude number

1

2

1

Eulerian
Lagrangian

8

FIGURE A.9: Qualitative representation of the order of convergence
in terms of the Froude number.

A.5 Concluding remarks

Lagrangian methods exhibit some computational benefits but the main advantage
is its natural tracking of the shoreline. Especially the mesh moving algorithm, does
not need additional treatment since it is not affected by the dry domain. The main
drawback of the Lagrangian methods is related to the compressible behavior of the
SW equations. On the on side, the velocity field is discontinuous around shocks
and the staggered character of the time strategy is not suited to this phenomena.
Furthermore, the explicit calculation of the convection faces a strong restriction on
the CFL number. On the other side, the Lagrangian formulation does not achieve
the desired linearization when compressible formulations are considered. Figure A.9
shows a schematic of the order of convergence in terms of the Froude number. When
the Froude number is equal to 1, there is a discontinuity. The moving shoreline is
characterized by a very elevated Froude number, since the shoreline involves a quasi
zero water depth.

A global overview of the Lagrangian and Eulerian methods identifies the Eule-
rian framework as the robust one. Nevertheless, the Lagrangian framework is still
interesting for the shoreline tracking. A promising combination would be an arbi-
trary Lagrangian-Eulerian formulation using the Eulerian framework where shocks
and oscillatory behavior is dominant, and using a Lagrangian framework where the
shoreline is moving.
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Appendix B

Hierarchical mesh refinement with
local time step

Keeping the time step under a certain value relative to the element size in transitory
problems is of key importance to achieve good results. Otherwise, an excessively
large time step could resort on an over-diffusive solution. Furthermore, the element
size is governed by the physics, it has to be small enough to capture the modes of
interest. It is a usual practice to refine the mesh near the region of interest or where
the solution is changing rapidly. consequently, the local reduction of the mesh size
is imposing a global reduction of the time step.

This section seeks for a strategy with Local Time Step (LTS). The main idea con-
sists on adding subdomains characterized by smaller mesh sizes. Thus, a hierarchic
mesh refinement is defined with a characteristic mesh size and its corresponding
time step. The hierarchical refinement allows to use both non-conforming discretiza-
tion at space and time level. The only requirement is having a natural number of
divisions in order to perform a communication at the coarse level. Figure B.1 shows
a hierarchical spatial refinement.

This framework eases the refinement and coarsening procedures. The coarsen-
ing process is specially simple, since it consists just on removing elements from the
lowest level without having to rebuild the connectivities. On the other hand, a pro-
cedure must be defined for the hanging nodes at the boundary and the hanging time
steps.

There have been previous advances in LTS. An early proposal can be found in
[32], where a LTS was proposed for waves propagation using the Maxwell’s equa-
tions. The main interest of the LTS is the reduction of computational resources and
to avoid the numerical diffusion caused by small time steps on coarse regions of the
mesh. The cost of introducing a LTS with local mesh refinement is an instability at

Level 0 Level 1 Level 2

FIGURE B.1: Two refinement levels. Each refinement has two levels
of sub divisions.



98 Appendix B. Hierarchical mesh refinement with local time step

the coarse-fine interface. Collino analyzed the LTS for the hyperbolic 1D equations
in [41, 42] and overcame this instability analyzing the conservation of the discrete
energy through refinement levels. Usually the LTS has been linked to explicit time
steps.

DG have been successfully applied to overcome the stability constraint of ex-
plicit LTS. For example, in [54] the non-conforming properties of DG are exploited
to ensure stability. In that case, the continuity is enforced by the so-called numerical
fluxes arising from the non conforming discretization of DG. On the other hand, CG
is still a good solution, in [5] stability is ensured by the classical technique of over-
lapping one coarse element with the fine mesh. A similar example can be found in
[70].

Finally, the most recent studies move towards massively parallel implementa-
tion. In [10] a new library is presented. In this appendix, the implementation is
designed in parallel processing, but without memory parallelization. On the other
hand, attention is devoted to the algorithm, which is fully decoupled from the time
integration, allowing for implicit or explicit schemes. In the future, this procedure
could be easily extended to shared memory parallelization.

B.1 Algorithm

As stated in [5, 41], the time step is driven by the finest mesh and the stability con-
dition arising from the coarse-fine interface is overcome with a partial overlap. In
the present case, the choice is to have a hierarchical structure of refined meshes fully
overlapped, see Figure B.2. Apart from the advantages in parallel implementation,
it allows to fully decouple the LTS from the time integration.

Having several meshes overlapped has an extra cost, since the coarse mesh has
to be computed with the coarse time step at the refined region. However, its com-
putational cost is insignificant in comparison with the resolution of the fine level.
This step is considered as a predictor and is necessary for applying the boundary
conditions at the fine level.

Hence, the stability relies on the boundary conditions applied to the fine level.
The boundary conditions stated in chapter 2 does not necessary link all the variables,
thus, some of the unknowns might not be continuous across the coarse-fine interface.
This is the cost to pay for stability.

Overlapped
meshes

Level 0

Level 1

Level 2

FIGURE B.2: Unfolding of the overlapped hierarchical refinement for
a 1D mesh.

Once defined the spatial refinement, the hanging nodes are included in the al-
gebraic system using Multi-Point Constraints (MPC). The values of a hanging node
are computed by an average from the father nodes. This operation is performed
recursively at all the divisions within the same hierarchic level.
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Finally, after the prediction step of a coarse level, its sub-level is advanced with
a smaller sub-step. Then, the interface is updated with the values from the predic-
tion and is proceed to compute the solution of the sub-level. This procedure can be
executed recursively. Once all the sub-steps have reached the end of the main step,
the coarse prediction is updated with the values from the fine level. These steps are
resumed in Figure B.3.
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11
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13

Predict

Update BC
and predict

Update BC
and predict

Update BC, solve

Update BC, solve, update

Update BC, solve

Update BC, solve

FIGURE B.3: Steps for solving a coarse time step with hierarchical
refinement.

It is important to remark that this procedure does not impose any restriction on
having a discontinuity of refinement level higher than one. Regardless of the jump
of refinement level, the presented procedure is applied as well.

B.2 Data structure

The hierarchical refinement has been designed in order to be compatible with struc-
tured and unstructured meshes. Hence, the data structure is based on a finite ele-
ment mesh, where nodes are defined by its coordinates and elements are defined by
its connectivities.

The refinement begins when some elements are selected to refine according to a
criterion which is to be defined. Then, those elements are copied to another mesh
container, identified by the consecutive refinement level. The nodes are also copied.
It is important to remark that the copied elements are only an auxiliary tool to de-
fine the connectivities. The mesh container identified with the refined level might
contain elements already refined (Figure B.4a). During the copying process, the des-
tination nodes save a pointer to the origin node and vice-versa.

Once the coarse connectivities are transferred to the refined mesh, an iterative
process begins to refine the elements and conditions until the desired refinement is
achieved (Figure B.4b). Every entity is split by dividing the edges into two. In the
case of quadrilaterals, a node is added in the middle of the face, in the case of hex-
ahedra, an extra node is added in the center of the volume. This operation requires
some especial attention, because the edges and faces are shared by two elements.
For this purpose, an auxiliary variable is defined in order to register the created en-
tities. This variable is a map where the keys are the connectivities of the main edge
and the mapped value is the middle node. The iterative process is controlled by the
number of divisions executed at every element, each element has a variable storing



100 Appendix B. Hierarchical mesh refinement with local time step

level n level n+1

(a)

refined

to refine

level n level n+1

(b)

refined

refined

level n level n+1

(c)

to coarsen

refined

level n level n+1

(d)

refined

FIGURE B.4: Main steps for the refinement and coarsening process.

the number of divisions performed. After executing a division, this value is incre-
mented by one. This process is repeated until the specified number of divisions are
reached.

The coarsening process is straightforward. It begins when the refinement crite-
rion marks some elements at the coarse level to coarsen. This information is trans-
ferred to the refined elements using an auxiliary variable that allows to map from a
refined element to its parent element. Hence, each refined element asks to the parent
element if it is to be coarsened (Figure B.4c).

The coarsening process is done by erasing all the elements to be coarsened from
the refined level (Figure B.4d). The process is finished by cleaning the hanging nodes
and the auxiliary variables. To sum up, the following variables are used by the
refinement procedure:

LEVEL Scope: Mesh. The current refinement level.

REFINED Scope: Elements, conditions. Flag indicating if the current entity has a
nested refinement.

TO_REFINE Scope: Elements, conditions. Flag indicating if it must be refined.

TO_COARSEN Scope: Elements, conditions. Flag indicating if it must be coars-
ened.

FATHER_NODES Scope: Nodes. If the node is overlapped with a coarse node,
there is only one father node and it points to the coarse node. If the current
node is refined, it points to the nodes in the refined mesh.

FATHER_NODES_WEIGHTS Scope: Nodes. The averaging of the nodal values.
Has the same size than FATHER_NODES and the sum of the wights is 1.

SLAVE_NODE Scope: Nodes. It points to a cloned node in the refined mesh.

FATHER_ELEMENT Scope: Elements, conditions. It points to the father entity at
he coarse mesh.

NUMBER_OF_DIVISIONS Scope: Elements, conditions. It counts how many times
the entity has been divided.

NUMBER_OF_DIVISIONS Scope: Mesh. It signifies how many times the entities
had to be divided.

NODES_MAP Scope: Mesh. A map pointing to a refined node from the fathers
nodes.
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This can be easily implemented in parallel with the standard reduction tech-
niques, except the NODES_MAP. Adding new items to a map in parallel requires
some extra architecture to ensure the thread safety. An alternative would be to split
this map and reduce its scope to the nodes. This definition has some extra operations
to write, read and remove values, but is worth for its scalability.

B.3 Refinement criterion

Finally, the refinement criterion has to be defined. There are two main criteria, the
dynamic and the static one. The dynamic depends on the solution after the pre-
diction step. In that case, the residual of the equations is evaluated –it is just the
local right hand side when a residual-based system is used– and compared against a
fixed value. When the local residual is too high, the element must be refined if there
it has not been already refined. Whenever the local residual is sufficiently small, the
element must be coarsened when it has a nested refinement.

The static criterion does not depend on the solution and the mesh is not modified
during the analysis. This criterion serves to enhance the quality of the solution in a
region. It is important to note that, by its hierarchical definition, this refinement can-
not be used to have a better definition of the boundaries. This algorithm is specially
suited for the dynamic criterion.

B.4 Examples

This section includes two basic examples. In the first example is shown how the
mesh refinement can help to obtain better solutions. The second example is devoted
to test its capabilities in a more complex test with a dynamic meshing.

B.4.1 Static refinement

In this example the propagation os a pulse is analyzed. Let Ω = [0, 10]× [0, 1]m2 be
the spatial domain. The initial water depth is 1m over all the domain, except near
the right boundary, where there is an increment of 1m. The initial velocity is null and
for t > 0s a wave is generated and propagated. Reflective conditions are considered
over all the boundary, u · n = 0 on Γ.

The domain is meshed with a structured triangular mesh of size 0.1m. In this test
a one-level refinement with two division is considered for y > 0.5. This criterion is
static and kept constant during all the simulation. An overview of the mesh and a
detail of the refinement is shown in Figure B.5.

FIGURE B.5: Mesh used for the static refinement test and closeup of
the refinement interface.

In Figure B.6 can be appreciated how the solutions obtained at the different re-
gions are very different. In order to magnify this difference, the coarse and the fine
domains are decoupled. Firstly, the boundary condition is not updated at the inter-
face from the coarse prediction. Secondly, the coarse solution is not updated with
the fine results.
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FIGURE B.6: Propagation of a pulse with static refinement. Results at
time t = 0, 1, 2s, The different resolution levels are uncoupled.

When the two domains are coupled, the information is transferred between the
two domains and the solution is modified. In Figure B.7 it is possible to appreciate
how the wave front is is modified at each sub-domain and how the solution on one
sub-domain is modified by the other. For simplicity, the legend is not shown and the
contour plot represents only the relative values.

In this test two basic features of the hierarchic refinement are shown. First of
all, an accurate discretization is required to obtain an accurate solution without dis-
sipative effects (Figure B.6). Secondly, the robustness of the data exchange at the
interface (Figure B.7).

FIGURE B.7: Propagation of a pulse with static refinement. Results at
time t = 0, 1, 2s. The different resolution levels are coupled.

B.4.2 Dynamic refinement

The second examples combines the hierarchical refinement with a residual-based
criterion. Hence, the resolution level depends on the solution, this fact allows to test
the refinement and coarsening processes.

A rectangular domain Ω = [0, 20] × [0, 10]m2 is considered. The mean water
depth is 0.1m and the solution is initialized with an increment of 0.1m at the co-
ordinate x0 = (4, 3)m. Reflective conditions are considered over all the boundary,
u · n = 0 on Γ. After t = 0 a circular wave is generated, generating reflections at the
boundaries which interact with each other.
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The domain is initially discretized with an unstructured mesh of triangles of size
0.05m. A refinement level is added when the local residual is greater than a thresh-
old. When the wave front arrives to a material point, the refinement level is in-
creased and after the wave front has passed, the refinement level is decreased. Two
snapshots of the solution at time t = 10 and 20s are shown in Figure B.8.

FIGURE B.8: Propagation of a wave with a dynamic refinement. Re-
sults at time t = 10 and 20s. The different resolution levels are cou-

pled.

B.5 Conclusions

The basic structure of a hierarchical refinement with LTS has been presented in this
appendix. The design of the local refinement with LTS is decoupled from the time
integration scheme, this is achieved with an overlap of the fine domain with the
coarse one. This fact allows to use arbitrarily an explicit or implicit time step without
compromising the stability of the method near the fine interface.

Despite duplicating the coarse degrees of freedom at the refined sub-domain, the
computational requirements are not increased. The computation of the duplicated
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degrees of freedom represents 1/64 over the cost of the fine solution, when two di-
visions are made. The duplicated degrees of freedom are part of a prediction step
which is used to specify the boundary conditions at the interface during the sub step-
ping of the lower level. Moreover, this design extremely simplifies the refinement
and coarsening procedures.

This type of refinement is specially interesting when obtaining an accurate solu-
tion is linked to a fine discretization in a small part of the domain. The hierarchical
mesh refinement can be applied recursively in order to obtain several levels of accu-
racy depending on the quality of the solution.
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Search algorithm

Usually, Lagrangian frameworks involve the computation of the streamlines or pro-
jections. The computation of the streamlines is related to the material derivative
and is part of the differentiation. The projections are related to the communication
between the Lagrangian and Eulerian domains, and them belong to the numeri-
cal environment. Those task require the search of material points (streamlines) or
nodes (projections) over the spatial discretization. This happens both in the fixed
mesh PFEM-2 algorithm or in the mesh moving PFEM algorithm. As counterpart to
the simplicity in the system computation provided by the Lagrangian algorithms, a
search algorithm is required. In this appendix, the search algorithm used and imple-
mented in the presented work is explained.

The cost of the search of intersections or point vicinity to objects is quadratic, all
the objects have to be tested against all. However, this cost can be drastically reduced
if the domain is subdivided in cells or bins, containing a few objects. The divide and
conquer strategy is based on the fact that the sum of the search of a few objects is
smaller than the search of all the objects (∑ few · few� ∑ all · all). The best method
for dividing the objects in bins depends on the target geometries. Several trees can
be defined using Axis-Aligned Bounding Boxes (AABB) [152] or Object-Oriented
(OBB) [67]. Figure C.1 shows ans schematic of some tree partitions.

Regular Quadtree

k−d tree BSP tree

FIGURE C.1: Some common tree structures.
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Since the computational domains are dense and we are not interested in the sur-
face, but inside the body, an AABB structure will be employed (Fig. C.2). Firstly, the
main domain is partitioned using a dynamic bins structure, a detailed explanation
can be found in [152]. In brief, the dynamic bins are a search structure where the cell
size is higher than the characteristic element size, each cell contains a set of elements.
Once the search structure is initialized, the location of a point is performed in two
steps. The location on the cells, and the location on the candidate elements.

FIGURE C.2: Left: Mesh and entity to locate in the mesh. Right: Mesh
and entity with the search structure (AABB)

Building the search structure has an initial cost, but is recovered during the
search, specially when the mesh becomes larger. The definition of the cells is straight-
forward, while the main cost of the search structure building is the definition of the
intersected elements against each cell. The element-cell intersections have been com-
puted using the method described by Möller [4], described below.

Once the bins structure is finalized, the search process is quite simple. Besides
the fast process of locating a node, the location of multiple nodes can be executed in
parallel. Both properties make this algorithm very efficient.

Hereafter, the most representative algorithms are described. Other direct inter-
section algorithms such as ray-triangle [93, 131] or triangle-triangle [130] are used in
this work, but for sake of brevity are not described here.

C.1 Triangle vs aligned box intersection

The full explanation of the algorithm can be found in [4]. Since this procedure is a
generic tool for numerical methods, it has been applied for the shallow water, con-
vection diffusion and Navier-Stokes equations. The generic 3D version is explained
here, as well a the 2D particularization.

The derivation of this algorithm is based on the Separating Axis Theorem [67].
This theorem consists on looking fo a separating axis between the two objects. The
algorithm looks for a separating axis along different directions. If a separating axis is
found, the algorithm stops since there is not intersection. If all the tests pass, there is
an intersection. Figure C.3 shows the 13 possible directions where a separating axis
can be found. To sum up, the directions are the three cartesian basis, ei, the normal
vector n and the nine combinations of the triangle edges against the cartesian basis,
fj × ei.
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FIGURE C.3: Notation for the triangle-AABB intersection test.

According to Figure C.3, the first operation consists on a translation in order to
get the AABB in the origin of coordinates. The tests to evaluate are:

Cartesian axis (3 tests) The first set of tests involves the comparison of the AABB
against the triangle AABB on the three directions ei. In pseudocode, the search
of a separating axis is:

for i = 0:2

min, max = min_max(triangle_points)

if (min > box_half_size or max < -box_half_size)

return true

return false

Normal vector (1 test) The second set of tests consists on the AABB-plane compar-
ison. The plane containing the triangle is defined with the unit vector n and
the distance to origin d. The test is performed in the same quadrant of n and is
analogous to the previous one.

for i = 0:2

if (normal[i] > 0)

box_half_size_proj += box_half_size[i] * normal[i]

else

box_half_size_proj -= box_half_size[i] * normal[i]

if (distance > box_half_size_proj)

return true

return false

Edges (9 tests) A test is performed for every axis aij = ni × fj. Each tests involves
a projection of the triangle and the AABB. Fortunately, the expansion of the
projections allow to make some simplifications. For the first projection we
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have:

p0 = a00 · v0 = (0,− f0z, f0,y) · v0 = v0zv1y − v0yv1z

p1 = a00 · v1 = (0,− f0z, f0,y) · v1 = v0zv1y − v0yv1z = p0

p2 = a00 · v2 = (0,− f0z, f0,y) · v2 = (v1y − v0y)v2z − (v1z − v0z)v2y

The fact that p0 = p1 makes easier the finding of the maximum and minimum
of p0, p1 y p2. Those are compared against the radius of the box, which is the
projection of the corner onto a00:

r = hx|a00x|+ hy|a00y|+ hz|a00z|

Finally, finding a separating axis is:

if (min(p0, p2) > r or max(p0, p2) < -r)

return true

If the 13 tests return false, it means there is not a separating axis, thus, there is not
intersection. Note that if one test returns true, the algorithm stops since there would
not be a possible intersection. In practice, the bullet 3 is evaluated at first, then bullet
1 and finally, bullet 2.

C.1.1 2D particularization

The two dimensional case is a simplification of the previous algorithm and some test
can be omitted. Only five tests are needed:

Cartesian axis (2 tests) A separating axis is sought over x and y.

Normal vector (none) Is omitted.

Edges (3 tests) Only the projections of the edges fj against the edge ez are relevant.

C.2 Quadrilateral vs aligned box intersection

The above algorithm is easily extrapolated to quadrilaterals. On the one hand, there
is an extra edge test in the third bullet. On the other hand, looking for the minimum
and maximum coordinate in the first bullet, involves more conditionals.

However, in practice, each quadrilateral is subdivided in two triangles and two
comparisons are made. Even the number of tests is greater, this strategy allows to
reduce code duplication and to make easier the code maintaining. This approach is
done since we are not interested on the code optimization, but on the evaluation of
the FEM.

C.3 Point intersection

Determining if a point is inside a linear triangle or bilinear quadrilateral is a straight-
forward task. This procedure involves determining the local coordinates and verify-
ing if all of them are between 0 and 1 for triangles, or between -1 and 1 for quadri-
laterals. An equivalent verification is expressed in terms of the shape functions N,
this involves less conditionals than the previous case:
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function is_inside

for i = 1 : n_nodes

if N(i) < 0

return false

return true
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